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Noël VERAVERBEKE
University of Hasselt, Belgium

North-West University, South Africa
noel.veraverbeke@uhasselt.be

February 22, 2024

Abstract

The use of Bernstein polynomials in smooth nonparametric estimation of
copulas has been well established in recent years. Their good properties in
terms of bias and variance are well known. In this note we generalize some of
the asymptotic theory to conditional copulas, that is where the dependence
structure between the variables changes with a value of a random covariate.
We obtain asymptotic representations and asymptotic normality for a condi-
tional copula.
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1 Introduction

Consider a bivariate random vector (Y1, Y2) and a random covariate X. The joint
conditional distribution function of (Y1, Y2) is denoted by Hx(y1, y2) = P (Y1 ≤
y1, Y2 ≤ y2 | X = x) and the marginal conditional distribution functions by
F1x(y1) = P (Y1 ≤ y1 | X = x) and F2x(y2) = P (Y2 ≤ y2 | X = x).
According to Sklar’s theorem (see e.g. Nelsen (2006), Patton (2006), we have that

Hx(y1, y2) = Cx(F1x(y1), F2x(y2))

where Cx is a conditional copula function. To guarantee uniqueness of Cx, we assume
that F1x and F2x are continuous. The conditional copula function can be expressed
as Cx(u1, u2) = Hx(F

−1
1x (u1), F

−1
2x (u2)) (0 ≤ u1, u2 ≤ 1), where F−1

1x (u) = inf{y :
F1x(y) ≥ u} is the quantile function of F1x and F−1

2x is the quantile function of F2x.
For the estimation of Cx we assume that we have a sample (Y11, Y21, X1), . . . , (Y1n, Y2n, Xn)
from (Y1, Y2, X). Based on this we have the following empirical estimator for
Hx(y1, y2):

Hxh(y1, y2) =
n∑

i=1

wni(x;hn)I(Y1i ≤ y1, Y2i ≤ y2)

where {wni(x;hn)} is a sequence of weights that smooth in the X-direction. Here
we will take Nadaraya-Watson weights given by

wni(x;hn) = K

(
Xi − x

hn

)
/

n∑
j=1

K

(
Xj − x

hn

)
for i = 1, . . . , n. The functionK is a probability density function (kernel) and{hn} is
a sequence of positive constants, tending to 0 as n tends to infinity (bandwidth). We
assume that K has finite support [−L,L] for some L > 0, µ1(K) =

∫
uK(u)du = 0,

K is of bounded variation and Lipschitz of order 1.

The marginals ofHxh are denoted by F1xh(y1) = Hxh(y1,+∞) =
n∑

i=1

wni(x;hn)I(Y1i ≤

y1) and F2xh(y2) =
n∑

i=1

wni(x;hn)I(Y2i ≤ y2). We then define the empirical copula

estimator by plugging in empirical versions for Hx, F1x and F2x in the expression
for Cx(u1, u2):

Cxh(u1, u2) = Hxh(F
−1
1xh(u1), F

−1
2xh(u2)) (0 ≤ u1, u2 ≤ 1).

Conditional copulas are needed to model a dependence structure between Y1 and
Y2 which changes with the value x of a random covariate X. An important ap-
plication of conditional copulas is that they enable to define and study estimators
for conditional versions of the classical association measures. The reason is that
for example Kendall’s tau and Spearman’s rho can be expressed as functionals of
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the underlying conditional copula. This topic has been the subject of Gijbels et al
(2011) and Veraverbeke et al (2011) with theory, simulations and examples.
The purpose of this note is to study the Bernstein conditional copula estimator,
which is a smoothened version of the estimator Cxh. It is defined as

Cxm(u1, u2) =
m∑
k=0

m∑
ℓ=0

Cxh

(
k

m
,
ℓ

m

)
Pm,k(u1)Pm,ℓ(u2)

where, for k = 0, 1, . . . ,m:

Pm,k(u) =

(
m
k

)
uk(1− u)m−k.

