
Logical Methods in Computer Science
Volume 19, Issue 3, 2023, pp. 12:1–12:49
https://lmcs.episciences.org/

Submitted Oct. 29, 2021
Published Aug. 09, 2023

THE COMPLEXITY OF AGGREGATES OVER EXTRACTIONS BY
REGULAR EXPRESSIONS ∗

JOHANNES DOLESCHAL a,c, BENNY KIMELFELD b, AND WIM MARTENS a

a University of Bayreuth, Germany
e-mail address: johannes.doleschal@uni-bayreuth.de, wim.martens@uni-bayreuth.de

b Technion, Haifa, Israel
e-mail address: bennyk@cs.technion.ac.il

c Hasselt University, Belgium

Abstract. Regular expressions with capture variables, also known as “regex-formulas,”
extract relations of spans (intervals identified by their start and end indices) from text. In
turn, the class of regular document spanners is the closure of the regex formulas under
the Relational Algebra. We investigate the computational complexity of querying text
by aggregate functions, such as sum, average, and quantile, on top of regular document
spanners. To this end, we formally define aggregate functions over regular document
spanners and analyze the computational complexity of exact and approximate computation.
More precisely, we show that in a restricted case, all studied aggregate functions can
be computed in polynomial time. In general, however, even though exact computation
is intractable, some aggregates can still be approximated with fully polynomial-time
randomized approximation schemes (FPRAS).

1. Introduction

Information extraction commonly refers to the task of extracting structured information from
text. A document spanner (or just spanner for short) is an abstraction of an information
extraction program: it states how to transform a document into a relation over its spans. More
formally, a document is a string d over a finite alphabet, a span of d represents a substring
of d by its start and end positions, and a spanner is a function that maps every document d
into a relation over the spans of d [FKRV15a]. The spanner framework has originally been
introduced as the theoretical basis underlying IBM’s SQL-like rule system for information
extraction, namely SystemT [KLR+08, LRC11]. The most studied spanner instantiation is
the class of regular spanners, which is the closure of regex formulas (regular expressions with
capture variables) under the standard operations of the relational algebra (projection, natural
join, union, and difference). Equivalently, the regular spanners are the ones expressible as
variable-set automata (VSet-automata for short), which are nondeterministic finite-state

Key words and phrases: Information extraction, document spanners, weighted automata, aggregation,
annotated databases, provenance semirings.

∗ A short version of this article has been published in a conference proceedings [DBKM21].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(3:12)2023
© J. Doleschal, B. Kimelfeld, and W. Martens
CC⃝ Creative Commons

12:2 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

automata that can open and close capture variables. These spanners extract from the text
relations wherein the capture variables are the attributes.

While regular spanners and natural generalizations thereof are the basis of rule-based
systems for text analytics, they are also used implicitly in other types of systems, and
particularly ones based on statistical models and machine learning. Rules similar to regular
spanners are used for feature generators of graphical models (e.g., Conditional Random
Fields) [LBC04, SM12], weak constraints of Markov Logic Networks [PD07] and extensions
such as DeepDive [SWW+15], and the generators of noisy training data (“labeling functions”)
in the state-of-the-art Snorkel system [RBE+17]. Further connections to regular spanners
can potentially arise from efforts to express artificial neural networks for natural language
processing as finite-state automata [MY18, MSV+19, WGY18]. The computational complex-
ity of evaluating regular spanners has been well studied from various angles, including the
data and combined complexity of answer enumeration [ABMN19, FRU+18, FKP18, MRV18],
the cost of combining spanners via relational algebra operators [PFKK19] and recursive pro-
grams [PtCFK19], their dynamic complexity [FT20], evaluation in the presence of weighted
transitions [DKMP22], and the ability to distribute their evaluation over fragments of the
document [DKM+19].

In this article, we study the computational complexity of evaluating aggregate functions
over regular spanners. These are queries that map a document d and a spanner S into
a number α(S(d)), where S(d) is the relation obtained by applying S to d and α is a
standard aggregate function: Count, Sum, Average, Min, Max, or Quantile. There are
various scenarios where queries that involve aggregate functions over spanners can be useful.
For example, such queries arise in the extraction of statistics from textual resources like
medical publications [NKS+19] and news reports [SC09]. As another example, when applying
advanced text search or protein/DNA motif matching using regular expressions [CG89, NG94],
the search engine typically provides the (exact or approximate) number of answers, and
we would like to be able to compute this number without actually computing the answers,
especially when the number of answers is prohibitively large. Finally, when programming
feature generators or labeling functions in extractor development, the programmer is likely to
be interested in aggregate statistics and summaries for the extractions (e.g., to get a holistic
view of what is being extracted from the dataset, such as quantiles over extracted ages and
so on), and again, we would like to be able to estimate these statistics faster than it takes to
materialize the entire set of answers.

Our main objective in this work is to understand when it is tractable to compute
α(S(d)). This question raises closely related questions that we will discuss, such as when the
materialization of the set of intermediate results S(d) (which can be exponentially large) can
be avoided. Furthermore, when the exact computation of α(S(d)) is intractable, we study
whether it can be approximated.

At the technical level, each aggregate function (with the exception of Count) requires
a specification of how an extracted tuple of spans represents a number. For example, the
number 21 can be represented by the span of the string “21”, “21.0”, “twenty one”, “twenty
first”, “three packs of seven” and so on. To abstract away from specific textual representations
of numbers, we consider several means of assigning weights to tuples. To this end, we assume
that a (representation of a) weight function w, which maps every tuple of S(d) into a number,
is part of the input of the aggregate functions. Hence, the general form of the aggregate
query we study is α(S, d, w). The direct approach to evaluating α(S, d, w) is to compute S(d),
apply w to each tuple, and apply α to the resulting sequence of numbers. This approach

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:3

works well if the number of tuples in S(d) is manageable (e.g., bounded by some polynomial).
However, the number of tuples in S(d) can be exponential in the number of variables of S,
and so, the direct approach takes exponential time in the worst case. We will identify several
cases in which S(d) is exponential, yet α(S(d)) can be computed in polynomial time.

It is not very surprising that, at the level of generality we adopt, each of the aggregate
functions is intractable (#P-hard) in general. Hence, we focus on several assumptions that
can potentially reduce the inherent hardness of evaluation:
• Restricting the range of weight functions to positive numbers;
• Restricting to weight functions that are determined by a single span or defined by (unam-

biguous) weighted VSet-automata;
• Restricting to spanners that are represented by an unambiguous variant of VSet-automata;
• Allowing for a randomized approximation (FPRAS, i.e., fully polynomial randomized

approximation schemes).
Our analysis shows which of these assumptions brings the complexity down to polynomial
time, and which is insufficient for tractability. Importantly, we derive an interesting and
general tractable case for each of the aggregate functions we study.

To the best of our knowledge, counting the number of tuples extracted by a VSet-
automaton (i.e., the Count aggregate function) is the only aggregation function for document
spanners which has been studied in literature, except for Doleschal et al. [DKMP22] who
consider a variation of maximum aggregation. (Given a weighted VSet-automaton and a
document, they study the computational complexity of returning a tuple with maximal
weight.) Concerning counting, Florenzano et al. [FRU+18] study the problem of counting
the number of extractions of a VSet-automaton and approximation thereof is studied by
Arenas et al. [ACJR19]. To be specific, Arenas et al. [ACJR19] give a polynomial-time
uniform sampling algorithm from the space of words which are accepted by an NFA and
have a given length. Using that sampling, they establish an FPRAS for the Count aggregate
function. Our FPRAS results are based on their results. We explain the connection between
the known results and our work in more detail throughout the article. Yet, to the best of
our knowledge, this work is the first to consider aggregate functions over numerical values
extracted by document spanners.

Comparison to the Conference Version. Compared to the conference version of this
article [DBKM21], the following aspects are new. We now consider constant-width weight
functions, which generalize the single-variable weight functions from [DBKM21]; Section 4.2
is new; and we provide a more detailed complexity overview for regular weight functions over
different semirings. Furthermore, proofs that were missing in [DBKM21] are now included.
On a technical level, we now use parsimonious reductions and metric reductions instead of
Turing reductions for some of the results, which strengthens them.

Organization. This article is organized as follows. In Section 2, we give preliminary
definitions and notation. We summarize the main results in Section 3 and expand on these
results in the later sections. In Section 4 we give some preliminary results. We describe
our investigation for constant-width weight functions, polynomial-time weight functions and
regular weight functions in Sections 5, 6 and 7, respectively. Finally, we study approximation
in Section 8 and conclude in Section 9.

12:4 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

2. Preliminaries

We define here the main concepts and notation that we will use throughout the article.

2.1. Sets, Multisets, and Semirings. The cardinality of a set A is denoted by |A|. A
multiset over A is a function M : A→ N. We call M(a) the multiplicity of a in M and say
that a ∈M if M(a) > 0. The size of M denoted |M |, is the sum of the multiplicities of all
elements in A, that is

∑
a∈AM(a). Note that |M | may be infinite. We denote multisets in

brackets ⦃·⦄ in the usual way. For example, in the multiset M = ⦃1, 1, 3⦄ we have M(1) = 2,
M(3) = 1, and |M | = 3. Furthermore, given a set X, we denote by 2X the powerset of X,
i.e., the set of all subsets of X.

A commutative monoid (M, ∗, id) is an algebraic structure consisting of a set M, a binary
operation ∗ and an element id ∈M, such that:
(1) ∗ is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈M,
(2) ∗ is commutative, i.e. a ∗ b = b ∗ a for all a, b ∈M, and
(3) id is an identity, i.e., id ∗ a = a for all a ∈M.
A commutative semiring (K,⊕,⊗, 0, 1) is an algebraic structure consisting of a set K, con-
taining two elements: the zero element 0 and the one element 1. Furthermore, it is equipped
with two binary operations, namely addition ⊕ and multiplication ⊗ such that:
(1) (K,⊕, 0) and (K,⊗, 1) are commutative monoids,
(2) multiplication distributes over addition, that is, (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c), for all

a, b, c ∈ K, and
(3) 0 is absorbing for ⊗, that is, 0⊗ a = 0 for all a ∈ K.

Example 2.1. The following are commutative semirings.
(1) The numeric semiring (Q,+, ·, 0, 1) over the rationals, with the usual addition and

multiplication operators.
(2) The Boolean semiring (B,∨,∧, false, true) where B := {false, true}.
(3) The tropical semiring (T,min,+,∞, 0) where T := Q ∪ {∞} and min stands for the

binary minimum function.

2.2. Document Spanners and K-Annotators. This article is within the formalism of
document spanners by Fagin et al. [FKRV15a, FKRV15b]. More precisely, we use the notion
of K-annotators, as introduced by Doleschal et al. [DKMP22], which enables document
spanners to annotate provenance information. Next, we revisit the definitions of these
concepts. We assume countably infinite and disjoint sets D and Vars, containing data values
(or simply values) and variables, respectively.

Documents and Spans. Let Γ be a finite set, disjoint from D and Vars, of symbols. We refer
to Γ as an alphabet. A sequence s = σ1 · · ·σn of symbols where every σi ∈ Γ is a string over
the set Γ. If n = 0 we denote s by ε and call s empty. By Γ∗ we denote the set of all strings
over Γ. We denote by |s| the length n of a string s ∈ Γ∗. In the context of Information
Extraction, we will restrict ourselves to a subset of symbols of Γ, which we will always denote
as Σ. We typically use the letter d (and indexed variations thereof) to denote strings over Σ
and refer to such strings as documents.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:5

T h e r e ⊔ a r e ⊔ 7 ⊔ e v e n t s ⊔ i n ⊔ B e l g i u m , ⊔ 1 0 - 1 5 ⊔ i n ⊔

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

F r a n c e , ⊔ 4 ⊔ i n ⊔ L u x e m b o u r g , ⊔ t h r e e ⊔ i n ⊔ B e r l i n .

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

xloc xevents

[23, 30⟩ [11, 12⟩
[41, 47⟩ [32, 37⟩
[54, 64⟩ [49, 50⟩
[75, 81⟩ [66, 71⟩

dxloc dxevents

Belgium 7
France 10-15
Luxembourg 4
Berlin three

Figure 1: A document d (top), a span relation R (bottom left) and the corresponding string
relation (bottom right).

A span of d is an expression of the form [i, j⟩ with 1 ≤ i ≤ j ≤ n+ 1. For a span [i, j⟩
of d, we denote by d[i,j⟩ the string σi · · ·σj−1. A span [i, j⟩ is empty if i = j which implies
that d[i,j⟩ = ε. Two spans [i1, j1⟩ and [i2, j2⟩ are equal if i1 = i2 and j1 = j2. In particular,
we observe that two spans do not have to be equal if they select the same string. That
is, d[i1,j1⟩ = d[i2,j2⟩ does not imply that [i1, j1⟩ = [i2, j2⟩. For a document d, we denote by
Spans(d) the set of all possible spans of d and by Spans the set of all possible spans of all
possible documents.

K-relations and K-annotators. Let V ⊆ Vars be a finite set of variables. A V -tuple is a
function t : V → D that assigns values to variables in V . We sometimes leave V implicit
when the precise set is not important. For such a tuple t, we denote the set V by Vars(t). We
denote the set of all V -tuples by V -Tup. For a subset X ⊆ Vars, we denote the restriction of
t to the variables in X by πX(t) or simply πXt. We say that a tuple t is empty, denoted by
t = (), if Vars(t) = ∅.

A K-relation R over V is a function R : V -Tup→ K such that its support, defined by
Supp(R) := {t | R(t) ̸= 0}, is finite. We will also write t ∈ R to abbreviate t ∈ Supp(R).
Furthermore, we say that two K-relations R1 and R2 are disjoint if Supp(R1)∩Supp(R2) = ∅.
The size of a K-relation R is the size of its support, that is, |R| := |Supp(R)|. The arity of a
V -tuple t is the cardinality |V | of V and, similarly, the arity of a K-relation over V is |V |.

The framework focuses on functions that extract spans from documents and assigns them
to variables. Since we will be working with relations over spans, also called span relations,
we assume that D is such that Spans ⊆ D. A d-tuple t is a V -tuple which only assigns values
from Spans(d), that is, t(x) ⊆ Spans(d) for every x ∈ Vars(t). If the document d is clear from
the context, we sometimes say simply tuple instead of d-tuple. We denote by dt the tuple
(dt(x1), . . . , dt(xn)), where Vars(t) = {x1, . . . , xn}.

A K-weighted span relation over document d and variables V is a K-relation R wherein
every tuple is a d-tuple t with Vars(t) = V . We also denote V by Vars(R). A K-weighted
string relation is a K-relation R wherein every tuple t ∈ R assigns strings, that is, t(x) ∈ Σ∗

for every variable x ∈ Vars(t). Note that we can associate a string relation to every span
relation over a document d by replacing every span [i, j⟩ with the string d[i,j⟩.

12:6 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Example 2.2. Consider the document in Figure 1. The table on the bottom left depicts a (B-
weighted) span relation R, encoding a possible extraction of locations with the corresponding
number of events. The string relation at the bottom right is the corresponding string
relation.

Definition 2.3. A K-annotator (or annotator for short) is a function S that is associated to
a finite set V ⊆ Vars of variables and maps each document d into a K-weighted span relation
over V . We denote V by Vars(S). We sometimes also refer to a K-annotator as an annotator
over K when we want to emphasize the semiring.

Example 2.4. As an example of a K-weighted annotator, consider again the setting in
Example 2.2. A Q-weighted annotator in this setting is the function S that maps each
document d to the span relation R in which the tuples are pairs, consisting of a name of a
country and a number (or numeric range), and in which the weight associated to each tuple
is the smallest value in the numeric range. An example of such a tuple for the document in
Figure 1 would be t1 with t1(xloc) = [23, 30⟩ (the span of “Belgium”) and t1(xevents) = [11, 12⟩
(the span of “7”). Another example would be t2 with t2(xloc) = [41, 47⟩ (the span of “France”)
and t1(xevents) = [32, 37⟩ (the span of “10-15”). The relation R would assign R(t1) = 7 and
R(t2) = 10.

We say that two K-annotators S1 and S2 are disjoint if, for every document d ∈ Σ∗, the
K-relations S1(d) and S2(d) are disjoint. Furthermore, we denote by S = S′ the fact that S
and S′ define the same function.

Notice that B-annotators, i.e., annotators over the Boolean semiring are simply the
functional document spanners as defined by Fagin et al. [FKRV15a, FKRV15b]. Throughout
this article, we refer to B-annotators as document spanners (also spanner for short).

2.3. Algebraic Operators on K-Relations and K-Annotators. Green et al. [GKT07]
defined a set of operators on K-relations that naturally correspond to relational algebra
operators and map K-relations to K-relations. As in much of the work on semirings in
provenance, they do not consider the difference operator (which would require additive
inverses). More precisely, they define the algebraic operators union, projection, and natural
join for all finite sets V1, V2 ⊆ Vars and for all K-relations R1 over V1 and R2 over V2, as
follows.
• Union: If V1 = V2 then the union R := R1 ∪R2 is a function R : V1-Tup→ K defined by
R(t) := R1(t)⊕R2(t). (Otherwise, the union is not defined.)
• Projection: For X ⊆ V1, the projection R := πX(R1) is a function R : X-Tup → K

defined by

R(t) :=
⊕

t=πX(t′) and R1(t′)̸=0

R1(t
′) .

• Natural Join: The natural join R := R1 ▷◁ R2 is a function R : (V1 ∪ V2)-Tup → K
defined by

R(t) := R1(πV1(t))⊗R2(πV2(t)) .

Proposition 2.5 (Green et al. [GKT07]). The above operators preserve the finiteness of the
supports. Therefore, they map K-relations into K-relations.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:7

Hence, we obtain an algebra on K-relations.
We now lift the relational algebra operators on K-relations to the level of K-annotators.

For all documents d and for all annotators S1 and S2 associated with V1 and V2, respectively,
we define the following:
• Union: If V1 = V2 then the union S := S1 ∪ S2 is defined by S(d) := S1(d) ∪ S2(d).1
• Projection: For X ⊆ V1, the projection S := πXS1 is defined by S(d) := πXS1(d).
• Natural Join: The natural join S := S1 ▷◁ S2 is defined by S(d) := S1(d) ▷◁ S2(d).
Due to Proposition 2.5, it follows that the above operators form an algebra on K-annotators.

2.4. Ref-Words. We use weighted VSet-automata (or simply VSet-automata for the Boolean
semiring) in order to represent K-annotators. Following Freydenberger [Fre19], we introduce
so-called ref-words, which connect spanner representations with regular languages. We also
introduce unambiguous and functional VSet-automata, which have properties essential to
the tractability of some problems we study.

For a finite set V ⊆ Vars of variables, ref-words are defined over the extended alphabet
Σ∪ΓV , where ΓV := {▷x | x ∈ V }∪ {◁x | x ∈ V }. We assume that ΓV is disjoint with Σ and
Vars. Ref-words extend strings over Σ by encoding opening (▷x) and closing (◁x) of variables.

