Parasitology of one of the world's foremost aquaculture fish species lacks a One Health Approach

Miriam I. Shigoley^{1,2*} Nicolas Antoine-Moussiaux², Maarten P.M Vanhove¹

¹Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, BE-3590

Diepenbeek, Belgium

²Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Belgium

INTRODUCTION

- Widespread cultivation in >140 countries
- 3rd most farmed finfish
- 4,590,292 tonnes (USD 2000/t) (FAO, 2020)
- Semi-intensive and intensive farming systems

Barría et al. 2020

©Jonathan Munguti

© Erick Ochieng Ogello

©Kamuthanga Farm

Fish parasitology and One Health

Focus on three topics

- 1. Fish health
- 2. Environmental health
- 3. Human health

Parasitology of *Oreochromis niloticus*

Reported parasite species (Shinn et al. 2023)

- 23 Trematodes
- 20 Monogeneans
- 7 Nematodes
- 2 Cestodes
- 2 Acanthocephalans

Problem statement

ca. 35 yrs

"tilapia AND parasite" (1989-2022)

→ ~350 papers

Aquat. Living Resour., 1989, 2, 117-126

Pathology of tilapias

Christian Michel

INRA, Laboratoire d'Ichthyopathologie, Station de Virologie et d'Immunologie, 78350 Thiverval-Grignon, France.

Received December 1, 1988; accepted March 9, 1989.

DOI: 10.1111/raq.12742

REVIEW

REVIEW

A global review of problematic and pathogenic parasites of farmed tilapia

Received: 11 December 2021 | Revised: 21 September 2022 | Accepted: 23 September 2022

Andrew P. Shinn ^{1,2} | Annemarie Avenant-Oldewage ³ | Melba G. Bondad-Reantaso ⁴ | Armando J. Cruz-Laufer ⁵ | Adriana García-Vásquez ⁶ | Jesús S. Hernández-Orts ⁷ | Roman Kuchta ⁷ | Matt Longshaw ⁸ | Matthijs Metselaar ⁹ | Antoine Pariselle ^{10,11} | Gerardo Pérez-Ponce de León ¹² | Pravata Kumar Pradhan ¹³ | Miguel Rubio-Godoy ⁶ | Neeraj Sood ¹³ | Maarten P. M. Vanhove ⁵ | Marty R. Deveney ¹⁴ |

Web Search

Data sources

(https://www.webofknowledge.com/)

(https://pubmed.ncbi.nlm.nih.gov/)

Protocol

PRISMA Extension for Scoping Reviews (PRISMA-ScR)

1. Fish Health

((Nile tilapia OR *Oreochromis niloticus*) AND (parasit* OR bacteria OR fung* OR virus OR prion OR pathogen* OR helminth)) AND (loss* OR econ* OR impact OR mortality OR risk OR disease)

- Identified 3,006 papers
- Included 78 in review

Inclusion criteria

Papers that checked the actual effect of the parasites

Parasite taxa and impacts

2. Environmental health

Environmental health

(((Nile tilapia OR *Oreochromis niloticus*) AND (parasit* OR bacteria OR fung* OR virus OR prion OR pathogen* OR helminth)) AND (ecosystem* OR environment* OR biodiversity OR water)) AND (indicator OR sentinel OR marker OR tag)

- Identified 306 papers
- Included 8 in review

- Parasites as early warning system
- →Increase in numbers (low & medium conc.)
- → Disappear (high conc.)
- →Exception (metal sinks)

Correlation of physico-chemical parameters and parasite indices

14 parasite species

(+) Increase or (-) decrease in parasite abundance

Considerably low number of parasite species used as indicators

Species of *Acanthogyrus* as a pollutant sink

- Acanthocephalans accumulate various trace metallic elements
- → Decrease Pb levels in infected hosts
- →Pb levels (988 times) more relative to ambient water

Only 1 parasite as a pollutant sink

Estaño Leonardo, 2020

3. Human health

Human health ((Nile tilapia OR *Oreochromis niloticus*) AND (parasit* OR bacteria OR fung* OR virus OR prion OR pathogen* OR helminth)) AND (zoono* OR human health OR public health)

- Identified 854 papers
- Included 8 in review

Is the parasite being studied explicitly as zoonotic in the paper?

FBZP in Nile tilapia

Parasite species	Prevalence	Locality
Haplorchis pumilio	12.5%	Vietnam
Cryptosporidium parvum	2.4%	Papua New Guinea
Contracaecum sp.	54.4%	Ethiopia
Heterophyes sp.	30%	Egypt*
Haplorchis pumilio	-	Taiwan

Only 4 parasites species

Conclusion

A One Health Approach will inform sustainable production of Nile tilapia that considers environmental integrity, fish health and welfare and consumer health

THANK YOU FOR LISTENING

miriam.shigoley@uhasselt.be