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Abstract

In an attempt to provide an answer to the increasing criticism against p-values and to
bridge the gap between statistical inference and prediction modelling, we introduce the
probability of improved prediction (PIP). In general, the PIP is a probabilistic measure
for comparing two competing models. Three versions of the PIP and several estimators
are introduced and the relationships between them, p-values and the mean squared error
are investigated. The performance of the estimators is assessed in a simulation study.
An application shows how the PIP can support p-values to strengthen the conclusions
or possibly point at issues with e.g. replicability.
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1 Introduction

Hypothesis testing is one of the major concepts in statistical inference and it is still a

well accepted paradigm as part of the Scientific Method in many empirical sciences. In

particular, the Scientific Method advises to first formulate a research hypothesis that is

subsequently translated into a null and alternative hypothesis. After the data collection, a

statistical test is applied for testing the null against the alternative hypothesis, and in most

scientific disciplines the convention is to compare the p-value with a nominal threshold of

5%. If p < 5%, then the null hypothesis is rejected in favor of the alternative, which often

corresponds to a positive research result, and if p > 5%, then the null cannot be rejected

and the study ends inconclusively.

Despite the firm theoretical basis of hypothesis testing, (1) its application, (2) how

researchers use p-values in their communication, and (3) the publication policy of many

journals, have caused several biases in research. We name a few. First, the publication bias

refers to the observation that mostly positive results can be published in scientific journals,

and consequently many, still informative results are hidden from the community. A second

concern is related to the use of hypothesis testing: researchers might test several hypotheses,

until one gives a “significant” result, which is subsequently published as a positive result

without reporting the p-fishing expeditions that resulted in this finding. This process is

known to give an increased, uncontrolled false positive rate. Finally, some researchers still

translate p > 5% into a proof of a negative finding, resulting in the publication of false

negative results.

The criticism against the conventional use of p-values is sounding louder and louder

these days. In 2019 an issue of The American Statistician was completely devoted to this

topic. Also the journal Nature has published several comments on the (mis)use of p-values

in research (e.g. Baker, 2016; Nuzzo, 2014; Amrhein et al., 2019). A paper by Amrhein et al.

(2019) is supplemented with 859 signatures of scientists who support the recommendation

to abandon the current conventional use of p-values. These recent papers have provoked

many reactions and even journals have altered their publication guidelines, or make their

readers aware of potential pitfalls (e.g. Drummond, 2020; Dunkler et al., 2020; Harrington

et al., 2019; Ioannidis, 2019).

On a personal note, while teaching my basic statistics course, I (the first author) explain

the students the role of statistical inference in the Scientific Method, but each year I feel

uncomfortable when I hear myself telling the students that science aims at improving models

for describing the world around us. These models should predict observations, whereas
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many statistical methods target parameters that have an interpretation at the level of the

population average. Although there is often a relation between improved predictability by

considering an additional predictor in a statistical model, and the size of the parameter

corresponding to this predictor, hypothesis testing does not directly address the improved

predictability.

Wasserstein et al. (2019) summarises the contributions and suggestions made by the

authors of all 43 papers in the 2019 special issue of The American Statistician. Many authors

make suggestions in line with: (1) no longer simply apply the p < 5% rule; (2) report the

p-value up to a relevant precision; (3) no need to abandon the p-value, but it should be

complemented with other relevant statistics (e.g. point estimates, confidence intervals, ...);

(4) statistical results should be interpreted by researchers with good substantial knowledge

(i.e. no longer computing statistics and blindly applying simple binary decision rules). In

this light, the new inferential concept that we propose in this paper must be considered

as an addition to the existing conventional tools, rather than a replacement. Our concept

aims at bringing statistical inference and prediction model selection closer together, as we

think this connection is implicitly made in the Scientific Method.

Some proposals have been made for new statistics that may complement the traditional

inferential tools. For example: (1) compute p-values evaluated under a meaningful alterna-

tive (Amrhein et al., 2019; Greenland, 2019) or under a range of null hypotheses (composite

null hypothesis, second generation p-values) (Blume et al., 2019); (2) augment p-values with

information about the false positive risk (Colquhoun, 2019). Only few suggestions make a

connection between statistical inference and prediction models. In this sense, Billheimer

(2019) comes closest to our method. He suggests that inference should be based on the

predictive distribution (PD), which is the distribution of the difference between the pre-

diction, which is based on a model fitted on (training) data, and an independent outcome

that has to be predicted. He stresses the importance of the variance of the PD.

Formal definitions of the new concepts and their properties are given in subsequent

sections, but as a matter of introduction, we start here with a description of the setting

and the overall rationale. Consider the setting in which we have two nested models for an

outcome variable and one model is based on one additional regressor, covariate or predictor,

whatever terminology is preferred. With Y the notation for the outcome and x the notation

for a vector of predictors, statistical models are often of the form E {Y | x} = m(β,x),

with β a parameter vector and m(·) representing the model. However, in the context of

prediction modelling, there is often no focus on the conditional mean outcome E {Y | x}

and so m(β,x) can also refer to a prediction model aiming at predicting an outcome. We
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consider two models, m0(β0,x) and m1(β1,x), with two different parameter vectors β0

and β1. In general, the two models may depend on the same vector of predictors, x, but

for now we limit the discussion to the setting in which m0 has one predictor less than m1

such that model m0 is nested within model m1; let x1 denote this predictor. If these are

additive linear models for the conditional mean of the outcome, then we could consider

testing the hypothesis that the β1 parameter corresponding to x1 equals zero. However,

if prediction is the final objective, then both models could be compared to one another

in terms of e.g. the mean squared error. These assessments are typically made based on

a data set, which can be referred to as the sample data or the training data, depending

on the context. We will use the notation O for this data set, which contains n observed

outcomes and d-dimensional predictors. Prediction is always about predicting new, yet

unseen outcomes. Let (X∗, Y ∗) denote a vector of a new predictor vector X∗ and a new

outcome Y ∗, which are not part of the observed data O and for which F ∗ denotes their

joint distribution, which may depend on parameters, denoted by ν. Note that we do not

assume that any of the two models m0 and m1 agrees with F ∗. However, if e.g. m1 agrees

with F ∗ (i.e. it has the conditional mean E {Y ∗ | X∗} = m1(X∗)), then the β1 parameter

is part of ν. The parameter estimates of β0 and β1 are both calculated from the data set

O. These estimates are denoted by β̂
0
(O) and β̂

1
(O), or by their shorthand notation β̂

0

and β̂
1
. With this notation, the mean squared error of a model can be formulated as

MSE = EX∗,Y ∗

{(
Y ∗ −m(β̂;X∗)

)2
| O
}
. (1)

Hastie et al. (2009) refer to this definition as the generalisation error and argue that this

is the most relevant version of the MSE for the evaluation of a prediction model: it only

assesses the performance for predicting new, unseen outcomes, of the single prediction

model that will be used in practice, that is the model fitted (or trained) on the observed

data O. Since the MSE depends on the unknown distribution of (X∗, Y ∗), its estimation

is less straightforward.

Also the p-value can be formulated with this notation. This time we consider a sample

of n i.i.d. unseen observations (X∗, Y ∗), but under the restriction that the null hypothesis

holds. This random sample is denoted by O∗. With T (O) the test statistic as a function of

sample data and for which large values point into the direction of the alternative hypothesis,

the p-value can be written as

p = PO∗ {T (O∗) ≥ T (O) | O} . (2)

So far, the MSE and the p-value show great similarities in terms of what is considered fixed

and random. However, there are a few fundamental differences. First, the motivation for
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the use of the p-value comes from its distribution over repeated sample data sets O under

the restriction of the null hypothesis (i.e. O d
= O∗). This gives a uniform distribution of

the p-value and its control of the type I error rate upon using a hard threshold. A second

difference comes from the number of models involved in their definitions. The MSE refers

to only a single model. When models have to be compared, e.g. two nested models m0 and

m1, the MSE will be computed for the two models and their MSEs will be compared. The

p-value, on the other hand, compares two nested models. Finally, the MSE as presented

in Equation (1) must first be estimated before it can be used. This typically happens via

cross-validation or bootstrap resampling schemes. In this way the sample-based MSE is

seen as an estimator of the generalisation error of Equation (1), and it is often reported

with a standard error. The latter may sometimes be used in the decision process to decide

which of two (or more) models is the best; however, such decision rules are not based on a

firm theory.

We propose a new concept: the probability of improved prediction (PIP), which, in our

current context, may take the form

PX∗,Y ∗

{(
Y ∗ −m1(β̂

1
;X∗)

)2
<
(
Y ∗ −m0(β̂

0
;X∗)

)2
| O
}
. (3)

This can be interpreted as follows. For a given dataset O, used for fitting (or training)

the two models m0 and m1, it expresses the relative frequency of instances that model

1 gives a better prediction than model 0. This frequency, or probability, is defined over

the distribution of future, unseen observations and the interpretation of “better” is in

terms of the squared loss. Just like the p-value and the MSE, it is defined conditional

on the observed data, so that conclusions based on the PIP directly relate to the models

to be used for later purposes such as prediction. We therefore will refer to the PIP of

Equation (3) as the conditional PIP. However, just like the generalisation error, the PIP

first needs to be estimated, and details will follow later in this paper. In this sense, the

PIP and MSE have much in common, but they address other aspects: the MSE is about

how well an individual model performs in predicting outcomes, whereas the PIP compares

two models and quantifies how often one model does better then the other. However, from

the perspective of frequentist statistical inference, we may be interested in the effect of

a predictor, on average over repeated samples. For this purpose, we also introduce the

expected PIP,

PX∗,Y ∗,O

{(
Y ∗ −m1(β̂

1
;X∗)

)2
<
(
Y ∗ −m0(β̂

0
;X∗)

)2}
,

which is the expectation of the conditional PIP over the distribution of the sample data.

