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Introduction

4

→ Visible light (380 nm / 3,2 eV)

→ Typically: at least > 80%

→ Despite high Eg

→ Typically: ρ around 10-3 – 10-4 Ω*cm

→ Metal oxide
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Why study p-type TCOs?

- Gaining fundamental understanding of hole-conduction 
mechanisms

- Bringing research field up to date with n-type research

→ Practical: Enables the use of transparent p-n junctions!



Fundamental problem of p-type TCOs
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▪ N-type TCOs: 

- Conduction via CBM

- Localized on metal s-orbitals

▪ P-type TCOs:

- Conduction via VBM

- Localized on oxygen 2p-orbitals

→ low dispersion, high m’
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Fundamental problem of p-type TCOs

▪ Computational screening of oxides:

6Reference: Hautier et al. (2013)



Overview of p-type research

Typical strategy: 

“Chemical modulation of the valence band” (CMVB)

- Hybridisation between O 2p and metal d-orbitals:

→ Closed shell d-orbitals: d10 s0 (ABO2)

→ Zn2+ + group 9 metal M3+: d6 (ZnM2O4)

→ Mn2+ spinels: d5 (MnM2O4) → Case study I

- Mixing of O 2p and other anionic p-orbitals:

→ Oxypnictides: group 15 element (P, As)

→ Oxychalcogenides : group 16 element (S, Se, Te)

→ Case study II

7Reference: Kawazoe et al. (2000), Mizoguchi et al. (2002), Hautier et al. (2013)



Research goal

Finding and developing a versatile and efficient 
method to synthesize “designer oxides”

→ Chemical solution deposition (CSD)

▪ Advantages:

- Works under ambient conditions

- Good control of stoichiometry

- Molecular level mixing: convenient for 
multimetal oxides and doping

- Relatively inexpensive (products + operation)

▪ Possible disadvantages:

- Requires post-deposition anneal: high 
temperatures are often needed 

- Film quality optimization can be more difficult
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I.  Case overview

▪ Database screening by Peng et al. 

(National Renewable Energy Laboratory, 2013)

▪ P-type ternary Mn-oxides

▪ Candidate from computational screening using:

- Thermodynamic stability

- Wide band gap (> 3 eV)

- Light hole effective mass

- No hole self-trapping

- No formed hole-killer defects

- Presence of formed hole-producer defects

10Reference: Peng et al. (2013)



I.  Case overview

▪ Mn: High-spin d5 configuration (tetrahedral coordination)

With relatively large Eg (3,3 eV) + spin-forbidden d-d 
transitions

→ Good visible light transparency

▪ p-d coupling between oxygen p and Mn d

→ Higher VB dispersion

▪ Cr2MnO4 is p-type dopable, but requires extrinsic dopants

→ Best options: LiMn and MgCr 

11Reference: Peng et al. (2013)



I. Experimental outline

Precursor synthesis

Film deposition
(spin-coating)

Thermal processing towards

crystalline films
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I. Sample characteristics

Phase formation a.f.o. temperature (XRD):
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I. Adding the dopant

▪ Already achieved in powder form by Nagaraja et 
al. (2014)

▪ < 10 at.% Li was seen as optimal

▪ Own observations:

- x < 5 at%: No change in phase comp.

- 5 < x < 10 at%: Phase separation

- x > 10 at%: Li-containing secondary phases

→ Successful at low doping levels or Li-loss?

14Reference: Nagaraja et al. (2014)



Case study I: Conclusions

▪ Development of a stable, aqueous Cr-Mn 
multimetal precursor

▪ Synthesis of the Cr2MnO4 host material was 
successful, thin film deposition via spin-coating

▪ Dopant addition was straightforward, but heavily 
disturbs the system at higher doping levels
→ Secondary phase formations
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II.  Case overview

▪ Database screening by Sarmadian et al. 

(Antwerp University, 2016)

▪ Synthesis and characterization of (doped) lanthanide 
oxyselenides 

▪ Ln2O2Se with Ln: La3+, Nd3+, Gd3+, Pr3+

▪ Candidate from computational screening using:

- Eg > 2,5 eV

- m’hole < 1

- p-type dopable (shallow acceptor level)

- thermodynamic stability

- Favorable band energies vs. BPE

17Reference: Sarmadian et al. (2016)



II.  Case overview

▪ Metal oxychalcogenides:

▪ Using S or Se: larger p-orbitals + lower E

→ Lowers VBM

▪ M: highly electropositive (group 1+2, REEs)

→ Increases CBM

▪ Combination leads to increased Eg

18Reference: Ueda et al. (2000), Banerjee et al. (2005)



II. P-type dopability screening

VB and CB energies vs. BPE

19Reference: Sarmadian et al. (2016)



II. Experimental outline

▪ Workplan:

Synthesis of (aqueous) Ln3+-precursor

Deposition of Ln2O3 films

Thermal treatment towards crystalline films

Selenization using dedicated setup
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II. Sample characteristics (Pre-Selenization)

▪ 250 nm La2O3 films

▪ Substrate: Thermal SiO2 on top of Si

▪ Stored under inert atmosphere / water-free environment

SEM-analysis:
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Top-down morphology Cross-section
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II. Sample characteristics (Pre-Selenization)

XRDs of starting phases:

▪ La2O3: hexagonal

▪ Nd2O3: hexagonal

▪ Gd2O3: body-centered cubic
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II. Selenization step

Se-source: Se-vapor H2Se

Reactivity: Low High

Temperature range: High Low

(500-900°C) (300-600°C)

Processing requirements: Mediocre High

Controllability: Low High
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II. Selenization step

▪ Selenization trends a.f.o. time and temp
→ Short t / low T: Oxide dominant

→ Long t / high T: Selenide dominant

▪ Secondary phase Ln4O4Se3

→ Very dominant for La-series

▪ Possible reaction mechanisms:

2 Ln2O3 + 3/8 Se8 → 2 Ln2O2Se + SeO2

Ln2O3 + H2Se → Ln2O2Se + H2O 

Possible Se-dimerisation? 2 La2O2Se + “Se” → La4O4Se3 
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II. Sample characteristics (Post-Selenization)

Resulting phase after selenization step:

▪ Nd2O3:

▪ La2O3:

▪ Gd2O3:

25



Case study II: Conclusions

▪ Crystalline Ln2O3 (Ln: La, Nd, Gd,…) thin films 
were succesfully deposited starting from an 
aqueous precursor system

▪ A partial anion-substitution (O → Se) was made 

via selenization of the Ln2O3 oxide films, leading 
to a class of novel p-TCO host materials 

▪ Some selenization trends were observed, 
depending on the Se-source and processing 
time/temperature
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Outlook

▪ Having a better understanding of the influence of 
doping on the final phase formation of the host 
material

▪ Check the effect of the substrate type on the final 
film composition and properties

▪ Investigating the primary opto-electronic 
properties of the processed films
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