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Abstract
Feature attribution maps are a popular approach to highlight the most important pixels in 
an image for a given prediction of a model. Despite a recent growth in popularity and avail-
able methods, the objective evaluation of such attribution maps remains an open problem. 
Building on previous work in this domain, we investigate existing quality metrics and pro-
pose new variants of metrics for the evaluation of attribution maps. We confirm a recent 
finding that different quality metrics seem to measure different underlying properties of 
attribution maps, and extend this finding to a larger selection of attribution methods, qual-
ity metrics, and datasets. We also find that metric results on one dataset do not necessar-
ily generalize to other datasets, and methods with desirable theoretical properties do not 
necessarily outperform computationally cheaper alternatives in practice. Based on these 
findings, we propose a general benchmarking approach to help guide the selection of attri-
bution methods for a given use case. Implementations of attribution metrics and our exper-
iments are available online (https:// github. com/ arneg evaert/ bench mark- gener al- imagi ng).
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1 Introduction

Deep neural networks have for some years been the state of the art for a number of predic-
tive tasks, such as image classification (Krizhevsky et al., 2012; Simonyan & Zisserman, 
2015; He et al., 2016), language modeling (Vaswani et al., 2017; Brown et al., 2020) and 
reinforcement learning (Mnih et al., 2015; Silver et al., 2017; Lillicrap et al., 2019). This 
has led to their widespread adoption in many areas of machine learning. Such models are 
however notorious for their black box nature: due to the large numbers of parameters and 
complex neural architectures, their predictions become very difficult or even impossible to 
understand. Interpretability of predictive models is a very useful property for many differ-
ent reasons: it allows us to extract understandable knowledge from large datasets, poten-
tially leading to new knowledge about the data itself, debug models when they fail, and 
explain predictions to end users to build trust in the system (Doshi-Velez & Kim, 2017). In 
some cases, the ability to explain predictions is crucial for model deployment.

For this reason, a number of different techniques have been proposed to try to make 
neural networks more explainable. Proposed approaches include extracting interpretable 
rules (Ribeiro et al., 2018), counterfactual explanations (Wachter et al., 2017; Dandl et al., 
2020), model distillation (Liu et  al., 2018), and feature attribution (Ribeiro et  al., 2016; 
Selvaraju et al., 2017; Sundararajan et al., 2017; Springenberg et al., 2014; Simonyan et al., 
2014; Erion et al., 2021; Smilkov et al., 2017). In this work, we focus on the latter type of 
explanation. Feature attribution explanations are among the most popular techniques for 
explaining image classification models, because they can easily be visualized as a heatmap 
showing which pixels in an image are important (in the case of color images, the attribu-
tion value of a pixel can be defined to be the average or maximum absolute value of its 
three color components). Feature attribution techniques can also be used to measure the 
importance of hidden neurons or layers (Shrikumar et  al., 2017; Selvaraju et  al., 2017), 
although the focus in this work is on pixel attribution in the image domain.

The exact task of feature attribution can be interpreted in different ways, leading to 
some discussion about which properties a feature attribution method should satisfy (Chen 
et al., 2020). Feature attribution methods can roughly be divided in four categories using 
two properties: local vs. global, and model- vs. data-centric. The first property concerns 
the scope of the explanation: local feature attribution maps the importance of features in 
a given sample, whereas global feature attribution maps the importance of features for all 
samples in a dataset (also called feature importance). The second property concerns the 
target of the explanation: model-centric feature attribution concerns the importance of fea-
tures for a specific model, whereas data-centric feature attribution measures the informa-
tiveness of features in the data, independently of any specific model. This can be estimated 
using classical statistical or information-theoretical techniques (Chandrashekar & Sahin, 
2014). Model- and data-centric feature attributions are not necessarily the same, as a model 
can often make predictions using only a subset of the informative features, or even using 
features that are generally non-informative (in which case the model is overfitting). In this 
work, we specifically evaluate local, model-centric feature attributions.

Because of the desire for model explanations and the widespread popularity of deep 
neural networks in the domain of image classification, many feature attribution methods 
have been proposed in recent years. These methods can roughly be divided into gradient-
based, perturbation-based and CAM-based methods (Ancona et al., 2018; Selvaraju et al., 
2017). Each attribution method creates a different explanation for the same prediction. This 
has naturally led to the question of explanation quality: which methods work best? This 
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turns out to be a very difficult question, since there is no ground truth available in the form 
of “perfect” feature attribution scores.

Attempts at evaluating feature attribution explanations can roughly be categorized in 
three types of approaches. The first is human evaluation. This includes simply looking at an 
explanation and seeing if it “makes sense”, or performing a user study to see how helpful 
explanations are for predicting model behaviour (Schmidt & Biessmann, 2019). The disad-
vantage of these approaches is that such user studies are difficult to set up, and their results 
are inherently subjective. It has been shown that, just because an explanation makes sense 
to humans, does not mean that it is true to the underlying workings of the model (Adebayo 
et al., 2018). Also, a user study is generally infeasible to perform for each use case, and it is 
unclear whether results from user studies can be generalized to different datasets.

A second approach is to define a set of desirable properties, or axioms, that a method 
should have (Lundberg & Lee, 2017; Sundararajan et  al., 2017). Examples of such axi-
oms include local accuracy, missingness and consistency (Lundberg & Lee, 2017). Such 
approaches are more objective in nature, but recent work has shown that methods that con-
form to these axioms are still not necessarily accurate (Adebayo et  al., 2018). Some of 
these axioms can also be implemented in different ways, leading to a number of methods 
that all conform to certain axioms, but still provide different explanations for the same pre-
diction (Sundararajan & Najmi, 2020).

Finally, we can define quantitative metrics that try to indicate the quality of an explana-
tion by measuring the behaviour of the model or explanation after applying specific pertur-
bations (Ancona et al., 2018; Yeh et al., 2019). A simple example of this kind of measure 
is Deletion (Samek et al., 2017). Here, we iteratively mask the top n most important fea-
tures, as indicated by the explanation. If the features that were marked as important are 
truly important, we would expect the output of the model to drop rapidly with increasing n. 
Another example is the so-called sanity check proposed by Adebayo et al. (2018). This san-
ity check works by randomizing the parameters of the model, and comparing the original 
attribution map to the attribution map computed for the randomized model. If these two 
maps are similar, then the attribution method is independent of the model parameters, and 
is therefore viewed as failing the sanity check.

In this work, we implement several existing and newly proposed quality metrics for 
evaluating feature attribution methods. These metrics are evaluated on a large number of 
attribution methods, and we investigate the results on 8 different datasets of varying dimen-
sionality. Our contributions are as follows:

• We expand on the work done in Tomsett et al. (2020), showing that different quality 
metrics measure different underlying properties of attribution maps. We extend this 
finding to a significantly larger set of quality metrics, attribution methods, and datasets.

• We demonstrate that the results of quality metrics for attribution maps, including the 
sanity check from Adebayo et  al. (2018), vary significantly across different datasets. 
From this observation, we conclude that quality metrics should be computed separately 
for each given use case, rather than assuming that the results for one dataset or model 
will generalize to another setting.

• We propose three new metrics: Minimal Subset Deletion, Minimal Subset Insertion 
and Seg-Sensitivity-n (based on Sensitivity-n (Ancona et  al., 2018)). We empirically 
show that Seg-Sensitivity-n provides results with a higher signal-to-noise ratio on high-
dimensional datasets.

• We find that the performance of some methods is complementary to that of other meth-
ods, suggesting that a combination of these attribution methods may be valuable.
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• We find that, depending on the dataset, methods with strong theoretical foundations 
such as DeepSHAP (Lundberg & Lee, 2017) do not necessarily outperform their com-
putationally cheaper counterparts such as DeepLIFT (Shrikumar et  al., 2017). This 
suggests that a benchmarking approach can be useful to check if a computationally 
intensive method is truly more valuable than a simpler one for a given use case.

• Finally, we provide general benchmarking guidelines to help guide the search for an 
appropriate attribution method or set of attribution methods for a given use case.

2  Related work

Although the systematic evaluation of feature attribution methods is a fairly recent topic, 
a number of attempts have already been made to systematically and objectively evaluate 
the quality of explanations. An early, intuitive way of evaluating feature attributions was 
proposed by Samek et al. (2017). In this approach, the top k most important features are 
removed by replacing them with random noise. Consequently, the difference in output of 
the model is measured. If the most important features are truly important to the model, we 
expect a sharp drop in confidence for the predicted class.

A more general approach was proposed by Ancona et al. (2018), called Sensitivity-n. 
This metric is computed by removing a number of random subsets of n pixels from the 
image, and measuring the correlation of the difference in output with the sum of attribution 
values of those removed pixels. This allows one to assess the accuracy of the attribution 
values in general, rather than just the top most important features.

