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Four different types of statistical models used to analyze repeated measures are discussed and 

compared.  Repeated measures analysis is gaining importance during recent years and several 

software packages offer a broad class of routines.  In the field of postharvest quality 

assessment of horticultural products, research on the development of non–destructive quality 

sensors, replacing destructive and often time consuming sensors, has spurred in the last 

decennium offering the possibility of taking repeated quality measures on the same product.  

A dataset dealing with the postharvest quality evolution of different tomato cultivars serves as 

practical example for model comparisons.  Starting from an analysis at each time point and an 

ordinary least squares regression model as standard and widely used methods, this 

contribution aims at comparing these two methods to a repeated measures analysis and a 

longitudinal mixed model.  It is shown that the flexibility of such a mixed model, both 

towards the repeated measures design of the experiments as towards the large product 

variability inherent to these horticultural products, is an important advantage over classical 

techniques.  This research shows that different conclusions could be drawn depending on 

which technique is used due to the basic assumptions of each model and which are not always 

fulfilled.  The results further demonstrate the flexibility of the mixed model concept.  Using a 

mixed model for repeated measures, the different sources of variability, being inter–tomato 

variability, intra–tomato variability and measurement error were characterized being of great 

benefit to the researcher. 
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In the field of applied sciences, one is often confronted with correlated data.  The term 

correlated data embraces a multitude of data structures, such as multivariate observations, 

clustered data, repeated measurements, longitudinal data and spatially correlated data [1].  

Although multivariate analysis techniques have received most attention in literature, repeated 

measures analysis has gained much attention during recent years.  The term repeated 

measures points to data structures where multiple measurements are obtained from a single 

experimental unit.  This experimental unit can be, for instance, a family and a certain 

parameter is measured for all its members.  As another example, repetitions can be made over 

a certain period of time for each subject.  In this case, the term longitudinal data is often used.  

When repeated measures of each subject are taken on different locations the term spatial data 

applies.   

In this contribution, we will focus on longitudinal data as a subclass of repeated data.  

In order to make the different models and their comparisons more interpretable, a practical 

dataset in the field of postharvest crop monitoring will be used.  In this sector, quality 

inspection and classification of products are of great need in the modern market, where large 

quantities are sold within seconds, sometimes without access of the buyers to see the product.  

The conventional quality inspection often involves destructive and / or time consuming 

measurements and may be applied only to small samples of large shipments.  High quality 

standards and the necessity for shelf–life determination have increased the need for simple 

and quick evaluation of the internal properties of each product sold, preferably making use of 

non–destructive devices that ‘sense’ the product’s quality attributes such as firmness or flavor 
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[2].  One of the most important advantages of these non–destructive measurement techniques, 

besides their objective nature, is the possibility they offer towards monitoring individual 

products during the experimental period, which on its turn allows for modeling the quality 

change.  The modeling of the quality evolution of horticultural products during storage has 

been described in literature by several authors [3–9].  In these contributions, two different 

approaches for modeling the repeated quality measures over time can be distinguished.   

A first approach makes use of the analysis of the data at each time point separately [3, 

7, 8].  For instance, at each measuring day the average quality attribute is calculated, and 

these means are compared.  This approach allows a simple interpretation of the data and 

allows easily communication to non–statisticians, but it does not consider overall differences 

since only one time point is analyzed at a time.  Consequently, the method does not allow 

studying the evolution of the quality during storage, which is, however, of prime interest in 

many experiments.  A second approach makes use of an ordinary least squares (OLS) 

regression model to study the quality evolution.  The advantage of the OLS regression 

approach is that it is easily implemented in standard software and that it allows a prediction of 

the time at which a batch of products reaches a pre–set lower bound of the quality parameter 

of interest.  The latter was not possible in case of the analysis at each time point.  The 

disadvantage of such analysis, but also of the analysis at each time point, is that it does not 

take into account the repeated nature of the data – it naively treats observations across time as 

independent – affecting significance levels of estimated parameters.  In the case of biological 

specimen, such as fruits, this is reinforced by the fact that biological material exhibits a large 

natural variation in quality and this subject specific variability is not accounted for in such 

models.  For instance, Thai et al. [4] remarked that the fit of their model decreased 
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considerably when modeling a batch of tomatoes, compared to the modeling of the individual 

tomato profiles.  As such, the amount of unexplained variability in their data increased due to 

this batch heterogeneity inherent to biological produce.  The presence of a large inter–subject 

variance combined with the negation of the covariance structure of the repeated measures 

could lead to wrong conclusions.  Moreover, these models inherently assume that the variance 

of the data remains constant over time (homoscedasticity).  From research of several authors 

it can be questioned whether this homoscedasticity assumption is valid [7, 10, 11].  When 

repeats are available for the quality measure at each time point for each product, which is 

often the case, yet another point is the question whether it is advisable to use only the average 

quality measure of a single product in modeling its behavior during storage or to use all 

available measurements, which allows not only the estimation of the variance of the 

measurements on a single subject during storage, but also takes into account this variation – 

and its possible dependence on the quality measure – when estimating a model’s parameters.  

This could be an important factor since the reliability of a quality sensor could depend the 

quality measure.  The repeated measurements nature of such data, their heteroscedasticity 

combined with the large natural variation in quality of biological products raise the question 

whether the proposed analysis methods in literature describe the data adequately.   

Laird and Ware (1982) proposed a statistical model that allows for a subject–specific 

effect above a population–specific effect [12].  These subject–specific regression parameters 

reflect the natural heterogeneity in the population and can also be interpreted as the deviation 

of the evolution of a specific subject from the overall population.  For this reason they are 

usually assumed to follow a Gaussian distribution.  Their mean then reflects the average 

evolution in the population, and is therefore called the vector of fixed effects.  The 
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assumption of a Gaussian distribution is not only intuitive, but is also mathematically 

convenient [1, 13].  This type of models are called mixed–effects models and are appropriate 

for data that exhibit a large inter–subject variability, as is expected for measurements on 

biological produce.  Furthermore, the incorporation of, for instance, a subject–specific time 

trend allows for heteroscedasticity of the data.  In the same context, this general framework 

was further broadened to allow for repeated measurements [1, 13].  The availability of the 

MIXED procedure in the SAS software [14] provides a broad class of linear mixed–effects 

models readily available for routine use, and such models allow to compensate for the 

shortcomings of analyses at each time point and ordinary least squares regression models.   