A ref-word r ∈ (Σ∪ΓV)
∗ is valid if every occurring variable is opened and closed exactly

once. More formally, for each x ∈ V , the string r has precisely one occurrence of ▷x and
precisely one occurrence of ◁x, which is after the occurrence of ▷x. For every valid ref-word r
over (Σ ∪ ΓV), we define Vars(r) as the set of variables x ∈ V which occur in the ref-word.
More formally,

Vars(r) := {x ∈ V | ∃rprex , rx, r
post
x ∈ (Σ ∪ ΓV)

∗ such that r = rprex · ▷x · rx · ◁x · rpostx }.
Intuitively, each valid ref-word r encodes a d-tuple for some document d, where the document
is given by symbols from σ in r and the variable markers encode where the spans begin
and end. Formally, we define functions doc and tup that, given a valid ref-word, output
the corresponding document and tuple.2 The morphism doc: (Σ ∪ ΓV)

∗ → Σ∗ is defined on
single symbols as:

doc(σ) :=

{
σ if σ ∈ Σ

ε if σ ∈ ΓV

and we define doc(σ1 · · ·σn) := doc(σ1) · · · doc(σn).
We now define the function tup. By definition, every valid ref-word r over (Σ ∪ ΓV) has

a unique factorization
r = rprex · ▷x · rx · ◁x · rpostx

for each x ∈ Vars(r). We then define the function tup as

tup(r) := {x 7→ [ix, jx⟩ | x ∈ Vars(r), ix = |doc(rprex)|, jx = ix + | doc(rx)|} .
The usage of the doc morphism in the above definition ensures that the indices ix and jx
refer to positions in the document and do not consider other variable operations.

A ref-word language R is a language of ref-words. We say that R is functional if every
ref-word r ∈ R is valid and there is a set V of variables such that Vars(r) = V for each r ∈ R.

1Here, ∪ stands for the union of two K-relations as was defined previously. The same is valid also for the
other operators.

2The function doc is sometimes also called clr in literature (cf. Freydenberger et al. [FKP18]).

12:8 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Given a functional ref-word language R, the spanner JRK represented by R is given by

JRK(d) :=
{
tup(r) | r ∈ R and doc(r) = d

}
.

The Variable Order Condition and the ref Function. Let r = ▷x1 ▷x2 a ◁x1 ◁x2 and r′ =
▷x1 ▷x2 a ◁x2 ◁x1 be ref-words. We observe that both ref-words encode the tuple that selects
the span [1, 2⟩ in both variables x1, x2 on document a. Thus, the same spanner can be
represented by multiple ref-word languages. We now introduce the variable order condition,
in order to achieve a one-to-one mapping between ref-words (resp., ref-word languages) and
tuples (resp., spanners). To this end, we fix a total linear order ≺ on the set ΓVars of variable
operations, such that ▷v ≺ ◁v for every variable v ∈ Vars. We say that a ref-word r satisfies
the variable order condition if all adjacent variable operations in r are ordered according
to the fixed linear order ≺. That is, the ref-word r = σ1 · · ·σn satisfies the variable order
condition if σi ≺ σi+1 for every 1 ≤ i < n with σi, σi+1 ∈ ΓVars. We observe that, for every
document d and every tuple and t = tup(r) that satisfies the variable order condition.

We define ref as the function that, given a document d and a d-tuple t, returns the
unique ref-word that satisfies the variable order condition. The following observation shows
the connections between the functions doc, ref, and tup.

Observation 2.6. Let r be a valid ref-word and let r′ := ref(doc(r), tup(r)). Then tup(r) =
tup(r′). Furthermore, r = r′ if and only if r satisfies the variable order condition.

Analogously to functionality, we say that a ref-word language R satisfies the variable
order condition if every ref-word r ∈ R satisfies the variable order condition.

2.5. (Weighted) Variable Set-Automata. In this section, we revisit the definition of
weighted VSet-automaton as a formalism to represent K-annotators [DKMP22]. This for-
malism is a natural generalization of both VSet-automata and weighted automata [DKV09].
Throughout the article, we will use weighted VSet-automata for two purposes: we use
the VSet-automata over the Boolean semiring B for extracting spans from documents (as
in the usual document spanner framework [FKRV13]) and the more general K-weighted
VSet-automata as one formalism for weight functions. (We discuss all considered variants
for weight functions in Section 3.3.)

Let V ⊆ Vars be a finite set of variables. A weighted variable-set automaton over semiring
K (alternatively, a weighted VSet-automaton or a K-weighted VSet-automaton) is a tuple
A := (Σ, V,Q, I, F, δ) where Σ is a finite alphabet; V ⊆ Vars is a finite set of variables; Q is
a finite set of states; I : Q→ K is the initial weight function; F : Q→ K is the final weight
function; and δ : Q × (Σ ∪ {ε} ∪ ΓV) ×Q → K is a (K-weighted) transition function. We
define the transitions of A as the set of triples (p, o, q) with δ(p, o, q) ̸= 0. Likewise, the
initial (resp., accepting) states are those states q with I(q) ̸= 0 (resp., F (q) ̸= 0). For every
semiring element a ∈ K, we denote the length of the encoding of a by ∥a∥. The size of a
weighted VSet-automaton A is defined by

|A| := |Q|+
∑
q∈Q
∥I(q)∥+

∑
q∈Q
∥F (q)∥+

∑
p,q∈Q, a∈(Σ∪{ε}∪ΓV)

∥δ(p, a, q)∥ .

Runs of A are defined over ref-words. More precisely, a run ρ of A on ref-word r =

σ1 . . . σm is a sequence q0
σ1→ · · · σm−1→ qm−1

σm→ qm where:
• I(q0) ̸= 0 and F (qm) ̸= 0;

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:9

• δ(qi, σi+1, qi+1) ̸= 0 for all 0 ≤ i < m.
We say that a run ρ is on a document d if ρ is a run on r and doc(r) = d. Furthermore,
overloading notation, given a run ρ of A on r, we denote r by ref(ρ). We define the ref-word
language R(A) as the set of all ref-words r such that A has a run on r.

The weight of a run is obtained by ⊗-multiplying the weights of its constituent transitions.
Formally, the weight wρ of ρ is an element in K given by the expression

I(q0)⊗ δ(q0, σ1, q1)⊗ · · · ⊗ δ(qm, σm, qm+1)⊗ F (qm+1) .

We call ρ nonzero if wρ ̸= 0. Furthermore, ρ is called valid if ref(ρ) is valid and

Vars(tup(ref(ρ))) = V .3

If ρ is valid we denote the tuple tup(ref(ρ)) by tup(ρ).
We say that a weighted VSet-automaton A is functional if every run of A is valid. We

denote the set of all valid and nonzero runs of A on d by

P (A, d) := {ρ | ref(ρ) ∈ R(A) and d = doc(ref(ρ))} .
Notice that there may be infinitely many valid and nonzero runs of a weighted VSet-

automaton on a given document, due to ε-cycles, which are states q1, . . . , qk such that
(qi, ε, qi+1) is a transition for every i ∈ {1, . . . , k − 1} and q1 = qk. Following Doleschal
et al. [DKMP22] we assume that weighted VSet-automata do not have ε-cycles, unless
mentioned otherwise.

As such, if A does not have ε-cycles, then the result of applying A on a document d,
denoted JAKK(d), is the K-relation R for which

R(t) :=
⊕

ρ∈P (A,d) and t=tup(ρ)

wρ .

Note that P (A, d) only contains runs ρ that are valid and nonzero. If t is a V ′-tuple with
V ′ ̸= V then R(t) = 0, because we only consider valid runs. In addition, JAKK is a well
defined K-annotator since every V -tuple in the support of JAKK(d) is a V -tuple over Spans(d).
To simplify notation, we sometimes denote JAKK(d)(t) — the weight assigned to the d-tuple
t by A — by JAKK(d, t). We say that two K-weighted VSet-automata A1 and A2 are disjoint
if R(A1) ∩ R(A2) = ∅. This implies that also the corresponding K-annotators JA1KK and
JA2KK are disjoint.

We say that a K-annotator (resp., document spanner) S is regular if there exists a
weighted VSet-automaton (resp., B-weighted VSet-automaton) A such that S = JAKK. Note
that this is an equality between functions. If K is clear from the context, we may just write
JAK instead of JAKK.

We say that two weighted VSet-automata A and A′ are equivalent if they define the
same K-annotator, that is, JAKK = JA′KK, which is the case if JAKK(d) = JA′KK(d) for every
d ∈ Σ∗.

Similar to our terminology on B-annotators, we refer to (functional) B-weighted VSet-
automata as (functional) VSet-automata. Since VSet-automata can always be translated
into equivalent functional VSet-automata [Fre19, Proposition 3.9], we assume in this article
that VSet-automata are functional. This is a common assumption for document spanners
involving regular languages [FKRV15a, Fre19, PFKK19]. Furthermore, we assume that all

3Note that the second condition ensures that all valid runs are over the same set of variables. This is
required, as K-annotators map documents to annotated relations.

12:10 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

weighted VSet-automata are functional as well. In the following, we denote by RegK the
class of all functional K-weighted VSet-automata and by VSA the class of all functional
VSet-automata.

Due to the close relationship between regular expressions and B-weighted automata, and
since regular expressions are easy to read, we sometimes define B-weighted VSet-automata
using regular expressions over Σ ∪ ΓV . Here, we use · to denote concatenation, ∨ to denote
disjunction, and ∗ to denote Kleene star. As usual, we often omit · and use priority rules (∗
before · before ∨) for improving the readability of expressions.

Unambiguous (weighted) VSet-Automata. We now discuss unambiguity for (weighted) VSet-
automata. A (weighted) VSet-automaton A is unambiguous if it satisfies the following two
conditions.
(C1) R(A) satisfies the variable order condition;
(C2) for every r ∈ R(A), there is exactly one run of A on r.

We note that for Boolean spanners, i.e. spanners with no variables, the definitions coincide
with the classical unambiguity definition of finite state automata. That is, a VSet-automaton
with Vars(A) = ∅ is unambiguous if it is a unambiguous finite state automaton. Furthermore,
we note that every VSet-automaton A can be transformed to an equivalent unambiguous
VSet-automaton A′. (e.g. Doleschal et al. [DKM+21, Lemma 4.5]). However, VSet-automata
can be exponentially more succinct than equivalent unambiguous VSet-automata.4

Example 2.7. The span relation on the bottom right of Figure 1 can be extracted from d
by a spanner that matches textual representations of numbers (or ranges) in the variable
xevents, followed by a city or country name, matched in xloc. Figure 2 shows how two such
VSet-automata may look like. Note that some strings, like Luxembourg are the name of a
city as well as a country. Thus, the upper automaton is ambiguous, because the tuple with
Luxembourg is captured twice (thus, violating (C2)). The lower automaton is unambiguous,
because the sub-automaton for Loc only matches such names once.

In the following, we denote by URegK the class of K-weighted unambiguous functional
VSet-automata and by uVSA the class of unambiguous functional VSet-automata.

2.6. Aggregate Queries. Aggregation functions, such as min, max, and sum operate on
numerical values from database tuples, whereas all the values of d-tuples are spans. Yet,
these spans may represent numerical values, from the document d, encoded by the captured
words (e.g., “3,” “three,” “March” and so on). To connect spans to numerical values, we will
use weight functions

Definition 2.8 (Weight function). Denote by Tup the set of all V -tuples for sets V , i.e., the
union of all sets V -Tup. A weight function is a function w : Σ∗ × Tup→ {Q ∪∞}. It maps
pairs of documents d and d-tuples t to values in Q or to ∞.

In the definition of weight functions, we allow the range to include ∞, since we will use
subsets of Q and the tropical semiring T, the latter of which contains ∞. We discuss weight
functions in more detail in Section 3.3.

4Note that, for functional VSet-automata, the exponential factor in the relative succinctness is caused
by condition (C2). That is, for every functional VSet-automaton A, there is an equivalent functional
VSet-automaton |A′| which satisfies condition (C1) and is of size at most polynomial in |A|.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:11

q0start q1 q2 q3 q4 q5 q6 q7

Σ

▷xevents

Num
◁xevents

Gap
▷xloc

City

Country
◁xloc

Σ

q0start q1 q2 q3 q4 q5 q6 q7

Σ

▷xevents

Num
◁xevents

Gap
▷xloc

Loc
◁xloc

Σ

Figure 2: Two example VSet-automata that extract the span relation R on input d as defined
in Figure 1. For the sake of presentation, the automata are simplified as follows:
Num is a sub-automaton matching anything representing a number (of events) or
range, Gap is a sub-automaton matching sequences of at most three words, City
and Country are sub-automata matching city and country names respectively. Loc
is a sub-automaton for the union of City and Country. All these sub-automata are
assumed to be unambiguous.

T h e r e ⊔ a r e ⊔ 7 ⊔ e v e n t s ⊔ i n ⊔ B e l g i u m , ⊔ 1 0 - 1 5 ⊔ i n ⊔

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

F r a n c e , ⊔ 4 ⊔ i n ⊔ L u x e m b o u r g , ⊔ t h r e e ⊔ i n ⊔ B e r l i n .

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

xloc xevents

[23, 30⟩ [11, 12⟩
[41, 47⟩ [32, 37⟩
[54, 64⟩ [49, 50⟩
[75, 81⟩ [66, 71⟩

xevents W (xevents)

7 7
10-15 10
4 4
three 3

dxloc dxevents WR(t)

Belgium 7 7
France 10-15 10
Luxembourg 4 4
Berlin three 3

Figure 3: A document d (top), a span relation R (bottom left), a Q-weighted string relation
W (bottom middle) and the Q-weighted string relation WR resulting from W,d,
and R (bottom right).

Example 2.9. Consider the document in Figure 3 and assume that we want to calculate
the total number of mentioned events. The relation R at the bottom left depicts a possible
extraction of locations with their number of events. The table in the bottom middle depicts
a weighted string relation W (where the weight of each string is in the rightmost column).
The relation on the bottom right depicts the string relation where each tuple is annotated
with a weight corresponding to W,R, and d. To get an understanding of the total number
of events, we may want to take the sum over the weights of the extracted tuples, namely
7 + 10 + 4 + 3 = 24.

For a spanner S, a document d, and weight function w, we denote by Img(S, d, w)
the set of weights of output tuples of S on d, that is, Img(S, d, w) = {w(d, t) | t ∈ S(d)}.
Furthermore, let Img(w) ⊆ Q be the set of weights assigned by w, that is, k ∈ Img(w) if and
only if there is a document d and a d-tuple t with w(d, t) = k.

12:12 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Definition 2.10. Let d be a document and A be a VSet-automaton such that JAK(d) ̸= ∅.
Let S = JAK, let w be a weight function, and q ∈ Q with 0 ≤ q ≤ 1. We define the following
spanner aggregation functions:

Count(S, d) := |S(d)|
Min(S, d, w) := min

t∈S(d)
w(d, t)

Max(S, d, w) := max
t∈S(d)

w(d, t)

Sum(S, d, w) :=
∑

t∈S(d)

w(d, t)

Avg(S, d, w) :=
Sum(S, d, w)

Count(S, d)

q-Quantile(S, d, w) := min

{
r ∈ Img(S, d, w)

∣∣∣∣ |{t ∈ S(d) | w(d, t) ≤ r}|
|S(d)|

≥ q

}
We observe that Min(S, d, w) = 0-Quantile(S, d, w) and Max(S, d, w) = 1-Quantile(S, d, w).

2.7. Main Problems. Let S be a class of regular document spanners and W be a class of
weight functions. We define the following problems.

Count[S]
Input: Spanner S ∈ S and document d ∈ Σ∗.
Task: Compute Count(S, d).

Sum[S,W]

Input: Spanner S ∈ S, document d ∈ Σ∗, a weight function w ∈ W.
Task: Compute Sum(S, d, w).

The problems Average[S,W], q-Quantile[S,W],Min[S,W], and Max[S,W] are de-
fined analogously to Sum[S,W]. Notice that all these problems study combined complexity.
Since the number of tuples in S(d) is always in O(|d|2k), where k is the number of variables
of the spanner S (cf. Corlollary 4.6), the data complexity of all the problems is in FP: One
can just materialize S(d) and apply the necessary aggregate. Under combined complexity,
we will therefore need to find ways to avoid materializing S(d) to achieve tractability.

2.8. Algorithms and Complexity Classes. Before we discuss our main results in Section 3,
we provide a few definitions on computational complexity.

We first define fully polynomial-time randomized approximation schemes (FPRAS).

Definition 2.11. Let f be a function that maps inputs x to rational numbers and let A be
a probabilistic algorithm, which takes an input instance x and a parameter δ > 0. Then A is
called a fully polynomial-time randomized approximation scheme (FPRAS), if

• Pr
(∣∣A(x, δ)− f(x)

∣∣ ≤ δ ·
∣∣f(x)∣∣) ≥ 3

4 ;

• the runtime of A is polynomial in |x| and 1
δ .

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:13

The following definitions closely follow the Handbook of Theoretical Computer Sci-
ence [vL91]. The class FP (respectively, FEXPTIME) is the set of all functions that are
computable in polynomial time (resp., in exponential time). A counting Turing Machine is an
non-deterministic Turing Machine whose output for a given input is the number of accepting
computations for that input. Given functions f, g : Σ∗ → N, f is said to be parsimoniously
reducible to g in polynomial time if there is a function h : Σ∗ → Σ∗, which is computable in
polynomial time, such that for every x ∈ Σ∗ it holds that f(x) = g(h(x)). Furthermore, we
say that f is Turing reducible to g in polynomial time, if f can be computed by a polynomial
time Turing Machine M , which has access to an oracle for g.

The class #P is the set of all functions that are computable by polynomial-time counting
Turing Machines. A problem X is #P-hard under parsimonious reductions (resp., Turing
reductions) if there are polynomial time parsimonious reductions (resp., Turing reductions)
to it from all problems in #P. If in addition X ∈ #P, we say that X is #P-complete under
parsimonious reductions (resp., Turing reductions).

The class FP#P is the set of all functions that are computable in polynomial time by
an oracle Turing Machine with a #P oracle. It is easy to see that, under Turing reductions,
a problem is hard for the class #P if and only if it is hard for FP#P. We note that every
problem which is #P-hard under parsimonious reductions is also #P-hard under Turing
reductions. Therefore, unless mentioned otherwise, we always use parsimonious reductions.

The class spanL is the class of all functions f : Σ∗ → N for which there is a nondetermin-
istic logarithmic space Turing Machine M with input alphabet Σ such that f(x) = |M(x)|.

The class OptP is the set of all functions computable by taking the maximum output value
over all accepting computations of a polynomial-time non-deterministic Turing Machine that
outputs natural numbers. Assume that Γ is the Turing Machine alphabet. Let f, g : Γ∗ → N
be functions. A metric reduction, as introduced by Krentel [Kre88], from f to g is a pair
of polynomial-time computable functions T1, T2, where T1 : Γ

∗ → Γ∗ and T2 : Γ
∗ × N→ N,

such that f(x) = T2(x, g(T1(x))) for all x ∈ Γ∗.
The class BPP is the set of all decision problems solvable in polynomial time by a

probabilistic Turing Machine in which the answer always has probability at least 1
2 + δ of

being correct for some fixed δ > 0.

3. Main Results

In this section we present the main results of this article.