A possible problem with the metrics mentioned above is the fact that masking inputs in 
images can introduce high-frequency artifacts, which can push the images outside of their 
normal data distribution. This can cause the model to produce arbitrary outputs. Although 
the exact impact of this problem on the scores produced by metrics is unclear, some efforts 
to resolving it have already been made, including the Remove And Retrain (ROAR) pro-
cedure (Hooker et  al., 2019). Here, the authors attempt to resolve the OOD problem by 
modifying the Deletion metric by Samek et al. (2017) such that after every iteration, the 
model is retrained on the data where the top k pixels are removed. The reasoning is that in 
this way, the model learns to regard the mean-valued pixels as uninformative.

However, we argue that this metric is not measuring the same kind of feature attribu-
tion as the original Deletion metric. Because the model is retrained after each iteration, it 
is able to detect and use different parts of the input to make a prediction. Also, there is no 
guarantee that the model, after retraining, will consider the masked pixels as uninforma-
tive: the shape or location of regions with that specific color (the dataset mean) can still 
be very informative. In other words, ROAR can only assess the ability of methods to map 
local, data-centric feature attributions. Since the methods we are evaluating are designed 
to map local, model-centric attributions, we do not incorporate this metric in our analysis.

More recently, Yeh et al. (2019) proposed Infidelity and Max-Sensitivity, two comple-
mentary metrics that measure the accuracy of a method and its robustness against small, 
insignificant perturbations, respectively. Recent work has shown that some feature attribu-
tion methods, much like neural networks themselves, are vulnerable to adversarial attacks 
(Ghorbani et al., 2019). This makes the robustness of explanations an interesting property 
to measure in addition to the accuracy.

Yang and Kim (2019) proposed a synthetic data approach, where objects from 
MSCOCO (Lin et al., 2014) were pasted into background images from MiniPlaces (Zhou 
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et al., 2017). A model is then trained to classify either the background or the object in the 
image. Because it is known where in the image the object was pasted, a relative form of 
ground truth is available. From this, a number of metrics are derived. However, as opposed 
to the previously proposed metrics, these metrics are tied to a specific dataset, and cannot 
be calculated for any given dataset and model. For this reason, we do not consider this 
approach in our work.

Another related approach was proposed by Adebayo et al. (2018). In this work, a relative 
form of ground truth is created by randomizing the parameter values of the network, layer 
by layer. The assumption is that the feature attribution map should be significantly different 
for a trained model vs. a randomized model. Methods that return the same attribution map 
for both models, appear to be independent of the model parameters. This approach does not 
provide a numerical value that captures the quality of the explanation, but rather acts as a 
pass/fail “sanity check”.

Recently, Tomsett et al. (2020) have shown that some of these metrics are very depend-
ent on implementation details, and do not appear to be measuring the same underlying 
properties of explanations. This is shown by measuring the correlation between different 
metric scores. The authors find that details such as how pixels are masked (by setting them 
to 0 vs. replacing them with random noise), or in what order they are masked (by decreas-
ing or increasing importance), have a great influence on the quality scores given by the 
metric. This suggests that these metrics, although they are all designed to measure the 
“accuracy” of explanations, appear to be measuring different underlying properties. We 
build upon this work by applying a similar but more extensive analysis on a larger number 
of metrics and methods. In doing so, we can draw more global conclusions about how dif-
ferent methods and metrics relate to each other, and which methods and metrics may be 
most desirable for specific use cases.

3  Definitions and notation

We define an instance as a vector x ∈ X ⊆ ℝ
d , where d is the number of inputs (pixels, 

or color values of pixels in the case of RGB images). A model is defined as a function 
m ∶ X → ℝ

o , where o is the number of output classes. Note that the output of the model for 
a given class c can be any real number. In many cases, the output of the model is followed 
by a softmax function � , mapping the outputs from ℝo to [0, 1]o . In this case, the original 
outputs are called logits. In this work, we consider the logit values as the actual output of 
the model. We write m(x)c as the c-th component of the output of model m on instance x.

We denote the model class as M = {m} , this represents the set of possible model 
instantiations (for example, the set of all possible neural networks, or all possi-
ble neural networks of a given architecture). An attribution method is a function 
E ∈ E ∶ M × X × {1,… , o} → ℝ

d . The result of this function is called an attribution 
map. We explicitly mention the model m ∈ M as an argument of this function to indi-
cate that we consider local, model-centric attributions, which are dependent on a specific 
combination of instance and model. The output class is also an argument of the attribu-
tion method, as attributions can be calculated for each output of the model. Finally, we 
define an attribution metric as a function M ∶ M × X ×ℝ

d × {1,… , o} → ℝ (type I) or 
M ∶ M × X × E × {1,… , o} → ℝ (type II), mapping a model m, an instance x , an attri-
bution map e (type I) or attribution method E (type II), and an output class c to a single 
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real number which represents the quality of the attributions given by e or E for output c of 
model m on instance x.

For an instance x and attribution map e , we will denote xe
k
 and xe

−k
 as the instance x 

where respectively the k most or least important inputs are removed according to e . This 
removal, or “masking out” of features can be implemented in a number of different ways, 
which will be discussed in detail in Sect. 6.2. In the case of color images, we define the 
attribution value of a pixel as the average value of its color components, and proceed 
analogously.

Finally, we will denote S = {Sl}L
l=1

, Sl ∈ {0, 1}d as the set of segments of an input sam-
ple x as produced by a given segmentation algorithm, where Sl

i
= 1 if the ith input feature is 

part of segment l, and Sl
i
= 0 otherwise. The attribution value of a segment Sl can then sim-

ply be computed as the average attribution value of its input features: eSl ∶=
‖e⊙Sl‖1
‖Sl‖1

 , where 
⊙ indicates element-wise multiplication. For an instance x , a corresponding segmentation 
S, and an attribution map e , we will denote xe

kS
 (resp. xe

−kS
 ) as the same sample x where the k 

most (resp. least) important segments are masked out.

4  Attribution metrics

We now describe the different quality metrics that were used to evaluate the attribution 
methods described in Sect. 5. A summary of general properties can be seen in Table 1:

• Attribution range Indicates which parts of the attribution map the metric actually 
evaluates: we denote metrics that evaluate the most important, least important, or all 
inputs as high-end, low-end or overall metrics, respectively. For example: DelMoRF and 
DelLeRF evaluate the high- and low-end, respectively, because they measure the influ-
ence of removing the top and bottom k features, respectively (see further).

Table 1  Summary of metrics

1provided that an adversarial patch is already available

Metric Range Masking Data type Complexity Interface

DelMoRF High-end ✓ Any O(L) Type I
DelLeRF Low-end ✓ Any O(L) Type I
InsMoRF High-end ✓ Any O(L) Type I
InsLeRF Low-end ✓ Any O(L) Type I
MSDel High-end ✓ Any O(d) Type I
MSIns High-end ✓ Any O(d) Type I
IROFMoRF High-end ✓ Image O(|S|) Type I
IROFLeRF Low-end ✓ Image O(|S|) Type I
Sensn Overall ✓ Any O(k) Type I
SegSensn Overall ✓ Image O(k) Type I
INFD Overall ✓ Any O(k) Type I
SENSMAX Overall Any O(k ∗ Cmth) Type II
COV High-end Image C1

mth
Type II

PR Overall Any Cmth Type II
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• Masking Indicates whether the metric relies on masking inputs in its implementation. 
Metrics that do, can be implemented in different ways, as the choice of a neutral value 
to replace features with is not obvious (see Sect. 6.2).

• Data type Indicates which types of data the metric can be applied to. In our case, a 
metric can either be applied to any kind of data, or only to image data (for example, 
because it relies on an image segmentation algorithm (Rieger & Hansen, 2020), or an 
adversarial patch (Lin et al., 2019)).

• Complexity Indicates the computational complexity of the metric expressed as a num-
ber of forward passes through the model. Cmth is the complexity of the attribution 
method being evaluated, also expressed as a number of forward/backward passes.

• Interface We define two interfaces for attribution metrics:

– Type I M ∶ M × X ×ℝ
d × {1,… , o} → ℝ . A type I metric accepts an attribution 

map e ∈ ℝ
d to evaluate. This allows one to compute the metric result for any attri-

bution map, regardless of whether the implementation of the attribution method that 
generated it is available or not.

– Type II: M ∶ M × X × E × {1,… , o} → ℝ . A type II metric needs access to the 
attribution method under evaluation E ∈ E , because the method needs to be re-exe-
cuted at some point in the computation of the metric. If the implementation of the 
attribution method is not available, this type of metric cannot be computed.

4.1  Deletion

The first and most widely known metric is Deletion (Samek et  al., 2017). This metric 
works by iteratively removing the top k most important features from an input sample. This 
is done by masking the feature with some value (see further: 6.2).

