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Abstract

To optimize the use of data from a small number of subjects in rare disease tri-
als, an at first sight advantageous design is the repeated measures cross-over
design. However, it is unclear how these within-treatment period and within-
subject clustered data are best analyzed in small-sample trials. In a real-data
simulation study based upon a recent epidermolysis bullosa simplex trial using
this design, we compare non-parametric marginal models, generalized pairwise
comparison models, GEE-type models and parametric model averaging for both
repeated binary and count data. The recommendation of which methodology to
use in rare disease trials with a repeated measures cross-over design depends on
the type of outcome and the number of time points the treatment has an effect
on. The non-parametric marginal model testing the treatment-time-interaction
effect is suitable for detecting between group differences in the shapes of the
longitudinal profiles. For binary outcomes with the treatment effect on a single
time point, the parametric model averaging method is recommended, while in
the other cases the unmatched generalized pairwise comparison methodology is
recommended. Both provide an easily interpretable effect size measure, and do
not require exclusion of periods or subjects due to incompleteness.

KEYWORDS
Barnard test, cross-over, epidermolysis bullosa simplex, GEE, generalized pairwise compari-
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1 | INTRODUCTION

Epidermolysis bullosa simplex (EBS) is a rare, genetic
disease that primarily affects the skin and is character-
ized by formation of blisters following mechanical stress
(Coulombe & Lee, 2012). While current treatments are
limited to alleviation and conventional wound care, a
growing number of innovative therapeutic compounds
are evaluated in clinical trials. One of these trials was a
randomized, placebo-controlled, double-blind, two-period
cross-over phase 2/3 trial, which assessed the reduction in
blisters of an immunomodulatory 1% diacerein cream ver-
sus placebo (Wally et al., 2018) (Figure 1). The 16 patients
in this trial were randomly assigned to either the placebo
or the diacerein treatment, and were treated daily for
4 weeks, followed by a follow-up at 16 weeks. After a
washout period, patients were crossed over to the oppo-
site treatment, following an identical treatment schedule.
In each treatment period, blisters in the treated body sur-
face area were counted at the start of the treatment period,
after 2 and 4 weeks of treatment, and after follow-up.
The primary endpoint was the proportion of patients with
more than 40% reduction from baseline in the number of
blisters after 4 weeks of treatment. This was considered
more meaningful from a clinical perspective than the raw
blister counts.

Despite the recommendations of the CONSORT to ana-
lyze cross-over designs by a paired test (Dwan et al.,
2019), the primary endpoint was tested with a one-sided
Barnard test (Barnard, 1947), an exact test for two inde-
pendent binomials. This test, however, requires separate
analyses for each treatment period and showed an incon-
clusive result (Wally et al., 2018). During the first treatment
period, 86% of patients receiving diacerein and 14% of the
placebo-treated patients achieved a reduction in blister
counts of more than 40% (p = 0.007). While in the sec-
ond period 37.5% of all diacerein-treated patients and 17% of
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all placebo-treated patients achieved a reduction in blister
counts of more than 40% (p = 0.32).

Unfortunately, the Barnard test ignores the cross-over
design of the study, does not account for repeated mea-
sures, and requires a dichotomized outcome of the count
data. Therefore, it only uses a fraction of the available
information in a repeated-measures cross-over trial. More-
over, the choice of the time point for the primary endpoint
analysis may influence the results. Indeed, there is an
indication that the diacerein treatment may have a ther-
apeutic effect beyond the 4-week treatment period. At
the end of follow-up in the first treatment period, all
diacerein-treated patients and only 57% of the placebo
patients showed a reduction of more than 40% (p = 0.038).
At the end of follow-up in the second treatment period,
75% of all diacerein-treated patients and 17% of all placebo-
treated patients, achieved the 40% reduction (p = 0.022).
Rather than evaluating the outcome on a single time point,
separately per treatment period, an analysis that uses all
information in a single analysis would be preferable to
evaluate the treatment effect. This would evade difficulties
in interpreting conflicting results from separate analyses of
each treatment period, and would not require a correction
for multiple testing if the analysis is repeated for several
time points.