3.1. Known Results. We begin by giving an overview of the results on Count, which are
known from the literature.

Theorem 3.1 Arenas et al. [ACJR19], Florenzano et al. [FRU+18]. Count[uVSA] is in
FP and Count[VSA] is spanL-complete. Furthermore, Count[VSA] can be approximated
by an FPRAS.

Proof. Follows from Arenas et al. [ACJR19, Corollaries 4.1 and 4.2], and Florenzano et
al. [FRU+18, Theorem 5.2].

12:14 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Aggregate Spanner Weights Complexity Approximation

Count uVSA - in FP -

VSA - #P-hard† FPRAS

Min uVSA,VSA
CWidth,UReg,RegT in FP (5.1,7.2) -

RegQ,Poly OptP-hard (6.1,7.3) no FPRAS (8.3)

Max uVSA,VSA
CWidth,UReg in FP (5.1,7.2) -

RegT,RegQ,Poly OptP-hard (6.1,7.3) no FPRAS (8.3,8.4)

Sum
uVSA

CWidth,UReg,RegQ in FP (5.3,7.4,7.5) -

RegT,Poly #P-hard (6.1,7.7) no FPRAS (8.1)

VSA
CWidthN spanL-complete (5.5) FPRAS (8.2)

CWidth,UReg,Reg,Poly #P-hard (5.4) no FPRAS (8.1)

Average
uVSA

CWidth,UReg,RegQ in FP (5.3,7.6) -

RegT,Poly #P-hard (6.1) no FPRAS (8.1)

VSA
CWidthQ+ #P-hard† (5.6) FPRAS (8.8)

CWidth,UReg,Reg,Poly #P-hard† (5.6,7.7) no FPRAS (8.5)

q-Quantile uVSA
CWidth in FP (5.3) -

UReg,Reg,Poly #P-hard† (6.2,7.9) no FPRAS (8.7)

VSA CWidth,UReg,Reg,Poly #P-hard† (5.6) no FPRAS (8.6)

q-Quantile
VSA Poly - FPRAS-like

(positional) approx. (8.10)

Table 1: Detailed overview of complexities of aggregate problems for document spanners. All
problems are in FEXPTIME. The “no FPRAS” claims either assume that RP ̸= NP
or assume that the polynomial hierarchy does not collapse. The #P-hardness results,
marked with † rely on Turing reductions. The numbers refer to the numbers of new
results.

The spanL lower bound by Florenzano et al. [FRU+18, Theorem 5.2] is due to a
parsimonious reduction from the #NFA(n)-problem5 which is known to be #P-complete
under Turing reductions (cf. Kannan et al. [KSM95]). As every parsimonious reduction is
also a Turing reduction, the following corollary follows immediately.

Corollary 3.2. Count[VSA] is #P-hard under Turing reductions.

Two observations can be made from these results. First, Count requires the input
spanner to be unambiguous for tractability. This tractability implies that Count can be
computed without materializing the possibly exponentially large set S(d) if the spanner
is unambiguous. Furthermore, if the spanner is not unambiguous then, due to spanL-
completeness of Count, we do not know an efficient algorithm for its exact computation
(and therefore may have to materialize S(d)), but Count can be approximated by an FPRAS.
We will explore to which extent this picture generalizes to other aggregates.

5Given an NFA A and a natural number n, encoded in binary, the #NFA(n) problem asks for the number
of words w ∈ L(A) of length n. The #NFA(n) problem is sometimes also called Census Problem.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:15

3.2. Overview of New Results. The complexity results are summarized in Table 1. By
now the reader is familiar with the aggregate problems and the types of spanners we study. We
obtain different results for different representations of weight functions, which we denote here
as CWidth, Poly, and Reg (resp., UReg) and define formally in Section 3.3. Intuitively,
CWidth are constant-width weight functions that assign values based on strings selected
by a constant number of variables; Poly are polynomial-time computable weight functions,
and Reg (resp., UReg) are weight functions represented by weighted (resp., unambiguous
weighted) VSet-automata. Furthermore, we sometimes restrict these classes based on their
range. For instance, CWidthN and CWidthQ+ are the constant-width weight functions
that map to natural numbers and positive rational numbers, respectively.

Entries in the table should be read from left to right. For instance, the third row states
that the Min problem, for both spanner classes uVSA and VSA, and for all three classes
CWidth, URegT, and RegT of weight functions is in FP. Likewise, the fourth row states
that the same problems with RegQ or Poly weight functions become OptP-hard and that
the existence of an FPRAS would contradict commonly believed conjectures.

In general, the table gives a detailed overview of the impact of (1) unambiguity of
spanners and (2) different weight function representations on the complexity of computing
aggregates.

3.3. Results for Different Weight Functions. We formalize how we represent the weight
functions for our new results. Recall that weight functions w map pairs consisting of a
document d and d-tuple t to values in Q ∪ {∞}.

3.3.1. Constant-Width Weight Functions. The simplest type of weight functions we consider
are the constant-width weight functions.6 Let 1 ≤ c ∈ N be a constant. A constant-width
weight function (CWidth) w assigns values based on the strings selected by at most c
variables. A constant-width weight function CWidth is given in the input as a Q-weighted
string relation, i.e., a string relation R over the numerical semiring Q = (Q,+,×, 0, 1) and
the variables X, where X ⊆ Vars, is a set of at most c variables. Recall that dt denotes the
tuple (dt(x1), . . . , dt(xn)), where Vars(t) = {x1, . . . , xn}. To facilitate presentation, we assume
that the variables in X are always present in t, that is, X ⊆ Vars(t). The weight function
w(d, t) is defined as

w(d, t) = R(dπXt) .

As we will see in Section 5, the problems Max[VSA,CWidth] and Min[VSA,CWidth]
are in FP (Theorem 5.1). Furthermore, we show that the problems Sum[S,CWidth],
Average[S,CWidth], and q-Quantile[S,CWidth] behave similarly to Count[S], that
is, they are in FP if S = uVSA (Theorem 5.3) and intractable if S = VSA (Theorems 5.4, 5.5,
and 5.6).

6These generalize the single-variable weight functions of Doleschal et al. [DBKM21].

12:16 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

q0start q1 q2 q3 q4 q5

Σ; 0

▷x; 0
1; 100

...

8; 800

9; 900

0; 0

1; 10

...

8; 80

9; 90

0; 0

1; 1

...

8; 8

9; 9

◁x; 0

Σ; 0

Figure 4: An unambiguous weighted VSet-automaton over the tropical semiring with initial
state q0 (with weight 0) and accepting state q5 (with weight 0), extracting three-
digit natural numbers captured in variable x. Recall that, over the tropical semiring,
the weight of a run is the sum of all its edge weights.

3.3.2. Polynomial-Time Weight Functions. How far can we push our tractability results?
Next, we consider more general ways of mapping d-tuples into numbers. The most general
class of weight functions we consider is the set of polynomial-time weight functions (Poly).
A function w from Poly is given in the input as a polynomial-time Turing Machine M
that maps (d, t)-pairs to values in Q and defines w(d, t) = M(d, t). Not surprisingly there
are multiple drawbacks of having arbitrary polynomial time weight functions. The first is
that all considered aggregates become intractable, even if we only consider unambiguous
VSet-automata (Theorems 6.1, and 6.2). However, all aggregates can at least be computed
in exponential time (Theorem 6.3).

3.3.3. Regular Weight Functions. As the class of polynomial-time weight functions quickly
leads to intractability, we focus on a restricted class Reg that we introduce next and is less
restrictive than CWidth but not as general as Poly such that we can understand the struc-
ture of the representation towards efficient algorithms.7 Our final classes of weight functions
are based on K-Annotators. More precisely, we consider weighted VSet-automata and unam-
biguous weighted VSet-automata over the tropical semiring T = (Q∪{∞},min,+,∞, 0) and
the numerical semiring Q = (Q,+,×, 0, 1).8 Formally, let Reg := RegT ∪RegQ be the class
of all annotators over the tropical or numerical semiring. A regular (Reg) weight function w
is represented by a weighted VSet-automaton W and defines w(d, t) = JW K(d, πVars(W)(t)).
Furthermore, as for constant width weight functions, we assume that the variables used by
W are always present in t, that is, Vars(W) ⊆ Vars(t).

The set of unambiguous regular (UReg) weight functions is the subset of Reg that is
represented by unambiguous weighted VSet-automata, that is UReg := URegT ∪URegQ.

Example 3.3. Figure 4 gives an unambiguous weighted VSet-automaton over the tropical
semiring that extracts the values of three-digit natural numbers from text. It can easily
be extended to extract natural numbers of up to a constant number of digits by adding
nondeterminism. Likewise, it is possible to extend it to extract weights as in Example 2.9.
If a single variable captures a list of numbers, similar to d[32,37⟩ = 10−15, one may use
ambiguity to extract the minimal number represented in this range.

7We prove in Section 4.2 that CWidth ⊆ Reg ⊆ Poly; also see Figure 5.
8One can also consider the tropical semiring with max/plus, in which case the complexity results are

analogous to the ones we have for the tropical semiring with min/plus, with Min and Max interchanged.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:17

Our results for regular and unambiguous regular weight functions are similar to CWidth
when it comes to Min, Max, Sum, and Average. The main difference is that, depending on
the semiring, we require more unambiguity. For instance, for the tropical semiring, one needs
unambiguity of the regular weight function for Max. For Sum and Average one needs
unambiguity for both the spanner and the regular weight function to achieve tractability.
Contrary, over the numerical semiring, one needs unambiguity of the regular weight function
for Min and Max, whereas for Sum and Average unambiguity of the spanner is sufficient
for tractability. For q-Quantile, the situation is different from CWidth in the sense that
regular weight functions render the problem intractable. We refer to Table 1 for an overview.

3.4. Approximation. In the cases where exact computation of the aggregate problem
is intractable, we consider the question of approximation. It turns out that there exist
FPRAS’s in two settings that we believe to be interesting. Firstly, in the case of Sum
and Average and constant-width weight functions, the restriction of unambiguity in the
spanner can be dropped if the weight function uses only nonnegative weights. Secondly,
although q-Quantile is #P-hard under Turing reductions for general VSA, it is possible
to positionally approximate the Quantile element in an FPRAS-like fashion, even with the
very general polynomial-time weight functions. We discuss this problem in more detail in
Section 8.

4. Preliminary Results

In this section, we give basic results for document spanners and weight functions that we use
throughout this article.

4.1. Known Results on K-Annotators. We begin by recalling some known results on
K-annotators.

Proposition 4.1 (Doleschal et al. [DKMP22, Proposition 6.1]). For every weighted VSet-
automaton A there is an equivalent weighted VSet-automaton A′ that has no ε-transitions.
This automaton A′ can be constructed from A in polynomial time. Furthermore, A is
functional if and only if A′ is functional.

The following Theorem follows directly from Doleschal et al. [DKMP22, Theorem 6.4]
and Doleschal [Dol21, Theorem 5.5.4, Lemma 5.5.5 and Lemma 5.5.9].

Theorem 4.2. Let A1, A2 ∈ RegK be K-weighted functional VSet-automata and X ⊆
Vars(A1). Then, Aπ, A∪, A▷◁ ∈ RegK can be constructed in polynomial time, such that

JA∪KK = JA1KK ∪ JA2KK
JAπKK = πXJA1KK
JA▷◁KK = JA1KK ▷◁ JA2KK.

Furthermore, A▷◁ ∈ URegK, if A1, A2 ∈ URegK, and A∪ ∈ URegK if A1, A2 ∈ URegK
and R(A1) ∩R(A2) = ∅.

12:18 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

4.2. Relative Expressiveness of Weight Functions. We first show that every constant-
width weight function is also an unambiguous regular weight function.

Proposition 4.3. CWidth ⊆ URegQ ∩URegT.

Proof. Let w ∈ CWidth be a constant-width weight function, represented by a Q-weighted
string relation R over X, that is, tuples in R map variables to strings. We begin by showing
that w ∈ URegQ. Let X = {x1, . . . , xn}. We construct a Q-annotator W representing w.
We define an unambiguous VSet-automaton At, for every tuple t ∈ R, such that t′ ∈ JAtKB(d)
if and only if dt′ = t. Let t ∈ R. For every x ∈ X, let wx be the word t(x) and let

Ax
t := Σ∗ · ▷xwx ◁x ·Σ∗ ,

that is, Ax
t matches the string t(x) in variable x and outputs the corresponding {x}-tuple

with the span. Since our definition of unambiguity requires one run per ref-word in the
language, it is easy to see that such an unambiguous Ax

t exists. Furthermore,

At := Ax1
t ▷◁ · · · ▷◁ Axn

t ,

which is unambiguous due to Theorem 4.2.
We define Wt as the unambiguous Q-weighted VSet-automaton such that

JWtKQ(d, t
′) =

{
R(t) if dt′ = t

0 otherwise.

This can be achieved by interpreting At as a Q-weighted VSet-automaton, where all edges
have weight 1, the final weight function assigns weight 1 to all accepting states, and the
initial weight function assigns weight R(t) to the initial state of At. We finally define W as
the union of all Wt. That is,

W =
⋃
t∈R

Wt .

We observe that, by Theorem 4.2, W must be unambiguous, as all Wt are unambiguous and
the ref-word languages of the automata Wt are pairwise disjoint.

Recall that JW KQ(d, t) = 0 = 0 if there is no run of W on ref(d, t), i.e. dt /∈ R. Therefore,
JW KQ(d, t) = R(dt) as desired.

The proof for CWidth ⊆ URegT follows the same lines. However, the zero element of
the tropical semiring is∞, which implies that the automaton W must have exactly one run ρ
for every tuple t, even if w(d, t) = 0. To this end, let Wt be as defined before, but interpreted
over the tropical semiring. We construct an unambiguous T-weighted VSet-automaton WR,
such that JWRKT(d, t) = 0 if dt /∈ R and WR has no run for t otherwise. We observe that R is
a recognizable string relation.9 Therefore, due to Doleschal et al. [DKMP22, Theorem 6.11],
there is a document spanner AR, with t ∈ JARK(d) if and only if dt ∈ R. Furthermore, let AR
be the complement of AR, that is, t ∈ JARK(d) if and only if dt /∈ R. Note that AR ∈ VSA as
regular document spanners are closed under difference (cf. Fagin et al. [FKRV15a, Theorem
5.1]). By Doleschal et al. [DKM+21, Lemma 4.5], we can assume w.l.o.g. that AR ∈ uVSA.
Let WR be AR, interpreted as T-weighted VSet-automaton, that is, each transition, initial

9A k-ary string relation is recognizable if it is a finite union of Cartesian products L1 × · · · × Lk, where
each Li is a regular language. Note that R is recognizable as it is the union over all tuples t ∈ R, where each
tuple is represented by the Cartesian product {t(x1)} × · · · × {t(xn)} with Vars(t) = {x1, . . . , xn}.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:19

CWidthN CWidthQ+ CWidth

URegQ

URegT

UReg

RegQ

RegT

Reg Poly⊆ ⊆
⊆

⊆

⊆

⊆
⊆

⊆

⊆

⊆

⊆
⊆

(4.3)

(4.3)

(4.4)

Figure 5: Inclusion structure of our considered weight functions

and final state gets weight 1 = 0. Note that, due to AR ∈ uVSA, WR is unambiguous. It
follows that JWRKT(d, t) = 0 if dt /∈ R and WR has no run for t otherwise. Let

W = WR ∪
⋃
t∈R

Wt .

Again, we observe that, by Theorem 4.2, W must be unambiguous as all involved automata
are unambiguous and their ref-word languages are pairwise disjoint. Furthermore,

JW KT(d, t) =

{
R(dt) if dt ∈ R

0 otherwise.

Therefore, JW KT(d, t) = R(dt) as desired.

We now observe that every regular weight function is a polynomial-time weight function.
Indeed, given a document d and a d-tuple t, the weight w(d, t) for a regular weight function
w can be computed in polynomial time (cf. Doleschal [Dol21, Theorem 5.6.1]).

Observation 4.4. Reg ⊆ Poly.

To summarize, we provide the inclusion structure of the classes of weight functions we
consider in Figure 5. All inclusions that do not have a number hold by definition.

4.3. Preliminary Results on Document Spanners. We will also need some preliminary
results concerning the number of possible spans over a document d.

Lemma 4.5. Given a document d, the number of spans over d is polynomial in the size of d.
In particular, |Spans(d)| = (|d|+1)·(|d|+2)

2 , for every d ∈ Σ∗.

Proof. For a span [i, j⟩, let ℓ = j − i be the length of the span. It is easy to see that for
every document d, there is exactly one span of length |d|, two spans of length |d| − 1, three
spans of length |d| − 2, etc. Thus, there are 1 + 2 + · · ·+ (|d|+ 1) = (|d|+1)·(|d|+2)

2 spans over
a document d, concluding the proof.

It follows directly that the maximal number of tuples, extracted by a document spanner
is exponential in the size of the spanner.

Corollary 4.6. Let A ∈ VSA be a VSet-automaton and d ∈ Σ∗ be a document. Then

Count(S, d) ≤ |Spans(d)||Vars(A)| =
(
(|d|+1)·(|d|+2)

2

)|Vars(A)|
.

As we see next, given a number of variables, a document d, and a number k of tuples, we
can construct an unambiguous VSet-automaton A and a document d′ such that A extracts
exactly k tuples on d′.

12:20 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Lemma 4.7. Let X := {x1, . . . , xv} ∈ Vars be a set of variables, d ∈ Σ∗ be a document, and
0 ≤ k ≤ |Spans(d)||X|. Then there is a VSet-automaton A ∈ uVSA with Vars(A) = X and a
document d′ ∈ Σ∗ such that |JAK(d′)| = k. Furthermore, A and d′ can be constructed in time
polynomial in |X| and d.

Proof. We observe that the statement holds for k = 0. Therefore we assume, w.l.o.g., that
1 ≤ k ≤ |Spans(d)|v.

We begin by proving the statement for |X| = 1. Let 1 ≤ k ≤ |Spans(d)|. Recalling the
proof of Lemma 4.5, we observe that k can be written as a sum k = k1+ · · ·+kn of n ≤ |d|+1
different natural numbers with 0 ≤ k1 < · · · < kn ≤ |d| + 1. We construct an automaton
Ak ∈ uVSA, which consists of n branches, corresponding to k1, . . . , kn. On document d, the
branch corresponding to ki selects all spans of length ℓi := |d|+1−ki. Each of these branches
can be constructed as an unambiguous VSet-automaton Aki := Σ∗ · ▷xΣℓi ◁x ·Σ∗. We observe
that there are exactly ki spans over d with length ℓi, and therefore |JAkiK(d)| = ki. The
automaton Ak is defined as

Ak := Ak1 ∪ · · · ∪Akn .

It is straightforward to verify that all automata Aki are unambiguous. Thus, since the
ref-word languages of all Aki are pairwise disjoint, it holds that Ak ∈ uVSA (cf. Theorem 4.2).
Furthermore, we observe that

|JAkK(d)| = |JAk1K(d)|+ · · ·+ |JAknK(d)| = k1 + · · ·+ kn = k .