An ordering of features where the most important features are ranked highest will cause 
a steep decrease in the output confidence of the model. This can be summarized by com-
puting the area under the perturbation curve, where a low AUC corresponds to a good 
explanation. Samek et al. (2017) also introduces an alternative variant of the Deletion met-
ric, where the features are masked in reversed order of importance. In that case, a high 
AUC value indicates a good attribution map. We call this variant DeletionLeRF (Least Rel-
evant First), and the original DeletionMoRF (Most Relevant First).

Where L is the maximum number of inputs masked, and c is the output that the attribution 
is intended to explain (usually this is the highest output of the model, which corresponds 
to the class that the model assigned to x ). For large images, we can approximate this value 
by taking a fixed number of steps with a constant step size. The MoRF-variant evaluates 
the high end of the attribution map, whereas the LeRF-variant evaluates the low end. We 
choose L such that at most 15% of pixels are masked, which corresponds to the original 
approach in Samek et al. (2017). This limits the influence of out-of-distribution effects: as 

DelMoRF(x,m, e, c) =
1

L

L∑

k=1

m(xe
k
)c

DelLeRF(x,m, e, c) =
1

L

L∑

k=1

m(xe
−k
)c
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more pixels are removed, the image gets further removed from the original data manifold, 
making the result less representative. This metric scales linearly in the number of steps L 
taken to compute the AUC.

4.2  Insertion

A simple variant of the Deletion metric is Insertion (Petsiuk et  al., 2018). This met-
ric works entirely analogously to Deletion, but instead of iteratively removing features 
from the original input sample, we now iteratively insert pixels of the original image 
onto a blank background (which is again defined by the masking procedure).

Analogously to the Deletion metric, we can again define two variants of Insertion: 
InsertionLeRF and InsertionMoRF , where resp. the least and most relevant features are 
inserted first. Since inserting the k most important features is the same as removing the 
d − k least important ones, we can define Insertion as follows:

Note that if L = d , InsMoRF = DelLeRF and InsLeRF = DelMoRF . Again, the MoRF- and 
LeRF-variants measure the high and low end respectively. This metric also scales linearly 
with the number of steps hyperparameter L.

4.3  Minimal subset

The previously mentioned Deletion and Insertion metrics only take into account the 
model’s confidence in the originally predicted class c. However, the actual prediction 
of the model is also dependent on the confidence of the other classes. The removal of 
certain features could, for example, hardly influence the output confidence in c, but 
drastically change the confidence of another class c′ , causing the model to change its 
overall prediction. To mitigate this problem, we introduce Minimal Subset Deletion 
and Minimal Subset Insertion.

These metrics work by iteratively removing (resp. inserting) the top k most impor-
tant features from the input sample, and recording the smallest value for k that causes 
the prediction of the model to change. For Minimal Subset Insertion specifically, the 
prediction must change into the originally predicted class c.

For analogous reasons as with Deletion/Insertion, this metric evaluates the high end of the 
attribution map. Both variants scale linearly with the amount of dimensions d.

InsMoRF(x,m, e, c) =
1

L

L∑

k=1

m(xe
−(d−k)

)c

InsLeRF(x,m, e, c) =
1

L

L∑

k=1

m(xe
d−k

)c

MSDel(x,m, e, c) = argmin
k∈{1,…,d}

( argmax (m(xe
k
)) ≠ argmax (m(x)))

MSIns(x,m, e, c) = argmin
k∈{1,…,d}

( argmax (m(xe
−(d−k)

)) = argmax (m(x)))
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4.4  IROF

Iterative Removal Of Features (IROF) (Rieger & Hansen, 2020) is an extension of Dele-
tion, where a segmentation S of the input sample x is used. Instead of iteratively mask-
ing the k most important inputs, we now mask the k most important segments. This can 
reduce the number of forward passes needed, and can provide insight into the quality 
of an attribution at a larger scale: an algorithm that is able to find the top few pixels 
that maximally perturb the network when removed, might score very well on Deletion, 
but not so much on IROF. If another algorithm correctly identifies the most important 
“regions”, it might score better on IROF and worse on Deletion. In some cases, the lat-
ter might be more interesting, as this would likely correspond to explanations that are 
less noisy and more easily readable.

We can define IROFMoRF∕LeRF analogously to DeletionMoRF∕LeRF , leading to the fol-
lowing definitions:

Note that, even though all segments are removed in IROF, we classify this metric as high-
end. This is because the metric score still depends most on the top most important image 
segments: if those are identified correctly, the model output will decrease quickly, and the 
other segments will have little influence on the metric score. IROF scales linearly with 
the amount of segments |S|, and is only applicable to image data because of the depend-
ence on an image segmentation algorithm. We implement IROF using the SLIC algorithm 
(Achanta et al., 2012), with an approximate number of segments of 100.

4.5  Sensitivity‑n

Previous metrics have only considered the most or least important features. This can be 
a problem if the inputs contain a large number of features, in which case a large propor-
tion of the features is hardly evaluated, or has a small influence on the evaluation. To get 
a more global assessment of the quality of feature attributions, Sensitivity-n was intro-
duced (Ancona et al., 2018). Formally, Sensitivity-n is defined as follows (quoted from 
Ancona et al., 2018, where mathematical notation was adjusted to conform to ours):

An attribution method satisfies Sensitivity-n when the sum of the attributions for 
any subset of features of cardinality n is equal to the variation of the output m(x)c 
caused by removing the features in the subset.

Since no attribution method exactly satisfies Sensitivity-n for all values of n, the metric 
instead measures how well the sum of attributions 

∑
s∈S es correlates with the difference 

in output m(x)c − m(xS)c , using the Pearson correlation coefficient (where xS denotes the 
instance x with all features in S removed, and es denotes the attribution of feature s 
according to attribution map e ). We can compute Sensitivity-n as:

IROFMoRF(x,m, e, c) =
1

|S|

|S|∑

k=1

m(xe
kS
)c

IROFLeRF(x,m, e, c) =
1

|S|

|S|∑

k=1

m(xe
−kS

)c
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Where Si is a random subset of inputs of size n, and r(X, Y) is the Pearson correlation coef-
ficient between variables X and Y. The correlation is computed using k randomly selected 
subsets Si . We choose k = 100 , which corresponds to the configuration in Ancona et  al. 
(2018).

The number of possible subsets of features grows exponentially with d. Because of this, 
the approximation made by this metric will get exponentially worse for increasing image 
size. To mitigate this problem, we introduce a segmented variant of Sensitivity-n, called 
Seg-Sensitivity-n. This metric works by first segmenting the input image x into segments 
S, and then removing random subsets of segments instead of features. Since the amount 
of segments is drastically lower than the number of features, selecting 100 random subsets 
gives a more representative sample, which we expect will increase the signal-to-noise ratio 
of this metric.

Where S is the segmentation of instance x (represented as a set of segments {Sl} ), and xSLi 
denotes the instance x with all segments in Li removed. The correlation is now computed 
using k = 100 randomly selected subsets of segments Li . Since the subsets of features/seg-
ments are chosen randomly, Sensitivity-n and Seg-Sensitivity-n evaluate the overall attri-
bution map. Both metrics scale linearly in the number of subsets k.

4.6  Infidelity

Infidelity (Yeh et al., 2019) generalizes the previous metrics from perturbation by mask-
ing to general perturbations. This is done by comparing the difference in output after an 
arbitrary perturbation with the dot product of the perturbation vector I and the attribution 
map e . The perturbation vector is a random variable I ∈ ℝ

d with probability measure �I . 
The infidelity of an attribution map e for an input sample x and class c is then defined as 
follows:

Here, � acts as a normalizing term (called optimal scaling in the original paper) to make 
the values for different explanation methods comparable. We use two variants of Infidelity 
proposed in Yeh et al. (2019), defined by their perturbation vectors:

• Difference to noisy baseline ( INFDNB ): I = x − � , where � ∼ N(0, �2) . This corre-
sponds to a robust variant of the completeness axiom (Lundberg & Lee, 2017), where 
we take a Gaussian random vector centered around a zero baseline, instead of a con-
stant zero baseline.

Sensn(x,m, e, c) = r

(
∑

s∈Si

es,m(x)c − m(xSi )c

)

SegSensn(x,m, e, c, S) = r

(
∑

l∈Li

eSl ,m(x)c − m(xSLi )c

)

INFD(x,m, e, c) = �I∼�I

[
(�ITe − (m(x)c − m(x − I)c))

2
]

� =
�I∼�I

[ITe(m(x)c − m(x − I)c)]

�I∼�I
[(ITe)2]
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• Square removal ( INFDSQ ): in this case, I has a uniform distribution over square patches 
of the image x of some predefined size. This can better capture spatial relationships in 
the images, as the removal of single pixels actually removes very little information if 
the surrounding pixels are still intact.

Since the perturbations happen on the entire image or on randomly selected squares, 
respectively, they evaluate the overall attribution map. Infidelity scales linearly with the 
number of samples k used to approximate the expected value. In this work, k = 1000 , 
which corresponds to the original implementation by Yeh et al. (2019).