The work presented in this paper is embedded within
the EBStatMax demonstration project of the European
Joint Programme of Rare Diseases, which has the over-
arching aim, among others, of improving statistical
methodology in rare diseases in general. Our goal is to
evaluate how the repeated measurement and cross-over
information in a small-sample trial can be used most
efficiently to test for a treatment effect. Current method-
ologies recommended for the analysis of cross-over trials,
such as paired parametric or non-parametric tests and
meta-analytic approaches, are useful for evaluating the
treatment effect of one time point. However, they require
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FIGURE 1 Design of the EBS trial. EBS, Epidermolysis bullosa simplex.
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a summary measure for the repeated time measurements,
which is less sensitive to longitudinal changes and we
will therefore not evaluate them. Instead, we will focus
on methodologies capable of using the information of the
longitudinal profile more effectively, which are at the same
time applicable to both count and binary outcomes. Using
the information of the longitudinal profile will likely
increase the precision of the treatment effect estimation
and hence the power of the statistical test. Although most
of the methods we will discuss are not new, they have
not yet been systematically evaluated with respect to the
specifics of a small-sample, repeated-measures cross-over
study. Moreover, as missing observations are a common
problem in EBS trials, since every transfer to the trial
center for a study visit may be accompanied with a high
physical burden for the patients, the methodologies are
additionally evaluated for their ability to avoid loss of infor-
mation due to missing data, as exclusion of data due to
missing observations might lead to a decrease in power and
an increased risk of bias, especially in a small-sample trial.
The evaluated methodologies are briefly described in
Section 2 and include, apart from the Barnard test, the
non-parametric marginal model (Brunner et al., 2002),
the non-parametric general pairwise comparison method
(Buyse, 2010; Verbeeck et al., 2019), generalized estimating
equations-type models (Arnold & Strauss, 1991; Beunckens
etal., 2008; Molenberghs & Verbeke, 2005), and a paramet-
ric model averaging technique (Bretz et al., 2005; Chatfield,
1995). More details on the methodologies are available in
the Supporting information (Web Appendix A). The type
I error control and power of these tests are compared in
a real-data simulation study, based on the blister count
data of the EBS trial in Section 3 and finally applied to
the EBS trial in Section 4. The last section contains some
conclusions, recommendations, and reflections regarding
limitations and open questions for future research.

2 | METHODOLOGY

2.1 | Barnard test

Barnard’s unconditional exact test considers the equality
of two binomial proportions p; and p, (Barnard, 1947) of
an observed 2 X 2 contingency table (Supporting Informa-
tion, Web Appendix A, Section 1). Barnard’s test allows
for one- and two-sided hypothesis tests. The treatment
effect is expressed as a risk difference of the relative pro-
portions. As it is based on a 2 X2 table, the Barnard
test requires binary outcomes and ignores the longitudi-
nal and cross-over aspect of the design. Moreover, as it
does not allow for incomplete data, subjects without an
observation at the analysis time point need to be excluded

from analysis. Standard programs for the Barnard test
are available in many statistical software environments,
including SAS (PROC FREQ-EXACT BARNARD state-
ment) (SAS Help Center, 2020) and R (package Barnard)
(Erguler, 2016). Despite not being recommended for
repeated measures cross-over trials, the Barnard test is
included in the simulation study to demonstrate the
limitations of such a choice.

2.2 | Non-parametric marginal model

A non-parametric alternative approach capable of address-
ing the longitudinal aspect of a repeated measures trial is
the rank-based non-parametric marginal model (Brunner
et al., 2002) (Supporting information, Web Appendix A,
Section 2). It tests the (two-sided) hypothesis of no inter-
action effect between treatment and time and expresses
the treatment effect by time point as the relative marginal
effect, which can be interpreted as the probability that
a random observation in the treatment group and at
time point ¢ results in a larger value than an obser-
vation randomly chosen from all observations in the
study.

Although the non-parametric marginal model can take
account of the longitudinal aspect of both the blister
count and the dichotomized reduction in blister counts
of more than 40%, it currently cannot address the cross-
over nature. Hence, the analysis needs to be applied
for each treatment period separately. Nevertheless, the
non-parametric marginal modeling is included in the sim-
ulation study as it is a first step toward improving the
Barnard analysis for a longitudinal data analysis. Addi-
tionally, as the method requires non-missing data at all
time points, only subjects with fully observed longitudi-
nal profiles can be included in the analysis. The R package
nparLD (Noguchi et al., 2012) provides access to analyses
with non-parametric marginal models.

2.3 | Generalized pairwise comparison
The Generalized pairwise comparison (GPC) method
(Buyse, 2010; Finkelstein & Schoenfeld, 1999; Pocock
et al., 2012; Verbeeck et al., 2019) is a non-parametric
approach that evaluates outcomes between pairs of sub-
jects, one from each treatment arm and assigns a score per
pair. Although originally designed to evaluate independent
outcomes, the GPC method can be adapted for the anal-
ysis of correlated repeated measures and the cross-over
design (Supporting information, Web Appendix A,
Section 3).
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The exact permutation test for the unmatched GPC
method (Anderson & Verbeeck, 2023; Verbeeck et al.,
2020) evaluates the equality of distributions between
groups. The conditional sign test of the matched GPC
(Matsouaka, 2022), which accounts for the cross-over
design, tests whether a randomly chosen subject is doing
equally well on treatment as on placebo. Both a one-sided
and a two-sided test can be constructed with the GPC
method.

We will evaluate the conditional sign test or the exact
permutation test (Anderson & Verbeeck, 2023; Verbeeck
et al., 2020) for five GPC variants (matched univariate,
unmatched univariate, matched prioritized, unmatched
prioritized and unmatched non-prioritized) for both the
standardized difference of the blister count outcome and
the dichotomized blister outcome. The longitudinal sum-
mary measure for the univariate GPCs does not allow
for missing observations per treatment period. Therefore,
periods with at least one missing observation need to be
excluded from the unmatched analyses, while the matched
GPC (conditional sign test) additionally requires complete
observations for both treatment periods.

