Design and synthesis of novel p-type TCOS: From computational screening towards film deposition

<u>Gilles Bonneux</u>, K. Elen, N. Sarmadian, G. Brammertz, C. Detavernier, D. Lamoen, B. Partoens, A. Hardy, M.K. Van Bael

Inorganic and Physical Chemistry (IPC)

October 12th 2016

IMO - IMOMEC INSTITUUT VOOR MATERIAALONDERZOEK

Overview

Introduction

- \rightarrow Fundamental problem of p-type TCOs
- \rightarrow Overview of p-type research
- \rightarrow Research goal

- Case study I: Li-doped Cr₂MnO₄
- Case study II: Doped Ln₂O₂Se
- Outlook

Overview

Introduction

- \rightarrow Fundamental problem of p-type TCOs
- \rightarrow Overview of p-type research
- \rightarrow Research goal

- Case study I: Li-doped Cr₂MnO₄
- Case study II: Doped Ln₂O₂Se
- Outlook

Introduction

ransparent \rightarrow Visible light (380 nm / 3,2 eV)
 \rightarrow Typically: at least > 80%onductive \rightarrow Despite high E_g
 \rightarrow Typically: ρ around $10^{-3} - 10^{-4} \Omega^* cm$ xide \rightarrow Metal oxide

Why study p-type TCOs?

- Gaining fundamental understanding of hole-conduction mechanisms
- Bringing research field up to date with n-type research

 \rightarrow Practical: Enables the use of transparent p-n junctions!

Fundamental problem of p-type TCOs

- N-type TCOs:
- Conduction via CBM
- Localized on metal s-orbitals
- P-type TCOs:
- Conduction via VBM
- Localized on oxygen 2p-orbitals
 - \rightarrow low dispersion, high m'

VB

Fundamental problem of p-type TCOs

Computational screening of oxides:

Figure 1 | Effective mass distribution for electrons and holes in oxides.

Overview of p-type research

Typical strategy:

"Chemical modulation of the valence band" (CMVB)

- Hybridisation between O 2p and metal d-orbitals:
 - → Closed shell d-orbitals: $d^{10} s^0 (ABO_2)$
 - \rightarrow Zn²⁺ + group 9 metal M³⁺: d⁶ (ZnM₂O₄)
 - \rightarrow Mn²⁺ spinels: d⁵ (MnM₂O₄) \rightarrow Case study I
- Mixing of O 2p and other anionic p-orbitals:
 → Oxypnictides: group 15 element (P, As)
 → Oxychalcogenides : group 16 element (S, Se, Te)
 → Case study II

Research goal

Finding and developing a versatile and efficient method to synthesize "designer oxides"

→ Chemical solution deposition (CSD)

Advantages:

- Works under ambient conditions
- Good control of stoichiometry
- Molecular level mixing: convenient for multimetal oxides and doping
- Relatively inexpensive (products + operation)

Possible disadvantages:

- Requires post-deposition anneal: high temperatures are often needed
- Film quality optimization can be more difficult

Overview

Introduction

- \rightarrow Fundamental problem of p-type TCOs
- \rightarrow Overview of p-type research
- \rightarrow Research goal

- Case study I: Li-doped Cr₂MnO₄
- Case study II: Doped Ln₂O₂Se
- Outlook

I. Case overview

Database screening by Peng et al.

(National Renewable Energy Laboratory, 2013)

- P-type ternary Mn-oxides
- Candidate from computational screening using:
 - Thermodynamic stability
 Wide band gap (> 3 eV)
 Light hole effective mass

 - No hole self-trapping
 No formed hole-killer defects
 Presence of formed hole-producer defects

I. Case overview

- Mn: High-spin d⁵ configuration (tetrahedral coordination) With relatively large $E_g(3,3 \text{ eV})$ + spin-forbidden d-d transitions
- \rightarrow Good visible light transparency

- p-d coupling between oxygen p and Mn d
- \rightarrow Higher VB dispersion

Cr₂MnO₄ is p-type dopable, but requires extrinsic dopants
 → Best options: Li_{Mn} and Mg_{Cr}

I. Experimental outline

Precursor synthesis

Thermal processing towards crystalline films

I. Sample characteristics

Phase formation a.f.o. temperature (XRD):

13 Universiteit

I. Adding the dopant

- Already achieved in powder form by Nagaraja et al. (2014)
- < 10 at.% Li was seen as optimal</p>
- Own observations:
 - x < 5 at%: No change in phase comp.
 - 5 < x < 10 at%: Phase separation
 - x > 10 at%: Li-containing secondary phases
 - \rightarrow Successful at low doping levels or Li-loss?