Just like the conditional PIP and the MSE, it needs to be estimated.
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In the remainder of this paper, we will first more generally define the different versions

of the PIP, as well as methods for their estimation (Section 2). To make the connection with

classical hypothesis testing more explicit, we will work out some more details for the PIP

in the very simple case of two nested normal linear regression models, with a 0/1 dummy

variable (the hypothesis test is thus the two-sample t-test). At the end of Section 2, we will

discuss nonparametric estimation methods for the PIP, which allows for the use of almost

arbitrary complicated models m0 and m1 and model fitting (or training) methods, making

the PIP also applicable to machine learning models and methods. In Section 3 results of a

simulation study are presented; this empirical study focuses on the properties of the various

estimators of the PIP. An illustration of the PIP on several datasets is given in Section 4,

and we conclude in Section 5 with a further discussion on this new concept.

2 The Probability of Improved Prediction and its Estimators

In this section, we first introduce three types of PIPs. Next we propose a few estimators.

In a concluding subsection, these general ideas are applied in the simple setting of the

two-sample t-test.

2.1 Three Types of PIPs

Upon using the notation and terminology introduced in Section 1, we start with the def-

inition of the theoretical PIP in terms of a general loss function. Let m0(β0,X∗) and

m1(β1,X∗) denote two prediction models for predicting an outcome Y ∗ for a given predic-

tor vector X∗. The two prediction models may depend on two different parameter vectors,

β0 and β1. Let L(m(X∗), Y ∗) denote a loss function evaluated in a prediction model m

for predicting Y ∗. The squared loss that we used in the introduction is an obvious choice

for continuous outcomes. The theoretical PIP is then defined as

pth(β
0,β1, F ∗,ν) := PX∗,Y ∗

{
L(m1(β1,X∗), Y ∗) < L(m0(β0,X∗), Y ∗)

}
(4)

which quantifies how more often model m1 gives better predictions than model m0. It

should be noted that the PIP does not depend on the training data, nor on the distribution

of the training data. It does depend on two models and their parameter vectors, and the

probability is defined over the distribution of (X∗, Y ∗), of which the distribution function

is denoted by F ∗(ν) with parameter vector ν. As shown in Appendix A, for the squared

error loss function, the theoretical PIP can be expressed as∫
X ∗

PY ∗|X∗
{
m1(β1)2 −m0(β0)2 < 2Y ∗(m1(β1)−m0(β0))|X∗ = x∗

}
dF ∗

X∗(x∗), (5)
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with X ∗ the sampling space of X∗. A further simplification of this equation needs careful

consideration of the inequality, for it depends on the sign of m1(β1) − m0(β0), which is

determined by both the model parameters (β0 and β1) and x∗. Section 2.5 and Appendix

A show some examples for the case of two linear regression models. The theoretical PIP

may not be of immediate practical use as it only compares two completely specified models,

but it may be of interest to estimate this PIP (see later).

In terms of a general loss function L(·, ·), the conditional PIP is defined as

pcond(β̂
0
, β̂

1
, F ∗,ν) := PX∗,Y ∗

{
L(m1(β̂

1
,X∗), Y ∗) < L(m0(β̂

0
,X∗), Y ∗) | O

}
. (6)

This probability still only refers to the distribution of (X∗, Y ∗), and the explicit conditioning

on O is used to indicate that the sampling distributions of the parameter estimators β̂
0

and β̂
1
are not considered. Note that this expression resembles the structure of the MSE

(Equation (1)) and the p-value (Equation (2)), so it may also be an informative instrument

in statistical inference or prediction modelling. Just like the MSE and the p-value, the

conditional PIP summarises a property of a model (or models) that is relevant for future,

unseen observations (X∗, Y ∗), based on the information provided by the observed data O.

However, just like the theoretical PIP, the conditional PIP cannot be computed, because

in practice the distribution F ∗ of (X∗, Y ∗) is unknown. Estimators will be discussed later.

Sometimes one may not be interested in the information within a single sample O, but

rather in the performance of the model building or parameter estimation procedures. For

this purpose the expected PIP may be appropriate. It is defined as the expectation of the

conditional PIP over the distribution of the sample data O,

pexp(β
0,β1, F ∗, FO,ν) := EO

{
PX∗,Y ∗

{
L(m1(β̂

1
,X∗), Y ∗) < L(m0(β̂

0
,X∗), Y ∗) | O

}}
= PX∗,Y ∗,O

{
L(m1(β̂

1
,X∗), Y ∗) < L(m0(β̂

0
,X∗), Y ∗)

}
.

2.2 Plug-in Estimators

We will discuss two types of estimators: plug-in and nonparametric (re)sampling-based

estimators. The former will be discussed here, and the latter in the next section.

According to the general plug-in principle, all unknown parameters are replaced by their

sample estimators. Table 1 shows what parameters are unknown in each of the three PIPs.

Note that the βj (j = 0, 1) parameters are indicated as known for the conditional PIP.

This is because the conditional PIP is defined conditional on the single observed sample

data set O from which these parameters are estimated. The presence of fixed estimates is

a fundamental part of the definition of this PIP, and hence the estimators are not to be
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considered as unknown. For the other two PIPs, these β-parameters are unknown and can

be replaced with their parameter estimates.

Apart from the β-parameters, all three PIPs depend on F ∗, which is the unknown distri-

bution function of the future, unseen observations (X∗, Y ∗). We consider two approaches:

(1) a parametric method that involves distributional assumptions, and (2) nonparametric

methods that do not impose strong distributional assumptions. In this section we proceed

with the former. In particular, we will assume that F ∗ agrees with m1, which is by con-

struction a more flexible model than m0 (e.g. m1 embeds m0). In the examples provided

later, m1 is a model for the conditional mean outcome E {Y | X}, and hence further dis-

tributional assumptions are required for the complete specification of F ∗. For example, we

may want to assume that Y | X ∼ N(m1(β1,X), σ2
1). In this construction, the estimation

of F ∗ boils down to estimating β1 and σ2
1. Note that σ2

1 and β1 are here part of the ν

parameter in our general setup.

Hence, upon using the parametric plug-in strategy outlined in the previous section,

we get the plug-in estimator of the theoretical PIP as pth(β̂
0
, β̂

1
, F ∗, ν̂), with F ∗ a normal

distribution. In practice, Equation (5) can be used when the squared loss is considered. The

plug-in estimate of the conditional PIP can be obtained in a similar fashion, but note that

this PIP is by definition already a function of β̂
0
and β̂

1
. Hence, only F ∗ and ν have to be

specified or estimated. Under the same model assumptions as we made for the theoretical

PIP, we replace F ∗ by a normal distribution and set ν̂t = (β̂
1t
, σ̂2

1). It is interesting to note

that the plug-in estimates of the theoretical and conditional PIP coincide! However, they

are conceptually different. In the plug-in estimator of the theoretical PIP, all appearances

of β̂
0
and β̂

1
are considered as random variables, whereas for the conditional PIP, only the

appearance of β̂
1
as part of ν̂ is considered as a random variable.

Finally, for the estimation of the expected PIP, we see from its definition (and Table

1) that also FO, the distribution of the sample observations, is unknown and needs to

be estimated. It is natural to assume that the sample observations in O have the same

distribution as the future, unseen observations, and hence, under the additional assumption

that all sample observations are i.i.d, we set FO to the product of n times F ∗. The plug-in

estimator of the expected PIP is therefore given by pexp(β̂
0
, β̂

1
, F ∗, FO, ν̂), with F ∗ and

FO normal distributions and with the parameter estimators as before. In Section 2.5 more

explicit formulae are given for a simple example.

In this section the construction of plug-in estimators is restricted to a scenario in which

m1 embeds the model m0, and limited to normal distributions. Obviously, other distri-

butions for F ∗ and FO are also possible. In Section 2.3 we propose nonparametric PIP
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estimators for which distributional assumptions are no longer required.

Table 1: For each of the three types of PIP, the letter U indicates that the corresponding

parameter is unknown. An empty entry indicates that the corresponding parameter is

either known or not part of the definition of the PIP.

theor. PIP cond. PIP exp. PIP

β0,β1 U U

F ∗ U U U

ν U U U

FO U

2.3 Nonparametric estimators

The distribution F ∗ is generally not known in practice and assuming that its mean corre-

sponds to m1 might be incorrect. For this reason, several nonparametric estimators of the

PIPs are considered. In particular, we will look at sample splitting and cross-validation.

Both approaches start by dividing the observed data set O into a training and a test set.

Next, the training set is used for calculating the parameter estimates of the two models

under consideration, while the test set is used to nonparametrically estimate the PIP by

counting how many times model m1 provides a better prediction than model m0 in terms

of the loss function L. The difference between both approaches lies in the way the actual

splitting into a training and test set is conducted.

For sample splitting, the data set is randomly split into two halves. Half of the obser-

vations are considered as a training set that is used for fitting or training the two models,

while the other half is used as a test set for estimating the PIP. Hence, the parameters

are estimated once and also only a single estimate for the PIP is calculated. In particular,

with OTr and OTe denoting the training and test data sets, and with β̂
j
(O) denoting an

estimate of βj based on the data set O, the split-sample PIP estimator is given by

1

∥OTe∥
∑

(x∗,y∗)∈OTe

I
{
L(m1(β̂

1
(OTr),x∗), y∗) < L(m0(β̂

0
(OTr),x∗), y∗)

}
. (7)

On the other hand, with k-fold cross-validation, the observed data are randomly divided

into k folds, and each fold is in turn considered to be the test set, while the remaining k−1

folds are used as the training set. As such, k estimates of the PIP are obtained and
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their average forms the final PIP estimate. We will focus on leave-one-out cross-validation

(k = n) and (repeated) 5-fold cross-validation (k=5). With OTr
j and OTe

j the training and

test data set for the jth fold (j = 1, . . . , k), the k-fold cross-validation PIP estimator is

given by

1

k

k∑
j=1

1

∥OTe
j ∥

∑
(x∗,y∗)∈OTe

j

I
{
L(m1(β̂

1
(OTr

j ),x∗), y∗) < L(m0(β̂
0
(OTr

j ),x∗), y∗)
}
.