As no standard programs are available for GPC analy-
ses, programs in both SAS and R have been developed by
the authors.

2.4 | GEE-type models

In a repeated-measures cross-over design, two types of
covariance patterns or correlations between measure-
ments within a subject can be distinguished, namely
dependencies between measurements in the same treat-
ment period and dependencies between measurements
from different treatment periods. In the presence of
repeated measures and when interest lies in marginal
(a.k.a. population-averaged) effects, it may be difficult
to work with full likelihoods, certainly considering non-
Gaussian data, which commonly occur in rare disease
trials. A possible solution to circumvent the need for
full likelihood is presented by pseudo-likelihood estima-
tion (le Cessie & van Houwelingen, 1994) in GEE-type
models, avoiding the need to fully model the associa-
tion structure, while still leading to valid inferences. In
small samples, bias-corrected sandwich estimators may be
required (Li & Redden, 2015; Long & Ervin, 2000; MacKin-
non & White, 1985). Considering i = 1, 2 for the treatment
assignment, k = 1,...,N for the subjects and ¢t =1,...,4
for the time points, the following GEE-type model will be
evaluated for both the blister count X;;; ~ Poisson(4;y;)
and the dichotomized blister outcome Yj;; ~ Bernoulli

(Tike):

logit(Gx) = Bo + B1Gik + B2Px

5
+ z BjTijki + BeGirPr
i=3

9
+ Z BiGikTijis
i=7

12

+ Z BiPiTijkrs @

j=10

where 8;; = Aj; Or 7wy, and with G, being a treatment
group indicator, P, a period indicator, and Tjj, a dis-
crete time indicator. We will evaluate several working
correlation variance-covariance structures (exchangeable,
heterogeneous autocorrelation and unstructured), as well
as several corrections for small-sample bias (no correc-
tion, Kauermann & Carroll, Fay & Graubard and Mancl
& DeRouen) (Supporting information, Web Appendix A,
Section 4). These GEE-type models infer, with a one- or
two-sided Wald test, whether the linear combination of
parameters involving the treatment group indicator equals
zero, that is, whether there is an overall treatment effect.

In SAS, the procedure GLIMMIX allows for GEE-type
models with several small-sample corrections for the sand-
wich estimator, as well as several working correlation
structures. As the inference is valid under missing com-
pletely at random and can be corrected under missing at
random (Molenberghs et al., 2011), no information needs
to be excluded due to missing observations.

2.5 | Model averaging

Finally, a parametric method, generalized linear mixed
models (GLMM), is evaluated, as often parametric mod-
els are the more powerful methods in hypothesis testing.
However, they require the definition of both a mean and
a correct variance structure, the latter being difficult to
assess in small samples (Bartlett, 1937; Hurvich & Tsai,
1989). Moreover, parameter estimation in GLMM may
become intractable. To circumvent these limitations of
GLMM in small samples, model averaging (Aoki et al.,
2017) may be a convenient alternative. In model averag-
ing, rather than a single GLMM, the analysis is based on
a pool of GLMM models that are weighted according to
their fit to the data. The hypothesis test of no treatment
effect in the model averaging framework is described in
detail in the Supporting information, Web Appendix A,
Section 4. We compute the treatment effect in two different
ways. First as the placebo-corrected change from base-
line after 4 weeks of treatment, averaged across the two
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potential sequences (AA,), and second as the average dif-
ference between placebo and treatment at the observation
time point for each of the two potential sequences (EMC,
expected mean change from placebo).

We consider a pool of eight GLMM models with two
random effects, allowing for repeated measures and the
cross-over design:

M i g(EQk b)) = Bo + BiGix + oty + B3P; + 2y, by

Myt 8EWKIbK)) = Bo + BiGik + Baty + B3P

+ BaGictie + 2, by
M 1 gEWk|bi)) = Bo + B1Gix + Bati: + B3P
+ BaGictir + BsPitic + 2, by
Myt 8EWk|bi) = Bo + BiGik + Bate + BsPi + BaGirl

+ BsPity + BsPiGy + 2, b

Ms : gEIbY) = Bo + BiGi + ). BT

+ B3P + 7, by

Mg o 8EWIbY) =By + BiGi + Y. BiTixe + B3P,

+ 2 B, TiiGirc + 2, bic

L5

My o gEIbY) = Bo + BiGy + Z B Tiw + BsPi

+ Z B, Tiki Gk + tZﬁtpTiktPi +z;, by
Mg o gEIbY) = Bo + BiGy + Z BT + BsP;

+ Z B, TikiGix + tZﬁtpTiktPi + BsPiGix

/
+zktbk

Model M, includes a baseline effect 3, and effect differ-
ences (31, 35, and §3) based on treatment (G;;, ), continuous
time (t,), and period (P;). Models M, through M, add
interaction terms between these descriptors. Models M
through My investigate the use of observation number
(T;x; where t = 1,...,4) instead of continuous time in the
models. The corresponding link function, g, was Poisson
for count data and binomial for binary data. For each
model above, two random-effects models were used, for a
total of 16 models in the predefined model set.