It remains to show the statement for v := |X| > 1. Let # /∈ Σ be a new alphabet
symbol. We build upon the encoding for |X| = 1. That is, for every 1 ≤ k ≤ |Spans(d)|, let
Ax

k be the automaton Ak, using variable x, as defined previously. We observe that every
1 ≤ k ≤ |Spans(d)|v has an encoding k = k1 · · · kv in base |Spans(d)| of length v. The
document d′ consists of v copies of d ·#, more formally,

d′ := (d ·#)v .

For every 1 ≤ i ≤ v, we construct an automaton A′
ki

, which selects exactly ki ·
|Spans(d)|v−i tuples over document d′. More formally,

A′
ki

:= d · ▷x1# ◁x1 ·d · ▷x2# ◁x2 · · · d · ▷xi−1# ◁xi−1 ·A
xi
ki
·# ·Axi+1

|Spans(d)| ·# · · ·# ·A
xv

|Spans(d)| ·# .

The automaton A′
k is then defined as the union of all A′

ki
, that is,

A′
k := A′

k1 ∪ · · · ∪A′
kv .

We observe that A′
ki
∈ uVSA and due to the ref-word languages of all A′

ki
being pairwise

disjoint, A′
k ∈ uVSA (cf. Theorem 4.2). Furthermore, we observe that

|JA′
kK(d

′)| = |JA′
k1K(d

′)|+ · · ·+ |JA′
vK(d)

′| = k1 + · · ·+ kn = k .

This concludes the proof.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:21

5. Constant-Width Weight Functions

We begin this section by showing that Min and Max are tractable for constant-width
weight functions. The reason for their tractability is that, for a constant number of variables
X ⊆ Vars(A), the spans associated to X in output tuples can be computed in polynomial
time. Building upon Corollary 4.6, we show that Min and Max are in FP for constant-width
weight functions and VSet-automata. We immediately have:

Theorem 5.1. Min[VSA,CWidth] and Max[VSA,CWidth] are in FP.

Proof. Let A ∈ VSA, d ∈ Σ∗, X ⊆ Vars(A) with |X| ≤ c, and w ∈ CWidth be given as a
Q-weighted string relation R over X. We first show that the set {πXt | t ∈ JAK(d)} can be
computed in time polynomial in the sizes of A and d.

We observe that, per definition of projection for document spanners (Section 2.3),
{πXt | t ∈ JAK(d)} =

(
πX(JAK)

)
(d). Since A is functional (which we assume for VSet-

automata throughout this article), a VSet-automaton for πX(JAK) can be computed in
polynomial time (cf. Freydenberger et al. [FKP18, Lemma 3.8]). Due to |X| ≤ c, it follows
from Corollary 4.6 that there are at most polynomially many tuples in

(
πX(JAK)

)
(d). Thus,

the set {πXt | t ∈ JAK(d)} can be materialized in polynomial time.
In order to compute Min and Max, a polynomial time algorithm can iterate over all

tuples t in {πXt | t ∈ JAK(d)}, evaluate R(d, t) and maintain the minimum and the maximum
of these numbers.

In order to calculate aggregates like Sum,Avg, or q-Quantile, it is not sufficient to know
which weights are assigned, but also the multiplicity of each weight is necessary. Recall that
counting the number of output tuples is tractable if the VSet-automaton is unambiguous
(Theorem 3.1) and spanL-complete in general. We now show that we can achieve tractability
of the mentioned aggregate problems if the VSet-automaton is unambiguous. The reason is
that we can compute in polynomial time the multiset SA,d := ⦃πXt | t ∈ JAK(d)⦄, where we
represent the multiplicity of each tuple t′ (i.e., the number of tuples t ∈ JAK(d) such that
πXt = t′) in binary.

Lemma 5.2. Given a VSet-automaton A and a document d, the multiset SA,d can be
computed in FP if A ∈ uVSA.

Proof. The procedure is given as Algorithm 1. It is straightforward to verify that the
algorithm is correct. Due to Corollary 4.6, the set πX(JAK)(d) is at most of polynomial size.
Furthermore, the automaton Aref(d,t) := ref(d, t) ∈ uVSA can be constructed in polynomial
time and due to Theorem 4.2 an unambiguous VSet-automaton for At can be computed in
polynomial time as well. By Theorem 3.1, each iteration of the for-loop also only requires
polynomial time. Thus, the whole algorithm terminates after polynomially many steps.

It follows that all remaining aggregate functions can be efficiently computed if the
spanner is given as an unambiguous VSet-automaton.

Theorem 5.3. For every 0 ≤ q ≤ 1, Sum[uVSA,CWidth], Average[uVSA,CWidth],
and q-Quantile[uVSA,CWidth] are in FP.

Proof. Let A ∈ uVSA be a VSet-automaton, d ∈ Σ∗ be a document, w ∈ CWidth be a
weight function, represented by a Q-weighted string relation R over X. Due to Lemma 5.2
the multiset SA,d can be computed in polynomial time. Thus one can compute the multiset

12:22 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Algorithm 1: Calculate the multiset SA,d.
Input: An unambiguous VSet-automaton A ∈ uVSA, a document d ∈ Σ∗.
Output: The multiset SA,d.

1 S ← ⦃⦄

2 S← πX(JAK)(d)
3 for t ∈ S do
4 At ← A ▷◁ Aref(d,t) ▷ Aref(d,t) is the uVSA that only accepts ref(d, t).
5 S(πXt)← Count(JAtK, d)
6 output S

W := ⦃R(dt) | t ∈ SA,d⦄ in polynomial time. It is straightforward to compute the aggregates
in polynomial time from W .

We conclude this section by showing that Sum, Avg, and q-Quantile are not tractable,
if the spanner is given as a VSet-automaton.

Theorem 5.4. Sum[VSA,CWidth] is #P-hard, even if w is represented by the Q-Relation
R over {x} with

R(d) :=

1 if d = 1

−1 if d = −1
0 otherwise.

Proof. We will give a reduction from the #CNF problem, which is #P-complete under
parsimonious reductions. To this end, let ϕ be a Boolean formula in CNF over variables
x1, . . . , xn and let w ∈ CWidth be the weight function which is represented by the Q-Relation
R, which is as defined in the theorem statement.

We construct a VSet-automaton A ∈ VSA and a document d := an · − · 1, such that
Sum(JAK, d, w) = c, where c is the number of variable assignments which satisfy ϕ.

We begin by defining two VSet-automata A1, A−1, with Vars(A1) = Vars(A−1) =
{x1, . . . , xn, x}. Slightly overloading notation, we define both automata by regex formulas.

The automaton A1 selects exactly 2n tuples on document d, all of which get assigned
weight 1 by w. More formally (using ∨ to denote regular expression disjunction),

A1 := (▷x1a ◁x1 ∨ ▷x1 ε ◁x1 a) · · · (▷xna ◁xn ∨ ▷xn ε ◁xn a) − ▷x1 ◁x .

Therefore, Sum(JA1K, d, w) = Count(JA1K, d) = 2n.
We use a similar encoding as Doleschal et al. [DKMP22, Theorem 5.4] to encode variable

assignments into tuples. That is, each variable xi of ϕ is associated with a corresponding
capture variable xi of A−1. With each assignment τ we associate the tuple tτ , such that

tτ (xi) :=

{
[i, i⟩ if τ(xi) = 0, and
[i, i+ 1⟩ if τ(xi) = 1 .

We construct the automaton A−1 as a regex formula α, such that there is a one-to-one
correspondence between the non-satisfying assignments for ϕ and tuples in JαK(d). More

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:23

formally, for each clause Cj of ϕ and each variable xi, we construct a regex-formula

αi,j :=

xi{ε} · a if xi appears in Cj ,
xi{a} if ¬xi appears in Cj ,
(xi{ε} · a) ∨ xi{a} otherwise.

Consequently, we define αj := α1,j · · ·αn,j · ▷x − 1◁x.
For example, if we use variables x1, x2, x3, x4 and Cj = x1 ∨ x3 ∨ ¬x4 is a clause, then

αj = ▷x1ε ◁x1 a (▷x2ε ◁x2 a ∨ ▷x2a◁x2) ▷x3 ε ◁x3 a ▷x4 a ◁x4 ▷x − 1 ◁x .

We observe that t ∈ JαjK(d) if and only if the variable assignment τ of ϕ with t = tτ
does not satisfy clause Cj .

We finally define α := α1 ∨ · · · ∨ αm, that is, the disjunction of all αi and A−1 as the
VSet-automaton corresponding to α.10 Therefore, Count(JA−1K, d) = s, where s = 2n − c is
the number of variable assignments which do not satisfy ϕ. Furthermore, per definition of
A−1 and w, it follows that

Sum(JA−1K, d, w) = −1 · s = −s .
We finally define the VSet-automaton A as the union of A1 and A−1. We observe that every
tuple t ∈ JAK(d) is either selected by A1 (if dt(x) = 1) or by A−1 (if dt(x) = −1), but never by
both automata. Recall that c is the number of assignments which satisfy ϕ and s = 2n − c is
the number non-satisfying assignments of ϕ. Therefore, we have that

Sum(JAK, d, w) = Sum(A1, d, w) + Sum(A−1, d, w) = 2n + (−s) = 2n − (2n − c) = c .

This concludes the proof.

If the weights are restricted to natural numbers, Sum becomes spanL-complete. Note
that we restrict weight functions to natural numbers, because spanL is a class of functions
that return natural numbers. Allowing positive rational numbers does not fundamentally
change the complexity of the problems though. We will see in Section 8 that this enables us
to approximate Sum aggregates.

Theorem 5.5. Sum[VSA,CWidthN] is spanL-complete, even if w is represented by the
Q-Relation R over {x} with

R(d) :=

{
1 if d = 1

0 otherwise.

Proof. Recall that a function f is in spanL, if there is an NL Turing machine M such
that f(x) = |M(x)|. Let A ∈ VSA be a VSet-automaton, d ∈ Σ∗ be a document, and
w ∈ CWidthQ+ be a weight function. We define M as the Turing machine, which guesses a
d-tuple t and checks whether t ∈ JAK(d). If yes, M computes the weight w(d, t), which can
be done in NL, since w is given by a Q-Relation. The Turing machine M then branches into
w(d, t) accepting branches. If t /∈ JAK(d), M rejects. Thus, |M(A, d)| = Sum(S, d, w), and
therefore Sum[VSA,CWidthN] is in spanL.

For the lower bound, we give a reduction from Count[VSA], which is spanL-complete
(cf. Theorem 3.1). Let A ∈ VSA, d ∈ Σ∗. We assume, w.l.o.g., that 1 /∈ Σ and x /∈ Vars(A).
We construct a document d′ := d · 1 and a VSet-automaton A′ := A · ▷x1 ◁x . We observe
that Sum(JA′K, d′, w) = Count(JAK, d), concluding the proof.

10It is easy to verify that the automaton A−1 ∈ VSA can be constructed in polynomial time from α.

12:24 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

We conclude this section by showing that Average and q-Quantile are #P-hard under
Turing reductions.

Theorem 5.6. Let 0 < q < 1 be a fixed number. The problems Average[VSA,CWidthQ+]
and q-Quantile[VSA,CWidth] are #P-hard under Turing reductions, even if w is repre-
sented by the Q-Relation R over {x} with

R(d) :=

{
1 if d = 1

0 otherwise.

Proof. Recall that Count[VSA] is #P-hard under Turing reductions (Corollary 3.2). We
begin by giving a Turing reduction from Count[VSA] to Average[VSA,CWidth]. Let
A, d, and d′ be as defined in the proof of Theorem 5.5. The VSet-automaton A′ builds
upon A but selects a single additional tuple t with t(x) = [|d|+ 2, |d|+ 2⟩ for all variables.
As we will see later, this tuple is used to calculate Count(JAK, d) from Avg(JA′K, d′). Let
Vars(A) = {x1, . . . , xn}. We define

A′ := (A · ▷x1◁x) ∨ (d · 1 · ▷x1 ▷x2 · · · ▷xn ▷xε ◁x ◁xn · · · ◁x2 ◁x1) .

Observe that, for all t ∈ A′(d′) it holds that dt(x) = 1 if and only if πVars(A)t ∈ JAK(d).
Thus, per definition of A′ and w, Sum(JA′K, d′, w) = Count(JAK, d) and Count(JA′K, d′) =
Count(JAK, d) + 1. Therefore, it holds that

Avg(JA′K, d′, w) =
Count(JAK, d)

Count(JAK, d) + 1
.

Solving the equation for Count(JAK, d), we have that

Count(JAK, d) =
Avg(JA′K, d′, w)

1−Avg(JA′K, d′, w)
.

This concludes the proof that Average[VSA,CWidthQ+] is #P-hard under Turing reduc-
tions.

It remains to show that q-Quantile[VSA,CWidth] is also #P-hard under Turing
reductions. Let A ∈ VSA be a VSet-automaton and d ∈ Σ∗ be a document. We will show
the lower bound for q = 1

2 first and study the general case of 0 < q < 1 afterwards. Let
x /∈ Vars(A) be a new variable. Let 0 ≤ r ≤ |Spans(d)||Vars(A)|. By Lemma 4.7 there is a
VSet-automaton A′ and a document d′ with Count(JA′K, d′) = |JA′K(d′)| = r. Let 0, 1 /∈ Σ
be a new alphabet symbol. Let dr = 0 · d · 1 · d′ and

Ar =
(
▷x 0 ◁x ·A · 1 · d′

)
∨
(
0 · d · ▷x1 ◁x ·A′) .

Thus, Count(JArK, dr) = Count(JAK, d) + Count(JA′K, d′). Recalling the definition of w it
holds, for every tuple t ∈ JArK, that w(dr, t) = 1 if t was selected by A′ and w(dr, t) = 0
otherwise, i.e., t was selected by A. Therefore, 1

2 -Quantile(JArK, dr, w) = 0 if and only
if Count(JAK, d) ≥ Count(JA′K, d′) = r. Let rmax be the biggest r such that we have
1
2 -Quantile(JArK, dr, w) = 0. Using binary search, we can calculate rmax with a polynomial
number of calls to an 1

2 -Quantile oracle. Furthermore, due to Count(JAK, d) ∈ N and Rmax
being maximal, it must hold that Count(JAK, d) = rmax, concluding this part of the proof.

The general case of 0 < q < 1 follows by slightly adopting the above reduction. Let
q = a

b with a, b ∈ N be given by its numerator and denominator. Observe that b > a as
0 < a

b < 1. Let A′, d′ be as above and let c := Count(JAK, d). The document dr consists
of a copies of d, separated by 0′s and (b − a) copies of d′ separated by 1′s. Formally,

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:25

dr = 0 · d1 · 0 · d2 · 0 · · · da · 0 · 1 · d′1 · 1 · d′2 · 1 · · · d′b−a · 1, where each di (resp. d′i) is a copy of
d (resp. d′). Furthermore, let

Ar =
(
Σ∗
0 · ▷x0 ◁x ·A · 0 · Σ∗

0 · Σ∗
1

)
∨
(
Σ∗
1 · Σ∗

1 · ▷x1 ◁x ·A′ · 1 · Σ∗
1

)
,

where Σ0 := Σ ∪ {0} (resp. Σ1 := Σ ∪ {1}). Observe that w assigns 0 to exactly c · a tuples
in JArK(dr) and Count(JArK, dr) = c · a+ r · (b− a). Thus, a

b -Quantile(Ar, dr, w) = 0 if and
only if c·a

c·a+r·(b−a) ≥
a
b . We now show that c ≥ r if and only if a

b -Quantile(JArK, dr, w) = 0.
Assume that c ≥ r. Then,

c · a
c · a+ r · (b− a)

≥ c · a
c · a+ c · (b− a)

=
c · a
c · b

=
a

b
.

Therefore, a
b -Quantile(JArK, dr, w) = 0. On the other hand, if c < r,

c · a
c · a+ r · (b− a)

<
c · a

c · a+ c · (b− a)
=

c · a
c · b

=
a

b
.

Thus, a
b -Quantile(JArK, dr, w) = 1.

Recall that c = Count(JAK, d). As for q = 1
2 , let rmax be the biggest r such that

a
b -Quantile(JArK, dr, w) = 0. Using binary search, we can calculate rmax with a polynomial
number of calls to an a

b -Quantile oracle. Again it holds that Count(JAK, d) = rmax,
concluding the proof.

6. Polynomial-Time Weight Functions

Before we study regular weight functions, we make a few observations on the very general
polynomial-time computable weight functions. For weight functions w ∈ Poly, we assume
that w is represented as a Turing Machine A that returns a value A(d, t) in polynomially
many steps for some fixed polynomial of choice (e.g., n2).11 Furthermore, to avoid complexity
due to the need to verify whether A is indeed a valid input (i.e., timely termination), we will
assume that w(d, t) = 0, if A does not produce a value within the allocated time.

We first observe that polynomial-time weight functions make all our aggregation problems
intractable, which is not surprising. In fact, all the lower bounds already hold for regular
weight functions.

Theorem 6.1. The problems Min[uVSA,Poly] and Max[uVSA,Poly] are OptP-hard.
Furthermore, Sum[uVSA,Poly] and Average[uVSA,Poly] are #P-hard.

Proof. We will see later that these problems are already hard for weight functions in Reg,
which are a subclass of Poly (Theorems 7.3 and 7.7).

Theorem 6.2. Let 0 < q < 1. Then q-Quantile[uVSA,Poly] is #P-hard under Turing
reductions.

Proof. We will see later that the problem is already hard for UReg weight functions
(Theorem 7.9).

We note that all studied problems can be solved in exponential time, by first constructing
the relation JAK(d), which might be of exponential size, computing the weights associated to
all tuples, and finally computing the desired aggregate.

11Our complexity results are independent of the choice of this polynomial.

12:26 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Theorem 6.3. Let 0 < q < 1. Then Agg[VSA,Poly] is in FEXPTIME for every Agg ∈
{Min,Max,Sum,Average, q-Quantile}.

Proof. Let A ∈ VSA, d ∈ Σ∗, and w ∈ Poly. The algorithm first computes the multiset

WA,d,w := ⦃w(d, t) | t ∈ JAK(d)⦄ ,

which might be exponentially large. It is easy to see that WA,d,w can be computed in
exponential time. Furthermore, it follows directly that Agg[VSA,Poly] is in FEXPTIME
for every Agg ∈ {Min,Max,Sum,Average, q-Quantile}.

Throughout this section, we do not study excessively whether we can give a more precise
upper bound than the general FEXPTIME upper bound. However, we sometimes give such
bounds. For instance, we are able to provide OptP and FP#P upper bounds if the weight
functions return natural numbers (or integers in the case of the FP#P upper bounds).

Theorem 6.4. Min[VSA,Poly] and Max[VSA,Poly] are in OptP if the weight function
only assigns natural numbers.

Proof. We only give the upper bound for Max. The proof for Min is analogous. To this
end, let A ∈ VSA, d ∈ Σ∗, and w ∈ Poly be a weight function which only assigns natural
numbers. The Turing Machine N guesses a d-tuple t and accepts with output 0 if t /∈ A(d).
Otherwise, N computes the weight w(d, t) and accepts with output w(d, t). It is easy to see
that the maximum output value of N is exactly Max(JAK, d, w).