These different types of models were used and compared to analyze tomato firmness 

during a two–week storage experiment.  Such data are characterized by two main specific 

characteristics, being (1) the natural variability caused by the biological products and (2) the 

repeated measures design.  This work shows that the specific data nature of such studies 

requires a specific data analysis that goes beyond classical techniques such as an analysis at 

each time point and an ordinary least squares regression model. 

The objective of this paper is to provide an overview and comparison of methods with 

a clear description of the assumptions that are inherent to these methods.   

2. Materials and Methods 

2.1 Tomato firmness data 

Tomatoes of 13 different varieties were harvested and their firmness was followed during 2 

weeks of storage.  Tomatoes came from two different research stations, namely ‘Proefbedrijf 

der Noorderkempen’ (Experimental farm of the Noorderkempen region) at Meerle and 
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‘Proefstation voor de groenteteelt’ (Vegetable research station) at Sint–Katelijne Waver, both 

situated in Belgium.  Three varieties are commercial (Quest, Mariachi and Tradiro), with 

Tradiro tomatoes coming both from Meerle (coded as TradiroM) and Sint–Katelijne Waver 

(coded as TradiroSKW).  In subsequent results, TradiroSKW and TradiroM tomatoes were 

analyzed separately as two different varieties, and were compared.  All varieties came from 

Meerle except Tradiro tomatoes, which came from both stations.  The data were measured at 

the Flanders Centre for Postharvest Technology (Leuven, Belgium). 

For each variety, 20 tomatoes were analyzed for two harvest periods, August and 

October.  Tomatoes of both harvest periods came from the same plants.  Tomatoes were 

harvested twice a week, with tomatoes used in this study originating all from the same harvest 

day.  For each harvest period, measurements were taken at harvest (day 0), day 3, 5, 7, 10, 12 

and 14 of storage.  Tomatoes were stored at controlled atmosphere conditions (18 °C and 80 

% RH) to accelerate the ripening process.   

Tomato firmness was assessed using a commercial acoustic firmness tester (AWETA, 

Nootdorp, The Netherlands).  The device produces a stiffness index S as indicator for fruit 

firmness.  Stiffness was measured three times at the south pole of the tomatoes for each 

measurement day.  Both the average stiffness as the individual measurements were used 

throughout further analyses.  In the remainder of the text, the term stiffness will be used when 

indicating values produced by the acoustic tester and which are an estimate of the firmness.  

An overview of the data is provided by figures 1 and 2. 

The starting point for the analyses where time is treated as a continuous variable is the 

first order degradation model most widely found in literature [15–16].  The solution of the 

first–order degradation model is given by 
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S(t) = S0e–α t (1) 

where S(t) denotes the stiffness factor at time t, S0 the initial stiffness (× 106Hz2g2/3) and α the 

exponential decay factor (day
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–1).  In all analyses that follow, the natural logarithm of the 

stiffness was used in order to linearize the data as follows 

s(t) ≡ ln(S(t)) = s0 – α t (2) 

where s0 is defined as the natural logarithm of the initial stiffness S0.  This first order 

degradation model will be tested throughout the analysis against more complex models that 

consider also a quadratic time trend of s(t). 

2.2 Statistical methods 

The SAS software (SAS version 8.2, The SAS Institute Inc., Cary, NC, USA) was used 

throughout all analyses.  The data were modeled using 4 types of models of which the first 

two, an analysis at each time point and the ordinary least squares model are widely spread in 

literature (see introduction section).  The third model presents a repeated measures analysis, 

while the last model includes random effects that are subject–specific. 

2.2.1 Analysis at each time point 

The first type of model consists of an analysis at each time point where a separate mean is 

fitted for each experimental setting.  Inherently, time is considered as being a categorical 

variable.  This is the type of analysis that is often found in literature concerning the 

postharvest treatment of horticultural produce and is given in the case of three main effects 

(for instance storage time δ, tomato cultivar τ and harvest λ) 
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Yijkl = µ + δi + τj + λk + (δ τ λ)ijk + εijkl (3) 

where Yijkl refers to the response of subject l at storage time δi, belonging to cultivar τj and 

harvested at λ
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k; µ is the overall mean and δ , τ and λ are three main effects with their 

interaction (δ τ λ) and εijkl the error term.  Inferences about different behavior of different 

tomato cultivars are limited to each time point separately and are accomplished using a Tukey 

multiple comparison test.   

2.2.2 Ordinary least squares regression model 

A second type of model is an ordinary least squares (OLS) regression model given in its 

general form by 

Yi = Xiβ + εi , (4) 

with Yi the ni–dimensional vector of all repeated measurements for the i–th subject (the 

repeated stiffness measures for a single tomato), Xi the appropriate (ni × p) matrix of known 

covariates (for instance cultivar and / or storage time); β  a (p × 1) vector of fixed effects and 

εi the vector of residual components εij,  j = 1,…,ni.  It is stressed at this point that ni  refers to 

the the number of repeated measures for a subject i.  In this setting, the error terms εij are 

assumed to be independently and identically distributed with mean zero and variance σ2.  

More precise, the error vector εi is assumed to be normally distributed with a zero mean 

vector and variance–covariance matrix equal to σ2I with I the identity matrix of size (ni × ni).  