Rgl . z;{[bk = bo’k

RE, : 2, b = boyP; + by (1 —Py)

As there are no standard programs available for the
model averaging, user-defined R code was developed.
Additionally, as GLMM implicitly handles missing data, no
data need to be excluded in the analysis.

3 | SIMULATIONS

For each of the methods described in Section 2, the type
I error and power are evaluated in a real-data simulation
study resembling the EBS trial. The blister count outcome
of the EBS trial is grouped into blocks per subject and
period. Thus, subjects have a maximum of two blocks in
this cross-over trial, with four time points in each block.
These blocks are subsequently permuted across all subjects
and both periods, while holding the observations within
the block unchanged. This preserves the within-subject
correlation per treatment period, while eliminating any
treatment period effect. A treatment time effect is simu-
lated under two scenarios, one with a treatment effect at
a single visit and another with a treatment effect at multi-
ple visits, to account for a gradual onset of effect, and then
decrease in effect as treatment is stopped. In a first sce-
nario, for each subject in the placebo arm, a random count
from a Poisson(1 = 3) distribution was added to the 4-week
time point. The 1 = 3 is based on the observed difference
in blister count between placebo and treatment in the EBS
trial at week 4 (2.5) and an expected 30%-50% difference
in blister count at week 4 by the clinicians. In a sensi-
tivity analysis, other Poisson distributions led to similar
relative positions in the comparison of the methodologies.
In the second scenario, half of the random count at week
4 was added to the week 2 visit (rounded to the nearest
integer) and for the month 3 visits the treatment effect
at week 4 was varied by adding a draw from a random
standard normal (rounded to the nearest integer). Analo-
gously to the primary analysis of the original study (Wally
et al., 2018), a binary indicator was obtained by evaluat-
ing whether the blister count at weeks 2 and 4, and at
the follow-up visit was reduced by more than 40% com-
pared to the baseline count. The type I error and power
of each method is evaluated in 5,000 permuted samples,
using a = 0.05 as the one- or two-sided level, as appro-
priate. For the parametric model averaging approach 200
permuted samples were used because of runtime consid-
erations. Uncertainty in the resulting power and type 1
error calculations are reported using binomial confidence
intervals (Wilson (1927) method).
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The data in the original analysis comprise 7 placebo and
7 Diacerein periods in the first treatment period and 6
placebo and 8 Diacerein periods in the second treatment
period. The matched GPC method requires full obser-
vations in both treatment periods and includes only 12
subjects, since 4 of the 16 subjects were either treated
with only one treatment or had missing blister counts in
a treatment period.

The simulations with the dichotomized blister outcome
show that the Barnard test is a rather conservative test
(Table 1). In spite of this, the one-sided tests show a
24%-35% power for both treatment periods, which is, as
expected, higher than the power for the two-sided Barnard
test (9%-15%). Recall that the Barnard test only evaluates
binary outcomes at week 4. Consequently, the count out-
come cannot be evaluated at all and the scenario with a
single treatment effect at week 4 and the scenario with
additional visits with treatment effects will lead to one and
the same result.

The non-parametric marginal model is a rather liberal
test for the binary outcome (Table 1), while it controls the
type I error well with the count outcome (Table 2). The
power reaches 14%-16% for the binary outcome and 24%-
25% for the count outcome with a treatment effect on a
single time point, and is lower when there are multiple
time points with a treatment effect (Tables 1 and 2).

Both the one- and two-sided GPC tests control the Type
I error well in the small-sample simulations, except for the
one-sided matched GPC with the count outcome (Tables 1
and 2).

In contrast to the marginal model, the power of GPC
tests increases with more time points having a treatment
effect, in some cases reaching up to 70%. As expected,
dichotomizing the blister counts, lead to a loss of granu-
larity in the data and thus a lower power compared to the
count outcome (Tables 1 and 2). Recall that the matched
GPC is using less data than the other methods, which
may explain the lower power compared to the unmatched
GPC tests.

When considering an exchangeable or heterogeneous
autocorrelation variance structure, the small-sample
corrections in the GEE-type model lead to an over-
conservative type I error for the dichotomized count,
while the Mancl & DeRouen correction controls the type
I error well for the count outcome (Appendix Table A.1).
This is not surprising, given that the use of the small-
sample corrections lies primarily with heteroscedasticity
and the variance for the dichotomized count is expected
to be closer to homoscedasticity compared to the count
outcome. While the unstructured working correlation
structure is the most flexible, it consists of too many
elements to be estimated efficiently in the count outcome.
In our simulated samples, the heterogeneous autocor-

relation working correlation structure is deemed most
likely and therefore considered for further details. In the
simulations, the Mancl & DeRouen correction for the
count outcome and no correction for the dichotomized
count leads to a power close to the power in the matched
GPC tests, but lower compared to the unmatched GPC
tests (Tables 1 and 2).

