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Sky Images for Short-Term Solar Irradiance Forecast: A Comparative Study of Linear Machine Learning Models 
E. Shirazi, Member, IEEE, I. Gordon, A. Reinders, Senior Member, IEEE, F. Catthoor,

1 Abstract—In this study, sky images for short-term solar 
irradiance forecasting are evaluated by means of seven linear 
machine learning algorithms. Namely an accurate solar 
irradiance forecast is critical to the  reliable operation of power 
systems with the increasing integration of PV systems. In the first 
step, several features are extracted from sky images and 
reconstructed, and next  used as exogenous inputs to seven 
machine learning algorithms, i.e. linear regression, ridge 
regression, Lasso regression, Bayesian ridge regression, 
stochastic gradient descent, generalized linear model regression 
and RANSAC. A representative dataset of three years of sky 
images with one minute resolution from 2014 to 2016, serves for 
comparison together with the clear sky indexes as inputs to 
forecast ground-level solar radiances for up to 30 minutes ahead. 
The results of the abovementioned algorithms are compared, 
where for 5 and 10 minutes ahead, Lasso has the highest 
accuracy with RMSE of 0.05 and 0.062 kW/m2, while for 15 to 30 
minutes ahead, stochastic gradient descent provides the most 
accurate forecast with RMSE of 0.067, 0.071, 0.074 and 0.076 
kW/m2 for 15,20,25 and 30 minutes ahead horizons respectively. 
For all time horizons, Bayesian ridge is among the three most 
accurate models and RANSAC has the highest  error. The results 
show that ground level solar irradiance can be forecasted with a 
relatively low average instantaneous error ranging from 0.05 to 
0.1 kW/m2 depending on the model and forecasting horizon 
without imposing a too high execution time overhead namely less 
than 7 seconds. The accuracy of the forecast can be improved if 
combined with cloud detection algorithms. Overall ridge, 
Bayesian ridge and stochastic gradient descent provide more 
accurate forecasts for short-term horizons.
Index Terms— Solar forecast, sky imager, machine learning, 
short-term forecast. 
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Among all factors that influence PV power production, 
solar irradiance has the highest impact, which is 
influenced by geographic location, sun position, 
atmospheric conditions and the cloud thickness and 

height. Specifically, on the short run the dynamic changes in 
cloud shape and motion lead to fast fluctuations in irradiance 
and subsequently in PV power.. Hence, in order to accurately 
forecast irradiance in a short-term horizon, it is important to 
analyse clouds, for which high-resolution images of the sky 
are needed. A sky imager consists of either an imager looking 
downward onto a hemispherical mirror or a digital camera 

with fisheye lens which takes high resolution pictures of the 
sky providing the opportunity to track fast changes of solar 
irradiance in a short term. Figure 1 shows three sky images 
captured by the VIVOTEK sky imager installed at the rooftop 
of the EnergyVille campus in Belgium [1]. 

Figure 1. Sky images captured under different weather condition at 
KU Leuven/Imec, EnergyVille Campus [1]