In the following theorem we show that Sum, Average, and q-Quantile can be computed
in FP#P if all weights are integers. The key idea is that, due to the restriction to integer
weights, we can compute the aggregates by multiple calls to a #P oracle. For instance for
Sum, we define two weight functions, w+ and w−, such that w+ computes the sum of all
positive and w− the sum of all negative weights. Each of these sums can be computed by a
single call to a #P oracle.

Theorem 6.5. For every 0 ≤ q ≤ 1, the problems Sum[VSA,Poly], Average[VSA,Poly],
and q-Quantile[VSA,Poly] are in FP#P if the weight function only assigns integers.

Proof. We first prove that Sum[VSA,Poly] is in #P if the weight function only assigns
natural numbers. We will use this as an oracle for the general upper bound. Let A be
a VSet-automaton, d ∈ Σ∗ be a document and w ∈ Poly be a weight function that only
assigns natural numbers. A counting Turing Machine M for solving the problem in #P
would have w(d, t) accepting runs for every tuple in A(d). More precisely, M guesses a
d-tuple t over Vars(A) and checks whether t ∈ JAK(d). If t ∈ JAK(d) and w(d, t) > 0, then
M branches into w(d, t) accepting branches, which it can do because w is given in the input
as a polynomial-time deterministic Turing Machine. Otherwise, M rejects. Per construction,
M has exactly w(d, t) accepting branches for every tuple t ∈ JAK(d) with w(d, t) > 0. Thus,
the number of accepting runs is exactly

∑
t∈JAK(d)w(d, t) = Sum(JAK, d, w).

We now continue by showing that Sum[VSA,Poly] is in FP#P if the weight function
only assigns integers. Let A be a VSet-automaton, d ∈ Σ∗ be a document, and w ∈ Poly be
a weight function, which only assigns integers.

We define two weight functions w+, w− ∈ Poly, such that

Sum(A, d,w) = Sum(A, d,w+)− Sum(A, d,w−) .

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:27

Formally, we define the following two weight functions:

w+(d, t) :=

{
w(d, t) if w(d, t) ≥ 0, and
0 otherwise;

w−(d, t) :=

{
−w(d, t) if w(d, t) < 0, and
0 otherwise.

Therefore, Sum(JAK, d, w) = Sum(JAK, d, w+) − Sum(JAK, d, w−) and the answer to
Sum[S,Poly] can be obtained by taking the difference of the answers of two calls to
the Sum[S,Poly] #P oracle. The upper bound for Average[VSA,Poly] is immediate
from the upper bound of Sum[VSA,Poly] and Theorem 3.1. For the upper bound of
q-Quantile[VSA,Poly] we define the weight function

w≤k(d, t) =

{
1 if w(d, t) ≤ k, and
0 otherwise.

Recall that

q-Quantile(S, d, w) := min

{
r ∈ Img(S, d, w)

∣∣∣∣ |{t ∈ S(d) | w(d, t) ≤ r}|
|S(d)|

≥ q

}
.

And therefore

q-Quantile(S, d, w) = min

{
r ∈ Img(S, d, w)

∣∣∣∣ Sum(JAK, d, w≤k)

Count(JAK, d)
≥ q

}
.

Thus, the upper bound of q-Quantile[VSA,Poly] can be obtained by performing binary
search, using the upper bound of Sum[VSA,Poly] and Theorem 3.1.

7. Regular Weight Functions

We now turn to Reg and UReg weight functions. As we have shown in Proposition 4.3,
every CWidth weight function can be translated into an equivalent UReg weight function.
Furthermore, the weight functions which were used for the lower bounds can be represented
by unambiguous weighted VSet-automata of constant size. Therefore, all lower bounds for
CWidth also hold for UReg.

7.1. Compact DAG Representation. As we show next, aggregation problems for regular
weight functions can often be reduced to problems about paths on weighted directed acyclic
graphs (DAGs), where the weights come from the semiring of the weight function. To this
end, let (K,⊕,⊗, 0, 1) be a semiring. A K-weighted DAG is a DAG D = (N,E), where N is
a set of nodes, E ⊆ N ×K×N is a finite set of weighted edges, and src (resp., snk) is a
unique node in N without incoming (resp., outgoing) edges. We define len(e) = ℓ, where
e = (v, ℓ, v′) ∈ E. Furthermore, we define paths p in the obvious manner as sequences of
edges and the length len(p) of p as the product (⊗) of the lengths of its edges. More formally,
a path

p := n1ℓ1n2 · · · ℓn−1nj

is a sequence of nodes ni ∈ N with 1 ≤ i ≤ j and (ni, ℓi, ni+1,) ∈ E, for all 1 ≤ i < j, and
the length

len(p) := ℓ1 ⊗ · · · ⊗ ℓj−1 .

12:28 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

We denote the set of all paths in D from src to snk by Paths(src, snk).
Given a document d, a VSet-automaton A and a regular weight function w ∈ RegK, we

will construct a DAG D which plays the role of a compact representation of the materialized
intermediate result. The DAG D is obtained by a product construction between A, W , and d,
such that every path from src to snk corresponds to an accepting run of W that represents
a tuple in JAK(d). If A and W are unambiguous this correspondence is actually a bijection.

Lemma 7.1. Let K ∈ {Q,T} be either the numerical or the tropical semiring. Let d be
a document, A ∈ VSA, and W be the weighted VSet-automaton representing w ∈ RegK.
We can compute, in polynomial time, a K-weighted DAG D, such that there is a surjective
mapping m from paths p ∈ Paths(src, snk) in D to tuples t ∈ JAK(d). Furthermore,

(1) the mapping m is a bijection, if A and W are unambiguous, and
(2) w(d, t) =

⊕
p∈Paths(src,snk),m(p)=t

len(p), for every t ∈ JAK(d), if A ∈ uVSA or K = T.

Proof. Let d ∈ Σ∗, A ∈ VSA, and W be the weighted VSet-automaton representing w ∈
RegK. By Proposition 4.1, we can assume, w.l.o.g., that all VSet-automata used in this
proof do not contain ε-transitions.

We begin by giving the construction of D. Let WA be the weighted VSet-automaton
obtained by interpreting A as a K-weighted VSet-automaton. More formally, every transition
in A is interpreted as a weighted transition with weight 1 and every transition which is not
in A is interpreted as a transition with weight 0. Furthermore, let Wd := d be the weighted
VSet-automaton with Vars(Wd) = ∅ that assigns the weight 1 to the empty tuple on input d
and 0 to every tuple on input d′ ̸= d. By Theorem 4.2 the join of weighted VSet-automata
can be computed in polynomial time. Let

WD := W ▷◁ WA ▷◁ Wd .

Per definition of join for K-relations, it holds that

JWDKK(d, t) = JW KK(d, πVars(W)(t))⊗ JWAKK(d, πVars(WA)(t))⊗ JWdKK(d, πVars(Wd)(t)) .

Let A ∈ uVSA be unambiguous or K = T. In both cases, it holds that

JWAKK(d, t) =

{
1 if t ∈ JAK(d), and
0 otherwise.

Furthermore,

JWdKK(d
′, t) =

{
1 if Vars(t) = ∅ and d′ = d, and
0 otherwise.

Therefore, if A ∈ uVSA or K = T, it holds, for every tuple t ∈ JAK(d). that

JWDKK(d, t) = JW KK(d, πVars(W)(t)) (†)

We will use this equality in the proof of condition (2).
The DAG D = (ND, ED) is obtained from WD = (Σ, V,Q, I, F, δ) as follows. The set of

nodes ND :=
(
Q× (Σ∪ ΓV ∪ ∅)

)
⊎ {src, snk} contains the nodes src, snk, plus a state (q, σ)

for each q ∈ Q and σ ∈ (Σ ∪ ΓV ∪ ∅), where σ ̸= ∅ encodes the label of the last transition

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:29

and q the state. The set of edges is defined as follows:

ED :={(src, ℓ, (x, ∅)) | I(x) = ℓ ̸=∞}
⊎ {((x1, σ1), ℓ, (x2, σ2) | δ(x1, σ2, x2) = ℓ ̸= 0, where σ1 ∈ (Σ ∪ ΓV ∪ ∅)}
⊎ {((x, σ), ℓ, snk) | F (x) = ℓ ̸=∞, where σ ∈ (Σ ∪ ΓV ∪ ∅)} .

In the following we assume that D is trimmed, that is, for every node n ∈ ND there is
at least one path from src to snk, which visits n.12

We observe that the construction of D only requires polynomial time. Note that there is
a one-to-one correspondence between paths p ∈ Paths(src, snk) and accepting runs of WD

on d. That is,
p = src · ℓ0 · (q0, ∅) · ℓ1 · (q1, σ1) · · · (qn, σn) · ℓn+1 · snk

is a path from src to snk in D if and only if

ρ = q0
σ1→ q1

σ2→ · · · σn→ qn ,

with I(q0) = ℓ0 and F (qn) = ℓn+1 is an accepting run of WD on d. Furthermore, we observe
that the weight of p is exactly the weight assigned to the run ρ by WD, that is, len(p) = wρ.

For the sake of contradiction, assume that D is cyclic. Per assumption, all nodes n ∈ N
are on a path from src to snk, thus, D must have a path p from src to snk, which contains
a cycle. Let ρ be the run of WD corresponding to p. The automaton Wd is acyclic. Observe
that WD is functional as W , WA, and Wd are functional. Thus, ref(ρ) is valid and therefore
the cycle can not contain an edge labeled by a variable operation. Per assumption, all
involved VSet-automata do not contain ε-transitions. Therefore, the cycle must only consist
of edges, labeled by alphabet symbols. Let ρ′ be the run, obtained from ρ by removing all
cycles. Due to commutativity of ⊗, it follows that wρ′ = wρ ⊗ x for some x ̸= 0. We observe
that doc(ref(ρ′)) ̸= d. Therefore, there is a run ρ′ of WD on doc(ref(ρ′)) ̸= d with weight
wρ′ ̸= 0, which is the desired contradiction to the observation that for all runs ρ of WD it
holds that wρ ̸= 0 if and only if doc(ref(ρ)) = d.

We now define the mapping m. Let p ∈ Paths(src, snk) and let ρ be the corresponding
run of WD. We define the mapping m(p) := tup(ρ). It follows directly that m is surjective.
If A ∈ uVSA or K = T and for t ∈ JAK(d), we have that

w(d, t) = JW KK(d, πVars(W)(t))
(†)
= JWDKK(d, t)

=
⊕

ρ∈P (WD,d) and t=tup(ρ)

wρ =
⊕

p∈Paths(src,snk),m(p)=t

len(p) .

The first and the third equalities follow from the definitions of Reg weight functions and
K-annotators. The last equality follows from the definition of D. This concludes the proof of
condition (2).

It remains to show that condition (1) holds. Assume that A ∈ uVSA and W are
unambiguous. Then, by Theorem 4.2, WD is unambiguous.13 Assume that there are two
paths p1 ̸= p2 such that p1, p2 ∈ Paths(src, snk) with m(p1) = m(p2). Let ρ1 ̸= ρ2 be the
corresponding runs of WD. Due to m(p) = tup(ρ), it must hold that ρ1 and ρ2 are two runs

12Note that this condition can be enforced in linear time by two graph traversals (e.g. using breadth first
search), one starting from src to identify all states which can be reached from src and one starting from
snk to identify all states which can reach snk. We remove all states which are not marked by both graph
traversals.

13Recall that Wd is unambiguous.

12:30 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

of WD, encoding the same tuple t. Due to the unambiguity condition (C2) in Section 2.5,
both runs must encode a different ref-word, that is, ref(ρ1) ̸= ref(ρ2) however this implies
that either ref(ρ1) or ref(ρ2) must violate the variable order condition, contradicting the
unambiguity condition (C1) in Section 2.5. Thus, m must be a bijection.

7.2. Min and Max Aggregation. We will now study the computational complexity of
Min and Max aggregation. We begin by giving the tractable cases which are based on
Lemma 7.1. The weighted DAG from Lemma 7.1 allows us to reduce Min to the shortest
path problem in DAGs. If the weight function is unambiguous, Max can be reduced to the
longest path problem in DAGs. Notice that, although the longest path problem is intractable
in general, it is tractable for DAGs.

Theorem 7.2. The problems Min[VSA,RegT], Min[uVSA,URegQ], Max[VSA,URegT],
and Max[uVSA,URegQ] are in FP.

Proof. Let d be a document, A ∈ VSA, and W be the weighted VSet-automaton representing
w ∈ RegT or w ∈ URegQ. Let D and m be the DAG and the surjective mapping as
guaranteed by Lemma 7.1. In the following, we will reduce all four cases to finding the path
with minimal (resp., maximal) length in D. Note that given a weighted DAG D, one can
compute the path with minimal (resp., maximal) length in polynomial time, via dynamic
programming, e.g. using the Bellman-Ford algorithm.14

We begin by giving the proofs for the numerical semiring. If A ∈ uVSA and W ∈ URegQ,
it follows directly from property (1) of Lemma 7.1 that m is a bijection. Therefore, for
every tuple t ∈ JAK(d), there is exactly one path p ∈ Paths(src, snk) with m(p) = t.
Thus, w(d, t) = len(p), where p ∈ Paths(src, snk) with m(p) = t. It follows directly that
Min(JAK, d, w) and Max(JAK, d, w) can be computed from D by searching for the path p with
minimal (respectively maximal) length.

It remains to give the proofs for the tropical semiring. We begin by giving the proof for
Min[VSA,RegT]. Due to property (2) of Lemma 7.1,

Min(JAK, d, w) = min
t∈JAK(d)

min
p∈Paths(src,snk),m(p)=t

len(p) = min
p∈Paths(src,snk)

len(p)

and therefore Min[VSA,RegT] again reduces to computing the path of minimal length in D.
For Max, the situation is different, because the maximal weight of an output tuple is

Max(JAK, d, w) = max
t∈JAK(d)

min
p∈Paths(src,snk),m(p)=t

len(p) .

However, if W is unambiguous, it must hold that len(p) = len(p′) for all runs p, p′ ∈
Paths(src, snk) with m(p) = m(p′). Otherwise W would be required to have at least two
runs which accept the same tuple but assign different weights. Thus, W would not be
unambiguous. We can therefore conclude that,

Max(S, d, w) = max
t∈JAK(d)

min
{p|m(p)=t}

len(p) = max
p∈Paths(src,snk)

len(p) .

Again, we can reduce Max[VSA,URegT] to the max length problem on D.

14One has to be careful in the case of the numeric semiring as the lengths along the path are multiplied.
Therefore one has to maintain the minimal as well as the maximal length between two nodes, as edges with
negative length change the sign, resulting in minimal path’s to be maximal and vice versa.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:31

As we show now, the results of Theorem 7.2 are close to the tractability frontier: For
instance, if we relax the unambiguity condition in the weight function, the problem Max
does not correspond to finding the longest paths in DAGs and becomes intractable.
Theorem 7.3. Min[uVSA,RegQ], Max[uVSA,RegT], and Max[uVSA,RegQ] are OptP-
hard.
Proof. We begin by giving the proofs for Max[uVSA,RegT]. We give a metric reduction15

from the OptP-complete problem Maximum Satisfying Assignment (MSA) [Kre88], which
is defined as follows. Let ϕ(x1, . . . , xn) be a propositional formula in CNF and let v =
v1 · · · vn ∈ Bn be a variable assignment of ϕ. Furthermore, let nv ∈ N be the natural number
encoded by v in binary. MSA asks, given the CNF formula ϕ(x1, . . . , xn), for the maximum
nv ∈ N such that v satisfies ϕ, or 0 if ϕ is not satisfiable. In the following, we denote by
MSA(ϕ) the output of MSA on input ϕ.

Let ϕ(x1, . . . , xn) be a Boolean formula in CNF. We use a similar construction as in the
proofs of Theorem 5.4 and Doleschal et al. [DKMP22, Theorem 7.6], to encode the CNF
formula ϕ. Let d = an be the document. We define

A := ((▷x1ε ◁x1 a) ∨ (▷x1a◁x1)) · · · ((▷xnε ◁xn a) ∨ (▷xna◁xn)) .

Notice that A can be defined with a polynomial-time constructible uVSA. Observe that
there is a one-to-one correspondence between tuples t in JAK(d) and variable assignments αt

for ϕ: we can set αt(xi) = 1 if and only if t(xi) = [i, i+ 1⟩. We construct a weight function
w ∈ RegT such that

w(d, t) =

{
nαt if αt |= ϕ

0 otherwise.
Recall that nαt is the natural number which is encoded by the variable assignment αt. It
follows directly that MSA(ϕ) = Max(JAK, d, w). Defining T2(x, y) 7→ y gives the desired
reduction.

It remains to construct a weighted VSet-automaton W which encodes w. We define the
weighted VSet-automaton W as the union of two automata. Let V be the set of variables
of ϕ. The first automaton WA is a copy of A, assigning weight 0 to all edges, which are
present in A. Furthermore, let δ assign weight 2i−1 to the a labeled edge between opening
and closing variable xi (that is, ▷xi and ◁xi). Let I(q) = 0 if q is the start state of A and
∞, otherwise. Analogously, let F (q) = 0 if q is an accepting state of A and ∞ otherwise. It
follows directly that JWAKK(a

n, t) = nαt .
The second automaton, W ′ consists of m disjoint branches, where each branch corresponds

to a clause Ci of ϕ; we call these clause branches. Each branch has exactly one run ρ with
weight 1 for each tuple t associated to an assignment αt which does not satisfy the clause Ci.

We now give a formal construction of W ′. The set of states Q := {qai,j | 1 ≤ i ≤ m, 1 ≤
j ≤ n, 1 ≤ a ≤ 5} contains 5n states for each clause branch. Intuitively, W ′ has a gadget,
consisting of 5 states, for each variable and each clause branch. Figure 6 depicts the three
types of gadgets we use here. Note that the weights of the drawn edges are all 0. We use the
left gadget if x does not occur in the relevant clause and the middle (resp., right) gadget if
the literal ¬x (resp., x) occurs. Furthermore, within the same branch of W ′, the last state of
each gadget is the same state as the start state of the next variable, i.e., q5i,j = q1i,j+1 for all
1 ≤ i ≤ k, 1 ≤ j < n.

15Recall that a metric reduction from f to g is a pair of polynomial-time computable functions T1, T2,
where T1 : Σ∗ → Σ∗ and T2 : Σ∗ × N → N, such that f(x) = T2(x, g(T1(x))) for all x ∈ Σ∗.

12:32 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

▷x
◁x

σ

σ

◁x

▷x
◁x σ

◁x

▷x
◁x

σ ◁x

Figure 6: Example gadgets for variable x.

q11,1 q21,1

q31,1

q41,1

q51,1
▷x1

◁x1

σ ◁x1

x1

q21,2

q31,2

q41,2

q51,2
▷x2

◁x2

σ ◁x2

x2

q21,3

q31,3

q41,3

q51,3
▷x3

◁x3

σ

σ

◁x3

x3 ∨ ¬x3

q21,4

q31,4

q41,4

q51,4
▷x4

◁x4 σ

◁x4

¬x4

Figure 7: The clause branch of W corresponding to C1 and x1 = x2 = 1, x4 = 0.