Finally, the parametric model averaging is a very liberal
test using the EMC as a treatment effect measure. In con-
trast, the AA controls the type I error better (Tables 1 and
2). The power of the AA is similar to GPC for the binary
outcome in the scenario with treatment effects on multi-
ple time points, while it is higher with a treatment effect in
a single time point. For the count outcome, it is similar to
or lower than GPC (Tables 1 and 2).

In conclusion, the (standardized difference of the) blis-
ter count, rather than the dichotomized count, reaches
higher power for most methods. GPC results most often in
the highest power, especially the prioritized GPC, except
for the binary outcome in the scenario with a treatment
effect on a single time point. In the latter case, the model
averaging with the AA is the most powerful test.

4 | APPLICATION TO EPIDERMOLYSIS
BULLOSA SIMPLEX TRIAL

The EBS blister count outcome and the dichotomized
count outcome were re-analyzed with each of the methods
discussed in Section 2, where each method takes the max-
imum amount of data it can use. The repeated measures
of the binary outcome in the EBS trial suggest a treatment
difference between Diacerein and placebo, mainly in the
first period (Figure 2).

The repeated measures of the blister counts suggest a
treatment effect on all visits during the first treatment
period, while the second treatment period indicates a late
treatment effect (Figure 3).

Recall that the one-sided Barnard test showed an incon-
clusive result when analyzing the effect on week 4, with
evidence for a treatment effect in period 1 (p = 0.007), but
no evidence in period 2 (p = 0.32) (Wally et al., 2018).

When using the complete blocks of repeated measures
per treatment period in the non-parametric marginal mod-
els, there is, surprisingly, evidence for a treatment effect
in the second treatment period for both the blister counts
(p = 0.26 and 0.01, respectively, for periods 1 and 2) and
the dichotomized blister counts (p = 0.52 and 0.02, respec-
tively, for periods 1 and 2) (Table 3). The disadvantage
of the non-parametric marginal model is that an overall
treatment effect measure is not available.

Additionally including the cross-over design in the anal-
ysis with the matched univariate and prioritized GPC, 8
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Number of visits with 40% reduction in blisters

Frequency of number of visits with 40% reduction in blisters overall (left) and by both periods (right). This figure appears in

color in the electronic version of this paper, and any mention of color refers to that version.

A Piaceno

Diacerein

B
@ 10
5 , /
5 X "
WO0-P1 W2-P1 W4-P1 W16-P1 WO0-P2 W2-P2 W4-P2 W16-P2
Time
FIGURE 3 Longitudinal blister counts, with the median per time point (triangles and bold lines), per treatment and per treatment

period (P1, P2). W = week. This figure appears in color in the electronic version of this paper, and any mention of color refers to that version.

out of 13 subjects have more visits with a 40% reduction
in blister counts on Diacerein treatment than on placebo,
while only 2 out of 13 have fewer visits with this reduction.
Although a two-sided test is not significant (p = 0.058),
the one-sided test does show evidence for a treatment
effect of Diacerein (p = 0.029) (Table 3). The probability

that a random subject will do better on Diacerein than on
placebo minus the reverse is 0.46 with the Agresti—Coull
95% CI: —0.01 to 0.76 (Matsouaka, 2022). In contrast, both
the matched univariate and prioritized GPC do not show
a treatment effect when looking at the standardized blis-
ter count (p = 1 for the two-sided test and p = 0.5 for the
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TABLE 3 Re-analysis of the EBS trial.

Count outcome

Treatment effect One-sided

(95% CI) p-value
Marginal model period 1 / /
Marginal model period 2 / /
Matched univariate GPC 0(—0.49: 0.49) 0.500
Unmatched univariate GPC 0.49 (0.06; 0.93) 0.013
Matched prioritized GPC 0(—0.49; 0.49) 0.500
Unmatched prioritized GPC 0.44 (0.00; 0.87) 0.025
Unmatched non-prioritized GPC  0.31(—0.02; 0.65) 0.031
GEE-type model 1.75 (1.08; 2.82) 0.015

—1.72 (-3.43; —0.30)  0.012
—1.61 (—3.77; —0.06)  0.023

Model averaging AA
Model averaging EMC

Dichotomized count outcome

Two-sided Treatment effect One-sided Two-sided
p-value (95% CI) p-value p-value
0.260 / / 0.520
0.010 / / 0.020
1.000 0.46 (—0.01; 0.76) 0.029 0.058
0.027 0.55 (0.14; 0.96) 0.004 0.008
1.000 0.46 (—0.01; 0.76) 0.029 0.058
0.050 0.61 (0.19; 1.00) 0.002 0.004
0.062 0.34 (0.09; 0.59) 0.004 0.007
0.030 7.37 (1.65; 32.96) 0.006 0.011
0.024 0.33(0.12; 0.56) 0.006 0.011
0.046 0.34 (0.16; 0.50) <0.005 <0.005