Short-term solar irradiance and power forecasts have become 
popular research topics over past decade. In this section we 
briefly discuss studies done on these topics using sky imagers. 
For instance, a sky imager-based solar irradiance forecast by a 
multi-step algorithm including cloud detection and motion, 
using two months of sky images data is proposed in [2]. In 
addition to sky images, seven cloud classes including 
cumulus, stratocumulus, cirrocumulus, altocumulus, 
nimbostratus, cumulonimbus, stratus, altostratus, cirrostratus, 
cirrus, and clear sky, are used as inputs to the forecasting 
algorithm. The cloud classification has been done using 600 
manually classified images and applying support vector 
classification (SVC). The data from 99 pyranometer is used 
for validation of the proposed method, which at the end, did 
not outperform persistence forecast. Some studies used cloud-
tracking methods to forecast solar irradiance, for instance a 
physics-based endogenous method using inverter output is 
proposed in [3], where cloud motion vectors are calculated 
using sky imagers. The forecast has been done for horizons 
from 20 to 180 seconds ahead using four models, persistence, 
ramp persistence, cloud speed persistence, and auto-
regressive. The cloud speed persistence method outperforms 
other methods for horizons shorter than 94 seconds while 
auto-regressive method was the most accurate for longer 
horizons. 
A hybrid convolutional neural network and multilayer 
perceptron (CNN–MLP) model has been proposed in [4]. 
There the features of sky images have been extracted using 
CNN and fed into the MLP model to forecast Global 
Horizontal Irradiance (GHI) for 15 minutes ahead. Also, a 
short-term PV forecasting model was proposed in [4] where 
the sky images were translated directly into an energy curve. 
This could reduce errors, but the proposed method will be 
limited to the studied PV system and cannot be applied to 
other systems. overall process of the proposed meth
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All of the abovementioned studies tackled the forecasting 
problem; however, they have either used complex methods 
(e.g., CNN-MLP) or time consuming approaches (e.g., 
manually labelling sky images) to conduct forecasting or the 
forecasting horizons were limited (e.g., 180 seconds). 
Therefore, the aim and first main contribution of this study is 
to show that we can still achieve accurate forecast without 
very complicated methods, using carefully selected inputs to 
meet the forecast application needs. To meet this requirement, 
not only spectral features but also textural features have been 
extracted from sky images, reconstructed, and then used as 
exogenous input to the forecasting model in addition to clear 
sky indexes. The forecasting has been done for ground-level 
solar irradiance rather than a specific PV system output, so the 
result could be used by many different users in the region, 
from power system operators to private PV system owners. 
Moreover, the forecasts have been done for a range of 
horizons from 5 to 30 minutes ahead rather than a specific 
horizon using seven different machine learning algorithms. 
The second main contribution is that we carefully compare 
these seven methods for our context and discuss the obtained 
insights including their advantages and weak points.
This study is structured as follows: Section II will introduce 
the proposed method for analysing irradiance data together 
with sky imager-based forecast leading to answering research 
questions of short-term solar irradiance forecasting. The 
results are shown in section III. The paper will be completed 
with a discussion in section IV and conclusion in section V.

II. PROPOSED METHODOLOGY

The overall process of the proposed method is demonstrated 
in Figure 2, which consists of two parallel processes. The first 
process starts with capturing sky images and correcting their 
fish-eye lens distortion (Figure 2, Block #1). In the next step, 
specific features are extracted from these sky images. The 
value of the Red (R), Green (G) and Blue (B) colour channels, 
together with the red-to-blue ratio and the normalized red-to-
blue ratio are the five extracted features from the sky images 
(Figure 2, Block #2). In the next steps, three vectors of 
entropy, average -, and standard deviation are calculated for 
each of these features, so in total there will be 15 vectors as 
inputs to the forecasting model from the first process (Figure 
2, Block #3). The second process is to calculate the clear sky 
index for GHI and Direct Normal Irradiance (DNI), using the 
GHI and DNI time series together with the clear sky model 
(Figure 2, Block #4). In this study, the Ineichen and Perez 
clear sky model has been used including Linke turbidity to 
represent the transparency level of the atmosphere [6]. After 
calculating the clear sky irradiance using the Ineichen and 
Perez model, the clear sky index is calculated by dividing the 
measured irradiance at ground level to the clear sky estimated 
irradiance. The variability, lagged average, and backward 
average are calculated for the series of clear sky indexes 
(Figure 2, Block #5). These three vectors in addition to the 15 
vectors from the first process are used as inputs for the 
machine learning algorithms (Figure 2, Block #6). In the 
following, sky image feature reconstruction (A) and machine 
learning algorithms (B) will be described.

A. Sky images feature reconstruction 
In this step, specific sky image features are extracted and 

then reconstructed to be used in the forecast model. These 
features could be either spectral or textural and are quantified 
characteristics such as image textures and colour values. These 
features help to discriminate clear sky from clouds which will 
have a significant influence on solar irradiance on the ground 
level. 

Colour is the main property used in sky imagers-based 
forecasts. Spectral features are based on colour models and are 
more stable than contour and edges as they are global features 
[7]. The solar irradiance forecasting models are mainly based 
on blue and red channels, as clouds mostly scatter red and 
blue, whereas clear sky scatters higher red values. The spectral 
features considered in this study are the red, blue, and green 
channels, the normalized red to blue ratio and the red to blue 
ratio. For each of these features, the mean and standard 
deviation are calculated by (1) and (2).

(1)
(2)

where  is the colour channel,  is the value of each channel in 
pixel  and  is the number of total pixels in a sky image.

The texture of a sky image can be calculated from Grey 
Level Co-occurrence Matrices (GLCM) which is a square 
matrix based on the histogram of the image [8]. In this study 
entropy has been included in the model which is a measure of 
randomness of grey level differences and computed from the 
histogram of each colour channel separately [9].