4.7  Max‑sensitivity

Max-Sensitivity (Yeh et  al., 2019) is the only metric that isn’t designed to evaluate the 
correctness of an attribution map, but rather the robustness of the attribution map against 
small perturbations. It does this by adding small perturbations to the sample and recomput-
ing the attribution map on the perturbed samples. The maximum value of the L∞-norm of 
the difference between the original and perturbed attribution map is measured. To make 
different attribution methods comparable, the attribution maps are normalized to unit norm 
before computing Max-Sensitivity.

Where r is the maximum size of the added perturbation. We choose r = 0.1 , as in Yeh et al. 
(2019). Note that this is a type II-metric, meaning that it needs access to the attribution 
method E ∈ E rather than just the attribution map e ∈ ℝ

d . This metric scales linearly with 
the number of samples k (here chosen to be 50, as in Yeh et al. (2019)) used to approximate 
the maximum value, and the number of forward/backward passes necessary to compute the 
attribution map Cmth . Note that this can result in very large runtimes when evaluating com-
putationally complex methods.

4.8  Impact coverage

Impact Coverage (Lin et al., 2019) works by applying an adversarial patch to the image, 
and computing feature attributions on the adversarially attacked image. If the adversarial 
attack was successful, we would expect a large proportion of the attribution to be inside of 
the adversarial patch, as the patch caused the model to change its output.

We quantify this by computing the intersection-over-union (IOU) between the k most 
important pixels according to the attribution map E(m, x, c) (denoted here as the set T), 
where k is the number of pixels covered by the patch, and the patch P itself. A score of 1 
would indicate that the most important pixels perfectly cover the adversarial patch.

Where P is the set of features that were covered by the adversarial patch. Note that this 
metric, like Max-Sensitivity, is also a type II metric. Impact Coverage evaluates only the 
high end of the attribution map. Since the attribution method needs to be executed on 
the attacked image, this metric has the same complexity as the method being evaluated. 
Note that an adversarial patch is also needed to compute this metric, meaning that this 

SENSMAX(x,m,E, c) = max
‖y−x‖≤r

‖E(m, x, c) − E(m, y, c)‖

COV(x,m,E, c) =
∣ T ∩ P ∣

∣ T ∪ P ∣
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complexity is only valid when the adversarial patch is given (that is, when evaluating this 
metric on a large number of attribution maps for the same model). Impact Coverage can 
only be computed for image data with a sufficiently high resolution, such that an adver-
sarial patch can be generated successfully.

Impact Coverage stands out from the other metrics because of its causal interpretation. 
As the adversarial patch was added to the image and the model was re-evaluated, we can 
be sure that the patch caused the change in the model output. This acts as a form of ground 
truth, although it is an incomplete form: it is not guaranteed that the entire patch was nec-
essary to change the output. Also, adversarial patches typically have strongly contrasting, 
high-frequency structure. This means that an attribution method that simply identifies 
highly contrasting, high-frequency regions in the image will likely score well on this met-
ric, even though it might not be a good explanation of the model’s behavior. Therefore, 
despite the causal interpretation of this metric, a good score is not a completely necessary 
or sufficient condition for good performance of an attribution method.

4.9  Parameter randomization

The final metric we consider is the Parameter Randomization test (Adebayo et al., 2018). 
This metric acts as a sanity check: rather than scoring each explanation, the results of 
Parameter Randomization should be interpreted as a pass/fail-test, where passing is a mini-
mal requirement for any method to be considered valuable. The Parameter Randomization 
test works by randomizing the parameters of the model and recomputing the attribution 
map for the randomized model. As the attribution map should highlight the features that 
were important to a specific model, we expect it to be dependent on the model parameters. 
Therefore, we expect the attribution map to change drastically when the parameters are 
randomized.

However, Adebayo et al. (2018) warn against a visual inspection of the resulting attribu-
tion maps, as it is possible that features with a formerly strongly positive attribution value 
receive a strongly negative attribution value after randomization. In this case, a visual 
inspection (which in many cases shows absolute attribution values) can be misleading, 
as the same features can seem important after randomization, even though their attribu-
tion value has changed drastically. Therefore, the change in attribution map is quantified 
using the absolute value of the Spearman rank correlation coefficient between the attribu-
tion maps for the original and the randomized model. If this value is close to zero, then 
the method is said to pass the sanity check. Note that the authors also introduce variants 
of this metric using the Structural Similarity Index (Wang et al., 2004) and Histogram of 
Oriented Gradients (Dalal & Triggs, 2005). However, we will not consider these variants 
in this work, as they require the image to be divided into patches, which is not always pos-
sible (for example, when evaluating attribution methods on tabular data or low-resolution 
images).

Like Impact Coverage, the Parameter Randomization metric also has a causal inter-
pretation: by randomizing the parameters, we intervene on the model, which allows us to 
define a form of ground truth. However, recent work suggests some possible limitations 
of this metric as well. Yona and Greenfeld (2021) model the metric using a causal DAG, 
and suggest that the task on which the model was trained might act as a confounder in the 
causal diagram of the metric. This would imply that whether a given explanation method 
passes or fails the sanity check could depend on the specific task or dataset. Binder et al. 
(2023) demonstrate that, even after partial randomization of the network, channels with 
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high activations are still likely to have a strong contribution to the output. For this reason, 
we only compare the original explanation with an explanation generated for a fully rand-
omized model. Finally, Hedström et al. (2023) show that the similarity metrics employed 
in Adebayo et al. (2018) are minimized by a statistically uncorrelated random process. This 
implies that intrinsically noisy explanations, such as gradient-based methods which can be 
subject to shattered gradient noise (Balduzzi et al., 2017), might be favoured by the Param-
eter Randomization test.

Note that the underlying assumption from Adebayo et al. (2018), i.e. the idea that any 
useful attribution method should be sensitive to the model parameters, is not being called 
into question by any of these works. Instead, the works demonstrate that methods could fail 
the sanity checks for other reasons than invariance to model parameters, and the outcome 
of the sanity check might depend on the specific dataset. For this reason, we will also com-
pute the sanity check for each dataset separately.

5  Attribution methods

An overview of the attribution methods included in this study can be seen in Table 2. We 
divide the methods in three types: Gradient-based, CAM-based and Perturbation-based. 
We also mention if the method requires the model to be differentiable, convolutional, or if 
it has no requirements about the model. The implementation used for GradCAM++ (Chat-
topadhay et  al., 2018) and ScoreCAM (Wang et  al., 2020) is available in the torch-cam 
package (Fernandez, 2020). For XRAI (Kapishnikov et  al., 2019), an implementation is 
available in the Saliency package provided by PAIR.1 For all other methods, the Captum 
package (Kokhlikyan et al., 2020) was used. For more details on the methods, we refer to 
the original papers in Table 2.

6  Experimental setup

In this section, we describe the datasets used in the experiments, the different implementa-
tions of feature masking, and the methods of statistical analysis that we performed on the 
metric scores. For a demonstration of the methodology on tabular datasets, see Appendix C.

6.1  Datasets

All experiments were conducted on 14 attribution methods and 8 datasets. The datasets can 
be divided into three groups:

• Low-dimensional datasets (28x28x1): MNIST (Lecun et  al., 1998), FashionMNIST 
(Xiao et al., 2017)

• Medium-dimensional datasets (32x32x3): CIFAR-10, CIFAR-100 (Krizhevsky, 2009), 
SVHN (Netzer et al., 2011)

• High-dimensional datasets (224x224x3): ImageNet (Deng et  al., 2009), Caltech-256 
(Griffin et al., 2022), Places-365 (Zhou et al., 2017)

1 https:// github. com/ pair- code/ salie ncy.
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For the low-dimensional datasets, a simple CNN architecture (2 convolutional layers 
with 32 and 64 channels, followed by a fully connected hidden layer with 128 nodes) was 
trained. For the medium- and high-dimensional datasets, we used Resnet20 and Resnet18, 

Table 2  Summary of methods

Complexity is expressed as number of executions of the model. n, m and c are path length, number of per-
turbed samples/baselines, and number of channels in the final layer, respectively. n and m are hyperparame-
ters of the method, c depends on the model being explained. Note that, even though many methods have the 
same asymptotic complexity, the typical values of hyperparameters can vary a lot, for example DeepSHAP 
usually needs much fewer samples than KernelSHAP or LIME, making it computationally less expensive.

