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Abstract

Squared 2×2 tables with binary data from matched pairs are typically analysed us-

ing Cochran-Mantel-Haenszel methodology, conditional logistic regression, or random

intercepts logistic regression. These are all “pair-specific” type of approaches. How-

ever, many more methods and models for clustered binary data, including marginal

models and marginalisable pair-specific models, can be applied. We provide a compre-

hensive overview of methods and apply them all to two well-known example datasets,

the prime minister’s performance and the myocardial infarction datasets. The sim-

ple setting of matched binary data allows us to compare and relate different models,

methods and their estimates. A technical explanation is given for why in some set-

tings boundary estimates are obtained.
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1 Introduction

In the current era of automated massive data collection and innovative data science meth-

ods, the analysis of a 2 × 2 square table may feel somewhat archaic. Such a square ta-

ble indeed represents one of the most elementary datasets, but its underlying association

structure allows a very instructive comparison of several statistical principles, methods

and models, ranging from the time-honored Cochran-Mantel-Haenszel approaches to more

recent techniques of marginalized multilevel models and shared random effects. It is not

common practice to analyse square tables with these more elaborate models, developed for

other purposes, but, through its simplicity, the setting of such basic 2 × 2 tables permits

us to discuss and illustrate key properties and results of various approaches in an illumi-

nating way. They allow us to bring fundamental differences to surface between analysis

approaches, especially in matched settings. While for some techniques prospective and

retrospective analyses lead to the same results, in particular for the association, for oth-

ers there are fundamental differences, including the occurrence of boundary solutions in

retrospective (outcome) matching.

Two examples from Agresti’s seminal textbook on categorical data analysis (Agresti,

2002) will be used: the Prime Minister’s performance data (MP data) and the Myocardial

Infarction data (MI data).

Prime Minister’s performance data

The data are shown in the upper part of Table 1. In a poll conducted in a random

sample of 1600 voting-age British citizens, 944 indicated approval of the Prime Minister’s

performance in office. Six months later, of these same 1600 people, 880 indicated approval.

Since relatively few people changed opinion, the diagonal of the table shows the higher

counts.

Agresti illustrates the use of McNemar’s test for comparing dependent proportions
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(showing there is a strong evidence of a drop in the approval rating), as well as the use

of logit generalized linear mixed model (GLMM; normally distributed random effects in

a logistic model). The off-diagonal cell counts are the informative ones, and, for a given

participant, the estimated odds of approval at the second survey equals 86/150 = 0.573

times that of the first survey. There is, as to be expected, a very strong association between

the two responses, with estimated odds ratio (794×570)/(86×150) = 35.084. This GLMM

is one of several models with a logistic underpinning; others will be discussed in Section 2.

Next to the original MP data, we will investigate the behaviour of the different models

for what we will term the reversed MP dataset (as shown in the lower part of Table 1).

For the sake of illustration, the outcomes of the first survey are reversed, while maintaining

those of the second survey. As a consequence, the main diagonal counts in the original table

become the off-diagonal ones in the reversed table, the estimated odds of approval at the

second survey now equals 794/570 = 1.393 times that at the first survey (reflecting a rise

in the approval rate), and the positive association between the two responses is now clearly

negative, with a sample odds ratio 1/35.084 = 0.029. It will be interesting to investigate

the performance of the models in this ‘opposite’ case.

Table 1: MP data: rating of performance of Prime Minister of citizens at two occasions 6
months apart. Upper table: original dataset as in (Agresti, 2002); lower table: manipulated
dataset with reversed association (reversed dataset).

Second Survey
First Survey Approve Disapprove Total

Original Approve 794 150 944
dataset Disapprove 86 570 656

Total 880 720 1600
Reversed Approve 86 570 656
dataset Disapprove 794 150 944

Total 880 720 1600
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Myocardial Infarction data

Table 2 shows the myocardial infarction (MI) data. A case-control study of acute myocar-

dial infarction among Navajo Indians matched 144 MI cases according to age and gender

with 144 people free of heart disease. Participants were asked whether they had ever been

diagnosed as having diabetes. There are several major differences with the MP data: the

number of pairs is much smaller, and it is a case-control study (rather than a longitudinal

setting) in which a pair does not refer to the same subject but constitutes rather a matched

(case, control) pair. For these data, we do not consider any reversed version, but we will

analyse the data in both directions. With x denoting the diabetes diagnosis and y the

myocardial status, the retrospective design implies x|y is observed rather than y|x. With

the symmetry property of the odds ratio in mind, it is instructive to compare the results

when analysis is conducted in both directions.