As such, the two main assumptions of this model are (1) independence of all measurements 

and (2) homoscedasticity. 
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A third type of model allows the error terms of the repeated measures of a given subject to be 

dependent on each other and is of the same general form as equation 4.  In contrast to that 

model, the components εij are not independently and identically distributed with variance σ2 

but, in general, we can write that the εi’s are normally distributed with a zero mean vector and 

variance covariance matrix Σ.  Writing the distribution for Yi as N(Xiβ, V), the V matrix in its 

most general form is a (ni × ni) unstructured matrix.  However, the number of parameters that 

have to be estimated for such general structure increases rapidly in function of the number of 

time points for each subject ni and a simplification of the variance–covariance structure is 

often assumed.  These simplified structures are borrowed from time series analysis that 

proposes a broad range of possibilities.  A widely used structure for the V matrix is a first–

order autoregressive structure.  For a (3 × 3) variance–covariance matrix – denoting that three 

repeats were taken of each subject – this structure is given by 











2222

222

σρσσρ
ρσσρσ  (5) 

where the σ parameters are used to denote variances and covariances, whereas the ρ 

parameters are used for correlations.  This structure assumes that the correlation between 

measurements depends on the difference in time between them.  When the variances are 

allowed to change as a function of time, this structure becomes 
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and is called a heterogeneous first–order autoregressive structure.  In this case σ2
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2
2 at the second day, and so on.  The selection of an 

appropriate covariance structure for the data can be made by minimizing Akaike’s 

information criterion (AIC).  The AIC is a function of the log–likelihood with a penalty for 

the number of parameters that were estimated [17]. 

2.2.4 Linear mixed model for longitudinal data 

The fourth approach uses a longitudinal linear mixed model, defined as [11]: 

Yi = Xiβ + Zibi + εi , (7) 

with Yi the ni–dimensional vector of all repeated measurements for the i–th subject (tomato); 

Xi the (ni × p) design matrix of known covariates; β a (p × 1) vector of fixed effects; Zi a (ni × 

q) matrix of known covariates (for instance storage time) modeling how the response evolves 

over time for the i–th subject; bi a (q × 1) vector of subject specific effects for which is 

assumed that E(bi) = 0 and εi the vector of residual components εij,  j = 1,…,ni.  The random 

effects structure implies a covariance structure of a very specific form 

Var(Yi) = Vi = ZiDZi
T + Σi (8) 

where D refers to the variance–covariance matrix of the random effects.  It can be seen that 

the total covariance structure is partly determined by the Zi vector of random effects and 

partly by the error variance–covariance matrix Σi.  Since ZiDZi
T mostly accounts for a large 

part of the variation in Vi, the structure of Σi is often assumed to be of the form σ2I with I the 

identity matrix of size (ni × ni).  Remark that this structure allows for heteroscedasticity as 

function of time, for instance when one assumes random intercepts and slopes so that Zi 
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equals [1 t].  The variance encountered here is referred to as inter–subject variance, indicating 

that the variance in response among subjects (tomatoes within a cultivar for instance) could be 

a function of time.   

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

For models with only few random effects, choosing a simple (σ2I) variance–

covariance structure Σi may prove to be an over–simplification.  Where there is no evidence 

for the presence of additional random effects, or when random effects have no substantive 

meaning, the covariance assumption can be relaxed by allowing an appropriate, more general 

residual covariance structure Σi for the vector εi of subject–specific error components.  The 

εi’s are decomposed as ε(1)i  + ε(2)i with ε(1)i denoting the component of measurement error 

(~N(0, σ2I)) and ε(2)i (~N(0, σ2Hi)) the component of serial correlation [13].  Two examples of 

these functions are the Gaussian and exponential serial correlation functions determining the 

serial correlation matrix Hi.  For a selection of the residual covariance structure Σi of the error 

components εi , Akaike’s Information Criterion (AIC) can be used.  Inclusion of such serial 

correlation should only be considered when using models having only random intercepts since 

the effect of such serial correlation is very often dominated by the combination of random 

effects and measurement error [18].   

As an extension to this mixed model approach in the case of repeats for each subject at 

a given time point, all available measurements instead of the average response of each subject 

at each time point could be considered.  In doing so, the model allows to estimate the variance 

of the measurements within a single subject, which was impossible when only the mean 

response at each time point was considered.  This extra variance component will be referred 

to as intra–subject variance.  The inclusion of such intra–subject variance is assured by 

adding a diagonal matrix to the error variance matrix Σi that is allowed to change as a function 
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o

 diag[exp(Uiδ)] where Ui is the full–

rank design matrix corresponding to effects entered in the log–linear variance model for 
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2
0 is an estimate of the initial 

intra–subject variance.  If one includes a time effect into the Ui matrix, the repeatability of 

measurements during the experimental period  can be modeled.  The exponential function 

ensures non–negative components for the variance.  In case of a simple residual error 

variance–covariance matrix, the total measurement error variance–covariance matrix Σi can be 

written as  

Σi = σ2I + σ2
0  diag[exp(Uiδ)] = diag[σ2 + σ2

0 exp(Uiδ)] (9) 

The model building process for mixed models is more complicated in this case than it 

is in ordinary regression since the model copes with a mean structure, a covariance structure 

and a random effects structure, all of which are not independent of each other.  The scheme 

presented in figure 1 can be used in order to find the final model (after [13]). 

For fixed effects model building purposes, maximum likelihood estimation (ML) 

should be used rather than the default restricted maximum likelihood estimation (REML), 

which is the standard setting in the MIXED procedure of SAS.  This allows nested models to 

be compared with a likelihood ratio test defined as 

,
)ˆ(
)ˆ(

ln2² 0,
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

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
−=
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MLML

L
L

G
θ
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 (10) 

where LML denotes the ML likelihood function and  the parameters estimated under ML 

for a model 0 and being a subset of the parameters ;  G² then follows, asymptotically, 

0,
ˆ
MLθ

θ̂

267 

ML268 
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under H0 a chi–squared (χ2) distribution with degrees of freedom equal to the difference 

between the dimensions v – u of  and .  In the results section, the log likelihood is 

denoted by the symbol ℓ. 
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0,
ˆ
MLθ

2
1χ

MLθ̂

To test whether random effects are needed in the model, the likelihood ratio test 

defined above was used but follows asymptotically a null distribution that is a mixture of chi–

squared distributions, rather than the classical single chi–squared distribution that was used to 

test fixed effects [13].  For the case of testing no random effect versus one random effect, the 

null distribution is a mixture of  and  with equal weights 0.5, denoted by .  In case 

of testing one versus two random effects, the null distribution is a mixture of  and  

distributions with equal weights 0.5, denoted by .   