The natural number m is called the order and for asymptotics it will be assumed
that m → ∞ as n → ∞.
The idea of using Bernstein polynomials in copula estimation started with Sancetta
and Satchell (2004). In several papers since then, it has been shown that Bern-
stein estimators have good asymptotic bias and variance properties compared to the
classical kernel smoothers. In a series of papers by Janssen, Swanepoel and Veraver-
beke (2012, 2014, 2016), the asymptotic theory and finite sample results have been
obtained for copulas, copula densities and copula derivatives.

2 Overview

In this paper we first prove an asymptotic representation for Cxm(u1, u2) as a
weighted sum plus a bias term and a remainder term (Section 3). Our second
result is the asymptotic normality of Cxm(u1, u2) (Section 4). Section 5 contains the
proof of a technical lemma. An important ingredient in the proof of these results is
of course the asymptotic representation for the empirical copula estimator Cxh. The
latter result has been obtained in Veraverbeke et al (2011) with a remainder term
oP ((nhn)

−1/2). Although this suffices for the asymptotic normality of Cxm(u1, u2),
we prefer to use the more recent version of Veraverbeke (2023) with a stronger re-
mainder term O((nhn)

−3/4(log n)3/4) a.s.
All our results will require conditions on the bandwidth hn and on the order m and
also some of the regularity conditions that we have listed in below.
We remark that derivatives will be denoted as for example:

Ḟ1x(t) =
∂

∂x
F1x(t), C

(1)
x (u1, u2) =

∂

∂u1

Cx(u1, u2), C
(1,2)
x (u1, u2) =

∂2

∂u1∂u2

Cx(u1, u2),

Ċx(u1, u2) =
∂

∂x
Cx(u1, u2), etc.

Conditions

(C) Cz has bounded third order partial derivatives for all (u1, u2) ∈ [0, 1]2 and z
in a neighborhood of x.
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(F1) The density fX of X is uniformly continuous and strictly positive at x.

(F2) f ′′
X is finite at x.

(Y) Ḟ1x(t), F̈1x(t), Ḟ2x(t), F̈2x(t) are continuous in (x, t).

(Z) F1z(F
−1
1x (u)) and F2z(F

−1
2x (u)) are Lipschitz continuous in u for z in a neigh-

borhood of x.

(R) Ċz(u1, u2) and C̈z(u1, u2) exist and are continuous for all (z, u1, u2) for z in a
neighborhood of x.

Remark 1
The most restrictive condition is condition (C) on the partial derivatives of the
conditional copula. It is satisfied for copula families like Frank, Farlie-Gumbel-
Morgenstern, Ali-Mikhael-Haq. See Nelsen (2006) for the precise definitions. But
there are a number of classial copulas like normal, Student t, Gumbel and Clayton
that are ruled out by this condition (C) because their partial derivatives are not
continuous at certain boundary points of the unit square.
The theoretial inconvenience is well known and some remedies have been suggested,
see Omelka et al (2009) and Segers (2012). It is an interesting open question whether
our result can be proven under a set of less restrictive conditions as in Segers (2012).

3 Asymptotic representation for the Bernstein es-

timator of a conditional copula

Defining

Bxm(u1, u2) =
m∑
k=0

m∑
ℓ=0

Cx

(
k

m
,
ℓ

m

)
Pm,k(u1)Pm,ℓ(u2)

we have by the theorem of Weierstrass that lim
m→∞

Bxm(u1, u2) = Cx(u1, u2), uniformly

in (u1, u2) ∈ [0, 1]2. The reason is that every copula is continuous on [0, 1]2 (see
Nelsen (2006)).
We write

Cxm(u1, u2)− Cx(u1, u2) = [Cxm(u1, u2)−Bxm(u1, u2)]

+ [Bxm(u1, u2)− Cx(u1, u2)]. (1)

The second term in (1) ia a first bias term in our representation. Under condition
(C) we have

Bxm(u1, u2)− Cx(u1, u2)

=
1

2m
{u1(1− u1)C

(1,1)
x (u1, u2) + u2(1− u2)C

(2,2)
x (u1, u2)}+ o(m−1). (2)
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To deal with the term Cxm − Bxm in (1), we first rewrite Cx in a more convenient
representation in terms of uniforms.
Define, for i = 1, . . . , n

U1i = F1x(Y1i), U2i = F2x(Y2i).