Abbreviations: EBS, Epidermolysis bullosa simplex; EMC, expected mean change from placebo; GPC, Generalized pairwise comparison; GEE, Generalized

estimating equations.

one-sided test, with 6 out of 12 subjects having less blister
counts on the Diacerein treatment than on placebo and 6
subjects with more blisters on Diacerein) (Table 3).
Ignoring the cross-over feature in the unmatched GPC
results in evidence for improvement of Diacerein com-
pared to placebo in both the one- and two-sided test of
the univariate, prioritized and non-prioritized tests on the
dichotomized blister count (p-value between 0.002 and
0.008) and in the one-sided test with the standardized blis-
ter count (p = 0.013, 0.025, and 0.031, respectively), but
not always in the two-sided test (p = 0.027, 0.050, and
0.062, respectively) (Table 3). Out of the 210 possible pairs,
the majority have more visits with a 40% reduction in blis-
ter counts on Diacerein treatment than on placebo, while
only 24 have less visits with this reduction. The probability
that a random subject will do better on Diacerein than a
random subject on placebo is estimated between 0.34 (95%
CIL: 0.09-0.59) by the non-prioritized GPC and 0.61 by the
prioritized GPC (95% CI: 0.19-1.00) on the dichotomized
blister count and 0.31 (95% CI: —0.02 to 0.65) by the non-
prioritized GPC and 0.44 by the prioritized GPC (95% CI:
0.00-0.87) on the standardized blister count (Table 3).
Explicitly modeling the dependence of the repeated
dichotomized blister counts within a treatment period
and within a subject in the GEE-type model again shows
evidence for a treatment effect with all working correla-
tion structures and all small-sample corrections (two-sided
p-value between 0.011 and 0.036). Besides a clear treat-
ment effect, there is also a period and a time effect in
all models. As the heterogeneous autocorrelation work-
ing correlation structure is most plausible and simulations
show that no small-sample correction controls the Type
I error best, we explore the result of this model further,
although they are fairly consistent over all models. The
odds ratio of a 40% reduction in the number of blisters

between Diacerein and placebo is 7.37 (95% CI: 1.65-
32.96; p = 0.011), which is mainly due to the effect in
the first period (Table 3). Indeed, the odds ratio of a 40%
reduction in the number of blisters in period 1 versus
period 2 is 6.71 (95% CI: 1.55-28.99). Using the repeated
blister counts, only the GEE-type model with an inde-
pendence variance-covariance structure converges and
shows evidence for a treatment effect (two-sided p-value
0.030) (Table 3). Although the independence assumption
is obviously incorrect, since measurements are clustered
within subjects, the inference with an incorrect working
correlation matrix should be valid.

The model averaging showed that the population aver-
age placebo-corrected probability of achieving 40% reduc-
tion in blister count from baseline after 4 weeks of
treatment (AA) was 0.33 (95% CI: [0.12, 0.56], p = 0.011).
The EMC for achieving 40% reduction in blister count from
baseline was estimated to be 0.34 (95% CI: [0.16, 0.50], p <
0.005) (Table 3). The two effect measures for the repeated
blister count found a significant drug effect with a popula-
tion average placebo-corrected change from baseline after
4 weeks of treatment (AA) to be —1.72 blisters (95% CI:
[—3.43,—-0.30], p = 0.024) and the EMC to be —1.61 blisters
(95% CI: [—3.77, —0.064], p = 0.046) (Table 3).

5 | DISCUSSION

We have compared non-parametric, semi-parametric, and
parametric statistical methods for repeated measures, 2-
period cross-over small-sample trials with a binary and
count outcome (Table 4). Although the non-parametric
marginal model allows for the longitudinal repeated mea-
sures within a treatment period, it still ignores the between
period correlation of the cross-over aspect. The latter
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TABLE 4 Advantages and disadvantages of evaluated statistical methods for repeated measures, cross-over trials in small samples.

Repeated One- and
measures Cross-over Missingdata Effect measure two-sided Comments
Barnard No No No Risk difference’ Yes
Marginal model  Yes No No Relative effect* No
GPC Yes Yes No Net treatment benefit Yes Extension to multivariate outcomes
GEE-type Yes Yes Yes Odds/risk ratio Yes Can test carry-over effect
Model averaging Yes Yes Yes AA Yes Time consuming for simulations

Notes: ["]There is no overall treatment effect available for the Barnard test, only a per treatment period effect.
*There is no overall treatment effect available for the marginal models, only a per time point treatment effect. Abbreviation: GPC, Generalized pairwise comparison;

GEE, Generalized estimating equations.

can be incorporated into the non-parametric GPC meth-
ods, GEE-type models, and model averaging. While the
unmatched prioritized and non-prioritized GPC incor-
porates the within-subject correlation within a period,
the matched GPC additionally incorporates the cross-over
design. Ignoring the cross-over design in the unmatched
GPC, however, leads to asymptotically valid results (Koni-
etschke & Pauly, 2012) and controls the type I error
better in sample sizes < 15 subjects. GPC has an obvious
interpretable treatment effect measure, results in a single
analysis rather than a per treatment period analysis and
can be easily extended to multivariate outcomes, for exam-
ple, combining pain, pruritus, and/or quality of life to the
blister count outcome (Geroldinger et al., 2023).