2
0χ

2
1:0χ

2
2χ

2
1χ

2χ

For comparing different variance–covariance structures, the likelihood ratio test G2 

defined in (10) can be used to compare nested models.  For unnested models, one does not get 

a formal testing procedure anymore and hence the AIC should be used.  Once the final model 

is obtained, parameter estimates and standard errors should be computed under restricted 

maximum likelihood estimation in order to have trustworthy estimates of the variance 

components. 

 

3. Model comparisons 

The different assumptions that are inherent to the four models described above are 

summarized in table 1.   

The analysis at each time point provides a model that allows easy interpretation and 

visualization of its parameters.  Its most important drawback is given by the fact that it 
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completely ignores the repeated measures design of the experiment, and that inferences are 

only restricted to those storage times at which measurements (and thus means) are at hand.  

This further implies that evolution differences cannot be treated.   

The OLS regression model treats the time effect a continuous variable, being more 

realistic than the categorical assumption in the analysis at each time point.  As such, it allows 

estimating the quality evolution under the strict assumptions that any two measurements are 

independent of each other, and that data variability remains constant over storage time.  Both 

assumptions are highly questionable and put the use of this type of model open to discussion.  

From literature, it appears that the homoscedasticity assumption of the data is often not valid 

in storage experiments [6, 9, 10] who all encounter time dependent data variability.  Even 

more questionable is the assumption of independence of error terms since two measurements 

taken on the same subject will be related.  This (wrong) assumption of the OLS model has no 

important consequence on the estimated parameters since they are asymptotically consistent 

[19], but has a very important consequence on their standard errors, and hence on parameter 

significance.  Due to the negation of the dependency among measurements of a given subject 

the information contained in the data set is overestimated leading to smaller but inconsistent 

standard errors.  Model fits are often evaluated by looking at parameter variances, with a 

preference for low parameter variances, but this is only valid under justifiable model 

assumptions.  A possible way around the dependence of variance estimates on these model 

assumptions is a using robust sandwich variance estimator for the OLS model [20].  However, 

this option does not present the flexibility of other methods discussed below.   

The repeated measures analysis of the data relaxes the assumption of independent 

error terms and, for some covariance structures such as a heterogeneous covariance structure, 
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even the homoscedasticity assumption.  Comparison of the model fit of a repeated measures 

analysis to that of an ordinary least squares regression model with the same fixed effects 

structure can easily be obtained using the likelihood ratio test, since both models are nested.  

A heterogeneous covariance structure has its limiting use in case of a large number of repeats 

for each subject since it models a different variance parameter for each time point in the 

analysis, as was shown for instance in (6).  As for the OLS model, the source of the variance 

cannot be split into the different sub–contributions due to, for instance product variability and 

measurement errors which, again, is a severe drawback of these models since interest of 

researchers could lay in quantification of homogeneity of the batch (inter–subject variance), 

and researchers and companies manufacturing quality devices could put emphasis on the 

repeatability of their equipment (intra–subject variance).  These drawbacks are perhaps the 

most important stimuli to prefer the mixed model approach above higher–mentioned 

approaches in case of horticultural products.   

The linear mixed model for longitudinal data provides a very flexible tool for 

analysing repeated measures on horticultural products.  It offers the possibility to account for 

the repeated measures nature of the data, the product variability inherent to those horticultural 

products and offers a broad spectrum of variance–covariance structures by the inclusion of 

subject specific parameters.  Furthermore, the data variance can be split into the desired 

components that were named inter– and intra–subject variances.   
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4. Results 333 
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4.1 Analysis at each time point (model 0) 

At each time point of the storage experiment a separate mean is fit to the data for each of the 

28 (2 × 14) combinations for harvest and cultivar.  A graphical view on this model was 

already given in figures 2 and 3.  The model has a –2ℓ of –4567.1 using 196 (14 × 2 × 7) 

parameters.   

This kind of analysis does not allow comparing the stiffness evolution of different 

varieties, but only allows comparing results for each time point separately.  For instance, table 

2 gives the tomato variety grouping for 0 and 14 days of storage for the August data.  

Varieties sharing the same letter for a given day are not different at a 5 % significance level.   

The table shows that at harvest (day 0), RZ7457 tomatoes had a significant higher 

stiffness than all other varieties.  For the other varieties, the differences are much smaller 

resulting in no clear separate groupings with most of the varieties showing no significant 

difference.  For instance at harvest, 8 varieties ranging from TradiroM to Mariachi show no 

significant difference.  At the end of storage (day 14), the difference between varieties 

RZ7457 and DRW6391 is not significant anymore.  Again, for the other varieties differences 

are much smaller.   

For some varieties, such as Quest and TradiroM and which are both commercial, no 

significant difference was found for neither of the storage times for the August data (data for 

3, 5, 7, 10 and 12 days of storage not shown).  However, inspecting figure 2 it appears that 

both varieties behave different during storage:  while TradiroM has a higher initial stiffness 

than Quest, it shows a larger decrease in stiffness during storage, resulting in a lower stiffness 
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than Quest tomatoes at the end of study.  This last remark stresses the weak point of such 

analysis at each time point:  while two varieties may not show any statistical difference at any 

point, it still might be possible that their overall stiffness evolution over time is different.  

This will be further analysed in the subsequent analyses. 

355 
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4.2 Ordinary least squares regression model (model 1) 

A model treating storage time as a continuous variable replaces the unstructured mean of the 

previous model 0.  A separate intercept, linear as well as quadratic time trend for each variety 

× harvest combination are taken as starting point for the analysis.  This model has 3 × 2 × 14 

= 84 parameters and has a –2ℓ of –4483.2 leading to a value for the LRT test G² of 83.9 on 

112 degrees of freedom, clearly favoring this simpler model above the over–elaborated model 

0 (P = 0.9781).  The quadratic time trends for each harvest × variety combination were not 

overall significant (P = 0.3000) and were removed from the model.  Similarly, the quadratic 

term for each harvest, for each variety and the overall quadratic term were removed, leading 

to model 1 with only an intercept and linear time trends for each variety × harvest 

combination and a –2ℓ of –4451.5 using 56 parameters, which is preferable above the starting 

model in this paragraph (G² = 31.7 on 28 DF, P = 0.2869).  Common slopes for each harvest 

or tomato variety could not be used (P < 0.0001).  Table 3 lists the parameter estimates and 

the standard errors obtained under restricted maximum likelihood estimation.  For simplicity, 

parameter estimates are only given for one tomato variety (DRW5730, August); standard 

errors hold for all tomato varieties.  Standard errors of this model will be compared to later 

models. 
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Figure 4 presents the variance estimate provided by a spline–smooth curve based on 

the squared residuals (residuals not shown), together with the modeled variance function, 

which is assumed to be constant over storage time and equals 0.01835.  This plot already 

indicates that the assumptions made in this model are highly questionable and need further 

investigation.  This will be the topic of next two paragraphs where the two assumptions made 

by the OLS model will be relaxed. 