Method Type Complexity Model requirements

Gradient Gradient O(1) Differentiable
(Simonyan et al., 2014)
InputXGradient Gradient O(1) Differentiable
(Shrikumar et al., 2017)
Deconvolution Gradient O(1) Differentiable
(Zeiler & Fergus, 2014)
Guided Backpropagation Gradient O(1) Differentiable
(Springenberg et al., 2014)
DeepLIFT Gradient O(1) Differentiable
(Shrikumar et al., 2017)
Integrated Gradients Gradient O(n) Differentiable
(Sundararajan et al., 2017)
XRAI Gradient O(n) Differentiable
(Kapishnikov et al., 2019)
Expected Gradients Gradient O(nm) Differentiable
(Erion et al., 2021)
SmoothGrad Gradient O(m) Differentiable
(Smilkov et al., 2017)
VarGrad Gradient O(m) Differentiable
(Adebayo et al., 2018)
DeepSHAP Gradient O(m) Differentiable
(Lundberg & Lee, 2017)
KernelSHAP Perturbation O(m) None
(Lundberg & Lee, 2017)
LIME Perturbation O(m) None
(Ribeiro et al., 2016)
GradCAM CAM O(1) Convolutional
(Selvaraju et al., 2017)
Guided GradCAM CAM O(1) Convolutional
(Selvaraju et al., 2017)
GradCAM++ CAM O(1) Convolutional
(Chattopadhay et al., 2018)
ScoreCAM CAM O(c) Convolutional
(Wang et al., 2020)
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respectively. The models for the low- and medium-dimensional datasets were trained up 
to a test set accuracy of at least 90%, except for CIFAR-100, where a top-five accuracy 
of 90.6% was reached. For Caltech-256 and Places-365, the models were trained up to 
a top-five test set accuracy of 91.6% and 83.7%, respectively. For ImageNet, the built-in 
Resnet18 model of torchvision2 was used, obtaining a top-five accuracy of 89.08%. The 
metric scores were computed for all attribution methods on 256 correctly-classified sam-
ples for each dataset. Note that an adversarial patch was only generated for the high-dimen-
sional datasets (ImageNet, Caltech-256, Places-365), which means that the Impact Cover-
age could only be computed for these datasets.

6.2  Masking

Except for Infidelity, Impact Coverage, and the Parameter Randomization test, all metrics 
depend in some way on the masking of features to remove information. When masking 
features, we try to replace the feature value with some “neutral” value that is expected to 
remove the original information contained in the feature. However, the choice of this neu-
tral value is not obvious (Sturmfels et al., 2020). We consider three options:

• Dataset mean The first and simplest way of masking is by replacing the feature with a 
constant zero value (in the case of color images, we do the same for each color chan-
nel). Since the data is z-normalized to have � = 0 and � = 1 , this is equivalent to chang-
ing the feature into the average feature value over the training dataset. A disadvantage 
of this technique is that, if the original feature was already close to the average value, 
the value remains nearly unchanged after masking and the information might not be 
properly destroyed. Specifically for image data, masking out large regions with a con-
stant value can preserve some of the spatial information in the image. Additionally, 
masking features with any constant value can introduce high-frequency artifacts to the 
image in question, driving the input away from the data manifold (Fong & Vedaldi, 
2017).

• Uniform random To mitigate some of the problems of the dataset mean value, we can 
also draw values from a standard uniform distribution U(0, 1) . That way, masked out 
features are less likely to remain unchanged after masking, and spatial information is 
likely to be successfully destroyed if larger regions of the image need to be masked. 
However, using a uniform distribution to mask out features introduces even more 
adversarial high-frequency artifacts than using a constant dataset mean.

• Blur To reduce the high-frequency artifact problem of the first two masking procedures, 
pixels can instead be masked out using blurring (Fong & Vedaldi, 2017). We use the 
OpenCV normalized box filter (Bradski, 2000) with kernel size k = 0.5 to produce a 
blurred version of the original image. Pixels are then masked out by replacing them by 
their blurred equivalents. Although this technique mitigates the high-frequency artifact 
problem, it again has the disadvantage that spatial information might not be completely 
destroyed after masking.

2 https:// pytor ch. org/ vision/ stable/ models. html.
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6.3  Statistical analysis

In this section we provide a brief overview of the statistical techniques used to analyse 
our results. We first use a paired t-test to identify which methods outperform a basic 
random baseline on the metrics. Next, we compute the correlations of scores between 
different metrics, which allows us to measure which metrics are or are not measuring 
the same underlying properties. We then study the consistency of method rankings as 
given by each metric, which can be viewed as a quality check for the metrics them-
selves. Finally, we propose a technique to compare two methods in more detail.

6.3.1  Statistical significance testing

For each metric and each method, we use a paired t-test to verify if the method per-
forms significantly better than a uniform baseline on the given metric. More specifi-
cally, we test if the difference in metric score for the explanation method is significantly 
larger/smaller (depending on the metric in question) than the score obtained by the uni-
form baseline. The uniform baseline is defined as a “pseudo-method”, which simply 
assigns random values u ∼ U(0, 1) to each feature. This baseline is computed once for 
every input sample, such that the same baseline attribution map is compared to each of 
the attribution maps computed by the explanation methods. Note that a different, more 
informative baseline method could also be used. For example, a simple edge detection 
algorithm could be used to establish a more competitive baseline, while retaining the 
property that any valid explanation method should be expected to outperform it. Alter-
natively, an existing explanation method could be used as the baseline, for example to 
test whether some other method specifically outperforms that baseline method. We leave 
a further investigation of different baseline methods to future work.

Because for each metric, multiple methods are tested against the random baseline, 
we use Bonferroni multiple testing correction (Bland & Altman, 1995). If the result of 
the test is significant after correction ( p < 0.01 ), we report the Cohen’s d effect size for 
paired t-tests (Cohen, 1988):

which is simply the average difference in metric scores divided by the standard deviation 
of the differences. Since the absolute values of most metrics carry little to no semantic 
meaning, these effect sizes are only relevant relative to each other. For this reason, the 
effect sizes are scaled to [0, 1] for each metric, such that the best-performing method has 
an effect size of 1.

6.3.2  Inter‑metric correlation

Inter-metric correlations are computed as the Spearman rank correlation between met-
ric scores, averaged over all methods (except the random baseline). These correlations 
allow us to identify which metrics are measuring different underlying aspects, and 
which metrics are mutually redundant.

�d

�d
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6.3.3  Ranking consistency

Ranking consistency assesses how consistent a metric is in ranking the methods across 
the different images. This is measured using Krippendorff’s � (Krippendorff, 2019). Krip-
pendorff’s � is a statistic usually used to measure inter-rater reliability: the degree to which 
different raters (for example, for a psychological test) agree in their assessments. Krippen-
dorff’s � is defined as follows:

where Do is the observed disagreement, and De is the disagreement expected by chance. 
If � = 1 , then the ranking is perfectly consistent: the ranking of methods produced by the 
metric is identical for each image. If � = 0 , then the ranking is completely random. For 
more details on how these values are computed, we refer the reader to Krippendorff (2011).

6.3.4  Pairwise comparison using PoS

Once a global overview of method performance has been established using the statistical 
significance test (Sect.  6.3.1), two or more methods can be selected for a more detailed 
comparison. Such a comparison is then made by performing a new statistical test, this time 
comparing the methods to each other, rather than to a trivial random baseline.

In this case, we use the Power of Superiority (PoS) effect size to measure the difference 
between methods. This measure is simply the fraction of images where method A outper-
forms method B. This effect size measure is less informative when comparing methods to 
the random baseline, as we expect methods to at least consistently outperform the baseline, 
leading to a saturated effect size of 1. If two methods are selected that are more similar in 
their performance, the PoS can give an intuition to how often one method (usually a more 
computationally complex one) outperforms the other.

For example, if the difference in metric scores is very large, but the PoS is only slightly 
larger than 0.5, this would mean that method A outperforms method B only in a small 
majority of images. If computational cost is a concern, this can make it more interesting to 
choose for the computationally cheaper method.

7  Results

In this section, we describe the results of paired t-tests, inter-metric correlations, and rank-
ing consistency of metric scores on the different datasets. Masking is done using the data-
set mean approach unless stated otherwise. Finally, we perform a pairwise comparison of 
DeepSHAP and DeepLIFT on MNIST, CIFAR-10 and ImageNet.

7.1  Paired t‑tests

The results of the paired t-tests are shown in Figs. 1, 2 and 3, for the low-, medium- and 
high-dimensional datasets, respectively. For each method-metric pair, a square is drawn if 
the result of the paired t-test is significant after Bonferroni correction for multiple testing 

� = 1 −
Do

De
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( p < 0.01 ), with the size and color of the square indicating the effect size (Cohen’s d). 
Effect sizes are normalized such that a value of 1 corresponds to the largest effect size for 
a given metric.

On MNIST, most methods significantly outperform the random baseline on nearly all 
metrics. On FashionMNIST however, CAM-based methods, Guided Backpropagation, 
Deconvolution, SmoothGrad and VarGrad perform significantly worse than the others.