Case study I: Conclusions

 Development of a stable, aqueous Cr-Mn multimetal precursor

 Synthesis of the Cr₂MnO₄ host material was successful, thin film deposition via spin-coating

■ Dopant addition was straightforward, but heavily disturbs the system at higher doping levels
 → Secondary phase formations

Overview

Introduction

- \rightarrow Fundamental problem of p-type TCOs
- \rightarrow Overview of p-type research
- \rightarrow Research goal

- Case study I: Li-doped Cr₂MnO₄
- Case study II: Doped Ln₂O₂Se
- Outlook

II. Case overview

- Database screening by Sarmadian et al. (Antwerp University, 2016)
- Synthesis and characterization of (doped) lanthanide oxyselenides
- Ln_2O_2Se with Ln: La^{3+} , Nd^{3+} , Gd^{3+} , Pr^{3+}
- Candidate from computational screening using:

 - $\left\{ \begin{array}{l} \ E_g > 2,5 \ eV \\ \ m'_{hole} < 1 \\ \ p-type \ dopable \ (shallow \ acceptor \ level) \\ \ thermodynamic \ stability \\ \ Favorable \ band \ energies \ vs. \ BPE \end{array} \right.$

II. Case overview

- Metal oxychalcogenides:
- Using S or Se: larger p-orbitals + lower E
 → Lowers VBM
- M: highly electropositive (group 1+2, REEs)
 → Increases CBM
- Combination leads to increased E_g

II. P-type dopability screening

VB and CB energies vs. BPE

.58D

83

CBM

VBM

II. Experimental outline

Workplan:

```
Synthesis of (aqueous) Ln<sup>3+</sup>-precursor
         Deposition of Ln_2O_3 films
Thermal treatment towards crystalline films
   Selenization using dedicated setup
```

II. Sample characteristics (**Pre**-Selenization)

- 250 nm La₂O₃ films
- Substrate: Thermal SiO₂ on top of Si
- Stored under inert atmosphere / water-free environment

SEM-analysis:

II. Sample characteristics (**Pre**-Selenization)

XRDs of starting phases:

 La_2O_3 : hexagonal ref. hexagonal La₂O₂ ref. Si Intensity (arb.unit) ref. hexagonal Nd₂O₃ Intensity (arb. unit) 35 25 30 20 Nd₂O₃: hexagonal ref. cubic Gd₂O₃ Intensity (arb. unit) Gd₂O₃: body-centered cubic

20

30

40 50 29 (°) 22 umec

50

II. Selenization step

<u>Se-source:</u>	Se-vapor	H ₂ Se
<u>Reactivity:</u>	Low	High
<u>Temperature range:</u>	High (500-900°C)	Low (300-600°C)
Processing requirements:	Mediocre	High
<u>Controllability:</u>	Low	High

II. Selenization step

- Selenization trends a.f.o. time and temp
 - \rightarrow Short t / low T: Oxide dominant
 - \rightarrow Long t / high T: Selenide dominant
- Secondary phase $Ln_4O_4Se_3$ \rightarrow Very dominant for La-series
- Possible reaction mechanisms:

 $2 \operatorname{Ln}_2 O_3 + 3/8 \operatorname{Se}_8 \rightarrow 2 \operatorname{Ln}_2 O_2 \operatorname{Se} + \operatorname{SeO}_2$ $\operatorname{Ln}_2 O_3 + \operatorname{H}_2 \operatorname{Se} \rightarrow \operatorname{Ln}_2 O_2 \operatorname{Se} + \operatorname{H}_2 O$ $Possible \ Se-dimerisation? \ 2 \ La_2 O_2 Se + "Se" \rightarrow La_4 O_4 Se_3$

II. Sample characteristics (**Post**-Selenization)

Resulting phase after selenization step:

Case study II: Conclusions

 Crystalline Ln₂O₃ (Ln: La, Nd, Gd,...) thin films were succesfully deposited starting from an aqueous precursor system

 A partial anion-substitution (O → Se) was made via selenization of the Ln₂O₃ oxide films, leading to a class of novel p-TCO host materials

 Some selenization trends were observed, depending on the Se-source and processing time/temperature

Overview

Introduction

- \rightarrow Fundamental problem of p-type TCOs
- \rightarrow Overview of p-type research
- \rightarrow Research goal

- Case study I: Li-doped Cr₂MnO₄
- Case study II: Doped Ln₂O₂Se
- Outlook

Outlook

 Having a better understanding of the influence of doping on the final phase formation of the host material

 Check the effect of the substrate type on the final film composition and properties

 Investigating the primary opto-electronic properties of the processed films Acknowledgements

Thank you for your attention!

Questions or suggestions?

IMO - IMOMEC INSTITUUT VOOR MATERIAALONDERZOEK