A contrast statement was constructed in order to compare Quest tomatoes to TradiroM 

tomatoes for the August data, as was done in the analysis at each time point.  The contrast 

statement simultaneously tests for equal intercept and slope for both varieties and rejects the 

null hypothesis of equal behavior of both varieties (P = 0.0135).  This simple example 

already indicates the advantage of treating the storage time as a continuous variable since 

intuitively, by inspecting figure 2, one would indeed be tempted to conclude a different 

behavior for both varieties. 

4.3 Repeated measures analysis (model 2) 

Instead of treating all individual measurements as independent, measures taken on 1 tomato 

are now allowed to depend on each other which is a much more realistic approach.  Several 

covariance structures were tested, with the first order heterogeneous autoregressive structure 

ARH(1) found to be the most plausible solution indicating that different variances for each 

time point occur in the data, with long storage inducing larger variances.   

The results of this model are given in table 3 under models 2a and 2b.  From this table 

it may be noted that the inclusion of quadratic time trends for each variety–harvest 
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combination (model 2b) is preferable over including only linear time trends given by model 

2a (G² = 89.1, DF = 28, P < 0.0001).   

Figure 5 gives the spline–smooth of the variance function based on the OLS residuals 

(full line) together with the modeled variances σ2
i
 (i = 1, …, 7) using model 2b.  It may be 

stressed that the full line is not a fit of the σ2
i
 ’s (given by triangles in the figure) by this 

repeated measures analysis.  Comparing figures 4 and 5 leads to the conclusion that allowing 

for heteroscedasticity provides a more plausible variance modeling.   

Comparing model 2a to the OLS model 1, it is seen that the model fit improves 

drastically with a –2ℓ of –7615.5 for model 2a versus –4451.5 for model 1.  The reader may, 

however, not be mislead by the increase in standard error for the repeated measures analysis.  

Indeed, in model 1 the assumption was made that each point in the analysis was independent 

from all others, while model 2a proved that not all variability is independent leading to the 

larger but correctly estimated standard errors.  This incorrect independence assumption of the 

OLS model results in estimators that are not consistent and thus a comparison of standard 

errors is not justified.  On the other hand, when constructing difference estimates, these 

differences could be much more pronounced, although this was not the case in comparing 

TradiroM tomatoes to Quest tomatoes in August (P = 0.1047) leading to the conclusion that 

both profiles are not significantly different, in contrast to the conclusion that was drawn from 

the OLS model.  This last fact again clearly stresses the importance of model assumptions on 

the significance of parameters and hence on the conclusions drawn from the study. 

 21



4.4 Linear mixed model for longitudinal data (models 3 and 4) 417 
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The residuals of the OLS model ri
OLS

 , describing the remaining variability of the data that is 

not explained by the model are, under the assumptions of the OLS model, constant over time.  

However, inspecting for instance figure 4 presenting the OLS residuals, it can be concluded 

that this variability is not constant over time, but exhibits a quadratic pattern.  The linear 

mixed model discussed here allows for heteroscedasticity in time, as the residuals of the OLS 

model can be written as 

ri
OLS ≈ Zibi + εi (11) 

Indeed, the covariance between any two points t1 and t2 can be written as follows for the case 

of random intercept and slope:   

( )
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1))(),((
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=
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 (12) 

with D the variance–covariance matrix of the random effects.  It implies that the variance 

function of the response behaves quadratically over time with positive curvature d22 so that 

figure 4 points to the possible inclusion of a random slope into the model.   

Since the covariance structure models all variability not explained by the fixed effects, 

all systematic trends need to be removed first.  For this purpose, the parameters used in model 

1 were taken as a preliminary mean structure.   

Random effects are now added to the model, which can be interpreted as subject–

specific corrections to the overall mean structure.  For the inclusion of random effects, it is 

favoured to include too many random effects instead of too few to ensure that the remaining 
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variability is not due to missing random effects [12].  Since the model assumes random effects 

b
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i to have zero mean, we consider only covariates Zi that have already appeared in the fixed 

part Xi.  For this reason, random intercepts and random slopes were used as starting point 

together with the preliminary mean structure of model 1.  The random–effects variance matrix 

D was assumed to be unstructured.   

The –2ℓ of this model 3c is –7643.4, which is an improvement of model 1.  Deleting 

the random slopes from previous model gives a –2ℓ of –7275.0, clearly favouring the 

inclusion of random slopes (G² = 368.4, DF = 1:21, P < 0.0001).   

For this preliminary mean structure – the mean structure of the OLS model that 

included an intercept and slope for each harvest × variety combination – the possible 

inclusion of a serial correlation was investigated in case of only a random intercept.  A 

Gaussian and exponential serial correlation were tested, replacing the simple covariance 

structure.  Both serial correlations make use of two parameters, whereas the simple structure 

uses only 1 parameter.  The exponential serial correlation was the most suitable to describe 

the data, leading to an AIC of –7470.2 which is inferior to the model that includes a random 

intercept and slope together with a simple covariance structure.   