We have P (U1i ≤ u1 | Xi = x) = u1, P (U2i ≤ u2 | Xi = x) = u2 and P (U1i ≤
u1, U2i ≤ u2 | Xi = x) = Cx(u1, u2).
Now recall the asymptotic representation for Cxh − Cx in Veraverbeke (2023): if
log n

nhn

→ 0,
nh5

n

log n
= O(1) and regularity conditions (C), (F1), (Y), (R) hold, then

uniformly in (u1, u2) ∈ [0, 1]2:

Cxh(u1, u2)− Cx(u1, u2)

=
n∑

i=1

wni(x;hn)ξi(u1, u2) +O((nh)−3/4(log n)3/4) a.s.

where

ξi(u1, u2) = I(U1i ≤ u1, U2i ≤ u2)− Cx(u1, u2)

−C
(1)
x (u1, u2){I(U1i ≤ u1)− u1} − C

(2)
x (u1, u2){I(U2i ≤ a2)− u2}.

This representation for Cxh − Cx leads to a representation for Cxm −Bxm:

Cxm(u1, u2)−Bxm(u1, u2)

=
n∑

i=1

wni(x;hn)Zin(u1, u2) +O((nhn)
−3/4(log n)3/4) (3)

a.s., where

Zin(u1, u2) =
m∑
k=0

m∑
ℓ=0

{
I(U1i ≤

k

m
,U2i ≤

ℓ

m
)− Cx

(
k

m
,
ℓ

m

)

−C
(1)
x

(
k

m
,
ℓ

m

)(
I(U1i ≤

k

m
)− k

m

)

−C
(2)
x

(
k

m
,
ℓ

m

) (
I(U2i ≤

ℓ

m
)− ℓ

m

)}
Pm,k(u1)Pm,ℓ(u2).

Denote

αm(Xi, x, u1, u2) = E(Zin(u1, u2) | Xi = x) (4)

βm(Xi, x, u1, u2) = Var(Zin(u1, u2) | Xi = x). (5)
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These two quantities can be further expanded. This is summarized in the following
lemma.

Lemma
For z in a neighborhood of x, we have for m → ∞,

(i) αm(z, x, u1, u2) = α(z, x, u1, u2) +O(m−1/2)
where

α(z, x, u1, u2) = Cz(u1, u2)− Cx(u1, u2)

−C
(1)
x (u1, u2)[F1z(F

−1
1x (u1)− u1]

−C
(2)
x (u1, u2)[F2z(F

−1
2x (u2)− u2].

(6)

(ii) βm(z, x, u1, u2) = β(z, x, u1, u2) +O(m−1/2) where

β(z, x, u1, u2) = Cz(u1, u2)(1− Cz(u1, u2))

+F1z(F
−1
1x (u1))(1− F1z(F

−1
1x (u1)))C

(2)
z (u1, u2)

+F2z(F
−1
2x (u2))(1− F2z(F

−1
2x (u2)))C

(2)
z (u1, u2)

−2(1− F1z(F
−1
1x (u1))Cz(u1, u2)C

(1)
x (u1, u2)

−2(1− F2z(F
−1
2x (u2))Cz(u1, u2)C

(2)
x (u1, u2)

+2C
(1)
x (u1, u2)C

(2)
x (u1, u2)[Cz(u1, u2)− u1u2].

(7)

4 Asymptotic normality

We can now state and prove the following result on the asymptotic distribution of
the Bernstein conditional copula estimator.

Theorem
Assume

hn → 0,m → ∞
nhnm

−2 → c2 ≥ 0
nh5

n → c̃2 ≥ 0.