In case of repeated k-fold cross-validation, the random division into k folds is repeated M

times, leading to OTr,m
j and OTe,m

j ,m = 1, . . . ,M . The PIP estimator is then given as the

average of the M k-fold cross-validation estimators:

1

M

M∑
m=1

1

k

k∑
j=1

1

∥OTe,m
j ∥

∑
(x∗,y∗)∈OTe,m

j

I
{
L(m1(β̂

1
(OTr,m

j ),x∗), y∗) < L(m0(β̂
0
(OTr,m

j ),x∗), y∗)
}
.

A lower (1− α)100% confidence bound for the repeated k-fold CV PIP, determined as the

αth quantile of the M k-fold cross-validation estimators, will later be used.

2.4 Some Relationships between PIPs

The expected PIP is obviously related to the conditional PIP, for the former is the ex-

pectation of the latter. However, the expected and conditional PIPs are also related to

the theoretical PIP. In particular, under mild regularity conditions on the loss function

L, strong convergence of the estimators β̂
0
and β̂

1
implies that the conditional PIP, as

n → ∞, converges in probability to the theoretical PIP pth(β̃
0
, β̃

1
, F ∗, FO,ν), with β̃

0
and

β̃
1
the probability limits of their estimators. Hence, also the expected PIP approaches

the theoretical PIP with increasing sample size. These relationships are schematically pre-

sented in Figure 1. The figure also shows what estimator is designed to estimate what PIP.

The plug-in estimator/PIP combinations have been discussed in the earlier sections, and

the following paragraphs discuss the resampling estimators as estimators of the expected,

conditional and/or theoretical PIP.

In the split-sample estimator of Equation (7), two sample sizes are involved: nTrain =

#OTr for the training data, and nTest = #OTe for the test data. We consider two scenarios.

First, when nTest, x
∗ and y∗ are fixed, and under mild regularity conditions, as nTrain → ∞,

L(m1(β̂
j
(OTr),x∗), y∗)

p−→ L(m1(β̃
j
,x∗), y∗), with β̃

j
the probability limit of β̂

j
(OTr)

(j = 0, 1). In this case, the split-sample estimator is asymptotically unbiased for the

theoretical PIP (evaluated in the probability limits of the parameter estimators).

10



Second, when nTrain and OTr are fixed, and under mild regularity conditions, as nTest →

∞, the split-sample estimator converges in probability to

PX∗,Y ∗

{
L(m1(β̂

1
(OTr),X∗), Y ∗) < L(m0(β̂

0
(OTr),X∗), Y ∗) | OTr

}
,

which is the conditional PIP for the (fixed) sample OTr.

In practice, when both the training and the test datasets are large, the split-sample

estimator may be considered as an estimator of both the conditional and theoretical PIP.

For small sample sizes, it is less clear. This will be further empirically investigated in the

simulation study of Section 3.

The (repeated) k-fold CV estimator can be see as an average of conditional PIPs, i.e.

for each fold a conditional PIP is computed and the final estimator is an average of these

conditional PIPs over multiple independent folds. In this way, the CV estimator can be

seen as an estimator of the expected PIP. This observation is similar to the conclusion made

in Bates et al. (2021), where the CV MSE was found to provide better estimates for the

expected average prediction error (expectation over X and Y ), rather than for the average

prediction error conditional on the observed data (X, Y ).

Figure 1: A schematic overview of the relationships between the three types of PIP (circles)

and the estimators (rectangles). Lines between the PIPs indicate how one PIP depends

on the other, and a line between an estimator and a PIP indicates that the estimator is

designed to estimate that PIP. Although the resampling estimators are supposed to estimate

the expected PIP, we will also evaluate them as estimators of the conditional PIP (shown

as a dashed line). The sample size is denoted by n, and the sample sizes of the training

and test datasets are denoted by nTrain and nTest, respectively.
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2.5 The Two-Sample Setting

As a very simple example, we consider the two sample setting presented as two nested linear

models with normal error terms. In particular, m0(β0, x) = β0
0 and m1(β1, x) = β1

0 + β1
1x

with x a 0/1 dummy variable. The reason for choosing for this very simple scenario is

that (1) explicit formulae can be easily developed, and (2) it allows us to make the link

with hypothesis testing explicit without losing focus because of complicated models. These

results directly translate to the more general case of two nested normal linear regression

models, for which details are provided in Appendix A. More complicated models, for which

hypothesis testing is no longer straightforward, are discussed in Section 3.2.

In addition to the specification of the two nested models m0 and m1, we assume that

the sample observations are distributed according to the larger model, meaning that Yi |

xi ∼ N(m1(β1, xi), σ
2
1), i = 1, . . . , n. This model specifies both F ∗ and FO. It is further

assumed that the regressor X is a 0/1 random binary group indicator, but forced to result

in a balanced design.

This very simple setting is looked at from two different perspectives. From the tradi-

tional statistical inference point of view, we may be interested in testing for equality of

means, i.e. testing H0 : β1
1 = 0 vs. H1 : β1

1 ̸= 0 (H0 agrees with m0 and H1 with m1).

However, we may also look at it from a prediction perspective: does the binary predictor

X improve the predictions of the outcome (i.e. is m1 a better prediction model than m0)?

In terms of significance testing, model m1 is preferred over m0 (and hence the binary X is

associated with the mean outcome) if the p-value is smaller than the nominal significance

level. From the viewpoint of prediction modelling, X can be considered an important pre-

dictor if model m1 performs better than m0 according to some prediction model assessment

criterion (e.g. MSE). We will illustrate the use of the PIP as an inferential tool that can

help in bridging the two worlds of statistical inference and prediction modelling.

2.5.1 Conditional PIP

Recall that the plug-in estimate of the conditional PIP coincides with the plug-in estimate of

the theoretical PIP, where the unknown parameters in equation (5) are replaced with their

sample estimates. In the previous section, it was argued that simplifying the expression in

(5) depends on both the model parameters and x∗. Indeed, within the two-sample setting,
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Appendix A shows that the conditional PIP in the current two-sample setting is given by

pcond(β̂
0, β̂1, F ∗) =


0.5 F ∗

Y ∗|X∗=0

(
β̂0
0+β̂1

0
2

)
+ 0.5

[
1− F ∗

Y ∗|X∗=1

(
β̂0
0+β̂1

0+β̂1
1

2

)]
if β̂1

1 > 0,

0.5

[
1− F ∗

Y ∗|X∗=0

(
β̂0
0+β̂1

0
2

)]
+ 0.5F ∗

Y ∗|X∗=1

(
β̂0
0+β̂1

0+β̂1
1

2

)
if β̂1

1 < 0.

(8)

If we further assume that F ∗ is a Gaussian distribution with E {Y ∗ | X∗ = x} = m1(β1, x)

and Var {Y ∗ | X∗ = x} = σ2
1, then the plug-in estimate of the conditional PIP of Equation

(8) reduces to

pcond;1(β̂
0, β̂1, F̂ ∗, ν̂) = Φ

(
|β̂1

1 |
4σ̂1

)
, (9)

with Φ(·) the distribution function of the standard normal distribution. This estimator will

be referred to as C1.

Upon using a Taylor series expansion (with σ1 assumed to be known) and assuming

that β̂1
1 is a consistent estimator of β1

1 , with β1
1 ̸= 0,

pcond;1(β̂
0, β̂1, F̂ ∗, ν̂) = Φ

(
|β1

1 |
4σ1

)
+ (β̂1

1 − β1
1)

1

4σ1
ϕ

(
|β1

1 |
4σ1

)
β1
1

|β1
1 |

+ oP (n
−1/2).

Hence, as n → ∞,

pcond;1(β̂
0, β̂1, F̂ ∗, ν̂)

p−→ Φ

(
|β1

1 |
4σ1

)
= pth(β

0,β1, F ∗,ν),

and so the plug-in PIP estimator is consistent as well. As an additional result, we have

shown that, as n → ∞,

√
n
(
pcond;1(β̂

0, β̂1, F̂ ∗, ν̂)− pth(β
0,β1, F ∗,ν)

)
d−→ Z

1

4σ1
ϕ

(
|β1

1 |
4σ1

)
,

where Z is the limiting normal distribution of
√
n(β̂1

1 − β1
1). See Appendix A for a proof.

As an alternative to the strong distributional assumption made above, we can also

consider the empirical cumulative distribution function F̂ ∗,emp
Y |X=a(y) = 1

na

∑na
i=1 1Yi<y|X=a,

where a = 0, 1 and na = n
2 in the current balanced design. This results into a second

version of the plug-in conditional PIP, denoted by

pcond;2(β̂
0, β̂1, F̂ ∗, ν̂) =


1−F̂ ∗,emp

Y |X=1

(
ˆ
β00+

ˆ
β10+

ˆ
β11

2

)
2 +

F̂ ∗,emp
Y |X=0

(
ˆ
β00+

ˆ
β10

2

)
2 if β̂1

1 > 0,

1−F̂ ∗,emp
Y |X=0

(
ˆ
β00+

ˆ
β10

2

)
2 +

F̂ ∗,emp
Y |X=1

(
ˆ
β00+

ˆ
β10+

ˆ
β11

2

)
2 if β̂1

1 < 0.