Table 2: MI data: previous diagnoses of diabetes for myocardial infarction case–control
pairs

MI Cases
MI Controls Diabetes No Diabetes Total
Diabetes 9 16 25
No diabetes 37 82 119
Total 46 98 144

As discussed in (Agresti, 2002), matched pairs are typically analysed with McNemar’s

test (McNemar, 1947), of which the chi-squared statistic is algebraically identical to the

Cochran-Mantel-Haenszel (CMH) test statistic for testing independence of binary responses

of the matched pairs displayed in ‘pair’ specific partial tables. This connection opens the

way to analyse matched pairs with a multitude of logistic regression type models. In his

Chapter 10, Agresti (2002) illustrates the use of conditional logistic regression (logistic

regression with conditional maximum likelihood) and of random-effects logistic regression.

The Mantel-Haenszel estimate, the conditional ML, and the ML estimate for the random

intercept logit model are all identical to the ratio of the off-diagonal counts. These three
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approaches typically suffice for analysing matched pairs in practice, but there are several

other extensions of logistic regression that could be applied. Some models define the effect of

interest at the pair level, others are marginal or pair-averaged, since they refer to averaging

over the entire population of pairs rather than to individual pairs. Some pair-specific models

easily allow the derivation of the pair-averaged effect, others do not or only approximately

so. In our view, it is very instructive to apply these other models to the very simple setting

of matched pairs, as it allows illustrating and explaining key features of and connections

between all approaches more easily and explicitly. These insights help to understand the

approaches in more complicated settings.

After a concise overview in the next section of a collection of methods and models with

which matched pairs can be analysed, we will apply them to both datasets, compare them,

explain differences, and discuss interrelations in Sections 3 and 4. The models will be fitted

with maximum likelihood (ML) and the supplementary material provides SAS code.

2 Methods and models

2.1 The starting point

Logistic regression (LR)

In both examples, the research question of interest can be formulated in terms of logistic

regression. For the MP data, n = 1600 citizens were surveyed twice. The counts in the

2 × 2 table can be represented as (xij, yij) with i = 1, . . . , n, and with x the occasion

indicator (and j the occasion index) defined as xi1 = 0 for the first occasion and xi2 = 1

for the second occasion, and with yij the performance approval indicator (yes=1,no=0) of

participant i at occasion j = 1, 2. Note that xij = xj does not depend on i. Interest goes

to a shift in the probability of approval from the first to the second occasion. In the logistic

regression model for yij|xij ∼ Bernoulli {P (yij = 1|xij)}, the model for P (yij = 1|xij) is
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defined as

log

{
P (yij = 1|xij)

P (yij = 0|xij)

}
= αM + βMxij , (1)

and hence this change is represented by the slope parameter βM , or equivalently, by the

odds ratio exp(βM). The subscript M refers to the marginal interpretation (in contrast

with a pair-specific interpretation, see further).

For the MI data, for the i-th case-control pair out of a total of n = 144 pairs, xi1 denotes

the previous diabetes diagnosis (0 for negative, 1 for positive) for the control and likewise

xi2 for the case. So j identifies the control (j = 1) or case (j = 2). Therefore, yi1 ≡ 0 and

yi2 ≡ 1. In summary, x denotes the previous diabetes diagnosis, and y the case/control

status. Note that now yij does not depend on i. In this situation, model (1) seems to make

no sense, as yij is not a random variable. In a case-control study, it being a retrospective

study, x is observed and y is fixed (suggesting a model for x|y), but interest goes to the

potential effect of a previous diabetes diagnosis on the probability for an acute myocardial

infarction, or to inference about y|x as in model (1). As nicely explained in, for example,

Section 5.1.4 of (Agresti (2002); see also Breslow and Day (1980)), the slope parameter βM

in model (1) is still the parameter of interest, thanks to the use of the logit link in model

(1) and the identity OR(x|y)=OR(y|x) for the odds ratio OR.