With the extended covariance structure that was modelled by the inclusion of random 

intercepts and slopes (model 3c) and that captured a large amount of the variation in the data, 

it was investigated whether the preliminary mean structure still holds.  In a first step a 

quadratic time effect for each variety × harvest combination was included into the mean 

structure and resulted in a –2ℓ of –7780.7 (model 3f), which clearly is better than model 3c 

(G² = 137.3, DF = 28, P < 0.0001).  Common quadratic time effects for harvest or variety did 

not improve the model (P < 0.0001).  While quadratic profiles as function of time were found 

 23



to be not significant in the OLS model without random effects (P = 0.2854), they turn up in 

this mixed model (where product variability and repeated measures are included in the model) 

to be highly significant (P < 0.0001).   
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The extended mean structure of model 3f – including an intercept, slope and quadratic 

effect for each harvest × variety combination – was used on its turn to investigate whether the 

random structure needs further adjustment.  Since quadratic profiles are included in the mean 

structure, it was investigated whether a random quadratic effect further improves the model fit 

(model 3g).  Again, the random–effects variance matrix D was assumed to have an 

unstructured form.  The –2ℓ of this model is –7884.4 and hence is to be preferred above 

model 3f (G² = 103.7, DF = 2:3, P < 0.0001).  Since the mean structure still holds with this 

random structure, model 3g was taken as final model.  Figure 6 shows the modelled variance 

and the spline–smoothed variance obtained using OLS residuals.  Both variance functions 

show a rather similar pattern indicating that this final model is capable of tracking the data 

variance.   

Constructing a contrast statement to test for a significant stiffness profile for TradiroM 

versus Quest tomatoes in August reveals a significant difference between both varieties using 

model 3g (P = 0.0098). 

A next step in the analysis is the inclusion of the three measurements taken on each 

tomato at each time point, instead of its mean value used throughout models 3.  The same 

model building steps were followed as described above, leading to a model that includes an 

intercept, slope and quadratic trend for each harvest × variety combination, together with a 

random intercept, slope and quadratic trend.  The stepwise selection of a fixed, random and 

covariance of this model is not discussed in this text but is analogous to that applied to obtain 
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model 3g.  The final model using three measurements on each tomato at each time (model 4g) 

has a –2ℓ of –20153.8.  Comparing models 3g and 4g shows (table 3) that the parameter 

estimates are more precise if three measurements are taken.  This was to be expected since the 

number of measurements on which parameter estimates are based are triple–fold, but the 

increase in data variability is only moderate since the three measurements taken on each 

tomato are correlated.  

Model 4g allows the inter–tomato variability to increase as function of storage time, 

but assumes the intra–tomato variability to be constant over time.  This last assumption is now 

relaxed in model 4h where a diagonal matrix of the form as diag[σ2
oexp(Uiδ)] is added to the 

variance covariance matrix Σi.  A preliminary choice for the design matrix Ui was made using 

the squared residuals of a model with an unstructured mean for each tomato at each time 

point.  Such model has no practical sense and was only used for this data–exploration purpose 

because it allows estimating the intra–tomato variance we are interested in.  A spline–smooth 

estimate of the variance (not shown) followed a positive quadratic pattern as function of 

storage time.  The variance remains more or less constant for the first week of storage but 

then increases rapidly in the second week of storage.  A model allowing a quadratic increase 

in intra–tomato variance will be used as starting point.  As mean structure, the factors used in 

model 4g are taken.  This model 4h has a –2ℓ of –21437.2 (AIC = –21249.2), which is a clear 

improvement over model 4g, using only 3 extra parameters (σ2
o, δ1 and δ2).  Restricting the 

intra–tomato variance to behave linear increases the –2ℓ to –21145.9 (AIC = –20959.9) and 

did not improve the model fit.  At harvest, the variance of the three measurements is 0.0017 

units on logarithmic stiffness scale and increases almost four–fold to 0.0066 after two weeks 

of storage.  For instance, for a tomato with stiffness 8 × 106Hz2g2/3 at harvest, the 95 % 
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confidence limits for its stiffness are 7.68 to 8.32 × 106Hz2g2/3.  For a tomato with a stiffness 

of 5 × 10

504 
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525 

6Hz2g2/3 after two weeks of storage, its 95 % confidence limits are 4.40 and 5.60 × 

106Hz2g2/3, a substantially broader interval than at harvest.  These 95% confidence limits are 

only based on the intra–tomato variance σ2
o

 diag[exp(Uiδ)];  as such, they provide an estimate 

of the repeatability of the acoustic firmness tester.  The course of this repeatability as function 

of storage time is given in figure 7, together with the intra–tomato variance ZiDZi
T and the 

residual error variance σ2.  At harvest, the repeatability of the measurements is good and the 

intra–tomato variance only accounts for a minor part in the error variance diag(Σi).  In this 

example the random effects account for most of the data variance.  In other words, most of the 

variability in the data is due to the different behaviour of the different tomatoes belonging to a 

given variety since the random effects describe the dispersion of the profiles around their 

fixed effects that were modelled as separate quadratic trends for each variety. 

5. Discussion 

The analysis at each time point provides a quick view on the differences that occurred 

between tomato varieties at each time point.  However, an overall comparison of tomato 

varieties could not readily be obtained, rendering the interpretation of firmness evolution 

more cumbersome.   

The OLS regression model treats the storage time as a continuous variable, being more 

realistic than the categorical assumption in the analysis at each time point.  As such, it allows 

estimating the stiffness decay factor and hence shelf–life of the tomatoes under the strict 

assumptions that any two measurements are independent of each other, and that data 

variability remains constant over storage time.  Both assumptions are highly questionable and 
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put the use of this type of model open to discussion.  From literature, it appears that the 

homoscedasticity assumption of the data is often not valid [7, 10, 11, 21] who all encounter 

time dependent data variability.  This was also found in the results presented here where 

figure 4 indicated that the squared OLS residuals show increased amplitude towards the end 

of the experiment.  This increase can be due to two different causes.  First, because tomatoes 

are harvested when they attain a certain maturity stage, their variability in stiffness, which is 

correlated to maturity [22], is lower than during storage where different tomatoes react in a 

different way to climate conditions increasing data variance.  Second, as proven in literature 

[10, 11, 23], the repeatability of the acoustic firmness tester worsens with decreasing product 

stiffness.  Both components are likely to have their influence but the OLS setting does not 

allow separating their contributions to the data variability. 