(10)

These estimators will be referred to as C1 and C2, respectively, and they are also plug-in

estimators of the theoretical PIP.
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2.5.2 Expected PIP

The expected PIP requires the sampling distribution of the estimators of the regression

coefficients. More specifically, we need to find the probability PX∗,Y ∗
{
E2

1 < E2
0

}
where

E1 = m1(β̂
1
)− Y ∗ and E0 = m0(β̂

0
)− Y ∗ are two stochastically dependent variables. For

the 2-sample setting we have a bivariate normal mixture distribution for Et = (E1, E0):

E =

E1

E0

 ∼ 0.5N

 0

−0.5β1
1

 , σ2

1 + 2
n 1 + 1

n

1 + 1
n 1 + 1

n

+0.5N

 0

0.5β1
1

 , σ2

1 + 2
n 1 + 1

n

1 + 1
n 1 + 1

n


(11)

Monte Carlo sampling from this mixture distribution, with β1
1 and σ2 replaced with their

estimates, is used to obtain a plug-in estimate of the expected PIP. A proof is given in

Appendix B. For the more general linear regression case, where X is continuous instead of

binary, the results for both the conditional and expected PIP extend in a natural way as

provided in Appendices A and B. Also for generalized linear models (e.g. logistic or Poisson

regression), the conditional PIP could still easily be derived, starting from Equation (5) for

the squared loss. However, the expected PIP may involve more complicated calculations

for finding the bivariate distribution of E. Nevertheless, the non-parametric approaches

can always be applied, also with other loss functions.

2.5.3 Relationship with p-values and MSE

In the introduction the connection between the p-value (Equation (2)) and the conditional

PIP was explained. In the simple case of the 2-sample problem, this link can be made

explicit. First we write the p-value for the 2-sided test for testing β1
1 = 0 as

pp = PT

{
T ≥ |β̂1

1(O)|
se(β̂1)

| O

}
= 2

[
1− Ft;n−2

(√
n|β̂1

1(O)|
2σ̂1

)]
,

where T is t-distributed with n− 2 degrees of freedom with distribution function Ft;n−2(·).

Upon using Equation (9) as an expression for the C1 plug-in estimate of the conditional

PIP, we find an explicit relationship,

pcond:1(β̂
0, β̂1, F̂ ∗, ν̂) = Φ

(
1

2
√
n
F−1
t;n−2(1− 0.5pp)

)
. (12)

Although both the p-value and the PIP estimate are statistics computed from the sample

data, there are fundamental differences. The asymptotic behaviour of the p-value is different

under the null and the alternative hypotheses. Under the null hypothesis the p-value

asymptotically has uniform distribution (sometimes even for finite sample sizes), but under

a fixed alternative the p-value of a consistent test converges in probability to zero. The

14



(a) (b) (c)

Figure 2: Relationships between the PIP as estimated by C1, the p-value and the sample

size n for the two-sample case. The reference lines in (a) and (c) correspond to pp = 0.05.

conditional PIP, on the other hand, is a consistent estimator of a meaningful non-trivial

probability. Despite these fundamental differences, for the two-sample problem we can

establish an asymptotic relationship. In Appendix C we show the following result for the

p-value pn (i.e. the p-value based on sample size n): as n → ∞,

n−1 ln pn
p−→ −1

2
ln
(
1 + 4

(
Φ−1 (PIP)

)2)
, (13)

where the factor n−1 on the left-hand side suggests that, although extremely small p-values

are not informative for very large sample sizes, the PIP still has a relevant interpretation.

Figure 2 shows plots for the relation between two of the three variables in Equation

12, while keeping the third fixed. Panel (c) shows the relationship for fixed n, illustrating

that for small p-values, still a large range of informative PIPs can be obtained, particularly

for large n. Panel (a) shows that for a fixed PIP estimate, the p-values converge to zero

with increasing sample sizes (except for the extreme PIP estimates of 1 and 0.5). On the

other hand, the relationship between the PIP estimate and the sample size n in panel (b)

demonstrates that the PIP estimates remain at non-trivial levels, away from 0.5 (except

when p = 1). In the limit, however, as n → ∞, the p-value cannot be considered fixed

under fixed alternatives, and we need to resort to the asymptotic result of the scaled p-

value (Equation 13) to understand the relationship. For other, simple parametric models,

similar explicit relationships between p-values and the PIP can be established, but for more

complicated models and in the absence of distributional assumptions, often hypothesis tests

and p-values are not available, where as the nonparametric PIP estimators do.

A second relation is observed with the difference in mean squared error, ∆MSE, defined

as the difference between the MSE of the full model and the MSE of the null model. More

specifically, it is found that (see Appendix C for the derivation):

̂∆MSE = −4σ2Φ−1(pcond:1(β̂
0, β̂1, F̂ ∗, ν̂))2.
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Appendix C also shows a relation between the conditional PIP and the predictive dis-

tribution discussed by Clarke and Clarke (2012) and Billheimer (2019).

3 Simulation study

In this section, we first investigate the two-sample setting to better understand the be-

haviour of the three types of PIP and the underlying relation with the p-value and MSE.

Next, a more complicated situation is presented to illustrate the general applicability of the

nonparametric estimators.

3.1 Two-sample setting

In this simulation study, we have included the plug-in estimators C1 and C2 as described

in Section 2.5.1. These are estimators of both the theoretical and the conditional PIP. We

have also included the plug-in estimator of the expected PIP (Exp) of Section 2.5.2. Among

the non-parametric estimators (Section 2.3), we consider the leave-one-out (LOO), the 5-

fold cross-validation (CV5) and the repeated 5-fold cross-validation (rep CV5) estimators.

They will be evaluated as estimators of the expected and/or the conditional PIP. Finally,

the split-sample (SS) estimator is included, again as an estimator of the theoretical and/or

the conditional PIP. Three effect sizes were considered (β1
1 = 0,−1 and −4) and the total

sample sizes were 20, 40, 60, 100 and 400. For each scenario, 10000 simulation runs were

performed.

Results for the theoretical and expected PIP, and results for the conditional PIP are

discussed separately. For the former two, the PIP remains constant throughout all simula-

tions for they only depend on fixed parameters. The conditional PIP, on the other hand,

depends on the sample and hence varies from simulation to simulation run.

3.1.1 The Theoretical and Expected PIPs

The results for the estimators of the theoretical and expected PIP are shown in Figure 3

for sample sizes 20 and 400. The plots for the other sample sizes are similar and can be

found in Appendix D.

First we note that, as sample size increases, the true theoretical and expected PIPs

converge to one another (see also Section 2.4). The higher the effect size, the faster this

convergence. Hence, for large sample sizes, the estimators discussed in this section, refer to

both types of PIPs.
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(a) Effect size β1
1 = 0 and sample sizes n = 20 (left), n = 400 (right)

(b) Effect size β1
1 = −1 and sample sizes n = 20 (left), n = 400 (right)

(c) Effect size β1
1 = −4 and sample sizes n = 20 (left), n = 400 (right)

Figure 3: Results for 10000 simulation runs. C1 and C2 refer to pcond;1(β̂
0, β̂1, F̂ ∗, ν̂) and

pcond;2(β̂
0, β̂1, F̂ ∗, ν̂), respectively; Exp refers to the plug-in estimate for the expected PIP;

LOO, CV5, rep CV5 and SS refer to leave-one-out CV, 5-fold CV, repeated 5-fold cross-

validation and split sampling, respectively. The true theoretical (dashed) and expected PIP

(dotted) are indicated as horizontal reference lines. The mean over the simulation runs is

indicated by the solid dot in the boxplot.
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In accordance with the overview of Figure 1, we will consider all estimators as estimators

of both the expected and theoretical PIP, except the resampling estimators (LOO, CV5 and

repCV5) as estimators of the theoretical PIP.

First we focus on the results for β1
1 ̸= 0, i.e. m1 is a better model than m0. From

Figures 3b and 3c we conclude that all estimators are approximately unbiased, with a few

exceptions. The plug-in estimators (C1, C2 and Exp) are slightly biased upwards for small

sample sizes, and the split-sample (SS) estimator is slightly biased downwards, but the bias

disappears when the sample size and/or the effect size β1
1 increases. In terms of variance,

the plug-in estimator C1 often shows the smallest variance; this is a highly parametric

estimator and all model assumptions are satisfied in this set of simulations. The LOO and

SS estimators show less desirable features: the LOO sampling distribution often shows long

tails, and the SS estimator often has the largest variance. Our results suggest that the

cross-validation estimators CV5 and rep CV5 are to be recommended as they have a good

bias/variance trade-off.

Turning to the results for the β1
1 = 0 scenario (m0 = m1). Overall the conclusions are

very similar, but this scenario demonstrates an important shortcoming of the C1 plug-in

estimator: in none of the simulation runs, the C1 estimate was smaller than 0.5. In other

words, the C1 estimates always suggest that m1 is the better model, whereas the dummy

regressor X is not related to the outcome. Moreover, if m0 is not worse than m1, then m0

should even be preferred over m1, because (1) X is not related to the outcome (as in m0),

and (2) m0 does not suffer from overfitting. The explanation for this phenomenon is that

in C1 the distribution is set to F ∗, which is in turn set to m1. In both F ∗ and m1 the same

estimate of β1
1 is used and hence, according to C1, m1 will never perform worse than m0.

3.1.2 The Conditional PIP

Because for a given sample, the sample estimate β̂
1
, which is part of m1, does not coincide

with the true β1, which is part of the distribution F ∗, the latter no longer agrees with

m1, and the analytical computation of the true conditional PIP is less straightforward

than before. We therefore approximate this PIP by an average of nt = 1 × 106 randomly

generated realisations (x∗i , y
∗
i ) from F ∗. In particular,

1

nt

nt∑
i=1

I
{
L(m1(β̂

1
, x∗i ), y

∗
i ) < L(m0(β̂

0
, x∗i ), y

∗
i )
}
.