On the medium-dimensional datasets, we see more complementarity in the results, 
although this still depends on the dataset. On CIFAR-10 and CIFAR-100, we notice that 
the CAM-based methods along with XRAI, KernelSHAP and LIME perform very simi-
larly, with this group of metrics outperforming DeepSHAP, DeepLIFT and ExpectedGradi-
ents on some metrics and vice versa. This similarity in behaviour can be linked to the fact 
that these methods produce more coarse-grained attribution maps, as all CAM-based meth-
ods rely on upsampling the final convolutional layer, and XRAI, KernelSHAP and LIME 
rely on image segmentation. Conversely, DeepLIFT, DeepSHAP and ExpectedGradients 
are all based on modified versions of the gradient, which tends to produce very granular 
attribution maps. This difference in granularity could be the source of the observed com-
plementarity. For SVHN, a number of methods significantly outperform the baseline across 
all metrics.

In the high-dimensional case, we see fewer differences between the datasets. The same 
complementarity between the coarse-grained and fine-grained methods is again noticeable 
for all three datasets, suggesting that it is linked to the complexity or dimensionality of the 
classification problem.

We also note that the coarse-grained methods tend to outperform the others on Impact 
Coverage (COV), which could only be computed for high-dimensional datasets. Interest-
ingly, the results for Impact Coverage seem to be complementary to those of Deletion-
MoRF and Minimal Subset Deletion. A possible explanation is the fact that Impact Cover-
age makes the implicit assumption that the entire adversarial patch is equally important, 
which is not necessarily the case, as discussed in Sect.  4.8. This might bias the metric 
towards coarse-grained attribution methods. If only a few pixels in the adversarial patch are 
truly important, then fine-grained attribution maps might highlight only those few pixels, 

Fig. 1  Results of paired t-tests (low-dimensional datasets). A square is only drawn if the corresponding 
result was significant after Bonferroni correction ( p < 0.01)
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resulting in a low Impact Coverage score. Further research is needed to confirm or refute 
this hypothesis.

We draw three conclusions from these results: 

(1) Depending on the dataset, very simple and computationally cheap methods can perform 
nearly as well as computationally more expensive methods.

(2) Complementarity between methods, where some methods outperform other methods 
on a subset of metrics and vice versa, suggests that a combination of attribution maps 
given by different methods might provide more information than the individual attribu-
tion maps. This is related to the idea proposed in Tomsett et al. (2020) that different 
metrics might be measuring different underlying aspects of the attribution maps.

(3) The complementarity of results between coarse-grained and fine-grained attribution 
maps suggests that these methods might have to be evaluated in fundamentally differ-
ent ways, focusing on single-pixel importance for fine-grained maps and on a more 
high-level view for coarse-grained maps.

Fig. 2  Results of paired t-tests (medium-dimensional datasets). A square is only drawn if the corresponding 
result was significant after Bonferroni correction ( p < 0.01)
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7.2  Inter‑metric correlations

Figure  4 shows average inter-metric correlations for the low-, medium- and high-
dimensional datasets. For specific correlations per dataset, see Figure 14. In general, we 
note similar patterns of correlations for the three dimensionalities. Most metrics have 
relatively low correlations, suggesting that they might be measuring different underly-
ing aspects of the attribution maps, as proposed in Tomsett et al. (2020). We also note 
strong negative correlations between certain pairs of metrics, more specifically MoRF/
LeRF-pairs, which suggests that MoRF/LeRF-pairs contain largely redundant informa-
tion. This insight can be used to reduce computational cost in future benchmarking 
efforts, by selecting only MoRF or LeRF metrics. Interestingly, Fig.  4c shows very 
little correlation between the Impact Coverage and Parameter Randomization metrics. 

Fig. 3  Results of paired t-tests (high-dimensional datasets). A square is only drawn if the corresponding 
result was significant after Bonferroni correction ( p < 0.01)
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This is notable, as both of these metrics have a causal interpretation, even though those 
causal interpretations are different: Impact Coverage intervenes on the data, whereas 
Parameter Randomization intervenes on the model. Finally, we note that correlations 
between segmented and non-segmented metrics (for example, Deletion and IROF) are 
stronger for low-dimensional datasets. This is to be expected, since the low dimension-
ality of the data causes segments to be composed only of a few pixels.

Table 3 shows inter-metric correlations of different metric implementations on Ima-
geNet (results on the other datasets were generally similar). We note that, although 
different metrics have relatively low correlations, correlations between different imple-
mentations of the same metric are generally quite high. We can conclude from this that 
different implementations of the same metric generally provide redundant information. 
We recommend first deciding which masking procedure makes most sense for a given 
dataset and/or model, rather than performing full measurements using a large number 
of masking procedures.

Fig. 4  Average inter-metric correlations for low-, medium- and high-dimensional datasets. Impact Coverage 
(Cov) was only computed for the high-dimensional datasets due to the requirement of an adversarial patch 
(see Sect. 4.8)

Table 3  Inter-metric correlations of different implementations of metrics on ImageNet. C, B and R stand 
for Constant, Blur and Random masking, respectively

Del
MoRF

Del
LeRF

Ins
MoRF

Ins
LeRF

C B R C B R C B R C B R

C 1.00 1.00 1.00 1.00
B 0.87 1.00 0.83 1.00 0.89 1.00 0.89 1.00
R 0.85 0.75 1.00 0.82 0.69 1.00 0.54 0.60 1.00 0.56 0.62 1.00

IROF
MoRF

IROF
LeRF

MS
Del

MS
Ins

C B R C B R C B R C B R

C 1.00 1.00 1.00 1.00
B 0.92 1.00 0.90 1.00 0.81 1.00 0.78 1.00
R 0.79 0.76 1.00 0.75 0.72 1.00 0.83 0.70 1.00 0.70 0.60 1.00
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7.3  Ranking consistency

The values of � for all datasets are shown in Fig. 5. It can be observed that most of the met-
rics are most consistent on the low-dimensional datasets (MNIST, FashionMNIST). Impact 
Coverage was only measured for high-dimensional datasets because of the reliance on an 
adversarial patch, and has the highest values of � . We also see that there is no clear pat-
tern between the medium- and high-dimensional datasets, implying that � doesn’t simply 
decrease with increasing dimensionality. We note that our proposed segmented variant of 
Sensitivity-n has a higher � for high-dimensional datasets, confirming the intuition that this 
metric has a higher signal-to-noise ratio for high-dimensional data.

Although there are some metrics that have a significantly lower � value across all or 
almost all datasets, such as InsMoRF , InsLeRF , there is no clear subset of metrics that is gen-
erally superior to all others in terms of ranking consistency, with two exceptions: Max-
Sensitivity and Impact Coverage. However, Max-Sensitivity measures robustness of 
explanations rather than correctness, and Impact Coverage can only be computed for high-
dimensional datasets. From these results, we conclude that the ideal subset of metrics to 
measure depends on the dataset and model. Different implementations of the same metric 
(using different masking procedures) generally have similar values for � . An overview of 
Krippendorff � for all metric implementations is given in Appendix A.

7.4  Pairwise comparison of methods

We use the proposed framework in Sect.  6.3.4 to compare the performance of DeepS-
HAP and DeepLIFT on MNIST, CIFAR-10 and ImageNet. We choose these two methods 
because they have very similar results across all datasets in Figs. 1, 2 and 3, which is to be 
expected as DeepSHAP is based on DeepLIFT. However, DeepSHAP is computationally 
much more expensive than DeepLIFT, so if the fraction of images where it outperforms 
DeepLIFT is relatively small, it might not be worth the cost. Note that this specific choice 

Fig. 5  Krippendorff’s � for default implementations of different metrics on all datasets. Low-, medium- and 
high-dimensional datasets are indicated in green, blue and red tones, respectively. Impact Coverage (Cov) 
was only computed for the high-dimensional datasets due to the requirement of an adversarial patch (see 
Sect. 4.8) (Color figure online)
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was made merely for demonstration purposes. In practice, we recommend that practition-
ers select methods to compare based on their results on the paired t-tests and other relevant 
factors such as computational complexity, difficulty of implementation, etc.

The results are shown in Fig.  6. Each bar corresponds to a paired t-test between the 
results for DeepSHAP and DeepLIFT on a single metric. A bar is only drawn if the corre-
sponding result was significant ( p < 0.01 ). The bars are centered on 0.5, since a Probability 
of Superiority of 0.5 would indicate that both methods are equivalent, each outperforming 
the other in 50% of cases.

We see that, although performance in terms of absolute metric scores is very similar 
between the two methods (as shown in Sect.  7.1), the Probability of Superiority (PoS) 

Fig. 6  Comparison of DeepSHAP versus DeepLIFT using Common Language Effect Size
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varies greatly depending on the dataset. On ImageNet, DeepSHAP outperforms DeepLIFT 
for most images, with the PoS ranging between 60-80% for most metrics. On CIFAR-10 
however, the difference between the two methods is much smaller. Finally, on MNIST, 
DeepSHAP is outperformed by DeepLIFT on a majority of images, for almost all metrics. 
This indicates that the relative performance of methods is strongly dependent of the dataset 
in question.