(3)
Here  is the element on row a and column b of GLCM. It 

represents the relative frequency that two pixels occur.  
B. Machine Learning Algorithm Options

There are many factors accounting for determining the 
ground level solar irradiance, some of which can be 
determined through explicit equations like the angle of 
incident and solar zenith angle, while the others are constantly 
changing and are difficult to be calculated through physical 
models, such as clouds. As it has been discussed, dynamic 
changes in clouds form and cloud motion result in fluctuations 
of solar irradiance especially on the short-term. Machine 
learning algorithms can help to perceive such complex 
association without any explicit equations. That is one of the 
reasons which lead to increasing application of machine 
learning based forecasting in recent years. 

The machine learning models can be either linear or non-
linear. The former assumes there is a linear relationship 
between inputs and outputs, while the latter assumes a non-
linear one. Linear models use convex optimization approaches 
and are simple, fast, and straightforward, while non-linear 
models are more complex and slower. In this study multiple 
Linear Machine Learning Algorithms (LMLA) have been 
considered (Figure 2, Block #6). The aim is to investigate the 
effect of independent variables , namely sky images and clear 
sky indexes, on the average value of dependant variable  that 
is solar irradiance. The general model of LMLA is as follows, 
where the expected value of  is a function of :

(4)
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By decomposing (4) the dependant variable can be modelled 
as follows, where  is the random deviation from the expected 
values. 

(5)
Linear regression [10], ridge regression [11], least absolute 

shrinkage and selection operator (Lasso) regression [10], 
Bayesian ridge (BR) regression [11], stochastic gradient 
descent (SGD) [12], generalized linear model (GLM) [13] 
regression and random sample consensus (RANSAC) [14] are 
among LMLA which have been applied on the dataset to 
forecast solar irradiance. The differences between these 
models lay in the objective functions and the added penalty 
terms. In the linear regression, the objective function is to 
minimize the sum of squared errors between the forecasted ( 
and target  values in the dataset with no penalty term, while in 
the Lasso and ridge regressions penalty terms of the L1 and L2 
regularizations are added to the objective function respectively 
[10]. L1 is the sum of absolute values of regression 
coefficients, while L2 is the sum of squared regression 
coefficients [11]. Bayesian ridge also considers L2 as the 
penalty term, but with a randomly assigned variable which 
controls the amount of shrinkage. The gradient descent 
method has the same objective function as the linear 
regression, on the other hand it optimizes the regression 
coefficients through an iterative method [12]. The normal 
gradient descent tends to become slow with large datasets and 
fall into a local minimum, stochastic gradient descent [15] on 
the other hand prevents these from happening by introducing a 
noisy gradient of a single or a minibatch of data points [16]. 
Like ridge and Bayesian ridge regression, generalized linear 
model regression uses L2 as the penalty factor as well, 
assuming  has a form of an exponential distribution [13]. The 
last model is Random Sample Consensus (RANSAC) 
regressor, which is different from other models. It defines a 
hypothesis using randomly chosen data points and evaluates 
the hypothesis using the remaining data points in the dataset 
[14]. If the number of data points satisfying the defined 
hypothesis is less than a specified threshold, then a new 
hypothesis has to be defined. This iteration continues until the 
total number of satisfying data points exceed a threshold, or a 
maximum number of iterations is reached [17]. 

In addition to abovementioned models, other models have 
also been considered such as Huber Regressor [18], Theil-Sen 
Regression [19] and Decision Tree Regressor [20], however 
they either did not converge or resulted in high errors; 
therefore, they were deemed not suitable for our case study. 

III. RESULTS

In order to evaluate the performance of the proposed 
method, a dataset containing three years of sky images and 
irradiance measurements has been used which is not recorded 
in EnergyVille campus, but in Folsom city [21]. The 
irradiance data are measured using a second-generation 
Rotating Shadow band Radiometer (RSR) sensor from 
Augustyn, Inc with one minute resolution. The sky camera 
captures RGB colour image with 1536x1536 pixels at one 
minute intervals. The dataset is divided into two subsets, 
namely training dataset (2/3) and test dataset (1/3). The first 

two years are used for training the models and the data of the 
last year is used for testing the models. 

 The LMLA have been applied using the Scikit package in 
Python [22]. A smart persistence algorithm has been used as 
the benchmark for this comparison. The persistence method 
assumes the value of irradiance in the next step is equal to the 
value of irradiance at the current step, while in the smart 
persistence method, a scaling factor is added as follows: 

(6)
 can be either GHI or DNI at time  and  is the scaling factor.  

is the backward average of the ratio of measured irradiance to 
clear sky irradiance of previous steps.