For the conditional PIP, only the plug-in estimator of the expected PIP is not considered

as a potential estimator (see Figure 1). From a theoretical perspective (Bates et al., 2021),

the resampling based estimators target the expected PIP, but we still also evaluate them
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for estimating the conditional PIP; recall that for large sample sizes both PIPs are very

similar.

Figure 4 suggests that all nonparametric estimators are approximately unbiased. The

plug-in estimators C1 and C2 show a small upward bias which becomes small as the sample

size and/or the effect size increases. Just like before, the C1 estimates are never smaller

than 0.5 in the β1
1 = 0 scenario. In terms of variance, the LOO and SS estimators perform

worst. The smallest variance is obtained with C1 and C2, but since they suffer from a bias,

we prefer the CV5 and rep CV5 estimators, which show a good bias/variance trade-off.

Moreover, these nonparametric methods can be easily used in more complicated setting

with e.g. nonlinear models.

3.1.3 The Relationships between PIP, P-values and MSE

In Section 2.5.3 the exact relationship between the p-value and the C1 plug-in estimator

of the conditional PIP was investigated. For the nonparametric PIP estimators, on the

other hand, such exact relationships do not exist. In this section we empirically investigate

this relationship for the 5-fold CV estimator, in a simulation study. The results in Figure

5 still show many features of the earlier exact relationship. The random scattering is a

consequence of the random splitting of the dataset into the folds.

The graphs show that the higher the p-value, the lower the PIP. Insignificant test

results often correspond to a PIP smaller than 0.5, which is an indication that m1 overfits

the data. For this simple 2-sample problem, the conclusions based on MSE and PIP often

agree. Indeed, Table 2 shows the percentages of ”correct decisions” based on the p-value,

the MSE difference and the repeated 5-fold CV PIP. For the latter, both the estimate (i.e.

PIP) as well as the lower 95% confidence bound (i.e. PIPLB) are considered. The results

confirm the fact that for the medium effect size and small sample sizes, both PIP and

PIPLB outperform the p-value in terms of power and show comparable performance as the

MSE decisions, with some underperformance for PIPLB and overperformance for PIP. On

the other hand, MSE, PIP and PIPLB seem to be too liberal when the effect size is 0, as

compared to the p-value. All approaches show similar performance for the largest effect

size. We want to stress, however, that it is not our intention to advocate the use of sharp

thresholds for decision making. We have used it here for making the comparisons easier.

3.2 Nonlinear models and gradient boosting machines

The nonparametric estimators are also applicable in more complicated settings. The results

in this section originate from data that were sampled from a nonlinear model of the form
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(a) Effect size β1
1 = 0 and sample sizes n = 20 (left), n = 400 (right)

(b) Effect size β1
1 = −1 and sample sizes n = 20 (left), n = 400 (right)

(c) Effect size β1
1 = −4 and sample sizes n = 20 (left), n = 400 (right)

Figure 4: Comparing the difference between the empirical conditional PIP and the PIP

estimators. Similar abbreviations are used as compared to Figure 3

.
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(a) Effect size β1
1 = 0 and sample sizes n = 20 (left), n = 400 (right)

(b) Effect size β1
1 = −1 and sample sizes n = 20 (left), n = 400 (right)

(c) Effect size β1
1 = −4 and sample sizes n = 20 (left), n = 400 (right)

Figure 5: Relation between repeated 5-fold CV PIP and the p-value for testing β1
1 = 0. The

gray scale reflects the difference between the MSE of m1 and m0. The solid line indicates

the exact relation of (12). The dashed reference lines refer to PIP = 0.5 and p-value =

0.05.
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Table 2: Comparison between decisions based on the p-value, the MSE difference between

models m1 and m0 (denoted by ∆ MSE), the repeated cross-validation PIP and its cor-

responding lower bound (denoted by PIP and PIPLB, respectively). The table shows the

percentages of a correct decision

.

β1
1 = 0 β1

1 = −1

Sample size p-value ∆ MSE PIPLB PIP p-value ∆ MSE PIPLB PIP

20 94.81 80.05 84.40 63.48 18.30 41.13 31.62 57.59

40 95.02 79.44 84.92 63.47 33.88 56.57 46.18 70.45

60 94.92 79.15 84.15 64.22 48.22 68.32 58.83 79.30

100 94.96 79.16 83.80 64.48 70.67 84.15 76.72 89.78

400 94.98 79.71 82.11 64.46 99.89 99.89 99.20 99.72

y = |4x1|3x4 + 5x2 + (2x3)
x5 + ε, with given predictors (x1 up to x5) and zero-mean error

term ε. More details on the data generating mechanism and the gradient boosting machines

are provided in Appendix D. In short, the different estimators of the PIP are evaluated for

comparing two models estimated with gradient boosting machines: the full model m1 makes

use of all covariates, while the null model m0 only considers variables x1, x2 and x3. This

comes down to testing whether nonlinear effects are required. Estimates of the PIP are

obtained based on 5-fold cross-validation, 10 times repeated 5-fold cross-validation and

split sampling. In addition to the PIP, the difference in MSE between both models was

calculated as well, where the MSE is estimated based on both types of cross-validation. In

the absence of formal p-values for gradient boosting machines, the aim is to use the PIP to

provide information about the importance of covariates x4 and x5. Table 3 summarises the

results in terms the percentage of correct decisions made by PIP and MSE when choosing

between models m1 and m0 (i.e. percentage of runs where PIP>0.5 and MSE1<MSE0).

The higher the sample size, the better the agreement between decisions based on MSE

and those based on PIP, but already for the small sample sizes the performances are quite

similar. As expected, the (repeated) CV PIP shows better performance as compared to split

sampling, with already great performance for the smallest sample size under consideration.

Of course, it is noted that the results on this more complicated setting are quite limited,

but they already indicate the ease of applicability of the PIP and hint in the direction of a

similar performance when compared to e.g. MSE. In addition, the absence of p-values for

these type of machine learning models can be (partly) resolved by looking at the PIP.
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Table 3: Comparison between decisions based on the different nonparametric PIP estima-

tors and the MSE difference between models m1 and m0 (denoted by ∆ MSE). The table

shows the percentages of a correct decision.

PIP ∆ MSE

Sample size SS CV5 rep CV5 CV5 rep CV5

40 75.00 92.36 94.05 99.07 98.99

60 84.31 98.19 98.99 99.76 99.70

100 95.06 99.95 99.95 99.97 99.94

400 100.00 100.00 100.00 100.00 100.00

4 Application

Camerer et al. (2018) evaluated the replicability of 21 social science experiments published

in the journals Nature and Science between 2010 and 2015, each of which reported a sig-

nificant p-value in the original report. In addition to obtaining insights from experts in the

field through the use of market predictions and surveys, the team of authors also collected

new data to check whether these supported the original conclusions. Needless to say, this

was a daunting and time consuming task. In absence of the true original data sets, we used

the reported parameter settings of four studies for simulating our own data. Our settings

are listed in Appendix E and they were chosen such that they approximate the original

p-values as close as possible. Table 4 shows results from these four studies as presented

in Camerer et al. (2018), who found two studies to be replicable and two not. The table

also shows the estimated PIP (rep CV5), with a lower and upper confidence bound. The

PIP is an estimate of whether the model including the original significant effect provides

a better prediction than the model without that effect. In the first study, the PIP is close

to 0.5 and the lower bound is even below 0.5, pointing towards an overfitting model and

hence low belief that the effect is actually significant. Similarly, the PIP and corresponding

lower bound in the second study are also close to 0.5. In combination with a boundary

p-value, replicability seems questionable. In contrast, the PIP and lower confidence limit

are higher than 0.63 in studies three and four, which increases the belief that the effect

could be replicated.

In conclusion, with only a minor additional computational effort, the PIP can be used

in combination with the p-value to provide more details on the strength of the conclusions

that would normally be based on the p-value alone. Herewith, the PIP fits nicely within

the suggestions made by Wasserstein et al. (2019) to overcome some of the concerns related
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to p-values as discussed by e.g. Amrhein et al. (2019). Notwithstanding our focus here on

the PIP and p-values, we evidently recommend to also report effect size estimates and their

confidence intervals as an essential part of the data analysis.

Table 4: Application of the PIP (rep CV5) for four studies discussed in Camerer et al.

(2018). Columns 4 (PredMarket) and 5 (Survey) report the results from the peers and

should be interpreted as the probability that experts assign to a possible replication of the

results

Study p-value Replicated PredMarket Survey PIP lower PIP PIP upper

Gervais and Norenzayan (2012) 0.0291 No 0.1700 0.2000 0.4913 0.5207 0.5470

Ackerman et al. (2010) 0.0488 No 0.1500 0.1300 0.5183 0.5624 0.5994

Balafoutas and Sutter (2012) 0.0194 Yes 0.7500 0.4300 0.6339 0.6389 0.6434

Wilson et al. (2014) <0.0001 Yes 0.4600 0.5200 0.6667 0.7140 0.7333

5 Conclusion

We have introduced the probability of improved prediction (PIP) as an addition to the

toolbox for statistical inference. In particular, we position the new concept somewhere

in between hypothesis testing (p-values) and prediction modelling (e.g. the mean squared

error (MSE) as a model selection criterion). The PIP is the probability that one model

provides a better prediction as compared to another model, where ”better” is based on

a user-defined loss function. Three versions have been proposed: (1) the theoretical PIP

does not depend on the data and assumes that all model parameters are known; (2) the

conditional PIP makes use of parameter estimates, and is to be interpreted conditional on

the observed sample data; and (3) the expected PIP, which is defined as the average of

the conditional PIP over repeated samples. It is the conditional PIP for which we have

established an explicit relationship with on the one hand the p-value, and, on the other

hand, model selection based on the MSE. To gain further insight into these relationships,

we have worked out details for the very simple setting of the two-sample problem (and lin-

ear models). Several estimators of the various PIPs have been proposed and evaluated in a

simulation study. Plug-in estimators are straightforward for simple parametric models that

come with explicit distributional assumptions, but they cannot be generalised to settings in

which complicated nonlinear models are used (e.g. machine learning) or when no distribu-

tional assumptions can be made. For the sake of the latter situations, we have also proposed
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nonparametric PIP estimators based on sample splitting and cross validation. Simulation

results suggest that the repeated 5-fold cross-validation estimator performs best as an es-

timator of the expected PIP. Note that cross-validation estimators are known to rather

estimate the expected values (averaged over repeated samples) of targeted estimand, then

that they estimate the estimand itself; see e.g. Bates et al. (2021) for a detailed discussion in

the context of cross-validation in prediction modelling. Nevertheless, the simulation results

also show that repeated cross-validation estimator only shows a small bias for estimating

the conditional PIP, which is often considered to be the most relevant version.