Also assume the regularity conditions (C), (F1), (F2), (Y), (Z), (R).
Then, as n → ∞,

√
nhn(Cxm(u1, u2)− Cx(u1, u2))

d→ N(cbx(u1, u2) + c̃̃bx(u1, u2);
σ2
x(u1, u2)

fX(x)
∥K∥22)
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where

bx(u1, u2) =
1

2

{
u1(1− u1)C

(1,1)
x (u1, u2) + u2(1− u2)C

(2,2)
x (u1, u2)

}
b̃x(u1, u2) = µ2(K)

{
1

2
α̈(x, x, u1, u2) + α̇(x, x, u1, u2)

f ′
X(x)

fX(x)

}
α̇(x, x, u1, u2) = Ċx(u1, u2)− C

(1)
x (u1, u2)[F1Xi

(F−1
1x (u1)− u1]− C

(2)
x (u1, u2)[F2Xi

(F−1
2x (u2)− u2]

α̈(x, x, u1, u2) = C̈x(u1, u2)− C
(1)
x (u1, u2)[F1Xi

(F−1
1x (u1)− u1]− C

(2)
x (u1, u2)[F2Xi

(F−1
2x (u2)− u2]

σ2
x(u1, u2) = V ar{I(U1 ≤ u1, U2 ≤ u2)− Cx(u1, u2)

−C
(1)
2 (u1, u2)(I(U1 ≤ u1)− u1)− C

(2)
x (u1, u2)(I(U2 ≤ u2)− u2)}

µ2(K) =
∫
u2K(u)du, ∥K∥22 =

∫
K2(u)du.

Proof
We look at the limiting distribution of the main term in (3), which we rewrite as
follows:

√
nhn

n∑
i=1

wni(x;hn)Zin(u1, u2) =
√

nhn
T̂n(x)

f̂n(x)

=
√
nhn

[
T̂n(x)

f̂n(x)
− E(T̂n(x))

E(f̂n(x))

]
+
√
nhn

[
E(T̂n(x)

E(f̂n(x))

] (8)

where

T̂n(x) =
1

nhn

n∑
i=1

K

(
Xi − x

hn

)
Zin(u1, u2)

and

f̂n(x) =
1

nhn

n∑
i=1

K

(
Xi − x

hn

)
is the Parzen kernel density estimator.
We have, with αm as in (4), and using the Lemma:

E(T̂n(x)) =
1

hn

E

(
K

(
X − x

hn

)
αm(X, x, u1, u2)

)
=

∫
K(u)α(x+ hnu, x, u1, u2)fX(x+ hnu)du+O(m−1/2)

= µ2(K)h2
n

{
1

2
α̈(x, x, u1, u2)fX(x)

+α̇(x, x, u1, u2)f
′
X(x)}+ o(h2

n) +O(m−1/2).
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Here α̇(z, x, u1, u2) and α̈(z, x, u1, u2) are the first and second derivative of α(z, x, u1, u2)
with respect to z. With βm as in (5), and using the Lemma:

V ar(T̂n(x)) =
1

nh2
n

E

(
K2

(
X − x

hn

)
βm(X, x, u1, u2)

)
+O

(
h4
n

n
+

1

nm

)

=
1

nhn

∫
K2(u)β(x+ hnu, x, u1, u2)fX(x+ hnu)du

+O

(
h4
n

n
+

1

nm
+

m−1/2

nhn

)

=
1

nhn

∥K∥22β(x, x, u1, u2)fX(x) + o

(
1

nhn

)
.

From (7):

β(x, x, u1, u2) = Cx(u1, u2)(1− Cx(u1, u2)) + u1(1− u1)C
(1)
x (u1, u2)

+u2(1− u2)C
(2)
x (u1, u2)− 2u1(1− u1)Cx(u1, u2)C

(1)
x (u1, u2)

−2u2(1− u2)Cx(u1, u2)C
(2)
x (u1, u2)

+2C
(1)
x (u1, u2)C

(2)
x (u1, u2)(Cx(u1, u2)− u1u2)

= V ar{I(U1 ≤ u1, U2 ≤ u2)− Cx(u1, u2)

−C
(1)
x (u1, u2)(I(U1 ≤ u1)− u1)− C

(2)
x (u1, u2)(I(U2 ≤ u2)− u2)}

= σ2
x(u1, u2).