7.5  Sensitivity‑n versus seg‑sensitivity‑n

To compare our proposed metric Seg-Sensitivity-n to the original Sensitivity-n, we meas-
ure the stability of both metrics in two ways. First, we measure the signal-to-noise ratio 
(SNR) of both metrics. We repeatedly compute both Seg-Sensitivity-n and Sensitivity-n 
scores 100 times on 256 images (where the same images were used for both metrics). We 
then compute the SNR ratio of the metric for each image as �

2

�2
 , where � is the mean of 

the 100 metric values, and � is the standard deviation. The results are shown in the left 
part of Fig. 7. Note that the SNR of Seg-Sensitivity-n for high-dimensional datasets (Ima-
geNet, Caltech-256 and Places-365) is significantly higher than the SNR of Sensitivity-n. 
On the other datasets, the SNR is also larger for Seg-Sensitivity-n, although the difference 
is smaller.

A different way to measure the stability is to look at the noise fraction of variance. To 
compute this, we compute the ratio of the within-sample variance (the variance of the 100 
repeated measurements for each sample) to the between-sample variance (the total vari-
ance of all measurements on all samples). A low noise fraction of variance corresponds 
to a clear signal. These results are shown in the right plot of Fig. 7. We see again that the 
noise fraction of variance for Sensitivity-n is much larger than for Seg-Sensitivity-n, espe-
cially on the high-dimensional datasets.

Fig. 7  Comparison between Sensitivity-n and Seg-Sensitivity-n. Left: Signal-to-noise ratio (logarithmic 
scale). Right: noise fraction of variance
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7.6  Parameter randomization

Results of the Parameter Randomization test are shown in Fig. 8. We consider any method 
that has an absolute rank correlation larger than 0.2 as failing the test. Note that these rank 
correlations are between the attribution maps produced by the same method before and 
after randomization of the model parameters. They should not be confused with the inter-
metric correlations discussed in Sect. 7.2.

We notice that the methods that were identified in (Adebayo et  al., 2018) as failing the 
test (Guided Backpropagation and Guided Grad-CAM) also have relatively large correlation 
values across all datasets, implying that they indeed fail the sanity checks on all these datasets. 
Additionally, methods that were shown by Adebayo et al. (2018) to pass the test (Gradient, 
Integrated Gradients and InputXGradient) obtain low correlation scores across all datasets as 
well. We can therefore confirm many of the experimental findings of Adebayo et al. (2018) 
across a wider selection of datasets.

Interestingly, ScoreCAM and XRAI have large correlation values across many datasets, 
even though they were described as passing the Parameter Randomization test by their orig-
inal authors (Wang et  al., 2020; Kapishnikov et  al., 2019). However, ScoreCAM was only 
inspected visually, and the test for XRAI was only conducted on MNIST. Our findings confirm 
that XRAI passes the test on MNIST, but show that the same method also fails on other data-
sets. We therefore conclude that the outcome of the Parameter Randomization test is indeed 
dependent on the dataset and/or model, which is in concordance with the findings of Yona and 

Fig. 8  Results of the Parameter Randomization metric
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Greenfeld (2021). Based on these results, our recommendation to practitioners is to perform a 
quantitative analysis of the Parameter Randomization test on the specific dataset in question, 
rather than performing a simple visual inspection or assuming that a method will pass the test 
if it was shown to pass the test on a different dataset (such as MNIST).

Fig. 9  Visual overview of the proposed benchmarking guidelines. (1) Choose a baseline. This can be a ran-
dom baseline, an edge detector, or some other baseline of choice. (2) Select metrics. This can be done man-
ually (2a) or through a pilot study (2b) where metrics are selected based on inter-metric correlations and 
Krippendorff � . (3) Compute the parameter randomization sanity check and discard methods that fail it. (4) 
Run the remaining methods on the selected metrics. (5) Perform statistical tests against the random baseline 
and make a selection of well-performing methods. (6) Perform pairwise comparisons between the selected 
methods

Fig. 10  Results of paired t-tests for all metrics on low-dimensional datasets
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Fig. 11  Results of paired t-tests for all metrics on medium-dimensional datasets
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Fig. 12  Results of paired t-tests for all metrics on high-dimensional datasets
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8  Conclusion and future work

We have performed an extensive study of the behaviour of a large number of attribution 
metrics and methods, on a collection of image datasets with varying complexity and 
dimensionality. From this investigation, we draw the following general conclusions:

Fig. 13  Krippendorff’s � for all implementations of all metrics on all datasets. Low-, medium- and high-
dimensional datasets are indicated in green, blue and red tones, respectively (Color figure online)
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• Metric scores vary strongly for different datasets. This implies that the performance 
of attribution methods should be measured for each specific use case, rather than 
drawing general conclusions from the results on a set of benchmark datasets.

• Most metrics tend to have low ranking consistency, shown by the relatively low 
values of Krippendorff � . From this we conclude that a rigorous statistical testing 
approach is necessary to draw any dataset-wide conclusions. Also, the ranking con-
sistency values of metrics themselves are not consistent across datasets, implying 
that there is no generally superior evaluation metric in terms of ranking consistency.

• We confirm the conclusion from Tomsett et al. (2020) that metrics do not necessar-
ily measure the same underlying concept to a larger amount of metrics, and extend 
their findings to include Sensitivity-n (Ancona et  al., 2018), Infidelity (Yeh et  al., 

Fig. 14  Inter-metric correlations for all datasets
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2019), IROF (Rieger & Hansen, 2020) and Impact Coverage (Lin et al., 2019). This 
can be seen in the low inter-metric correlation values between these metrics.

• The result of the Parameter Randomization test, introduced as a sanity check in Ade-
bayo et  al. (2018), is dataset-dependent, meaning that whether a method passes or 
fails the sanity check depends on the dataset and/or the model that is being used. 
This implies that the Parameter Randomization test should also be performed for 
each specific use case. This experimentally confirms the hypothesis posed by Yona 
and Greenfeld (2021) on natural image datasets.

• From the complementarity of results between coarse-grained and fine-grained attri-
bution maps, we conclude that these methods might have to be evaluated in funda-
mentally different ways, focusing on single-pixel importance for fine-grained maps 
and on a more high-level view for coarse-grained maps. Further research is needed 
to verify or refute this hypothesis.

• Finally, we also introduce Seg-Sensitivity-n as an extension of Sensitivity-n (Ancona 
et al., 2018), and show that it has a higher signal-to-noise ratio than Sensitivity-n on 
high-dimensional datasets.

From these conclusions, we propose a set of benchmarking guidelines for practition-
ers seeking to select the best feature attribution method for their specific use case (see 
Fig. 9). We note that these guidelines should be viewed as exploratory, as more research 
is needed into which specific aspects of explanation methods are evaluated by the dif-
ferent metrics. This means that it is still difficult to prove that one method is strictly 
“better” than another, especially if metrics contradict each other. Our recommendation 
to practitioners is to use these benchmarking guidelines to perform a first selection of 
candidate methods, and then select one or multiple explanation methods based on use 
case-specific properties, such as computational budget, access to model internals, fine- 
or coarse-grainedness, and/or others. 

(1) Baseline selection First, a baseline attribution method must be defined. In general, a 
uniform random baseline can be used, but more specific baselines can also be chosen 
depending on the use case, such as an edge detector or some specific explanation 
method that one hopes to outperform.

(2) Metric selection Next, a selection of metric implementations must be made. This can 
be done manually, if such a selection of metrics is obvious from the use case and there 
is a clear approach to masking available (2a in Fig. 9). In MNIST for example, masking 
using the black background color might be an intuitive choice. Alternatively, a pilot 
study can be performed (2b in Fig. 9). In such a pilot study, a large number of metrics 
and masking approaches are tested on a limited number of images. We then recommend 
computing inter-metric correlations and Krippendorff � values, and selecting those met-
ric implementations that have high Krippendorff � and low inter-metric correlations. In 
this way, a minimal number of images can be used to draw dataset-wide conclusions, 
and metric scores will contain a minimal amount of redundant information.

(3) Parameter Randomization test Before running a full benchmark on all available meth-
ods, we recommend first performing the Parameter Randomization test from Adebayo 
et al. (2018) using the spearman rank correlation. One should avoid using absolute val-
ues of attribution scores when performing this test, as this has been shown to unfairly 
penalize certain methods (Binder et al., 2023). Any methods that fail the test (by obtain-
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ing a correlation score larger than a chosen threshold value) should be discarded from 
further analysis.

(4) Full benchmark Once a selection of metrics is made and methods that fail the Parameter 
Randomization test are discarded, metric scores can be computed for the remaining 
methods on a large enough number of samples.