Our aim of introducing the PIP was to form a bridge between statistical inference and

prediction modeling. Just like p-values, it has a probabilistic interpretation, but it has

some advantages. First, for non-statisticians it has an easier interpretation than p-values,

and it is therefore less prone to misinterpretation and misuse. Second, the PIP behaves as

an estimator and converges to a meaningful probability, whereas the p-value, under a fixed

alternative hypothesis, always converges to zero. As a consequence, the p-value hardly tells

anything about the scientific relevance. Finally, in contrast to p-values, the PIP can be

easily computed for many more models, even when computer intensive machine learning

methods are used for model building. The PIP is also closely related to the MSE for

comparing prediction models. Whereas the latter measures to what extent one model is

better than the other on average, in terms of the squared prediction error, the PIP tells us

how often the one model gives a better prediction than the other model. In this sense, we

believe that the PIP can be an interesting addition to the toolbox of a statistician or data

scientist.
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SUPPLEMENTARY MATERIAL

A Derivations related to the theoretical PIP

For ease of notation, the dependence of models m1 and m0 on X will be omitted and hence

mi(βi) ≡ mi(βi,X∗) for i = 0, 1. In case m1(β1) = m0(β0), the theoretical PIP is defined

to be 0.5. For the case where m1(β1) ̸= m0(β0) and using the squared error loss, it is

derived that

pth(β
0,β1, F ∗,ν) = PX∗,Y ∗

{
L(m1(β1), Y ∗) < L(m0(β0), Y ∗)

}
= PX∗,Y ∗

{
(m1(β1)− Y ∗)2 < (m0(β0)− Y ∗)2

}
= PX∗,Y ∗

{
m1(β1)2 − 2m1(β1)Y ∗ + Y ∗2 < m0(β1)2 − 2m0(β0)Y ∗ + Y ∗2

}
= PX∗,Y ∗

{
m1(β1)2 −m0(β0)2 < 2Y ∗(m1(β1)−m0(β0)

}
=

∫
X ∗

PY ∗|X∗
{
m1(β1)2 −m0(β0)2 < 2Y ∗(m1(β1)−m0(β0))|X∗ = x∗

}
dF ∗

X∗(x∗),

(14)

with X ∗ the sampling space of X∗.

The further expansion of equation (5) depends on dividing the sampling space into

regions where the sign of m1(β1) − m0(β0) is either positive or negative. However, this

requires information on both the model parameters (i.e. β0 and β1) as well as on the value

of x∗. A general expression is therefore hard to derive, but for the case of simple linear

regression with m0 = β0
0 and m1 = β1

0 + β1
1x, simplified expressions can be obtained.

First of all, a link between the regression parameters can be easily obtained. Indeed,

we know that

E[Y ] =

∫
X
E[Y |X = x]dFX(x).

Considering either of the two models m0 and m1 for E[Y |X] should leave the unconditional

expectation E[Y ] unchanged and hence

E[Y ] =

∫
X
m0(β0, x)dFX(x)

=

∫
X
m1(β1, x)dFX(x)

leads to ∫
X
m0(β0, x)dFX(x)−

∫
X
m1(β1, x)dFX(x) = 0 ⇐⇒∫

X

[
m0(β0, x)−m1(β1, x)

]
dFX(x) = 0 ⇐⇒∫

X

[
m0(β0, x)−m1(β1, x)

]
fX(x)dx = 0,
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which in the case of simple linear regression simplifies to∫
X

[
β0
0 − β1

0 − β1
1x
]
fX∗(x)dx = 0 ⇐⇒

β0
0 = β1

0 + E[X]β1
1 .

Note that these final two steps become harder and sometimes impossible to solve when

models are non-linear in the parameters, in x or both.

Now that the link between β0 and β1 has been established, it is further seen that

m1(β1)−m0(β0) = β1
0 + β1

1x
∗ − β1

0 − E[X∗]β1
1

= β1
1(x

∗ − E[X∗]).

The sign of this expression is clearly related to the sign of β1
1 and to the location of x with

respect to the expected value E[X]. More specifically, depending on the sign of β1
1 , the

following situations can be distinguished:

• if β1
1 < 0:

m1(β1)−m0(β0) > 0 ⇐⇒ x∗ < E[X∗]

and putting X ∗ = X ∗
1 ∪ X ∗

2 = {x∗ < E[X∗]} ∪ {x∗ > E[X∗]}, equation (5) becomes∫
x∗<E[X∗]

PY ∗|X∗

{
m1(β1)2 −m0(β0)2

2(m1(β1)−m0(β0))
< Y ∗|X∗ = x∗

}
dF ∗

X∗(x∗)+∫
x∗>E[X∗]

PY ∗|X∗

{
m1(β1)2 −m0(β0)2

2(m1(β1)−m0(β0))
> Y ∗|X∗ = x∗

}
dF ∗

X∗(x∗)

which further simplifies to∫
x∗<E[X∗]

PY ∗|X∗

{
m1(β1) +m0(β0)

2
< Y ∗|X∗ = x∗

}
dF ∗

X∗(x∗)+∫
x∗>E[X∗]

PY ∗|X∗

{
m1(β1) +m0(β0)

2
> Y ∗|X∗ = x∗

}
dF ∗

X∗(x∗)

• if β1
1 > 0:

m1(β1)−m0(β0) > 0 ⇐⇒ x∗ > E[X∗]

and putting X ∗ = X ∗
1 ∪ X ∗

2 = {x∗ < E[X∗]} ∪ {x∗ > E[X∗]}, equation (5) becomes∫
x∗<E[X∗]

PY ∗|X∗

{
m1(β1)2 −m0(β0)2

2(m1(β1)−m0(β0))
> Y ∗|X∗ = x∗

}
dF ∗

X∗(x∗)+∫
x∗>E[X∗]

PY ∗|X∗

{
m1(β1)2 −m0(β0)2

2(m1(β1)−m0(β0))
< Y ∗|X∗ = x∗

}
dF ∗

X∗(x∗)

which further simplifies to∫
x∗<E[X∗]

PY ∗|X∗

{
m1(β1) +m0(β0)

2
> Y ∗|X∗ = x∗

}
dF ∗

X∗(x∗)+∫
x∗>E[X∗]

PY ∗|X∗

{
m1(β1) +m0(β0)

2
< Y ∗|X∗ = x∗

}
dF ∗

X∗(x∗)
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A.1 Binary covariate

For the two-sample case study, a balanced design is considered for the binary X∗, meaning

that E[X∗] = 0.5 and the integrals above are replaced by sums. Hence if β1
1 < 0, the

theoretical PIP becomes

PY ∗|X∗

{
m1(β1) +m0(β0)

2
< Y ∗|X∗ = 0

}
P (X∗ = 0)+

PY ∗|X∗

{
m1(β1) +m0(β0)

2
> Y ∗|X∗ = 1

}
P (X∗ = 1),

or in terms of the conditional distribution function:

0.5

[
1− F ∗

Y ∗|X∗=0

(
m0(β0) +m1(β1)

2

)]
+ 0.5F ∗

Y ∗|X∗=1

(
m0(β0) +m1(β1)

2

)
.

Substituting the unknown model parameters with their sample estimators results into equa-

tion (8). In total similarity, if β1
1 > 0:

0.5 F ∗
Y ∗|X∗=0

(
m0(β0) +m1(β1)

2

)
+ 0.5

[
1− F ∗

Y ∗|X∗=1

(
m0(β0) +m1(β1)

2

)]
.

A.2 Continuous covariate

This setting is closely related to the two-sample case, in the sense that the two base models

m0 and m1 have the same functional form, but X∗ is now assumed to follow a contin-

uous distribution instead of a Bernoulli distribution. In particular, m0(β0, X∗) = β0
0 ,

m1(β1, X∗) = β1
0 + β1

1X
∗, Y ∗|X∗ ∼ N (m1(β1, X∗), σ2) and X∗ ∼ U([a, b]) for constants

a < b. Again dependent on the sign of β1
1 and the location of x∗ relative to the expected

value E[X∗], the integral in (5) consists of two parts (X∗ either above or below K = E[X∗]

). With the additional assumption that Y follows m1, the theoretical PIP can be written

as (with fX∗ = 1
b−a):

pth(β
0,β1, F ∗,ν) =


∫K
a Φ

(
m0−m1

2σ

)
fX∗(x∗)dx∗ +

∫ b
K

[
1− Φ

(
m0−m1

2σ

)]
fX∗(x∗)dx∗ if β1

1 > 0,∫K
a

[
1− Φ

(
m0−m1

2σ

)]
fX∗(x∗)dx∗ +

∫ b
K Φ

(
m0−m1

2σ

)
fX∗(x∗)dx∗ if β1

1 < 0,

0.5 if β1
1 = 0.