From (9) it follows that the last term in (8)

∼
√

nh5
n µ2(K)

{
1

2
α̈(x, x, u1, u2) + α̇(x, x, u1, u2)

f ′
X(x)

fX(x)

}
which leads to the bias term c̃̃bx(u1, u2). For the first term in (8) we have by
linearization that it has the same asymptotic distribution as

1

fX(x)

√
nhn(T̂n(x)− E(T̂n(x)))−

E(T̂n(x))

f 2
X(x)

√
nhn(f̂n(x)− E(f̂n(x)).

Since E(T̂n(x)) → 0 and
√
nhn(f̂n(x)−E(f̂n(x)) = OP (1), the limiting distribution

is governed by
1

f(x)

√
nhn(T̂n(x)− E(T̂n(x))).
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T̂n(x) is a sum
n∑

i=1

Wni of a double array of random variables

Wni =
1

nhn

K

(
Xi − x

hn

)
Zin(u1, u2). By checking the Liapunov condition

n∑
i=1

E[(Wni − E(Wni)
4]/(V ar

n∑
i=1

Wni)
2 = O

(
1

nhn

)
→ 0,

we obtain the asymptotic normality of T̂n(x). Combining this with (1), (2) and (3)
proves the theorem.

Remark 2
In Leblanc (2012) there are explicit expressions for the quantities Sm(u) and R1,m(u)
that appear in the proof of our Lemma (Section 5). This enables to calculate the
order term O(m−1/2) in (7) in an explicit way (in the same way as in Janssen et al
(2012)).
Consequently, the asymptotic variance of Cxm(u1, u2) is given by

1

nh
σ2
x(u1, u2)−

m−1/2

nh
Vx(u1, u2) + o

(
m−1/2

nh

)
(9)

where

Vx(u1, u2) = C(1)
x (u1, u2)(1− C(1)

x (u1, u2))

(
u1(1− u1)

π

)1/2

+ C(2)
x (u1, u2)(1− C(2)

x (u1, u2))

(
u2(1− u2)

π

)1/2

.

The term with the minus sign in (9) clearly shows that there is a gain in the asymp-
totic variance of the estimator Cxm(u1, u2) compared to that of Cxh(u1, u2).

5 Proof of the lemma

(i) We have:

αm(Xi, x, u1, u2)

=
m∑
k=0

m∑
ℓ=0

{
CXi

(
k

m
,
ℓ

m

)
− Cx

(
k

m
,
ℓ

m

)
−C

(1)
x

(
k

m
,
ℓ

m

)[
F1Xi

(
F−1
1x

(
k

m

))
− k

m

]
− C

(2)
x

(
k

m
,
ℓ

m

)[
F2Xi

(
F−1
2x

(
ℓ

m

))
− ℓ

m

]}
Pm,k(u1)Pm,ℓ(u2).
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Therefore,

αm(z, x, u1, u2)− α(z, z, u1, u2)

=
m∑
k=0

m∑
ℓ=0

{[Cz(u1, u2)− Cx(u1, u2)]

−
[
Cz

(
k

m
,
ℓ

m

)
− Cx(u1, u2)

]

−
[
Cz

(
k

m
,
ℓ

m

)
− Cx(u1, u2)

]

−
[
C

(1)
x

(
k

m
,
ℓ

m

)
F1z

(
F−1
1x

(
k

m

))
− C

(1)
x (u1, u2)F1z(F

−1
1x (u1))

]

+

[
C

(1)
x

(
k

m
,
ℓ

m

)
k

m
− C(1)

x (u1, u2)u1

]

−
[
C

(2)
x

(
k

m
,
ℓ

m

)
F2z

(
F−1
2x

(
ℓ

m

))
− C

(2)
x (u1, u2)F2z(F

−1
2x (u2))

]

+

[
C

(2)
x

(
k

m
,
ℓ

m

)
ℓ

m
− C(2)

x (u1, u2)u2

]}
Pm,k(u1)Pm,ℓ(u2).