Modeling the within-period and within-subject depen-
dency of the repeated-measures cross-over trial in a GEE-
type model does not show a clear advantage over the
non-parametric methodologies. The power is similar to the
matched GPC and lower for the unmatched GPC and may
lead to convergence issues. On the other hand, it provides,
besides a single analysis, also information concerning a
possible period effect. Treatment or period effects can be
expressed in an easily interpretable effect measure, the
odds or rate ratio. Moreover, standard software programs
are available that allow for several working correlation
structures and small-sample corrections and no data need
to be excluded due to missingness, as inference is valid
under missing completely at random and can be corrected
for missing at random (Molenberghs et al., 2011). Our
simulations confirm that in the presence of homoscedas-
ticity small-sample corrections are not required, while they
are useful under heteroscedasticity (Long & Ervin, 2000;
MacKinnon & White, 1985).

Averaging a pool of parametric GLMM models and
expressing the treatment effect with the AA shows an
increased power compared to all other tests when there
is a single time point with a treatment effect on a binary
outcome. In all other cases, it did not show an advantage
in power. Although the model averaging method is com-
puter intensive, the analysis of a single trial takes between
10 and 30 min, which is not prohibitive. On the other hand,

a simulation study with 5,000 permuted samples requires
a large computer cluster, while the most time-consuming
non-parametric or semi-parametric method lasted only 1 h
for 5,000 permuted samples. The model-averaging method
shares with the GEE-type models that both within-period
and within-subject dependencies can be modeled, and no
data need to be excluded due to missingness, since the
inference is valid under MCAR and MAR. The benefit of
the GLMM is that they can be used to simulate future
studies, making them a valuable tool for study design.

One may argue that the simulation setting for compar-
ing the methodologies was favoring the prioritized GPC,
as the largest treatment effect was added to the post-
treatment visit, which was evaluated first in the prioritized
analyses. However, the simulation setting and prioritiza-
tion of the time points in the GPC analyses were based
on clinical reasoning and not by intention to favor any
method. A Diacerein treatment in EBS patients is clinically
expected to have a delayed onset of treatment effect, fol-
lowed by a gradually decline of effect after stopping the
treatment. Similarly, it is clinically plausible to prioritize
the visits by the same hierarchy in GPC.

In the comparison between the different methodologies,
it should be stressed that the underlying null hypotheses
being tested are not equivalent. This needs to be taken into
account when the empirical power is compared between
the methods. The null hypotheses of the non-parametric
methods are for example more restricted compared to
the GEE-type models and model averaging. Perhaps the
choice of only testing the interaction effect in the non-
parametric marginal models may not be optimal for our
simulation setting. Potentially, in other simulation settings
the non-parametric models might be recommended. The
choice of methodology depends on the null hypothesis of
interest, the treatment effect measure, and the respective
operational characteristics (Table 4).

Most of the re-analyses of the EBS trial, taking account
of the repeated-measures cross-over design, show a ben-
eficial effect of the Diacerein cream over placebo on the
blister count reduction. Additionally, the GEE-type model
confirms that there is a carry-over or period effect. Indeed,
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during a pilot study, investigators noted that after appli-
cation of the Diacerein cream for 6 weeks, blisters did
not recur during a 6-week placebo-controlled withdrawal
(Wally et al., 2018). The effect of Diacerein is potentially
longer than anticipated, hence the wash-out period in a
future cross-over EBS trial should ideally be increased. The
wash-out period in the EBS trial was 5.6 months (standard
deviation, 1.7) (Wally et al., 2018).

Most methodologies are more sensitive to detect a treat-
ment effect using the count outcome compared to the
dichotomization of blister count. While it is tempting
to prefer the blister count over its dichotomization, one
should be careful not to ignore the uncertainty around
the blister count. Indeed, counting blisters on a prede-
fined area of the skin is not automated and hence variable
between clinical assessors. Dichotomizing the blister count
by achievement of 40% reduction in blisters is more robust
against the assessment uncertainty and, importantly, it is
considered clinically meaningful. It should be noted that
the GPC method would allow for considering an alterna-
tive to these two extremes, namely to define a threshold
(Buyse, 2010) in comparing pairs of subjects (e.g., a “win”
is defined as a difference in blister counts of at least 3). It is
expected that adding a threshold will result in an achieved
power in between the two extreme scenarios evaluated in
this manuscript, with on one end the blister counts and on
the other end the dichotomized count.