(15)

For the corresponding plug-in estimator m0(β̂0)−m1(β̂1) = β̂1
1(x̄− x∗) and hence

pth(β̂
0, β̂1, F ∗) =


∫K
a Φ

(
β1
1(x̄−x∗)

2σ

)
fX∗(x∗)dx∗ +

∫ b
K

[
1− Φ

(
β1
1(x̄−x∗)

2σ

)]
fX∗(x∗)dx∗ if β̂1

1 > 0,∫K
a

[
1− Φ

(
β1
1(x̄−x∗)

2σ

)]
fX∗(x∗)dx∗ +

∫ b
K Φ

(
β1
1(x̄−x∗)

2σ

)
fX∗(x∗)dx∗ if β̂1

1 < 0.

(16)
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Now, since K̂ = X̄, an expression similar to (9) is obtained:

pth(β̂
0, β̂1, F ∗) =

∫ K

a
Φ

(
|β̂1

1(x̄− x∗)|
2σ

)
fX∗(x∗)dx∗ +

∫ b

K
Φ

(
|β̂1

1(x̄− x∗)|
2σ

)
fX∗(x∗)dx∗,

(17)

which can be linked to the two-sided p-value for testing whether β1
1 = 0, using the fact that

|β̂1
1 | = se(β̂1

1)Φ
−1(1− 0.5pp).

A.3 Relation with the conditional PIP

In the paper, it is observed that the plug-in estimator of the theoretical PIP coincides with

the conditional PIP C1. In the case of a normal linear regression model, C1 was found to

correspond to

pcond;1(β̂
0, β̂1, F̂ ∗, ν̂) = Φ

(
|β̂1

1 |
4σ̂1

)
,

Upon using a Taylor series expansion (with σ1 assumed to be known) and assuming that

β̂1
1 is a consistent estimator of β1

1 , with β1
1 ̸= 0,

pcond;1(β̂
0, β̂1, F̂ ∗, ν̂) = Φ

(
|β1

1 |
4σ1

)
+ (β̂1

1 − β1
1)

1

4σ1
ϕ

(
|β1

1 |
4σ1

)
β1
1

|β1
1 |

+ oP (n
−1/2).

Hence, as n → ∞,

pcond;1(β̂
0, β̂1, F̂ ∗, ν̂)

p−→ Φ

(
|β1

1 |
4σ1

)
= pth(β

0,β1, F ∗,ν),

and so the plug-in PIP estimator is consistent as well.

As an additional result, we see that

√
n
(
pcond;1(β̂

0, β̂1, F̂ ∗, ν̂)− pth(β
0,β1, F ∗,ν)

)
=

√
n

(
pcond;1(β̂

0, β̂1, F̂ ∗, ν̂)− Φ

(
|β1

1 |
4σ1

))
=

√
n(β̂1

1 − β1
1)

1

4σ1
ϕ

(
|β1

1 |
4σ1

)
β1
1

|β1
1 |

+
√
noP (n

−1/2)

In the latter expression,
√
noP (n

−1/2) approaches 0 as n → ∞, while
√
n(β̂1

1 − β1
1)

approaches a well-determined limiting normal distribution Z with mean 0 and variance

determined by the Fisher information. The term
β1
1

|β1
1 |

equals -1 or 1 and hence does not

alter the variance and leaves the mean at 0. This shows that, as n → ∞,

√
n
(
pcond;1(β̂

0, β̂1, F̂ ∗, ν̂)− pth(β
0,β1, F ∗,ν)

)
d−→ Z

1

4σ1
ϕ

(
|β1

1 |
4σ1

)
,

where Z is the limiting normal distribution of n1/2(β̂1
1 − β1

1).
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B Derivations related to the expected PIP

For the ordinary linear regression model of the shape Y = Xβ + ϵ, with ϵ ∼ N (0, σ2) the

variance covariance matrix of the estimated coefficients is given by σ2(XTX)−1.

B.1 Binary covariate

For the case study in Section 2.5, this leads to

σ2(XTX)−1 =
σ2

n ∗
∑

i x
2
i − (

∑
i xi)

2

 ∑
i x

2
i −

∑
i xi

−
∑

i xi n

 = σ2

 2
n − 2

n

− 2
n

4
n

 .

Moreover, as both models m0 and m1 are fitted on the same data, it is observed that

β̂0
0 = Ȳ = β̂1

0 + β̂1
1X̄ = β̂1

0 + β̂1
1P̂ {X∗ = 1} .

With E1 = m1(β̂
1
)− Y ∗ and E0 = m0(β̂

0
)− Y ∗, it is then shown that the expected value

and variance of E1 are given by

EY ∗,O {E1 | X∗} = EY ∗,O

{
m1(β̂1)− Y ∗ | X∗

}
= β1

0 + β1
1X

∗ − β1
0 − β1

1X
∗ = 0

and

Var {E1} = Var
{
m1(β̂1)− Y ∗ | X∗

}
= Var

{
β̂1
0

}
+X∗2Var

{
β̂1
1

}
+Var {Y ∗ | X∗}+ 2X∗Cov

{
β̂1
0 , β̂

1
1

}
= σ2(2/n+ x∗

4

n
− 2x∗

2

n
+ 1)

= σ2(2/n+ 1).

Similarly, for E0 it is obtained that

EY ∗,O {E0 | X∗} = EY ∗,O

{
m0(β̂0)− Y ∗

}
= β1

0 + β1
1X̄ − β1

0 − β1
1X

∗

=

β1
1X̄ ifX∗ = 0

−β1
1X̄ ifX∗ = 1.

and

Var {E0 | X∗} = Var
{
m0(β̂0)− Y ∗ | X∗

}
= Var

{
β̂0
0

}
+Var {Y ∗ | X∗}

= Var
{
β̂1
0 + 0.5β̂1

1

}
+Var {Y ∗ | X∗}

= Var
{
β̂1
0

}
+ 0.25Var

{
β̂1
1

}
+Cov

{
β̂1
0 , β̂

1
1

}
+Var {Y ∗ | X∗}

= σ2(1/n+ 1).
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Finally, also the covariance between E1 and E0 is obtained as

Cov {E1, E0 | X∗} = Cov
{
β̂1
0 + β̂1

1X
∗ − Y ∗, β̂1

0 + 0.5β̂1
1 − Y ∗ | X∗

}
= Var

{
β̂1
0

}
+X∗Cov

{
β̂1
0 , β̂

1
1

}
+ 0.5Cov

{
β̂1
0 , β̂

1
1

}
+ 0.5X∗Var

{
β̂1
1

}
+Var {Y ∗}

=

σ2(1 + 1
n) if X∗ = 0

σ2(1 + 1
n) if X∗ = 1.

Together, this results into expression (11).

B.2 Continuous covariate

In full analogy for a continuous covariate X, the least squares regression coefficient estima-

tors are normally distributed:β̂1
0

β̂1
1

 ∼ N

β1
0

β1
1

 , σ2

 ∑
i x

2
i

n
∑

i x
2
i−(

∑
i xi)2

−
∑

i xi

n
∑

i x
2
i−(

∑
i xi)2

−
∑

i xi

n
∑

i x
2
i−(

∑
i xi)2

n
n
∑

i x
2
i−(

∑
i xi)2

 . (18)

Hence the standard error of β̂1
1 is given by

√
nσ2

n
∑

i x
2
i−(

∑
i xi)2

and expression (17) is further

reduced to

pth(β̂
0, β̂1, F ∗) =

∫ b

a
Φ

Φ−1(1− 0.5pp)|x̄− x∗|

2
√∑

i x
2
i − nx̄2

 fX∗(x∗)dx∗. (19)

For the expected PIP, the expression is similar to (11), where X∗ is now considered to

be uniformly distributed on the [a, b] interval and the mean of E2 now depends on X∗:

E =

E1

E2

 ∼
∫ b

a
N

 0

β1
1(x

∗ − x̄)

 ,ΣE1,E2

 fX∗(x
∗), (20)

where

ΣE1,E2 =

 σ2 + σ2

β̂1
0

+ x∗2σ2

β̂1
1

+ 2x∗σ2

β̂1
0 ,β̂

1
1

σ2 + σ2

β̂1
0

+ x∗σ2

β̂1
0 ,β̂

1
1

+ x̄ ∗ σ2

β̂1
0 ,β̂

1
1

+ x̄x∗σ2

β̂1
1

σ2 + σ2

β̂1
0

+ x∗σ2

β̂1
0 ,β̂

1
1

+ x̄σ2

β̂1
0 ,β̂

1
1

+ x̄ ∗ x∗σ2

β̂1
1

σ2 + σ2

β̂0
0


and

σ2

β̂0
0

= Var(β̂1
0 + β̂1

1X̄) = σ2

β̂1
0

+ X̄2σ2

β̂1
1

+ 2X̄σ2

β̂1
0 ,β̂

1
1

.

C Relationships between the PIP and other statistics

In this appendix, details are provided about the relationship of the PIP with other statistics

for comparing models.
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C.1 P-values

The asymptotic result of Equation (13) follows from Lambert and Hall (1982), where lemma

4.2 states (with pn the p-value based on a sample of size n = n1 + n2), as n → ∞‘,

n−1/2 (ln pn + nc)
d−→ N(0, τ2),

with

c =
1

2
ln
(
1 + λ(1− λ)∆2

)
λ = lim

n→∞

n1

n

τ2 =
λ(1− λ)∆2

1 + λ(1− λ)∆2

∆ =
β

σ
.