Even more questionable is the assumption of independence of error terms since two 

measurements taken on the same tomato will be related.  This (wrong) assumption of the OLS 

model has no important consequence on the estimated parameters since they are 

asymptotically consistent [19], but has a very important consequence on their standard errors, 

and hence on parameter significance.  Due to the negation of the dependency among 

measurements of a given tomato, the information contained in the data set is overestimated 

leading to smaller but inconsistent standard errors.  Model fits are often evaluated by looking 

at parameter variances, but this is only valid under justifiable model assumptions.  This was 

shown in the practical example of comparing the stiffness evolution of two tomato varieties 

where the significance of their difference is highly dependent on the model assumptions that 

were made, making it very difficult to correctly interpret results in literature where the model 

assumptions are not checked thoroughly.  For instance, using the repeated measures analysis, 
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the conclusion would be that TradiroM and Quest tomatoes in August show a similar stiffness 

evolution (P = 0.1047) while the final mixed model that used the same data (model 3g) 

concludes the opposite (P = 0.0098).   
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The repeated measures analysis of the data relaxes the assumption of independent 

error terms and even of homoscedasticity since a heterogeneous covariance structure was 

used.  Although the model fit improved drastically over the OLS model in terms of the –2ℓ 

value, the standard errors of the estimates increased remarkably due to reasons that were 

mentioned above.  The heterogeneous autoregressive covariance structure tracks the data 

variance adequately, but probably is a too complex structure (it assumes a separate variance 

estimate for each storage time) to describe the variance trend when considering figure 5.  As 

was the case in the OLS model, the source of the variance cannot be split into the different 

sub–contributions due to tomato variability and measurement error which, again, is a severe 

drawback of these models since interest of growers could lay in quantification of 

homogeneity of the batch or variety (inter–tomato variance), and researchers and companies 

manufacturing acoustic firmness devices put emphasis on the repeatability of their equipment 

(intra–tomato variance).  These drawbacks are perhaps the most important stimuli to prefer 

the mixed model approach above higher–mentioned approaches.   

The linear mixed model for longitudinal data, considering three repetitions for each 

tomato at each measurement day, was capable to divide the data variance into the wanted 

components that were named inter– and intra–tomato variances.  This total variance 

decomposition demonstrates one of the important advantages of longitudinal model 4h over, 

for instance, the analysis at each time point and the OLS model.  Using the OLS model, it was 

possible to quantify the total data variance by squaring the residuals and fitting a cubic spline 
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through it.  Although the so–obtained variance function showed an increase during storage, 

this increase could not be accounted for in the OLS model.  That analysis only gives an 

indication of the average, constant variance being an oversimplification of the true underlying 

data behaviour.  Using model 4h, it is possible to allow for heteroscedasticity and to quantify 

the different components of the data variance, which is of utmost importance.  During the 

whole experiment, the inter–tomato variance proves to dominate the intra–tomato variance 

(figure 7) indicating that deviations of individual patterns from the variety mean are in the 

first place due to the different behaviour of the different tomatoes within that variety.  Much 

smaller is the deviation that is due to the imperfect repeatability of the acoustic firmness 

technique.  When comparing the intra–and inter–tomato variance with the residual error 

variance σ² it can be noted that σ² is larger than the intra–tomato variance until day 10, but 

that at the last day of the experiment the intra–tomato variance becomes larger (figure 7);  the 

combined contribution of σ² and intra–tomato variance never accounts for more than one third 

of the total variance.  As such, the unexplained variance of the model σ² remains very low in 

contrast with the OLS and repeated measures analysis where all variance could be regarded as 

‘unexplained by the model’.   

6. Conclusions 

Four methods for analysing repeated measures data on horticultural products – inherently 

exhibiting a large inter–subject variability – were discussed and compared.  Although many 

research still make use of classical techniques such as an analysis at each time point or an 

ordinary least squares regression model, other techniques are available in statistical software 

packages and that are much more flexible that higher–mentioned techniques.  Perhaps the 
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most flexible of those techniques is the concept of mixed models for repeated measures as it is 

able to describe several contributions of variance (such as intra– and inter–subject variance) 

and allow for complex variance–covariance structures.  The findings that were postulated 

were applied to a practical example where the tomato firmness of different cultivars is 

followed during postharvest storage.  This research shows the caveats of interpreting results 

when the basic assumptions of a given model are not fully fulfilled, leading to controversial 

results.  The mixed model approach presented in the text proves to be the most flexible in 

order to be able to describe the different variance contributions (within tomatoes and between 

tomatoes), together with the correct treatment of the repeated measures design of the 

experiment.  By including random effects in the model, it was shown that most of the random 

variation was due to the different behaviour of tomatoes within a variety.  Much smaller was 

the variation that was due to the measurement error when taking repeated measures on one 

single tomato.  This intra–tomato variation was shown to increase during storage, meaning 

that the repeatability of the firmness device was lower for soft tomatoes. 
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Footnotes 608 

609 
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619 
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622 

1 The notation 1:2 refers to the mixture of chi–squared distributions. 

2 Only if a heterogeneous covariance structure is assumed. 

3 Only if random time trends are included, or a heterogeneous covariance structure is 

assumed. 

4 Analysis at each time point using a separate mean for each harvest – variety combination 

5 OLS model, slope² was not significant and hence not added to the model 

6 Repeated measures analysis, ARH(1) covariance structure 

7 Models 1 to 3 are based on the average stiffness of each tomato.   

8 Models 4 represent 3 repetitions for each tomato.  –2Log L and AIC’s hence are not 

comparable to models 1, 2 and 3. 

9 Model 4h has the same structure as model 4g except that it includes the local effects σ2
o
 

diag[exp(Uiδ)]. 
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Tables 625 

626 Table 1:  Overview of flexibilities of models used to model repeated quality measures. 

Analysis type 
Allow for repeated 

measures? 

Allow to model 

product variability? 

Allow for 

heteroscedasticity? 
Analysis at each time 

point no no yes 

OLS regression 

model 
no no no 

Repeated measures 

analysis 
yes no yes2 

Linear mixed model 

for longitudinal data 
yes yes yes3 
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Table 2:  Tukey multiple comparisons at 0 and 14 days of storage for the August data.  

Cultivars with the same letter for a given day are not different at a 5 % significance level. 