We illustrate the crucial part of the construction on an example. Let ϕ = (¬x1 ∨ ¬x2 ∨
x4)∧(x2∨x3∨x4). The corresponding weighted VSet-automaton W ′ therefore has two disjoint
branches, one for each clause of ϕ. Figure 7 depicts the clause branch C1 that corresponds
to all assignments which do not satisfy Ci, that is, all assignments with x1 = x2 = 1 and
x4 = 0.

Formally, the initial weight function is I(qai,j) = 1 if j = 1 = a and I(qai,j) = 0 otherwise.
The final weight function F (qai,j) = 1 if j = n and a = 5 and F (qai,j) = 0, otherwise. The
transition function δ is defined as follows:

δ(qai,j , o, q
a′
i,j) =

1 a = 1, a′ = 2, o = ▷xj

1 a = 2, a′ = 3, o = ◁xj

1 a = 2, a′ = 4, and there is a variable assignment τ with
τ(xj) = 1 and τ ̸|= Ci

1 a = 3, a′ = 5, o = a, and there is a variable assignment τ with
τ(xj) = 0 and τ ̸|= Ci

1 a = 4, a′ = 5, o = ◁xj

All other transitions have weight 0.
We claim that W ′ represents w′, where w′(d, t) = 1 if αt ̸|= ϕ and w′(d, t) = 0 otherwise.

To this end, let t ∈ JAK(d) be a tuple and let τ = αt be the variable assignment encoded by
t. It is easy to see that there is an accepting run ρ of W ′ for r with weight wρ = 1, starting
in qai,0, if and only if τ does not satisfy clause Ci.

As mentioned before, the weighted VSet-automaton W is the union of W ′ and WA. Recall
that, over the tropical semiring, 0 = ∞, 1 = 0, and the weight of a tuple t is the minimal
weight over all accepting runs which encode t. Thus, the weight function represented by W
is exactly w, as claimed. This concludes the proof that Max[uVSA,RegT] is OptP-hard.

It remains to show that Min[uVSA,RegQ] and Max[uVSA,RegQ] are OptP-hard. We
first show OptP-hardness for Max[uVSA,RegQ].

We give a metric reduction from the OptP-complete problem of weighted satisfiability
(WSAT) [Kre88], which is defined as follows. Let ϕ(x1, . . . , xn) be a propositional formula in
CNF with binary weights. WSAT asks, given the CNF formula ϕ(x1, . . . , xn) with m clauses

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:33

and weights w1, . . . , wm, for the maximal weight of an assignment, where the weight of an
assignment is the sum of the weights of the satisfied clauses.

Denote by WSAT(ϕ) the output of WSAT on input ϕ. Let ϕ(x1, . . . , xn) be a Boolean
formula in CNF. Let d,A,W be as defined before. However, the weights in W are defined
differently. That is, W is the union of WA and W ′, where WA is a copy of A, where all
transitions have weight 1. Furthermore, let x be the sum of all clause weights and F (q) = x,
if q is an accepting state of A. The automaton W ′ is defined exactly as before, however,
accepting with final weight F (q) = −wi if q is the final weight of the branch of clause
Ci and wi is the weight of Ci. Observe that w(d, t) = JW KQ(d, t) is exactly the weighted
sum of all clauses, which are satisfied by the valuation αt encoded by t. It follows that
Max(S, d, w) = WSAT(ϕ). Defining T2(x, y) 7→ y concludes the proof for Max[uVSA,RegQ].

The proof for Min[uVSA,RegQ] is analogous, replacing the weight x with −x and −wi

with weight wi. Therefore, Min(S, d, w) = −WSAT(ϕ). Defining T2(x, y) 7→ −y concludes
the proof.

7.3. Sum and Average Aggregation. Since Sum and Average are already intractable
for VSA spanners and CWidth weight functions (Theorems 5.4, 5.5, and 5.6), they are
intractable for VSA spanners and Reg/UReg weight functions as well. In a similar vein as
in Section 5, the problems become tractable if we have unambiguity. However, in the case of
the tropical semiring, we require unambiguity of both the spanner and the representation of
the weight function. We begin by showing that Sum[uVSA,RegQ] and Sum[uVSA,URegT]
are in FP. In both cases the problem can be reduced to computing the sum of the lengths of
source-to-target paths in a DAG, by using Lemma 7.1.

Theorem 7.4. Sum[uVSA,RegQ] is in FP.

Proof. Let d ∈ Σ∗, A ∈ uVSA, and W be a weighted VSet-automaton representing w ∈ RegQ.
Let D = (N,E) and m be as guaranteed by Lemma 7.1. It follows that

Sum(JAK, d, w) =
∑

t∈JAK(d)

∑
p∈Paths(src,snk),m(p)=t

len(p) =
∑

p∈Paths(src,snk)

len(p) .

All paths p ∈ Paths(src, snk) consist of |d| + 1 + 2 · |Vars(A)| edges. We assume, w.l.o.g.,
that N = {1, . . . , n}, with src = 1 and snk = n. Therefore, Sum(JAK, d, w) can be computed
by interpreting the edge relation E as a Qn×n matrix M and computing the weight

I ×M |d|+1+2·|Vars(A)| × F T ,

where I = (1, 0, . . . , 0) (resp., F = (0, . . . , 0, 1)) is the vector which assigns 0 to all nodes
but 1 (resp., n), which is assigned the weight 1. Recall that the numerical semiring has an
efficient encoding. Therefore, Sum(S, d, w) can indeed be computed in polynomial time.

Theorem 7.5. Sum[uVSA,URegT] is in FP.

12:34 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Proof. Let D,m be the DAG and the bijection guaranteed by Lemma 7.1. We have that

Sum(JAK, d, w)
(1)
=

∑
t∈JAK(d)

w(d, t)

(2)
=

∑
t∈JAK(d)

min
p∈Paths(src,snk),m(p)=t

len(p)

(3)
=

∑
p∈Paths(src,snk)

len(p) .

The first equation follows from the definition of Sum. The second equation follows from
property (2) of Lemma 7.1. The third equation must hold due to m being a bijection between
tuples t ∈ JAK and paths p ∈ Paths(src, snk).

It remains to show that the sum of the lengths of source-to-target paths in a DAG
D = (N,E) can be computed in polynomial time. We begin by observing that given two
nodes x, y ∈ D the number of paths from x to y in D can be computed in polynomial time
via dynamic programming. Furthermore, given an edge e = (x, y) ∈ E one can compute
the number of paths from src to snk which use e by multiplying the number of path’s from
src to x with the number of paths from y to snk. Therefore, the function c : E → N which,
given an edge e ∈ E assigns the number of paths using e can be computed in polynomial
time. Recall that over the tropical semiring, ⊗ = + and therefore len(p) =

∑
e∈p

len(e). It

therefore follows that

Sum(JAK, d, w) =
∑

p∈Paths(src,snk)

len(p)

=
∑

p∈Paths(src,snk)

∑
e∈p

len(e)

=
∑
e∈E

(len(e)× c(e)) .

Therefore, Sum can be computed by representing the weights len(e) as a vector I and the
counts c(e) as a vector F . Thus, Sum(JAK, d, w) = I × F T , which can be computed in
polynomial time, as RegT has an efficient encoding.

We observe that FP upper bounds for Average follows directly from the corresponding
upper bound for Sum and the FP upper bound for Count (Theorem 3.1).

Corollary 7.6. Average[uVSA,RegQ] and Average[uVSA,URegT] are in FP.

If we relax the restriction that weight functions are given as unambiguous automata,
Sum and Average become #P-hard again.

Theorem 7.7. Sum[uVSA,RegT] and Average[uVSA,RegT] are #P-hard.

Proof. We begin by giving a parsimonious reduction from the #P-complete problem of
#CNF. To this end, let c = 1 in the case of Sum and c = 2n in the case of Average.

Let ϕ(x1, . . . , xn) be a propositional formula in conjunctive normal form. Let A, d be as
constructed in the proof of Theorem 7.3 and let w be the weight function such that w(d, t) = c
if the corresponding assignment αt satisfies ϕ and w(d, t) = 0 otherwise. Therefore, with c := 1

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:35

it follows directly that #CNF(ϕ) = Sum(JAK, d, w), which shows that the problem is #P-
hard. For Average let c := 2n. It follows that #CNF(ϕ) = x = x·2n

2n = x·c
2n = Avg(JAK, d, w),

implying that Average[uVSA,RegT] is also #P-hard.
It remains to show that there is a weighed automaton W representing w ∈ RegT. As

in the proof of Theorem 7.3, W is the union of two weighted VSet-automata WA and W ′,
where WA is a copy of A, assigning weight 0 to all initial states and transitions of A and
weight c to all final states. Furthermore, W ′ is as defined, that is

JW ′KT(a
n, t) =

{
0 if αt ̸|= ϕ

∞ otherwise.

It follows directly that W encodes the weight function w, concluding the proof.

Finally, we show that Sum and Average for RegT weight functions are in FP#P.

Theorem 7.8. Sum[VSA,Reg] and Average[VSA,Reg] are in FP#P.

Proof. We will begin by showing that Sum[VSA,Reg] is in FP#P if all weights assigned by
w are natural numbers. We will use this as an oracle for the general upper bound. Let A
be a VSet-automaton, d ∈ Σ∗ be a document and w ∈ Reg be a weight function, which
only assigns natural numbers and is represented by a weighted VSet-automaton W . A
counting Turing Machine M for solving the problem in #P would have w(d, t) accepting
runs for every tuple in A(d). More precisely, M guesses a d-tuple t over Vars(A) and
can check whether t ∈ JAK(d) and w(d, t) > 0. If so, M branches into w(d, t) accepting
branches. Otherwise, M rejects. Per construction, M has exactly w(d, t) accepting branches
for every tuple t ∈ JAK(d) with w(d, t) > 0. Thus, the number of accepting runs is exactly∑

t∈JAK(d)w(d, t) = Sum(JAK, d, w).
Now, let w ∈ Reg be a weight function, represented by the weighted VSet-automaton

W . We can assume, w.l.o.g., that all rationals in W have the denominator dlcm.16 We recall
that w(d, t) = JW K(d, πVars(W)(t)). Thus, w(d, t) is the product of |d| + 1 + 2 ∗ |Vars(A)|
rationals, where each factor has the denominator dlcm. Therefore, JW K(d, πVars(W)(t)) must
have the denominator d

|d|+1+2|Vars(A)|
lcm

17, which has an encoding length linear in W and d.
Thus, Sum[VSA,Reg] can be computed by two calls to a Sum[VSA,Reg]-oracle. The first
call only considers positive numerators, whereas the second call only considers negative
numerators. Then, Sum[VSA,Reg] is the difference of the results of both oracle calls, divided
by d

|d|+1+2∗|Vars(A)|
lcm .
The upper bound for Average[VSA,RegT] is immediate from the upper bound of

Sum[VSA,RegT] and Theorem 3.1.

7.4. Quantile Aggregation. The situation for q-Quantile is different from the other
aggregation problems, since it remains hard, even when both the spanner and weight function
are unambiguous. The reason is that the problem reduces to counting the number of paths
in a weighted DAG that are shorter than a given target weight, which is #P-complete due
to Mihalák et al. [MSW16].

16This can be achieved by computing the least common multiple of all denominators dlcm in W and
expanding all fractions a

b
by b

dlcm
.

17For the tropical semiring the denominator is actually dlcm, as the multiplicative operation is +, which
does not increase the denominator if both summands have the same denominator.

12:36 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Theorem 7.9. q-Quantile[uVSA,UReg] is #P-hard under Turing reductions, for every
0 < q < 1.

At the core of the quantile problem is the problem of counting up to a threshold k ̸=∞:

Count<k(S, d, w) := |{t ∈ P (d) | w(d, t) ≤ k}|.

The problems Count>k(S, d, w) and Count=k(S, d, w) are defined analogously. The decision
problem Count<k[S,W] is defined analogously to Sum[S,W]. We begin by showing that
Count<k[uVSA,URegQ] and Count<k[uVSA,URegT] #P-hard under Turing reductions.
To this end, we reduce from #Partition and #-Product-Partition.

Given a set N = {n1, . . . , nn} of natural numbers. Two sets N1, N2 are a partition of
N if N1 ∪N2 = N and N1 ∩N2 = ∅. Furthermore, a partition is perfect, if the sums of the
natural numbers in both sets are equal. Given such a set N = {n1, . . . , nn}, the #Partition
problem asks for the number of perfect partitions.

Analogously, a partition N1, N2 is called a perfect product partition, if the products of
the natural numbers in both sets are equal. Furthermore, the Product-Partition Problem
asks whether there is a perfect product partition and the problem #Product-Partition asks
for the number of perfect product partitions.

Proposition 7.10. #Partition and #Product-Partition are #P-complete under Turing
reductions.

Proof. Mihalák et al. [MSW16, Theorem 1] show that #Partition is #P-complete.
The #P-completeness of #Product-Partition follows by a reduction of Ng et al. [NBCK10,

Theorem 1], who give a reduction from Exact Cover by 3-sets (X3C) to Product-Partition.
We note that this reduction is weakly parsimonious, as defined by Hunt et al. [HMRS98,
Definition 2.5]. That is, for every solution of an X3C instance, there are exactly 2 solutions
for the constructed Product-Partition instance. Furthermore, Hunt et al. [HMRS98, implicit
in Theorem 3.8] show that #X3C is #P-hard. Therefore, the reduction of Ng et al. [NBCK10,
Theorem 1] can be used to give a Turing reduction from #X3C to #Product-Partition, which
implies that #Product-Partition is also #P-hard under Turing reductions. It is easy to see
that #Product-Partition is in #P.

Lemma 7.11. Let k ∈ Q. Then Count<k[uVSA,URegT] is #P-hard under Turing
reductions.

Proof. We use the same idea as Mihalák et al. [MSW16, Theorem 1] to encode #Partition.
Let N = {n1, . . . , nn} be an instance of #Partition. Let d = an. We construct A and W
such that every tuple t ∈ JAK(d) corresponds to a partition of N . Furthermore, w(d, t) = k
if and only if the partition encoded by t is perfect.

More formally, A := (Σ, V,Q, q0, QF , δ), where Σ := {a}, V := {x1, . . . , xn}, Q := {qji |
1 ≤ i ≤ n, 1 ≤ j ≤ 5}, where q5i = q1i+1 for all 1 ≤ i < n, q0 := q11, QF := {q5n}, and for
1 ≤ i ≤ n, δ is defined as follows:

δ(qji , σ) :=

{q2i } if 1 ≤ i ≤ n, σ = ▷xi , and j = 1

{q3i } if 1 ≤ i ≤ n, σ = ◁xi , and j = 2

{q4i } if 1 ≤ i ≤ n, σ = a, and j = 2

{q5i } if 1 ≤ i ≤ n, σ = a, and j = 3

{q5i } if 1 ≤ i ≤ n, σ = ◁xi , and j = 4 .

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:37

Recall, that q5i = q1i+1 for all 1 ≤ i < n.
Furthermore, we define the weighted VSet-automaton W encoding w the same way as

A. That is, all transitions labeled by a variable operation x ∈ ΓV are assigned weight 1,
δ(q3i , a, q

5
i) = ni and δ(q2i , a, q

4
i) = −ni, the initial- and final weight functions:

I(q) :=

{
1 if q = q0

0 otherwise ;

F (q) :=

{
k if q ∈ QF

0 otherwise .

We observe that every tuple t ∈ JAK(d) encodes a partition of N , that is, ni ∈ N1 if
t(xi) = [i, i⟩ and ni ∈ N2 if t(xi) = [i, i+ 1⟩. Furthermore, for every tuple t ∈ JAK(d), the
weight w(d, t) is exactly k plus the difference of the sum of all elements in N1 and the sum
of all elements in N2. We make some observations about A, d, and w.
(1) The number of perfect partitions is exactly Count=k(JAK, d, w) ;
(2) Count<k(JAK, d, w) = Count>k(JAK, d, w) ;
(3) Count(JAK, d) = 2 · Count<k(JAK, d, w) + Count=k(JAK, d, w) ;
(4) Count(JAK, d) = 2n+1 ;
(5) Count=k(JAK, d, w) = 2n+1 − 2 · Count<k(JAK, d, w) .
Due to Observations (1) and (5) it follows that the number of perfect partitions can be
computed by a single call to a Count<k(JAK, d, w)-oracle.

It remains to argue that the observations (1)− (5) hold. Observation (1) follows directly
from the previous observation that the weight of each tuple is k plus the difference of the
sum of all elements in N1 and the sum of all elements in N2. Observation (2) follows from
the fact that the partition problem is symmetric, that is for every partition N1, N2 of N
there is also a partition N2, N1. Observation (3) follows from (2), and (4) from the fact that
there are 2n subsets of N and therefore 2 · 2n possible partitions. The last observation (5)
follows from (3) and (4). This concludes the proof.

Along the same lines we show that Count<1[uVSA,URegQ] is #P-hard under Turing
reductions. Note that we do not show hardness for Count<k[uVSA,URegQ], but only for
the case k = 1.18

Lemma 7.12. Count<1[uVSA,URegQ] is #P-hard under Turing reductions.

Proof. Let N be an instance of #Product-Partition. We construct A, d,w and W , as
constructed in the proof of Lemma 7.11. However in W , δ(q3i , a, q

5
i) = ni and δ(q2i , a, q

4
i) =

1
ni

.
Observe, that w(d, t) is exactly the product of all elements in N1 divided by the product
of all elements in N2, where ni ∈ N1 if and only if t(xi) = [i, i⟩ and ni ∈ N2 if and only if
t(xi) = [i, i+1⟩. Therefore, the number of perfect product partitions is exactly the number of
tuples t ∈ JAK(d) with w(d, t) = 1. Using the same argument as in the proof of Lemma 7.11,
it follows that

#Product-Partition = 2n+1 − 2 · Count<1(JAK, d, w) ,
and thus, #Product-Partition can be computed by a single Count<1[uVSA,URegQ]-oracle
call.

18Recall that, in the proof for the tropical semiring, we add k to all accepting runs by having F (q) = k, if
q ∈ QF . This is not possible over the numerical semiring, as the multiplicative operation is the numerical
multiplication · and not the numerical addition +.

12:38 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

The following corollary follows directly from Lemmas 7.11 and 7.12.

Corollary 7.13. Count<1[uVSA,UReg] is #P-hard under Turing reductions.

We are finally ready to give the proof of Theorem 7.9.

Proof of Theorem 7.9. We show that Count<1(JAK, d, w) can be computed in polynomial
time, using a q-Quantile[uVSA,UReg]-oracle therefore, concluding that the problem
q-Quantile[uVSA,UReg] is also #P-hard under Turing reductions.