This results in,

n−1 ln pn
p−→ c = −1

2
ln

(
1 +

1

4
∆2

)
= −1

2
ln

(
1 +

1

4

β2

σ2

)
.

Combining the results for the convergence of the plug-in PIP estimator and the large n

results for the p-value, we can write

n−1 ln pn
p−→ −1

2
ln
(
1 + 4

(
Φ−1 (PIP)

)2)
.

C.2 Difference in MSE between full and null model

Also for MSE difference between the estimated full model and null model, an exact relation

with the conditional PIP can be derived. For model m1, it is known that:

MSE1 = EX∗,Y ∗

{(
Y ∗ − (β̂1

0 +
ˆβ1
1x

∗)
)2

| O
}

= 0.5EY ∗,X∗=0

{(
Y ∗ − β̂1

0

)2
| O
}
+ 0.5EY ∗,X∗=1

{(
Y ∗ − (β̂1

0 + β̂1
1)
)2

| O
}

= 0.5EY ∗,X∗=0

{
Y ∗2 − 2β̂1

0Y
∗ + β̂1

0

2
}
+ 0.5EY ∗,X∗=1

{
Y ∗2 − 2β̂1

0Y
∗ − 2β̂1

1Y
∗ + β̂1

0

2
+ 2β̂1

0 β̂
1
1 + β̂1

1

2
}

= 0.5EY ∗,X∗=0

{
Y ∗2

}
− β̂1

0EY ∗,X∗=0 {Y ∗}+ 0.5β̂1
0

2
+ 0.5EY ∗,X∗=1

{
Y ∗2

}
− β̂1

0EY ∗,X∗=1 {Y ∗}

− β̂1
1EY ∗,X∗=1 {Y ∗}+ 0.5β̂1

0

2
+ 0.5β̂1

1

2
+ β̂1

0 β̂
1
1

and similarly for model m0, it is seen that
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MSE0 = EX∗,Y ∗

{(
Y ∗ − β̂0

0

)2
| O
}

= 0.5EY ∗,X∗=0

{(
Y ∗ − β̂0

0

)2
| O
}
+ 0.5EY ∗,X∗=1

{(
Y ∗ − β̂0

0

)2
| O
}

= 0.5EY ∗,X∗=0

{
Y ∗2

}
− β̂0

0EY ∗,X∗=0 {Y ∗}+ 0.5β̂0
0

2

+ 0.5EY ∗,X∗=1

{
Y ∗2

}
− β̂0

0EY ∗,X∗=1 {Y ∗}+ 0.5β̂0
0

2

Subtracting MSE0 from MSE1, we obtain

∆MSE = MSE1 −MSE0

=
β̂1
1

2

4
− β̂1

1β
1
1

2

p−→ −β1
1
2

4

which can be estimated by ̂∆MSE =
−β̂1

1

2

4 =
−|β̂1

1 |2
4 .

Upon using that P̂ IP = Φ(
|β̂1

1 |
4σ ), we obtain the relation between ̂∆MSE and P̂ IP as:

̂∆MSE = −4 ∗ σ2 ∗ Φ−1(P̂ IP )2.

C.3 Measure of overlap between predictive distributions

For the two-sample case with a known variance σ2
1, following Clarke and Clarke (2012), the

predictive distribution for a prediction of a new observation based on model m1 is given by

a normal distribution with mean β̂1
0 + β̂1

1x
∗ and variance σ2

1(1 + 2
n). This corresponds to

the distribution of E1 in equation 11 related to the Expected PIP. According to Billheimer

(2019), the importance of the explanatory variable can be summarized by graphing this

predictive distribution at key values of X, which in the current case corresponds to x∗ = 0

(leading to µ1 = β̂1
0) and x∗ = 1 (leading to µ2 = β̂1

0 + β̂1
1). The less overlap between these

distributions, the more important X. Following the definition by Rom and Hwang (1996),

the overlap between two Gaussian densities with means µ1 and µ2 and (common) variance

σ2
1(1 +

2
n) is expressed by:

Ovl = 1− Φ(
µ1+µ2

2 −min(µ1, µ2)

σ1

√
1 + 2

n

) + Φ(
µ1+µ2

2 −max(µ1, µ2)

σ1

√
1 + 2

n

)

=


2Φ(

−β̂1
1

2σ1

√
1 + 2

n) when β̂1
1 > 0,

2Φ(
β̂1
1

2σ1

√
1+ 2

n

) when β̂1
1 < 0.
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With pth;1(β̂
0, β̂1, F̂ ∗,ν) = Φ

(
|β̂1

1 |
4σ1

)
it is readily derived that

Ovl = 2Φ

−2Φ−1(pth;1(β̂
0, β̂1, F̂ ∗,ν))√

1 + 2
n

 .
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D Additional simulation results

D.1 Two-sample setting

Figure 6: Simulation results for effect size β1
1 = 0. The boxplots show the distribu-

tions of the various PIP estimates over 10000 simulation runs. C1 and C2 refer to

pth;1(β̂
0, β̂1, F̂ ∗, ν̂) and pth;2(β̂

0, β̂1, F̂ ∗, ν̂), respectively, while Exp refers to the plug-in

estimate for the expected PIP. LOO, CV5, rep CV5 and SS refer to estimates based on

leave-one-out CV, 5-fold CV, repeated 5-fold cross-validation and split sampling, respec-

tively. The true theoretical (dashed) and expected PIP (dotted) are indicated as horizontal

reference lines. The mean over the simulation runs is indicated by the solid dot in the

boxplot. Effect size = 0.
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Figure 7: Simulation results for effect size β1
1 = −1. See the caption of Figure 6 for more

details.

38



Figure 8: Simulation results for effect size β1
1 = −4. See the caption of Figure 6 for more

details.
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Figure 9: Comparing the difference between the empirical conditional PIP and the PIP

estimators. Effect size = 0. Abbreviations as in Figure 6.

D.2 Nonlinear setting with gradient boosting machines

In this setting, data are simulated from a nonlinear model

y = |4x1|3x4 + 5x2 + (2x3)
x5 + ε,

where x1 ∼ U([0, 6]) and x2 ∼ N (0; 1) both rounded to the nearest integer, x3 ∼ Bern(0.5),

x4 ∼ U([0, 1]) and x5 ∼ U([1, 2]), rounded to the first decimal. The error ε is sampled from

a Gaussian distribution with mean zero and standard deviation 1.6.

Two models are fitted:

• m0 = gradient boosting machine with variables x1, x2 and x3

• m1 = gradient boosting machine with all variables.

The hyperparameters are taken to be fixed with values for the interaction depth equal to

2, number of trees equal to 50, shrinkage equal to 0.1 and a minimum of 2 observations per

node.

In the plot below, we compare with the empirical version of the conditional PIP, which

is calculated from 1000000 draws of the true model above and consecutively calculating
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Figure 10: Comparing the difference between the empirical conditional PIP and the PIP

estimators. Effect size = -1. Abbreviations as in Figure 6.

the mean proportion of times the estimated model m1 provided better predictions than

estimated model m0.

From the earlier analysis, it is known that the CV estimators are targeted towards the

expected PIP, which was slightly lower as compared to the conditional PIP. Again here,

it is observed that both the CV approaches outperform the split sampling approach and

are approximating the underlying conditional PIP as sample size increases. This shows the

applicability of the non-parametric approaches, even in a more complex setting of machine

learning models.
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Figure 11: Comparing the difference between the empirical conditional PIP and the PIP

estimators. Effect size = -4. Abbreviations as in Figure 6.

E Settings for sampling application data

In the application section, four studies were considered that were part of a bigger discussion

on replicability in Camerer et al. (2018). The exact data could only be obtained for the

study by Balafoutas and Sutter (2012), that dealt with the comparison of proportions

in two groups. In the remaining studies, dealing with the comparison of the mean of a

continuous outcome in two groups, data were sampled based on the mentioned sample

mean and standard deviation. A seed was chosen such that the resulting p-value was close

to the originally reported one. Table 5 provides more details on the nature of the data and

used parameter settings.
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Figure 12: Relation between repeated 5-fold CV PIP and the p-value for testing β1
1 = 0.

Coloring based on the difference between MSE of m1 and m0. Solid line indicates exact

relation obtained in (12). Effect size = 0.

Table 5: Parameter settings for the four studies under consideration in the application of

the PIP in the setting of study replicability based on Camerer et al. (2018).

Study Outcome Parameters Seed New p-value Original p-value

Gervais and Norenzayan (2012) Gaussian
n1 = 31 x̄1= 61.55 s1 = 35.68

n2 = 26 x̄2= 41.42 s2 = 31.47
457 0.0291 0.029

Ackerman et al. (2010) Gaussian
n1 = 26 x̄1= 5.80 s1 = 0.76

n2 = 28 x̄2= 5.38 s2 = 0.79
62 0.0488 0.049

Balafoutas and Sutter (2012) Binomial
n1 = 36 p1 = 30.6%

n2 = 36 p2 = 58.3%
- 0.0177 0.018

Wilson et al. (2014) Gaussian
n1 = 15 x̄1= 3.20 s1 = 2.23

n2 = 15 x̄2= 6.87 s2 = 1.91
62 <0.001 <0.001
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Figure 13: Relation between repeated 5-fold CV PIP and the p-value for testing β1
1 = 0.

Coloring based on the difference between MSE of m1 and m0. Solid line indicates the exact

relation obtained in (12). Effect size = -1.
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Figure 14: Relation between repeated 5-fold CV PIP and the p-value for testing β1
1 = 0.

Coloring based on the difference between MSE of m1 and m0. Solid line indicates the exact

relation obtained in (12). Effect size = -4.

45



Figure 15: Comparing the difference between the empirical conditional PIP and the non-

parametric PIP estimators based on two gradient boosting models.
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