With conditions (C) and (Z), we can use Lipschitz continuity to obtain that

αm(z, x, u1, u2)− α(z, z, u1, u2)

= O

(
m∑
k=0

| k

m
− u1 | Pm,k(u1) +

m∑
ℓ=0

| ℓ

m
− u2 | Pm,ℓ(u2)

)
= O(m−1/2) see Bojanic and Cheng, 1989).
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(ii) We have:

βm(Xi, x, u1, u2)
= E[(Zin(u1, u2)− E(Zin(u1, u2) | Xi))

2 | Xi]

=
m∑
k=0

m∑
ℓ=0

m∑
k′=0

m∑
ℓ′=0

E

{[
I

(
U1i ≤

k

m
,U2i ≤

ℓ

m

)
− CXi

(
k

m
,
ℓ

m

)

−C
(1)
x

(
k

m
,
ℓ

m

)(
I

(
U1i ≤

k

m

)
− F1Xi

(
F−1
1x

(
k

m

)))

− C
(2)
x

(
k

m
,
ℓ

m

)(
I
(
U2i ≤ ℓ

m

)
− F2Xi

(
F−1
2x

(
ℓ

m

)))]

× [same with k′, ℓ′] | Xi

}
Pm,k(u1)Pm,ℓ(u2)Pm,k′(u1)Pm,ℓ′(u2).

Working out the expectation gives 9 terms and each of these terms is a quadruple
sum. This long calculation is similar to the one in the proof of Lemma 3 (iii) in the
Appendix of Janssen et al (2012). We show how the calculation works for one of
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these terms. We denote this term by T .

T =
m∑
k=0

m∑
ℓ=0

m∑
k′=0

m∑
ℓ′=0

E

{
C

(1)
x

(
k

m
,
ℓ

m

)
C

(1)
x

(
k′

m
,
ℓ′

m

)
[
I

(
U1i ≤

k

m

)
− F1Xi

(
F−1
1x

(
k

m

))][
I

(
U1i ≤

k′

m

)
− F1Xi

(
F−1
1x

(
k′

m

))]
Pm,k(u1)Pm,ℓ(u2)Pm,k′(u1)Pm,ℓ′(u2)

=
m∑
k=0

m∑
ℓ=0

m∑
k′=0

m∑
ℓ′=0

C
(1)
x

(
k

m
,
ℓ

m

)
C

(1)
x

(
k′

m
,
ℓ′

m

)
[
F1Xi

(
F−1
1x

(
k ∧ k′

m

)
− F1Xi

(
F−1
1x

(
k

m

))
F1Xi

(
F−1
1x

(
k′

m

)))]
Pm,k(u1)Pm,ℓ(u2)Pm,k′(u1)Pm,ℓ′(u2)

=
m∑
k=0

m∑
ℓ=0

(
C

(1)
x

(
k

m
,
ℓ

m

))2

F1Xi

(
F−1
1x

(
k

m

))
P 2
m,k(u1)P

2
m,ℓ(u2)

−
(

m∑
k=0

m∑
ℓ=0

C
(1)
x

(
k

m
,
ℓ

m

)
F1Xi

(
F−1
1x

(
k

m

))
Pm,k(u1)Pm,ℓ(u2)

)2

+
m∑
k=0

m∑
ℓ=0

m∑
k′ = 0
k′ ̸= k

m∑
ℓ′ = 0
ℓ′ ̸= ℓ

C
(1)
x

(
k

m
,
ℓ

m

)
C

(1)
x

(
k′

m
,
ℓ′

m

)
F1Xi

(
F−1
1Xi

((
k ∧ k′

m

)))

Pm,k(u1)Pm,ℓ(u2)Pm,k′(u1)Pm,ℓ′(u2)