Let A ∈ uVSA, d ∈ Σ∗, and w ∈ UReg represented by an unambiguous weighted
VSet-automaton W . Furthermore, let 0 < q < 1, such that q = a

b . Due to Theorem 3.1,
c := Count(JAK, d) can be computed in polynomial time. Let 0 ≤ r ≤ c · (b − 1). By
Lemma 4.719, there are VSet-automata Ar, A

′
r ∈ uVSA and documents dr, d

′
r, such that

Count(JArK, dr) = r and Count(JA′
rK, d′r) = c · (b− 1)− r. Let Wr (resp., W ′

r) be Ar (resp.,
A′

r), interpreted as unambiguous weighted VSet-automaton, where all transitions of Ar (resp.,
A′

R) have weight 1, the initial weight function assigns weight 1 to the initial state of Ar

(resp., A′
r), and the final weight function assigns weight 0 (resp., 1)20 to all accepting states

of Ar (resp., A′
r). Slightly overloading notation, we define

A′ := (A · dr · d′r) ∨ (d ·Ar · d′r) ∨ (d · dr ·A′
r)

and
W ′ := (W · dr · d′r) ∨ (d ·Wr · d′r) ∨ (d · dr ·W ′

r)

It is straightforward to verify that both, A′ and W ′ are unambiguous. Let d′ = d · dr · d′r and
let w′ (resp, wr, w

′
r) be the weight function, represented by W ′ (resp., Wr,W

′
r). It follows

from the definition that

Count(JA′K, d′) = Count(JAK, d) + Count(JArK, dr) + Count(JA′
rK, d

′
r)

= c+ r + (c · (b− 1)− r) = c · b .
Furthermore, recalling that w(d, t) = 0 for all tuples t ∈ JArK(dr) and w(d, t) = 1 for all
tuples t ∈ JA′

rK(d′r), we have that

Count<1(JA′K, d′, w′)

= Count<1(JAK, d, w) + Count<1(JArK, dr, wr) + Count<1(JA′
rK, d

′
r, w

′
r)

= Count<1(JAK, d, w) + r + 0 .

Using binary search, we compute rmin as the smallest r with q-Quantile(JA′K, d′, w′) < 1.
Thus,

Count<1(JA′K, d′, w′)

Count(JA′K, d′)
=

Count<1(JAK, d, w) + rmin

c · b
≥ q .

For the sake of contradiction, assume that Count<1(JAK,d,w)+rmin

c·b > q = c·a
c·b . It follows that,

Count<1(JAK, d, w)+ rmin > c · a and therefore, as all involved numbers are natural numbers,
Count<1(JAK, d, w) + rmin − 1 ≥ c · a. Thus, Count<1(JAK,d,w)+(rmin−1)

c·b ≥ q, leading to the
desired contradiction, as rmin was assumed to be minimal.

We have that Count<1(JAK,d,w)+rmin

c·b = q = c·a
c·b . It follows that

Count<1(JAK, d, w) = c · a− rmin ,

19For instance with v = Vars(A) · b.
20Note that we use 0 and 1 instead of 0 and 1 on purpose. The reason is that we want to assign the same

weights for both semirings.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:39

which concludes the proof.

8. Aggregate Approximation

Now that we have a detailed understanding on the complexity of computing exact aggregates,
we want to see in which cases the result can be approximated. We only consider the
situation where the exact problems are intractable and want to understand when the
considered aggregation problems can be approximated by fully polynomial-time randomized
approximation schemes (FPRAS), and when the existence of such an FPRAS would contradict
commonly believed conjectures, like RP ̸= NP and the conjecture that the polynomial
hierarchy does not collapse.

Based on the results for the computation of exact aggregates, we can already give some
insights into the possibility of approximation. That is, Zuckerman [Zuc96] shows that #SAT
can not be approximated by an FPRAS unless NP = RP. Furthermore, as shown by Dyer et
al. [DGGJ04], this characterization extends to all problems which are #P-complete under
parsimonious reductions. Therefore, due to Theorems 5.4, and 7.7, we have the following
corollary.

Corollary 8.1. Unless NP = RP, the problems Sum[VSA,CWidth], Sum[uVSA,RegT],
and Average[uVSA,RegT] do not have an FPRAS.

Arenas et at. [ACJR19, Corollary 3.3] showed that every function in spanL admits an
FPRAS. Therefore, due to Theorem 5.5, we have the following corollary.

Corollary 8.2. Sum[VSA,CWidthN] has an FPRAS.

In the remainder of this section, we will revisit the other intractable cases of spanner
aggregation and study whether or not approximation is possible.

8.1. Approximation is Hard at First Sight. We begin with some inapproximability
results. For instance, as we show now, the existence of an FPRAS for the problems Min,
Max with RegQ weight functions would imply a collapse of the polynomial hierarchy, even
when spanners are unambiguous. Furthermore, for Max and RegT weight functions the
same result holds.

Theorem 8.3. Min[uVSA,RegQ] and Max[uVSA,RegQ] do not have an FPRAS, unless
the polynomial hierarchy collapses to the second level.

Proof. Assume there is an FPRAS for Min[uVSA,RegQ]. We will show that such an FPRAS
implies that the NP-complete problem SAT is in BPP, which implies that the polynomial
hierarchy collapses to the second level.21

Let ϕ(x1, . . . , xn) be a Boolean formula, given in CNF, and let A, d, and W ′ be as defined
in the proof for Max[uVSA,RegT] of Theorem 7.3, where W ′ is interpreted as a weighted
VSet-automaton over the numerical semiring. Observe that, due to 1 = 1 and 0 = 0, it
follows that JW ′KQ(d, t) ≥ 1 if the valuation αt encoded by t does not satisfy at least one
clause of ϕ and 0 otherwise. Let w be the weight function encoded by W ′.

21NP ⊆ BPP implies that PH ⊆ BPP (cf. Zachos [Zac88]) and as BPP ⊆ (ΠP
2∩ΣP

2) (cf. Lautemann [Lau83])
the polynomial hierarchy collapses on the second level. Furthermore, as BPP is closed under complement,
coNP ⊆ BPP implies that NP ⊆ BPP resulting in the same collapse of the polynomial hierarchy.

12:40 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

For the sake of contradiction, assume that there is an FPRAS for Min[uVSA,RegQ] and
let δ = 0.4. Assume that ϕ is satisfiable, thus Min(JAK, d, w) = 0. Then the FPRAS must
return 0 with probability at least 3

4 . On the other hand, if ϕ is not satisfiable, the FPRAS

must return a value x ≥ (1− δ) · 1 = 0.6 with probability at least 3
4 . Consider the algorithm

which calls the FPRAS and accepts if the approximation is 0, and rejects otherwise. This
algorithm is a BPP algorithm for SAT, resulting in the desired contradiction.

The proof for Max[uVSA,RegQ] is analogous. The only difference is that the final
weight function of W ′ is multiplied by −1, that is, W ′ assigns weight −x to each tuple,
encoding a valuation α which does not satisfy x clauses of ϕ.

Theorem 8.4. Max[uVSA,RegT] cannot be approximated by an FPRAS, unless the poly-
nomial hierarchy collapses to the second level.

Proof. Let ϕ(x1, . . . , xn) be a Boolean formula, given in CNF. We assume, w.l.o.g., that the
valuation which assigns false to all variables does not satisfy ϕ. Let A, d, and w be as defined
in the proof for Max[uVSA,RegT] in the proof of Theorem 7.3. Thus, Max(JAK, d, w) ≥ 1
if ϕ is satisfiable and Max(JAK, d, w) = 0 if ϕ is not satisfiable.

For the sake of contradiction, assume that there is an FPRAS for Max[uVSA,RegT]
and let δ = 0.4. Assume that ϕ is satisfiable, thus Max(JAK, d, w) ≥ 1. Then the FPRAS
must return a value x ≥ (1− δ) · 1 = 0.6 with probability at least 3

4 . On the other hand, if ϕ
is not satisfiable, the FPRAS must return 0 with probability at least 3

4 . Therefore, we can
obtain a BPP algorithm for SAT as follows. The algorithm first calls the FPRAS, accepts if
the approximation is bigger than 0, and rejects otherwise.

Concerning Sum and Average the only case which is not resolved by Corollary 8.1
is the case of Average[VSA,CWidth]. We show now that, under reasonable complexity
assumptions, this problem can also not be approximated by an FPRAS.

Theorem 8.5. Average[VSA,CWidth] cannot be approximated by an FPRAS, unless the
polynomial hierarchy collapses to the second level.

Proof. We will show that such an FPRAS implies that the NP-complete problem SAT is in
BPP, which implies that the polynomial hierarchy collapses to the second level.

To this end, let A, d and w be as constructed in the proof of Theorem 5.4. Recall that
given a propositional formula ϕ in CNF, we have that Sum(JAK, d, w) = c, where c is the
number of satisfying assignments of ϕ.

Assume there is an FPRAS for Average[VSA,CWidth] and let δ = 0.5. Assume that
ϕ is not satisfiable. Then the FPRAS on input A, d,w must return 0 with probability at
least 3

4 . On the other hand, if ϕ is satisfiable, thus c > 0, the FPRAS must return a value
x ≥ (1− δ) ∗Avg(JAK, d, w) = 1

2 ·
c

Count(JAK,d) > 0, with probability at least 3
4 . Therefore, the

algorithm which first approximates Avg(JAK, d, w) with δ = 0.5, rejects if the approximation
is 0 and accepts otherwise is a BPP algorithm for SAT, implying that NP ⊆ BPP, which
implies that the polynomial hierarchy collapses to the second level.

We now turn to the quantile problem. It turns out that this problem is difficult to
approximate even if the weight functions only return 0 or 1.

Theorem 8.6. Let 0 < q < 1. Then, q-Quantile[VSA,CWidth] cannot be approximated
by an FPRAS, unless the polynomial hierarchy collapses to the second level.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:41

Proof. We will show that an FPRAS for q-Quantile[VSA,CWidth] implies a BPP algo-
rithm for SAT. To this end, let ϕ be a propositional formula ϕ in CNF. Assume that q = 1

2
and let A and d be as constructed in the proof of Theorem 5.4. However, let w be the weight
function which is represented by the Q-Relation R over {x} with

R(d) :=

{
1 if d = 1

0 otherwise.

Recall from the construction of A and d that A is the union of two automata A1, A−1, such
that Count(JA1K, d) = 2n and Count(JA−1K, d) = s, where s is the number of non-satisfying
assignments for ϕ, furthermore, t ∈ JA1K(d) if and only if dt(x) = 1 and t ∈ JA−1K(d) if and
only if dt(x) = −1. We observe that R(−1) = 0 and therefore, for every t ∈ JAK(d) we have
that

w(d, t) =

{
1 if t ∈ JA1K(d)
0 if t ∈ JA−1K(d) .

Thus, 1
2 -Quantile(JAK, d, w) = 0 if and only if ϕ is not satisfiable.

Assuming there is an FPRAS for q-Quantile[VSA,CWidth], one can decide SAT
with a probability of 3

4 by approximating q-Quantile(JAK, d, w) with δ = 0.5, rejecting if the
approximation is 0 and accepting otherwise. This, however, implies that NP ⊆ BPP, which
implies a collapse of the polynomial hierarchy on the second level.

The general case for 0 < q < 1 follows by slightly adopting the previous construction.
That is, assume that q = a

b . Due to 0 ≤ q ≤ 1, it must hold that 1 ≤ a < b. We construct
a VSet-automaton A′ and a document d′ as follows. Let σ /∈ Σ be a new alphabet symbol.
The document d′ consists of b copies of d, separated by σ and A′ consists of a copies of A−1

and b− a copies of A1. More formally,

d′ := (d · σ)b .

Furthermore, slightly abusing notation, we define

A′ := (A−1 · σ)a · (A1 · σ)b−a .

We observe that on input document d′, the automaton A′ accepts exactly 2n · (b− a) tuples
t with w(d′, t) = 1 and s · a tuples with weight 0. Therefore, a

b -Quantile(S, d, w) = 0 if and
only if

s · a
2n · (b− a) + s · a

≥ a

b
.

Solving this equation for s, it holds that a
b -Quantile(S, d, w) = 0 if and only if s = 2n and

therefore a
b -Quantile(S, d, w) = 0 if and only if ϕ is not satisfiable.

The rest of the proof is analogous to the case that q = 1
2 .

When the spanners are unambiguous, the simplest intractable case for q-Quantile is
the one with UReg weight functions (see Table 1). Again, we can show that approximation
is hard.

Theorem 8.7. Let 0 < q < 1. Then, q-Quantile[uVSA,URegT] cannot be approximated
by an FPRAS, unless the polynomial hierarchy collapses on the second level.

Proof. We show that an FPRAS for q-Quantile[uVSA,URegT] implies a BPP algorithm
for the NP-complete Partition problem. To this end, let S = {s1, . . . , sn} be a set of natural

12:42 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

numbers. Furthermore, let A, d,w be constructed from S as in the proof of Lemma 7.11 with
k = 0.

Per construction of A, d and w, every tuple t ∈ JAK(d) corresponds to a partition of S,
such that the partition is perfect if and only if w(d, t) = 0. Furthermore, due to the partition
problem being symmetrical, for every tuple t ∈ JAK(d) with w(d, t) = k there is a tuple
t′ ∈ JAK(d) with w(d, t) = −k. Thus, 1

2 -Quantile(JAK, d, w) = 1 if and only if there is a tuple
t ∈ JAK(d) with w(d, t) = 0.

Let q = 1
2 . Assuming there is an FPRAS for q-Quantile[uVSA,URegT], one can

decide Partition with a probability of 3
4 by approximating q-Quantile(JAK, d, w) with δ = 0.5,

accepting if the approximation is 0 rejecting otherwise. This implies that the algorithm
accepts if and only if there is a perfect partition and therefore, NP ⊆ BPP, which implies a
collapse of the polynomial hierarchy on the second level.

For the general case, assume that q = a
b . We observe that due to 0 < q < 1, it must

hold that a < b. By Observation (4) in the proof of Lemma 7.11, Count(JAK, d) = 2n+1.
As in the proof of Theorem 7.9, we construct a VSet-automaton A′, a document d′ and
a weight function w′, represented by the weighted automaton W ′ ∈ URegT , such that
q-Quantile(A′, d′, w′) = 0 if and only if S has a perfect partition. By Lemma 4.7, there are
VSet-automata A−1, A1 ∈ uVSA and documents d−1, d1 ∈ Σ∗ such that Count(JA−1K, d−1) =
(a − 1) · 2n and Count(JA1K, d1) = (b − a − 1) · 2n. Let W−1 (resp., W1) be the same as
A−1 (resp., A1) interpreted as weighted automaton over the tropical semiring, such that all
transitions are assigned weight 0 and the final weight function assigns weight −1 (resp., 1) to
all accepting states. Let w−1 (resp., w1) be the weight function, represented by W−1 (resp.,
W1) Thus, w−1(d−1, t) = −1 if and only if t ∈ JA−1K(d−1) and w1(d1, t) = 1 if and only if
t ∈ JA1K(d1). Let σ be a new alphabet symbol. We construct A′, d′, and W ′ as follows.

d′ = d−1 · σ · d · σ · d1
A′ = (A−1 · σ · d · σ · d1) ∨ (d−1 · σ ·A · σ · d1) ∨ (d−1 · σ · d · σ ·A1)

W ′ = (W−1 · σ · d · σ · d1) ∨ (d−1 · σ ·W · σ · d1) ∨ (d−1 · σ · d · σ ·W1) .

Furthermore, let w′ be the weight function, represented by W ′. It follows that

Count<0(JA′K, d′, w′) = (a− 1) · 2n +Count<0(JAK, d, w)

Count≤0(JA′K, d′, w′) = (a− 1) · 2n +Count≤0(JAK, d, w)

Count(JA′K, d′) = (a− 1) · 2n + 2 · 2n + (b− a− 1) · 2n = b · 2n .

We make a case distinction on S. If S has a perfect partition, Count<0(JAK, d, w) < 2n and
Count≤0(JAK, d, w) ≥ 2n. Thus, q-Quantile(A′, d′, w′) = 0. Otherwise, if S has no perfect
partition, Count<0(JAK, d, w) = 2n and therefore q-Quantile(A′, d′, w′) < 0. Therefore,
q-Quantile(A′, d′, w′) = 0 if and only if S has a perfect partition. This concludes the
proof.

We note that the case of approximating q-Quantile[uVSA,URegQ] does not follow
analogous to the proof for q-Quantile[uVSA,URegT]. The main reason is the fact that
#Partition can be encoded into a weight function automaton wT ∈ URegT, such that perfect
partitions correspond to tuples with weight 0, whereas #Product-Partition is encoded into
a weight function wQ ∈ URegQ, such that perfect product partitions correspond to tuples
with weight 1. Furthermore, all weights assigned by wT are integers, whereas wQ assigns

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:43

rational numbers. Therefore it is not obvious whether or not q-Quantile[uVSA,URegQ]
can be approximated by an FPRAS. This case is left open for future research.

8.2. When an FPRAS is Possible. We show that Theorem 8.5 is very much on the
intractability frontier: it shows that approximation is intractable if weight functions can
assign 1 and −1. On the other hand, if the weight functions are restricted to nonnegative
numbers, then approximating Sum and Average is possible with an FPRAS.

Theorem 8.8. Sum[VSA,CWidthQ+] and Average[VSA,CWidthQ+] can be approxi-
mated by an FPRAS.

Proof. From Corollary 8.2 and Theorem 3.1 we conclude that there is an FPRAS for each of
the problems Sum[VSA,CWidthN] and Count[VSA]. We will use these FPRAS to give an
FPRAS for Sum[VSA,CWidthQ+] and Average[VSA,CWidthQ+].

In the following, we will denote an FPRAS approximation with error rate δ of the
problem Count(JAK, d) (resp., Sum(JAK, d, w) and Avg(JAK, d, w)) by Count(JAK, d, δ) (resp.,
Sum(JAK, d, w, δ) and Avg(JAK, d, w, δ)).

We begin by showing that Sum[VSA,CWidthQ+] admits an FPRAS. Let A ∈ VSA be
a VSet-automaton, d ∈ Σ∗ be a document, and w ∈ CWidthQ+ be a weight function. Recall
that every weight x ∈ Q+ is encoded by its numerator and its denominator. Let D be the set
of denominators used by w and let lcm be the least common multiple of all elements in D.
We note that, as argued in the proof of Theorem 7.8, lcm can be computed in polynomial
time. Let wN(d, t) = w(d, t) · lcm. Per definition of lcm, wN ∈ CWidthN only assigns natural
numbers. Furthermore, w(d, t) = wN(d,t)

lcm . It follows that Sum(JAK, d, w, δ) := Sum(JAK,d,wN,δ)
lcm

is an δ-approximation of Sum(S, d, w) with success probability 3
4 , concluding this part of the

proof.
It remains to show that Average[VSA,CWidthQ+] admits an FPRAS. We show

that the algorithm which, with success rate (34)
0.5, calculates a δ

3 -approximations for Count
and Sum, and then returns the quotient of the results, is an FPRAS for the problem
Average[VSA,CWidthQ+]. We note that the probability that both approximations are
successful is (34)

0.5 · (34)
0.5 = 3

4 .

It remains to show that the quotient of both results, Avg(JAK, d, w, δ) := Sum(JAK,d,w, δ
3
)

Count(JAK,d, δ
3
)
,

is indeed a δ-approximation of Avg(JAK, d, w). Formally, we have to show that

(1− δ) ·Avg(S, d, w) ≤ Avg(JAK, d, w, δ) ≤ (1 + δ) ·Avg(JAK, d, w) .