(5) Rough statistical analysis Once the metric scores are computed for all methods and the 
baseline, a rough overview of method performance can be made using a paired t-test 
for each metric between each method and the random baseline. For those methods 

Fig. 15  Krippendorff � for all metrics. Values above 0.3 are shown in green, others are shown in red
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that significantly outperform the baseline on a given metric, we recommend using the 
Cohen’s d effect size to quantify performance.

(6) Detailed comparison Using the rough overview made in the previous step, we recom-
mend selecting a smaller number of well-performing attribution methods, if possible 
with varying computational complexity. Those methods can then be compared in more 
detail using new paired t-tests, this time between the two methods rather than between 
a method and the baseline. We then recommend using the Probability of Superiority as 
an interpretable effect size measure to assess the fraction of cases where one method 
is superior to another. Based on these results, as well as other use-case specific con-
straints, a final selection of one or more ideal methods can then be made.

An example application of these guidelines can be found in Appendix B.
The results described in this paper leave a number of directions of future research. 

First of all, the observation that metrics do not necessarily measure the same underly-
ing concept of feature attribution maps leads to the question of what those underly-
ing concepts might be. A better understanding of those underlying concepts can lead 
to more directed benchmarking efforts and the development of better methods and/or 

Fig. 16  Inter-metric correlations for all metrics with Krippendorff � larger than 0.3 (Color figure online)
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Fig. 17  Inter-metric correlations of final selection of metrics

Fig. 18  Results of the Parameter Randomization test. All methods with 𝜌 > 0.05 are discarded
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metrics. A possible link can be made with the concepts of necessity and sufficiency, 
found in the literature of causality (Pearl, 2009). Secondly, the complementarity of 
results for coarse- and fine-grained methods implies that a combination of differ-
ent attribution maps can be more informative than a single one. This can lead to the 
development of new methods, generalizing the concept of feature attribution itself. 

Fig. 19  Paired t-test results for selection of metrics

Fig. 20  Pairwise comparison between DeepSHAP and DeepLIFT
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Future work can also be done in designing specific evaluation metrics for coarse- or 
fine-grained attribution methods. Finally, the application of the benchmark procedure 
on new datasets can shed light on what the best attribution methods are for a given 
problem domain. An important example is the domain of biomedical imaging. Here, 
medical practitioners are often interested in what the most important regions of a radi-
ographic image are for a specific prediction (van der Velden et  al., 2022), in order 
to build trust in the model and identify when a model might be making a mistake. 
Application of the general guidelines given above can help developers choose the right 
attribution method in this case.

Fig. 21  Pairwise comparison between KernelSHAP and GradCAM

Fig. 22  Pairwise comparison 
between DeepSHAP and Grad-
CAM
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Appendix

A Supplementary figures

Full results of the paired t-tests for all metrics on all datasets are shown in Figs. 10, 11 
and 12 for the low-, medium- and high-dimensional datasets, respectively. Krippendorff � 
values for all metrics on all datasets are shown in Fig. 13. Inter-metric correlations for all 
metrics on all datasets are shown in Fig. 14.

Fig. 23  Results of paired t-tests on tabular datasets
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B Applying the guidelines to ImageNet

We apply the guidelines proposed in Sect. 8 to ImageNet for demonstration purposes: 

(1) Baseline selection Because we want to assume no prior knowledge about the problem 
setting, we select a uniform random baseline.

(2) Metric selection

(a) We run all metrics using 64 samples as a small pilot study. The results from 
this pilot study are used to compute values for Krippendorff � . This is shown in 
Fig. 15. Metrics with 𝛼 < 0.3 are immediately discarded (shown in red in Fig. 15).

Fig. 24  Inter-metric correlations for tabular datasets
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(b) We compute inter-metric correlations for the remaining metrics (shown in 
Fig. 16), and select metrics based on these correlations. The correlations for the 
final metric selection are shown in Fig. 17. 

 (i) Different implementations of the same metric have very high correlations. 
For each metric type, we select the implementation with the highest Krip-
pendorff α value.

 (ii) There are strong correlations between Deletion and IROF. Because we 
are working with high-dimensional data, we choose IROF over Deletion 
(Figs. 18 and 19).

(3) Parameter Randomization test Next, we perform the Parameter Randomization test 
from (Adebayo et al., 2018). We classify any method that obtains a Spearman rank 
correlation 𝜌 > 0.05 as failing the test. All methods that fail the test are discarded.

(4) Full benchmark Once the metrics and methods are selected, the metric scores are 
computed on a larger number of images. We use 256 images for the full benchmark.

(5) Rough statistical analysis We perform paired t-tests on the results, comparing to the 
uniform random baseline. We observe two groups of methods with competitive but 
complementary results: the coarse-grained (CAM- and perturbaton-based) methods, 
and DeepSHAP, DeepLIFT and ExpectedGradients.

(6) Detailed comparison

(a) From the previous analysis, we select DeepSHAP, DeepLIFT, KernelSHAP and 
GradCAM for further analysis. DeepSHAP can be viewed as the computation-
ally more expensive method in the fine-grained group, whereas DeepLIFT is 
computationally much cheaper. An analogous comparison can be made between 
KernelSHAP and GradCAM for the coarse-grained group.

(b) We first compare DeepSHAP and DeepLIFT using the Probability of Superiority 
effect size. Results are shown in Fig. 20. We see that DeepSHAP significantly 
outperforms DeepLIFT on most metrics.

(c) Next, we compare GradCAM and KernelSHAP. Results are shown in Fig. 21. 
Most of the paired t-tests between these two methods seem to be insignificant. 
Those metrics that do show a significant difference between the two methods 

Fig. 25  Krippendorff � for tabular datasets



 Machine Learning

1 3

disagree on which method is superior. Because no clear conclusion can be drawn 
in terms of the superiority of one method over the other, we select GradCAM for 
further analysis as it is computationally much cheaper than KernelSHAP.

(d) Finally, we compare DeepSHAP and GradCAM. Results for this comparison are 
shown in Fig. 22. We see that many of the paired t-test results are significant, but 
there is a strong complementarity in the results: some metrics favour DeepSHAP, 
others favour GradCAM. This suggests that both attribution maps might contain 
valuable complementary information. DeepSHAP is much more computationally 
expensive that GradCAM however, so depending on the use case, the developer 
might choose to provide both explanations, or to only use GradCAM explanations.

C Evaluating attributions on tabular datasets

To demonstrate the general applicability of the proposed methodology, we compute 
and evaluate feature attributions for tabular data. We use the Adult (Becker & Kohavi, 
1996), DNA (King, 1992), Satimage (Srinivasan, 1993) and Spambase (Hopkins et al., 
1999) datasets from the OpenML repository (Vanschoren et al., 2013).

On each of these datasets, a fully-connected neural network with two hidden layers 
of 64 neurons each is trained. Because this model has no convolutional layers, only the 

Fig. 26  Results of the Parameter Randomization metric on tabular datasets
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methods that require differentiability of the model or that have no model requirements at 
all were evaluated (see Table 2). We evaluated all metrics that are applicable to any type 
of data (see Table 1). Masking was done by replacing feature values by 0, which after 
standard scaling of the features is equivalent to masking using the feature mean value.

C.1 Paired t‑tests

Results of the paired t-tests are shown in Fig. 23. We see that the results are very similar 
across the four datasets, with the exception of the minimal subset metrics. This might be 
linked to the number of classes in the dataset, which is 2 for the Adult and Spambase data-
sets, 3 for the DNA dataset and 6 for the Satimage dataset.

If the dataset has only 2 classes, a constant 0 vector has a 50% probability of producing 
the same output as the original sample (assuming no class imbalance). Combined with the 
fact that these datasets have much fewer features than image datasets, there is a reason-
able probability that masking any number of features for a given sample will not flip the 
result. In this case, both minimal subset insertion and minimal subset deletion will have 
a constant score for all methods. This might explain why the minimal subset metrics have 
much higher p-values for the Adult and Spambase datasets than for the DNA and Satimage 
datasets. More experiments can be done to verify this hypothesis.

C.2 Inter‑metric correlations

Inter-metric correlations for the tabular datasets are shown in Fig. 24. We see that the cor-
relations vary strongly across the four datasets. This observation confirms the need for a 
separate benchmarking experiment for each dataset, as proposed in Sect. 8.

C.3 Ranking consistency

Ranking consistency for the tabular datasets is visualized in Fig. 25. We see that the rank-
ing consistency is generally a bit higher than for the image datasets, but there is again a 
large variation across datasets.

C.4 Parameter randomization

Results of the Parameter Randomization test are shown in Fig. 26. We see that the abso-
lute rank correlation is very low in most cases, with the exception of the Adult dataset. 
Although the absolute rank correlation remains below 0.25, it is notably higher than 
for the other datasets. This might be explained by the fact that the Adult dataset has the 
fewest features of all four datasets, which makes it easier for a random permutation of 
the features to have a higher rank correlation with the original ordering. Further experi-
ments, where the rank correlation is corrected for the total number of features, can be 
done to verify or refute this hypothesis.
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