+
m∑
k=0

m∑
ℓ=0

m∑
k′ = 0
k′ ̸= k

C
(1)
x

(
k

m
,
ℓ

m

)
C

(1)
x

(
k′

m
,
ℓ′

m

)
F1Xi

(
F−1
1Xi

((
k ∧ k′

m

)))

Pm,k(u1)P
2
m,ℓ(u2)Pm,k′(u1)

+
m∑
k=0

m∑
ℓ=0

m∑
ℓ′ = 0
ℓ′ ̸= ℓ

C
(1)
x

(
k

m
,
ℓ′

m

)
C

(1)
x

(
k

m
,
ℓ′

m

)
F1Xi

(
F−1
1Xi

(
F−1
1x

(
k

m

)))

P 2
m,k(u1)Pm,ℓ(u2)Pm,ℓ′(u2)

:= (T1) + (T2) + (T3) + (T4) + (T5).
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For (T2) we have: (T2) = −(C
(1)
x (u1, u2)F1Xi

(F−1
1x (u1))

2 +O(m−1).
For (T1) we make Taylor expansion around (u1, u2) which gives:

(T1) = (C1
x(u1, u2))

2F1Xi
(F−1

1x (u1))Sm(u1)Sm(u2)

+O(Sm(u1)Im(u2) + Sm(u2)Im(u1))

where Sm(u) =
m∑
k=0

P 2
m,k(u) and Im(u) =

m∑
k=0

| k
m
− u | P 2

m,k(u).

An expansion of (T3) gives (T3) = (T ′
3) + (T ′′

3 ), with

(T ′
3) = (C(1)

x (u1, u2))FXi
(F−1

1x (u1))(1− Sm(u1))(1− Sm(u2)).

(T ′′
3 ) = (C(1)

x (u1, u2))
2

m∑
k=0

m∑
ℓ=0

m∑
k′ ̸=k

m∑
ℓ′ ̸=ℓ

(
k ∧ k′

m
− u1

)
Pm,k(u1)Pm,ℓ(u2)Pm,k′(u1)Pm,ℓ′(u2)

= (C(1)
x (u1, u2))

2(1− Sm(u2))2R1,m(u1)

where R1,m(u) = m−1
m∑

k = 0
k < k′

(k −mu)Pm,k(u)Pm,ℓ(u).

For term (T4):

(T4) = (C(1)
x (u1, u2))

2F1Xi
(F−1

1x (u1))Sm(u2)(1− Sm(u1))

+2(C(1)
x (u1, u2))

2Sm(u2)R1,m(u1).

For term (T5):

(T5) = (C(1)
x (u1, u2))

2F1Xi
(F−1

1x (u1))Sm(u2)(1− Sm(u2))

+O(Im(u1)).

From Leblanc (2012) we have that Sm(u) and R1,m(u) are O(m1/2) and Im(u) =
O(m−3/4).
Therefore,

(T ) = (C(1)
x (u1, u2))

2F1Xi
(F−1

1x (u1))(1− FXi
(F−1

1x (u1))) +O(m−1/2).

A similar treatment of the 8 other terms leads to

βm(Xi, x, u1, u2) = CXi
(u1, u2)(1− CXi

(u1, u2))
+F1Xi

(F−1
1x (u1))(1− F1Xi

(F−1
1x (u1)))C

2
Xi
(u1, u2)

+F2Xi
(F−1

2x (u2))(1− F2Xi
(F−1

2x (u1)))C
2
Xi
(u1, u2)

−2(1− F1Xi
(F−1

1x (u1)))CXi
(u1, u2)C

(1)
x (u1, u2)

−2(1− F2Xi
(F−1

2x (u2)))CXi
(u1, u2)C

(2)
x (u1, u2)

+2(C
(1)
x (u1, u2)C

(2)
x (u1, u2)[CXi

(u1, u2)− u1u2] +O(m−1/2).

Hence,
βm(z, x, u1, u2) = β(z, x, u1, u2) +O(m−1/2).
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