We begin with the first inequality:

Avg(JAK, d, w, δ) =
Sum(JAK, d, w, δ3)
Count(JAK, d, δ3)

≥
(1− δ

3) · Sum(JAK, d, w)
(1 + δ

3) · Count(JAK, d)

=
1− δ

3

1 + δ
3

· Sum(JAK, d, w)
Count(JAK, d)

≥ (1− δ) ·Avg(JAK, d, w) .

12:44 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Algorithm 2: PositionalQuantileApprox(A, d,w, q, δ)
Input: A ∈ VSA, d ∈ Σ∗, w ∈ Poly, 0 ≤ q ≤ 1, 0 ≤ δ ≤ 1
Output: A positional δ-approximation of q-Quantile(JAK, d, w) with success rate 3

4 .
1 W ← ⦃·⦄
2 for 1 ≤ i ≤ 4 · ⌈ ln(16)

2δ2
⌉ do

3 t← Sample(A, d, δ3)
4 Add w(d, t) to W

5 if |W | < ⌈ ln(16)
2δ2
⌉ then

6 Fail ▷ Sample size too small
7 Return q-Quantile(W)

It is straightforward to verify that 1− δ
3

1+ δ
3

≥ (1 − δ) holds for every 0 ≤ δ ≤ 1. The second
inequality follows analogously:

Avg(JAK, d, w, δ) =
Sum(JAK, d, w, δ3)
Count(JAK, d, δ3)

≤
(1 + δ

3) · Sum(JAK, d, w)
(1− δ

3) · Count(JAK, d)

=
1 + δ

3

1− δ
3

· Sum(JAK, d, w)
Count(JAK, d)

≤ (1 + δ) ·Avg(JAK, d, w) .

Again, it is straightforward to verify that 1+ δ
3

1− δ
3

≤ (1 + δ) holds for every 0 ≤ δ ≤ 1.

Our second positive result is about approximating quantiles in a positional manner. Let
d be a document, S be a document spanner, w be a weight function and 0 ≤ q ≤ 1 with q ∈ Q.
Then, for δ > 0, we say that k ∈ Q is a positional δ-approximation of q-Quantile(S, d, w) if
there is a q′ ∈ Q, with q − δ ≤ q′ ≤ q + δ and k = q′-Quantile(S, d, w).22

Lemma 8.9 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables with
0 ≤ Xi ≤ 1 for 1 ≤ i ≤ n. Let X = Σn

i=1Xi and let EX denote the expectation of X. Then,

for any λ > 0, Pr(X − EX ≥ λ) ≤ e
−2λ2

n .

Theorem 8.10. Let 0 ≤ q ≤ 1. There is a probabilistic algorithm that calculates a positional
δ-approximation of q-Quantile[VSA,Poly] with success probability at least 3

4 . Furthermore,
the run time of the algorithm is polynomial in the input and 1

δ .

Proof. Let A ∈ VSA be a functional VSet-automaton and d ∈ Σ∗ be a document. Arenas
et al. [ACJR19, Corollary 4.1] showed that given a functional VSet-automaton, one can
sample tuples t ∈ JAK(d) uniformly at random with success probability ≥ 1

2 .
23 We will use

this sampling algorithm to first create a sample of the assigned weights and then return the
q-Quantile of this sample. The algorithm is depicted in Algorithm 2.

We note that this algorithm has two points of failure. On one hand, it can happen that
less then s := ⌈ ln(16)

2δ2
⌉ calls to the sampling algorithm of Arenas et al. [ACJR19] are successful.

22The idea of positional quantile approximations was originally introduced by Manku et al. [MRL98] in
the context of quantile computations with limited memory.

23We note that the sampling algorithm by Arenas et al. [ACJR19, Corollary 4.1] detects and reports
failures.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:45

On the other hand, it can happen that the returned quantile is no positional δ-approximation
of the quantile. We show that both of these points of failure have a probability of less than
1
8 . Thus, the probability that the whole algorithm is successful is 7

8 ·
7
8 > 3

4 . We will first
show that Line 6 is reached with probability less than 1

8 .
The success probability of each call to the sampling algorithm of Arenas et al. [ACJR19]

is at least 1
2 . Thus, the expected number of samples, generated by 4s consecutive calls to the

algorithm is at least 2s. Using Hoeffding’s Inequality, the probability that 4s consecutive
calls to the sampling algorithm yield less than s samples is less than e−s and therefore less
than 1

8 for every s ≥ 3.24

It remains to show that a total of s samples is enough to guarantee that the q-Quantile
of W is a positional δ-approximation of q-Quantile(JAK, d, w) with probability at least 7

8 .
Let wq−δ = (q − δ)-Quantile(JAK, d, w) and wq+δ = (q + δ)-Quantile(JAK, d, w). Further-

more, let Wq−δ = ⦃x ∈ W | x < wq−δ⦄ and Wq+δ = ⦃x ∈ W | x > wq+δ⦄. We say that a
sample is bad, if either |Wq−δ| ≥ q · s or |Wq+δ| ≥ (1 − q) · s. We will first show that the
probability that |Wq−δ| ≥ q · s is at most e−2δ2·s. For each element x ∈ W the probability
that x ∈ Wq−δ is at most (q − δ). Thus, the expected size of Wq−δ is (q − δ) · s. Using
Hoeffding’s Inequality, with λ = δ · s the probability that |Wq−δ| ≥ q · s is at most e−2δ2·s.
On the other hand, the for each element x ∈ W the probability that x ∈ Wq+δ is at most
(1 − (q + δ)) = 1 − q − δ. Thus, the expected size of Wq+δ is (1 − q − δ) · s. Again, using
Hoeffding’s Inequality, with λ = δ · s the probability that |Wq+δ| ≥ (1 − q) · s is at most
e−2δ2·s. Therefore, the probability for a bad sample is at most 2 · e−2δ2·s. Due to s = ⌈ ln(32)

2δ2
⌉,

the probability of a bad sample is at most 1
8 , concluding the proof.

9. Conclusions

We investigated the computational complexity of common aggregate functions over regular
document spanners given as regex formulas and VSet-automata. While each of the studied
aggregate functions is intractable in the general case, there are polynomial-time algorithms
under certain general assumptions. These include the assumption that the numerical value of
the tuples is determined by a constant number of variables, or that the spanner is represented
as an (unambiguous) VSet-automaton. Moreover, we established quite general tractability
results when randomized approximations (FPRAS) are possible. The upper bounds that
we obtained for general (functional) VSet-automata immediately generalize to aggregate
functions over queries that involve relational-algebra operators and string-equality conditions
on top of spanners, whenever these inner queries can be efficiently compiled into a single
VSet-automaton [FKP18, PFKK19]. Moreover, these upper bounds immediately generalize
to allow for grouping (i.e., the GROUP BY operator) by computing the tuples of the grouping
variables and applying the algorithms to each group separately.

We identified several interesting cases where the computation of α(S(d)) can avoid
the materialization of the exponentially large set S(d), where, d is the document, S is
the spanner, and α is the aggregate function. Notably, this is the case (1) for Min with
general VSet-spanners and weight functions in RegT, UReg, and CWidth, (2) for Max
with general VSet-spanners and weight functions in UReg and CWidth, (3) for Sum and

24Obviously, we can call the sampling algorithm 16 times for s = 1 and s = 2 to ensure a failure rate of
less than 1

8
.

12:46 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

Average with uVSA-spanners and weight functions in RegQ, UReg and CWidth, and (4)
for q-Quantile with uVSA-spanners and CWidth weight functions.

Yet, several basic questions are left for future investigation. A natural next step would
be to seek additional useful assumptions that cast the aggregate queries tractable: Can
monotonicity properties of the numerical functions lead to efficient algorithms in cases that
are otherwise intractable? What are the regex formulas that can be efficiently translated
into unambiguous VSet-automata (and, hence, allow to leverage the algorithms for such
VSet-automata)? Another important direction is to generalize the results in a more abstract
framework, such as the Functional Aggregate Queries (FAQ) [KNR16], in order to provide a
uniform explanation of our findings and encompass general families of aggregate functions
rather than specific ones. Finally, the practical side of our work remains to be studied: How
do we make our algorithms efficient in practice? How effective is the sampling approach in
terms of the balancing between accuracy and execution cost? Can we accurately compute
estimators of aggregate functions over (joins of) spanners within the setting of online
aggregation [HH99, LWYZ16]?

Some of our tractability results reduce the aggregation problems to path problems in
DAGs. Since these DAGs are not prohibitively large, we believe that this approach may
already be a valid basis for a concrete implementation. Testing empirically whether this is
actually the case is, however, a topic for future work.

Acknowledgment

The authors are grateful to Noa Bratman for participating in the initial efforts on the
research reported in this manuscript. Furthermore, we thank the anonymous reviewers of
ICDT 2021 and LMCS for many helpful remarks. This work was supported by the German-
Israeli Foundation for Scientific Research and Development (GIF), grant I-1502-407.6/2019.
The work of Johannes Doleschal and Wim Martens was also supported by the Deutsche
Forschungsgemeinschaft (DFG), grant 369116833. The work of Benny Kimelfeld was also
supported by the Israel Science Foundation (ISF), grants 1295/15 and 768/19, and the DFG
project 412400621 (DIP program).

References

[ABMN19] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-delay enu-
meration for nondeterministic document spanners. In 22nd International Conference on Database
Theory (ICDT), pages 22:1–22:19, 2019. doi:10.4230/LIPIcs.ICDT.2019.22.

[ACJR19] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. Efficient
logspace classes for enumeration, counting, and uniform generation. In Proceedings of the
38th Symposium on Principles of Database Systems (PODS), pages 59–73, 2019. doi:10.1145/
3294052.3319704.

[CG89] K. Y. Cockwell and I. G. Giles. Software tools for motif and pattern scanning: program
descriptions including a universal sequence reading algorithm. Computer Applications in the
Biosciences, 5(3):227–232, 1989.

[DBKM21] Johannes Doleschal, Noa Bratman, Benny Kimelfeld, and Wim Martens. The Complexity
of Aggregates over Extractions by Regular Expressions. In 24th International Conference on
Database Theory (ICDT), pages 10:1–10:20, 2021. doi:10.4230/LIPIcs.ICDT.2021.10.

[DGGJ04] Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. The relative com-
plexity of approximate counting problems. Algorithmica, 38(3):471–500, 2004. doi:10.1007/
s00453-003-1073-y.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:47

[DKM+19] Johannes Doleschal, Benny Kimelfeld, Wim Martens, Yoav Nahshon, and Frank Neven. Split-
correctness in information extraction. In Proceedings of the 38th Symposium on Principles of
Database Systems (PODS), pages 149–163, 2019. doi:10.1145/3294052.3319684.

[DKM+21] Johannes Doleschal, Benny Kimelfeld, Wim Martens, Frank Neven, and Matthias Niewerth.
Split-correctness in information extraction. CoRR, abs/1810.03367, 2021.

[DKMP22] Johannes Doleschal, Benny Kimelfeld, Wim Martens, and Liat Peterfreund. Weight annotation
in information extraction. Log. Methods Comput. Sci., 18(1), 2022. doi:10.46298/lmcs-18(1:
21)2022.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer
Publishing Company, Incorporated, 1st edition, 2009.

[Dol21] Johannes Doleschal. Optimization and Parallelization of RegEx Based Information Extraction.
PhD thesis, University of Bayreuth and Hasselt University, 2021.

[FKP18] Dominik D. Freydenberger, Benny Kimelfeld, and Liat Peterfreund. Joining extractions of regular
expressions. In Proceedings of the 37th Symposium on Principles of Database Systems (PODS),
pages 137–149, 2018.

[FKRV13] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Spanners: a formal
framework for information extraction. In Proceedings of the 32nd Symposium on Principles of
Database Systems (PODS), pages 37–48, 2013. doi:10.1145/2463664.2463665.

[FKRV15a] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document spanners:
A formal approach to information extraction. Journal of the ACM, 62(2):12:1–12:51, 2015.
doi:10.1145/2699442.

[FKRV15b] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. A relational framework
for information extraction. SIGMOD Record, 44(4):5–16, 2015. doi:10.1145/2935694.2935696.

[Fre19] Dominik D. Freydenberger. A logic for document spanners. Theory Comput. Syst., 63(7):1679–
1754, 2019.

[FRU+18] Fernando Florenzano, Cristian Riveros, Martin Ugarte, Stijn Vansummeren, and Domagoj
Vrgoč. Constant delay algorithms for regular document spanners. In Proceedings of the 37th
Symposium on Principles of Database Systems (PODS), pages 165–177, 2018. doi:10.1145/
3196959.3196987.

[FT20] Dominik D. Freydenberger and Sam M. Thompson. Dynamic complexity of document spanners.
In 23rd International Conference on Database Theory (ICDT), pages 11:1–11:21, 2020. doi:
10.4230/LIPIcs.ICDT.2020.11.

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In Proceedings
of the 26th Symposium on Principles of Database Systems (PODS), pages 31–40, 2007. doi:
10.1145/1265530.1265535.

[HH99] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. In SIGMOD
Conference, pages 287–298. ACM Press, 1999.

[HMRS98] Harry B. Hunt, Madhav V. Marathe, Venkatesh Radhakrishnan, and Richard E. Stearns. The
complexity of planar counting problems. SIAM J. Comput., 27(4):1142–1167, August 1998.

[KLR+08] Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, Shivakumar
Vaithyanathan, and Huaiyu Zhu. SystemT: A system for declarative information extraction.
SIGMOD Record, 37(4):7–13, 2008.

[KNR16] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: questions asked frequently. In
Proceedings of the 35th Symposium on Principles of Database Systems (PODS), pages 13–28,
2016. doi:10.1145/2902251.2902280.

[Kre88] Mark W. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36(3):490 – 509, 1988. doi:10.1016/0022-0000(88)90039-6.

[KSM95] Sampath Kannan, Z. Sweedyk, and Steve Mahaney. Counting and random generation of strings
in regular languages. In Proceedings of the 6th Annual Symposium on Discrete Algorithms,
SODA ’95, pages 551–557. Society for Industrial and Applied Mathematics, 1995. URL: http:
//dl.acm.org/citation.cfm?id=313651.313803.

[Lau83] Clemens Lautemann. BPP and the polynomial hierarchy. Information Processing Letters,
17(4):215 – 217, 1983. doi:10.1016/0020-0190(83)90044-3.

12:48 J. Doleschal, B. Kimelfeld, and W. Martens Vol. 19:3

[LBC04] Yaoyong Li, Kalina Bontcheva, and Hamish Cunningham. SVM based learning system for
information extraction. In Deterministic and Statistical Methods in Machine Learning, volume
3635 of Lecture Notes in Computer Science, pages 319–339, 2004.

[LRC11] Yunyao Li, Frederick Reiss, and Laura Chiticariu. SystemT: A declarative information extraction
system. In ACL, pages 109–114. ACL, 2011.

[LWYZ16] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation via random walks.
In SIGMOD Conference, pages 615–629. ACM, 2016.

[MRL98] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate medians and
other quantiles in one pass and with limited memory. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, page 426–435, 1998. doi:10.1145/276304.
276342.

[MRV18] Francisco Maturana, Cristian Riveros, and Domagoj Vrgoč. Document spanners for extracting
incomplete information: Expressiveness and complexity. In Proceedings of the 37th Symposium on
Principles of Database Systems (PODS), pages 125–136, 2018. doi:10.1145/3196959.3196968.

[MSV+19] Joshua J. Michalenko, Ameesh Shah, Abhinav Verma, Richard G. Baraniuk, Swarat Chaudhuri,
and Ankit B. Patel. Representing formal languages: A comparison between finite automata and
recurrent neural networks. In ICLR (Poster), 2019.

[MSW16] Matús Mihalák, Rastislav Srámek, and Peter Widmayer. Approximately counting approximately-
shortest paths in directed acyclic graphs. Theory Comput. Syst., 58(1):45–59, 2016. doi:10.
1007/s00224-014-9571-7.

[MY18] Franz Mayr and Sergio Yovine. Regular inference on artificial neural networks. In CD-MAKE,
volume 11015 of Lecture Notes in Computer Science, pages 350–369, 2018.

[NBCK10] C. T. Ng, M. S. Barketau, T. C. Edwin Cheng, and Mikhail Y. Kovalyov. "product partition"
and related problems of scheduling and systems reliability: Computational complexity and
approximation. Eur. J. Oper. Res., 207(2):601–604, 2010. doi:10.1016/j.ejor.2010.05.034.

[NG94] A. Neuwald and P. Green. Detecting patterns in protein sequences. Journal of Molecular Biology,
239:698–712, 1994.

[NKS+19] Galia Nordon, Gideon Koren, Varda Shalev, Benny Kimelfeld, Uri Shalit, and Kira Radinsky.
Building causal graphs from medical literature and electronic medical records. In AAAI, pages
1102–1109. AAAI Press, 2019.

[PD07] Hoifung Poon and Pedro M. Domingos. Joint inference in information extraction. In Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelligence, pages 913–918, 2007. URL:
http://www.aaai.org/Library/AAAI/2007/aaai07-145.php.

[PFKK19] Liat Peterfreund, Dominik D. Freydenberger, Benny Kimelfeld, and Markus Kröll. Complexity
bounds for relational algebra over document spanners. In Proceedings of the 38th Symposium on
Principles of Database Systems (PODS), pages 320–334, 2019. doi:10.1145/3294052.3319699.

[PtCFK19] Liat Peterfreund, Balder ten Cate, Ronald Fagin, and Benny Kimelfeld. Recursive Programs
for Document Spanners. In 22nd International Conference on Database Theory (ICDT), pages
13:1–13:18, 2019. doi:10.4230/LIPIcs.ICDT.2019.13.

[RBE+17] Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen Wu, and
Christopher Ré. Snorkel: Rapid training data creation with weak supervision. Proc. VLDB
Endow., 11(3):269–282, 2017. doi:10.14778/3157794.3157797.

[SC09] Robert P. Schumaker and Hsinchun Chen. Textual analysis of stock market prediction using
breaking financial news: The azfin text system. ACM Trans. Inf. Syst., 27(2):12:1–12:19, 2009.
doi:10.1145/1462198.1462204.

[SM12] Charles A. Sutton and Andrew McCallum. An introduction to conditional random fields. Foun-
dations and Trends in Machine Learning, 4(4):267–373, 2012.

[SWW+15] Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher Ré. Incremental
knowledge base construction using DeepDive. Proceedings of the VLDB Endowment (PVLDB),
8(11):1310–1321, 2015. URL: http://www.vldb.org/pvldb/vol8/p1310-shin.pdf.

[vL91] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science (Vol. A): Algorithms and
Complexity. MIT Press, Cambridge, MA, USA, 1991.

[WGY18] Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural
networks using queries and counterexamples. In Proceedings of the 35th International Conference
on Machine Learning, (ICML), pages 5244–5253, 2018.

Vol. 19:3 AGGREGATE QUERIES ON EXTRACTIONS BY REGULAR EXPRESSIONS 12:49

[Zac88] Stathis Zachos. Probabilistic quantifiers and games. Journal of Computer and System Sciences,
36(3):433 – 451, 1988. doi:10.1016/0022-0000(88)90037-2.

[Zuc96] David Zuckerman. On unapproximable versions of NP-complete problems. SIAM J. Comput.,
25(6):1293–1304, December 1996. doi:10.1137/S0097539794266407.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