(7)
The results of short-term forecasting for 5 minutes ahead of 

GHI and DNI have been presented in Figure 3 and Figure 4. 
The other horizons including 10, 15, 20, 25 and 30 minutes 
ahead also follows the same pattern but with higher errors. 

Figure 3. GHI forecasting for 5 minutes ahead

Figure 4. DNI forecasting for 5 minutes ahead
As can be seen, all algorithms can follow the measurements, 

however the RANSAC algorithm has many ripples. There are 
two potential explanations, the first is that RANSAC converts 
the forecasting problem into a selection problem. The second 
possible explanation is that RANSAC is sensitive to 
hyperparameters tuning and the parameters are not optimized 
here. Regarding those reasons, it is concluded that RANSAC 
cannot provide an accurate short-term forecast with sky 
imagers under these circumstances unless it is optimized. It 
can be observed that DNI has higher error in comparison to 
the GHI, which is aligned with existing literature [23]. This is 
mainly due to the effect of aerosol optical depth (AOD) on the 
irradiance components. 
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A. Forecast Accuracy 
In order to check the accuracy of each model, the Root Mean 

Square Error (RMSE) has been considered as the main metric. 
RMSE is a common metric to measure the accuracy of a 
forecasting model. It is defined as follows, where  and  are the 
forecasted and measured values respectively. 

(8)
The GHI and DNI forecasting error for each method over all 

horizons from 5 to 30 minutes ahead are shown in Figure 5 

Figure 5. RMSE of GHI and DNI forecasting via different models
As expected, the RANSAC algorithm does not perform well, 

while the stochastic gradient descent, ridge and lasso 
regression have the best performance. It should be noted that 
the smart persistence algorithm uses the updated value for 
clear sky irradiance instead of the value of the last step, so it 
can perform rather accurate especially in shorter-term horizons 
i.e., 5 minutes. Another factor which should be considered 
while comparing error is the variance of the error. In case of 
all models except for RANSAC, the variance is lower than 
smart persistence.

Three most accurate models based on RMSE for each 
horizon, have been selected. For 5 and 10 minutes ahead, 
Lasso has the highest accuracy, while for 15 to 30 minutes 
ahead, stochastic gradient descent provides the most accurate 
forecast. In all horizons, Bayesian ridge is among the top three 
most accurate forecasts. The effect of the forecasting horizon 
on the accuracy of the forecast is shown in Figure 6.

Figure 6. GHI and DNI forecasting error for different horizons
The limited field of view of the sky imagers limits the 

forecasting horizons of such methods. Normally sky imager 
based methods do not provide accurate forecast for horizons of 
more than 30 minutes, depending on cloud and wind speed. 

This is derived based on the previous studies of the same 
group. [5], [24]. An increasing forecasting horizon clearly 
increases the uncertainty and hence the errors. 

Three years of data from 2014 to 2016 have been used in 
this study, where the data from 2014 to 2015 are used as 
training dataset and the data for 2016 used as the test dataset. 
The average RMSE for the training dataset is 0,068 and for 
test dataset is 0,070 [kW/m2]. 

Figure 7. GHI and DNI forecasting error for test and train datasets
As demonstrated, the errors of both test and training datasets 
are quite close, which means that the proposed algorithm 
could accurately fit the data and there is no over-fitting or 
under-fitting problem. It is also observed that the error of the 
test dataset is lower, which proves that there is no bias in 
diving the dataset into two subsets of train and test. 
A comparison of the results of this study with existing 
literature is insightful. In order to do so, three comparable 
studies have been chosen. In [25], a CNN is applied to forecast 
5-20 min ahead of GHI using sky images and lagged GHI. The 
results show RMSE of 49-177 W/m2, 93-146 W/m2, 71-118 
W/m2 in sunny day, partly cloudy day and overcast day, 
respectively. [26] presents the results of 2.5 and 5-minutes 
solar forecasting system based on two sky-imagers in Canary 
Islands, Spain, by identifying clouds and predicting their 
movement. The results of two days namely a very cloudy day 
with high variability in irradiance, and a sunny day. The first 
day has a RMSE of 939.8 W/m2, while the second day had a 
lower RMSE of 240.9 W/m2. In [27], a short-term DNI 
forecasting method using sky imagers is proposed. It considers 
both the cloud coverage and the influence of other 
atmospheric particulates such as the absorbing, reflecting, and 
scattering of DNI. The results of DNI forecasting for 3 to 7 
minutes ahead for 6 different summer days in June, July, and 
August show different RMSEs ranging from 103 W/m2 to 355 
W/m2. Comparing these results with the results of our study, 
shows that the RMSE of different models are relatively low.
Although RMSE is a useful metric to evaluate the 
performance of the models, it cannot sufficiently describe the 
performance. Another index is model bias which refers to the 
systematic error that results from certain assumptions in the 
modelling process. Unlike random errors, which can vary 
unpredictably, bias describes a consistent or persistent 
distortion from the measurement. Comparison with baseline 
models helps to identify potential biases by setting a 
benchmark for performance, highlighting systematic errors, 
validating improvements, and indicating data-related issues. 
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This comparison ensures that the complexities of the 
forecasting models are indeed contributing to better, more 
unbiased predictions rather than merely fitting to noise or 
reinforcing existing prejudices in the data.  Different methods 
can be used to address model bias, such as data pre-
processing, feature engineering and model tuning. In this 
study, feature engineering is used to extract and create the 
most relevant features that better capture the underlying 
patterns in the data (Figure 2). In addition to that a baseline 
model is used to compare all models’ performances which will 
be discussed in the next section. 