The power to detect a treatment effect in all methods, but
the non-parametric marginal model, increases when the
treatment exhibits an effect on more time points. Poten-
tially, the seemingly paradoxical behavior of the marginal
model is a consequence of the fact that a time-treatment-
interaction hypothesis is being tested. Consequently, the
corresponding ANOVA-type test is in particular sensitive
to abrupt changes in a longitudinal profile. In this sense,
a profile with a single time point with a treatment effect
manifests a more extreme change than a profile with
multiple time points with a treatment effect. The same
phenomena may play a role in the re-analysis of the EBS
trial, where the non-parametric marginal model is the only
methodology that showed a treatment effect in period 2
and not in period 1. Further research by separately ana-
lyzing both treatment periods of the EBS trial with the
unmatched GPC, GEE-type model, and model averaging
may explain this in more detail.

There is not a single methodology that was uniformly
the best in our simulation. Which method is most pow-
erful depends on the type of outcome and the number of
time points with a treatment effect. For a single time point
involving a treatment effect with respect to a binary out-
come, the AA model averaging was more powerful, while
in most other settings, the prioritized or non-prioritized
unmatched GPC was most powerful to detect a treatment
effect in a repeated-measures and cross-over 2-arm trial in

rare diseases or small-sample study. Although one would
expect a parametric method to be superior in power com-
pared to a non-parametric method, this was not always the
case in our simulations. The ability to detect a treatment
effect in the parametric methods however depends on the
correct model specification. Potentially, the model aver-
aging models can be improved in our simulation settings
with models that better fit the data. The non-parametric
marginal model testing the treatment-time-interaction
effect is suitable for detecting between group differences
in the shapes of the longitudinal profiles.

As anticipated, the matched GPC does not always con-
trol the type I error, because the size of the sample is just
below the limit of what is required to maintain the nominal
confidence level. While there is a large difference in power
between a single and multiple time points with a treat-
ment effect on a binary outcome for both the prioritized
and non-prioritized GPC, this difference is not present for
the prioritized GPC with a count outcome. This is a logi-
cal consequence of the GPC algorithm. Indeed, for a count
outcome in much more pairs a “win” can be assigned on
the first time point compared to a binary outcome. Hence,
in a prioritized GPC with a count outcome, not many
pairs will be evaluated on the subsequent time points and
thus these time points will not add much to the power.
In contrast, in a prioritized GPC with a binary outcome,
a lot of ties are expected at the first time point and more
information will be used from the subsequent time points,
which will result in an increased power, if there is also a
treatment effect on these subsequent time points. In the
non-prioritized GPC with a count outcome, when there is
only a single time point with a treatment effect, this effect
is ‘diluted’ by the time points with no treatment effect.

It is worth noting that with a single outcome and no
missing data, the unmatched GPC is a linear transfor-
mation of the Mann-Whitney test (Mann & Whitney,
1947; Verbeeck et al., 2021) and can thus be equally con-
structed with ranks. However, the pairwise comparison
notation has the advantage that it is easier to extend to the
matched GPC and to multivariate outcomes with missing
or censored data.

A limitation of our study is that we have not applied any
model selection to the GEE-type models, which is cumber-
some to automate in a simulation study. By applying model
selection, it is possible that efficiency is gained in detect-
ing a treatment effect in the GEE-type models. While the
model averaging idea avoids the need to select any model,
it cannot be applied as such to the GEE-type models, as
model averaging is based on maximum likelihood.

Finally, while current versions of the non-parametric
marginal models require fully observed longitudinal pro-
files, recently there have been some efforts to extend the
models allowing for missing data (Rubarth et al., 2022).
Further developments should also include the split-plot
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design, so that potentially the non-parametric marginal
model might also obtain higher power values within the
setting discussed in this paper.
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SUPPORTING INFORMATION

The Web Appendix referenced in Section 2 is avail-
able with this paper at the Biometrics website on Wiley
Online Library.

Table 1: 2 X 2 contingency table, with nij the observed
subjects with the row and column characteristics, n. j and
n;. The column and row sum respectively and N, the total
number of observations.
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APPENDIX A

TABLE A.1 GEE-type model—Type I error of the two-sided
test on 5,000 permuted samples of the original EBS trial data, with
different working correlation structure and with and without
small-sample corrections.

Binary Count
Type I
Sample TypeIerror Sample error

Exchangeable

No correction 4890 0.054 4980 0.094

Kauermann 4890 0.037 4980 0.074
& Carroll

Fay & 4890 0.037 4981 0.074
Graubard

Mancl & 4890 0.025 4980 0.055
DeRouen

Heterogeneous autocorrelation

no correction 4917 0.055 4616 0.094

Kauermann 4616 0.038 4917 0.079
& Carroll

Fay & 4620 0.039 4917 0.082
Graubard

Mancl & 4616 0.027 4917 0.058
DeRouen

Unstructured

no correction 4442 0.053 NC NC

Kauermann 4442 0.036 NC NC
& Carroll

Fay & 4442 0.038 NC NC
Graubard

Mancl & 4442 0.024 NC NC
DeRouen

Abbreviation: NC, did not converge.

Dlometries iy gy L=
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