628 

629 

Day Tukey grouping 
Mean stiffness 

(× 106Hz2g2/3) 
cultivar 

A     8.26 RZ7457 

 B    7.12 DRW5736 

 B    7.08 DRW6391 

 B C   6.97 S&G18161 

 B C D  6.77 S&G49107 

 B C D  6.62 RZ72503 

 B C D E 6.46 TradiroM 

 B C D E 6.40 DRW6492 

 B C D E 6.26 BS9445 

  C D E 6.18 DRW6340 

   D E 6.06 TradiroSKW 

   D E 5.95 Quest 

    E 5.95 E2031152 

0 

    E 5.66 Mariachi 

A     6.80 RZ7457 

A B    6.10 DRW6391 

 B C   5.38 DRW5736 

 B C D  5.21 S&G49107 

  C D  5.09 S&G18161 

14 

  C D  4.82 RZ72503 
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  C D  4.80 Quest 

  C D  4.79 E2031152 

  C D  4.66 DRW6492 

  C D  4.58 TradiroM 

  C D  4.57 Mariachi 

   D  4.45 TradiroSKW 

   D  4.34 DRW6340 
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Table 3:  Tomato segmentation data.  Overview of the model building process with parameter estimates and standard errors using REML; model 

fit statistics obtained under ML.  Parameter estimates hold for DRW5736 tomatoes in August.  Models 1–3 based on average stiffness; model 4 

includes three repetitions for each tomato. Values for random effects denote variances. 

630 

631 

632 

      
Model 

Nr 
Intc s.e Slope s.e Slope² s.e

Random 

intercept 

Random 

slope 

Random 

slope² 
–2Log L AIC 

04            – – – – – – – – – –4567.1 –4185.1

15 1.9370 0.0213 –0.0225 0.002461 – – – – – –4451.5 –4337.5

2a6 1.9532 0.0272 –0.0223 0.002816 – – – – – –7615.5 –7487.5

2b 1.9686 0.0284 –0.0323 0.005910 0.00080 0.00041 – – – –7704.6 –7520.6

3a7 1.9370 0.0211 –0.0225 0.002443 – – – – – –4451.5 –4337.5

3b 1.9370 0.0275 –0.0225 0.001374 – – 0.0131 – – –7275.0 –7159.0

3c 1.9370 0.0277 –0.0225 0.002123 – – 0.0142 6.7×10-5 – –7643.4 –7523.4
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Table 3 continued. 634 

      
Model 

Nr 
Intc s.e Slope s.e. Slope² s.e

Random 

intercept 

Random 

slope 

Random 

slope² 
–2Log L AIC 

3d       1.9704 0.0273 –0.0389 0.008917 0.001150 0.00060 – – – –4483.2 –4313.2

3e       

     

     

            

          

         

       

            

       

      

    

1.9704 0.0289 –0.0389 0.004579 0.001150 0.00029 0.0131 – – –7374.9 –7202.9

3f 1.9704 0.0281 –0.0389 0.004586 0.001150 0.00034 0.0143 6.9×10-5 – –7780.7 –7604.7

3g 1.9704 0.0289 –0.0389 0.004712 0.001150 0.00035 0.0137 1.2×10-4 9.9×10-7 –7884.4 –7702.4

  4a8 1.9365 0.0136 –0.0227 0.001569 – – – – – –10939.6 –10825.6

4b 1.9365 0.0267 –0.0227 0.001032 – – 0.0134 – – –18616.1 –18500.1

4c 1.9365 0.0279 –0.0227 0.002191 – – 0.0152 8.4×10-5 – –19708.2 –19588.2

4d 1.9696 0.0176 –0.0389 0.005732 0.001139 0.00039 – – – –11013.6 –10843.6

4e 1.9696 0.0277 –0.0389 0.003752 0.001139 0.00025 0.0134 – – –18785.5 –18613.5

4f 1.9696 0.0287 –0.0389 0.003951 0.001139 0.00023 0.0152 8.4×10-5 – –19912.8 –19736.8

 39



4g     

      

1.9696 0.0283 –0.0389 0.004635 0.001139 0.00034 0.0148 2.3×10-4 1.4×10-6 –20153.8 –19971.8

4h9 1.9673 0.0290 –0.0367 0.004687 0.000945 0.00034 0.0141 1.3×10-4 7.1×10-7 –21437.2 –21249.2

 635 
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636 

Figure 1:  Graphical representation of the mixed model building process used throughout this 

chapter (after [13]). 

Figure 2:  Variety–specific tomato stiffness profiles as function of storage time, modelled 

using an unstructured mean.  August harvest.  ∆: BS9445; ∇: DRW5736; +: DRW6340; –: 

DRW6391; o: DRW6492; ×: E2031152; ∗: Mariachi; �: Quest; ◊: RZ72503; <: RZ7457; >: 

S&G18161; ❶ : S&G49107; ① : TradiroM (full line) and TradiroSKW (dashed line). 

Figure 3:  Variety–specific tomato stiffness profiles as function of storage time, modelled 

using an unstructured mean.  October harvest.  ∆: BS9445; ∇: DRW5736; +: DRW6340; –: 

DRW6391; o: DRW6492; ×: E2031152; ∗: Mariachi; �: Quest; ◊: RZ72503; <: RZ7457; >: 

S&G18161; ❶ : S&G49107; ① : TradiroM (full line) and TradiroSKW (dashed line). 

Figure 4:  Spline–smoothed average trend of the squared OLS residuals of model 1 (–) and 

modelled variance function using the same model 1 (– –). 

Figure 5:  Spline–smoothed average trend of the squared OLS residuals of model 1 (–) and 

modelled variances σ2
i  using model 2b with a heterogeneous autoregressive structure (∆). 

Figure 6:  Spline–smoothed average trend of the squared OLS residuals of model 1 (–) and 

modelled variance function using model3g (– –). 

Figure 7:  Decomposition of the total variance as function of storage time into its three 

components (model 4h).  The intra–tomato variance is given by σ2
o diag[exp(Uiδ)];  the 

 

Figure legends 
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inter–tomato variance by ZiDZi
T and the residual variance by σ2.   
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Figures 638 
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