C. Forecast Skill
Another indicator which can be used for evaluating the 

performance of forecasting is the Forecast Skill (FS), where 
the persistence model is used as the reference model. 

(9)
Here the smart persistence model is used as the reference, 

which has higher accuracy in comparison to the persistence 
method. All forecasting models perform better than the smart 
persistence algorithm for short term horizons from 5 to 30 
minutes, except for the RANSAC model. Considering the 
causes which have been explained earlier, it is concluded that 
RANSAC cannot provide an accurate short-term forecast with 
sky imagers under these circumstances, further investigation 
regarding optimized RANSAC performance in forecasting 
solar irradiance is needed. 
To have a better comparison, the RANSAC method has been 
removed from the comparison, as the values for forecasting 
skill are mostly negative. The forecasting skills of other 
models have been compared in Figure 11 and Figure 12. As it 
is demonstrated there, GLM has lower skills in comparison to 
other methods, besides RANSAC. It might be because in 
GLM methods the predictor variables should be uncorrelated, 
which in our case they are not. There are also other possible 
explanations, such as GLM sensitivity to outliers, strict 
assumptions around distribution shape or its dependency on 
the unknown parameters of the fitted model which is one of 
the limitations of GLM. Various techniques such as the 
quantile dispersion graphs of the mean-squared error can be 
used to deal with this problem. 

Figure 8. GHI and DNI forecasting skills for different models
As it is demonstrated, Lasso can provide more accurate 

forecasts in total, with comparatively same forecasting skill, 
followed by Bayesian ridge and ridge regression. The 

difference between Lasso and ridge regression is in the penalty 
terms. Lasso imposes penalty using linear proportional values 
of the errors while ridge uses squared values. Both of these 
methods have lower variance and higher accuracy in 
comparison to linear regression and smart persistence for 5 to 
30 minutes ahead.

From 15 minutes ahead onward, SGD is amongst the most 
accurate methods. It could be due to its ability to set learning 
rate of the algorithm as a function of iteration number. In this 
way the algorithm makes significant changes in the beginning 
and fine tune the parameters in the later iterations.

D. Ramp Rate Detection
Ramp rate in solar forecasting refers to the rate at which solar 
power output changes over a specific time. It is a critical 
parameter for grid operators because sudden increases (ramp-
up events) or decreases (ramp-down events) in solar power 
generation can significantly affect grid stability and energy 
management strategies. In solar forecasting, models aim to 
predict these ramp rates accurately to inform grid operators 
about potential rapid changes in solar generation. This enables 
them to take proactive measures, such as managing demand 
response strategies, to ensure grid reliability and balance 
supply and demand effectively. In order to evaluate the ability 
of the models to capture changes in irradiance and therefore 
solar PV power, the RR is calculated based on the 
measurements and forecasts using equation (10). 

(10)
Where  is the irradiance at time t [W/m2], and  is the time 
between two consecutive steps in minutes. If RR is above or 
below certain thresholds, then a ramp-up or ramp-down event 
is detected and therefore an appropriate control measure such 
as charge/discharge storage or curtailment should be taken. As 
shown in Figure 9 the models can capture these changes with 
relatively low RMSE. As the forecasting horizon increases, 
the ramps become smoother and therefore the RMSE 
decreases. 

Figure 9. RMSE of RR for different forecasting horizons
As shown in  Figure 10 and Figure 11 among the models 
which are explored in this study, GLM regression has the best 
ability to capture ramp rates and therefore ramp events with 
the lowest RMSE namely 11.20 and 11.21 for 30 and 25 
minutes ahead forecasts of GHI respectively. The RANSAC 
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model on the other hand is the worst when it comes to 
forecasting ramp rates with RMSE of 71.59 and 102.73 for 25 
and 30 minutes ahead forecasts of DNI respectively.

Figure 10. RMSE of RR for different forecasting models

Figure 11. RMSE of RR for different forecasting models

E. Execution Time
One of the reasons for choosing linear machine learning 

models is the execution time. These algorithms are simpler 
and do not impose high execution time. 

Figure 12. Average execution time of different models 

AS DEMONSTRATED IN FIGURE 9, THE LASSO MODEL HAS THE 
HIGHEST EXECUTION TIME, WHILE IT IS AMONG THE MOST 
ACCURATE MODELS. THE MOST SUITABLE MODEL CAN BE 

CHOSEN FOR THE APPLICATION CONSIDERING EXECUTION TIME 
AND ACCURACY OF THE MODEL. IV. DISCUSSION

Although, the proposed models showed overall higher 
accuracy in comparison to its competitor for short-term 
forecast, i.e., the persistence model, it should be noted that 
various weather conditions can impact the accuracy of the 
forecast. For example, there are more fluctuations and 
consequently higher errors in cloudy weather in comparison to 
sunny weather. One idea is to train a model specifically for 
each weather condition and use that model for the forecast 
under that specific weather condition. 

The sky imager based forecast can provide high spatial 
resolution if the sky images have high quality. Low-quality 
sky images can present additional bias. Thus, calibrating sky 
imager parameters such as exposure time, focal length, and 
geometric alignment are quite important prerequisites. All 
abovementioned factors can influence the quality of the image 
and therefore the quality of the training data, which plays an 
important role in the performance of machine learning based 
forecasts. In addition to the quality of the data, the quantity of 
the data is also important. To train a machine learning 
algorithm effectively, at least two years and to test the 
algorithm at least one year of data is required [28], which 
means in total at least three years of data on a specific site is 
required to have a reliable accurate forecast. This is one 
restricting factor with such methods. That is the main reason 
why we have selected the Oldenburg data set in this paper, 
because it meets these requirements. Sky imagers provide 
information on the dynamics of clouds which has the biggest 
influence on the irradiance. To improve the accuracy of 
forecast, cloud detection algorithms and integrated cloud 
tracking techniques can be also added to the forecasting model 
[7]. Although sky imagers have high spatial and temporal 
resolution, their spatial coverages are limited, and location 
dependant. Exploring the possibility to adopt the forecast 
model of a location in another location is one possible 
direction for future research. It would also be advisable to 
extend the number of locations with different climate and 
more sky imagers in order to increase the validity of the 
results.

In this study, the Ineichen and Perez clear sky model [6] has 
been used to calculate the clear sky index, however there are 
various clear sky models such as ASHRAE, BIRD, Heliosat, 
DPP, MAC, Kasten, REST2, MAGIC (SARAH-2), and 
SOLIS [29], [30]. These models can include various factors in 
their models, which influence the clear sky index and 
therefore the inputs to the forecasting model. Conducting a 
sensitivity analysis on different clear sky models can show the 
robustness of the forecasting algorithm to different clear sky 
indexes. 

V. CONCLUSION

In order to have a reliable operation of power systems with 
high penetration of PV, it is essential to have an accurate solar 
irradiance forecast. This research developed a solar irradiance 
forecasting method based on machine learning algorithms. For 
that purpose, sky imager data for three years are used as 
exogenous input to multiple machine learning algorithms to 
forecast global horizontal and direct normal irradiances for 5 
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to 30 minutes ahead. The results of the seven different models 
have been compared and the three most accurate models have 
been retained for short-term horizon namely ridge, Bayesian 
ridge and stochastic gradient descent. Bayesian ridge, 
stochastic gradient descent and generalized linear model 
regression are the fastest algorithms in our case. 

The results show that ground-level solar irradiance can be 
forecasted with a relatively low error ranging from 0.05 to 0.1 
kW/m2 using linear machine learning models without 
imposing a too high execution time overhead, namely less 
than 7 seconds. There is a trade-off between execution time 
and accuracy of the algorithm which will influence the choice 
of the most suitable algorithm for a specific application. 
Nevertheless, both Bayesian ridge regression and stochastic 
gradient descent are among the fastest and most accurate 
models. 
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