Logistic regression with fixed pair effects (LRF)

However, model (1) nowhere reflects that observations from the same pair are most likely

dependent, given that they share common pair characteristics. Following the explicit con-

nection between McNemar’s and the CMH test, model (1) can be extended with a pair-

specific intercept effect αi (pairs as strata):

log

{
P (yij = 1|xij)

P (yij = 0|xij)

}
= αi + βPxij . (2)

7



Given the parameters αi, the two observations on the same pair are independent, but,

averaged over all pairs, the responses are correlated with a non-negative association, the

intra-pair correlation, which is determined by the covariance in the pairs

{(
exp(αi + βPxi1)

1 + exp(αi + βPxi1)
,

exp(αi + βPxi2)

1 + exp(αi + βPxi2)

)}n

i=1

.

The larger the variation in the αi’s (relative to the value of βP ), the larger the intra-pair

correlation. For the MP data, the intra-pair correlation is expected to be moderate to

substantial, as the pair refers to repeated observations within the same individual. As for

the MI data, the case-control pair concerns two different individuals, matched on age and

gender, this intra-pair correlation is expected to be rather minor.

Model (1) is a marginal or population-averaged model. In contrast, model (2) is a

conditional or pair-specific model; while it implies a marginal model, it is not directly

formulated in a marginal way. As a consequence, the implied marginal model is no longer

a logit type of model, as averaging

1

n

n∑

i=1

exp(αi + βPxij)

1 + exp(αi + βPxij)
, j = 1, 2,

no longer has an expit form exp(·)/(1 + exp(·)), due to the nonlinearity of the logit and

expit functions. This hinders an easy interpretation of the marginal effect. Consequently,

the slope βM and OR exp(βM) in model (1) and the slope βP and OR exp(βP ) in model (2)

have different interpretations, of a marginal and conditional type, respectively. In contrast,

in situations where the identity link could be used, as is often the case for continuous paired

data (Yi1, Yi2), where linear models are adopted, the pair-specific model implies a marginal

linear model with the same slope, and both effects, pair-specific and pair-averaged are

identical. As we will see in what follows, there are alternative formulations of the logistic

regression model (2) that do allow a simple marginal interpretation as well.
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Note that model (2) has an abundant number of n + 1 parameters (increasing with

the number of pairs) and fitting this model with fixed effects parameters αi leads to an

inconsistent ML estimate β̂P
P−→ 2βP (see Breslow and Day (1980) and Exercise 10.24 in

Agresti (2002)). The next Section 2.2 briefly describes the two ways to consistently fit pair-

specific models: i) the many nuisance parameters αi can be eliminated by conditioning on

sufficient statistics (conditional ML, confusingly with the adjective conditional as well),

ii) by assuming a random intercept whose distribution represents that of the population

of pair-specific αi’s, thereby avoiding the unbounded growth in number of parameters. A

standard choice is the normal distribution, implying a reduction from n+1 to 3 parameters.

The next sections describe and compare related approaches that have been developed for

more general purposes, but can be applied to analyse binary matched pairs as well.

2.2 Pair-specific models

For more details on the application of conditional likelihood and random effects in this

setting, we refer to Chapters 10 and 12 in Agresti (2002) and Chapter 15 in Molenberghs

and Verbeke (2005).

Conditional logistic regression (CLR)

The pair-specific totals yi1 + yi2 are sufficient statistics for the pair-specific intercepts αi.

Only in case this total yi1 + yi2 = 1 (referring to the off-diagonal cells in Table 1), the

βP parameter appears in the conditional likelihood, being a Bernoulli likelihood with odds

for (yi1 = 0, yi2 = 1) versus (yi1 = 1, yi2 = 0) equal to exp(βP ), allowing so-called exact

inference. As the αi’s are fully eliminated, this approach does not provide an estimate of

the intra-pair correlation, nor any insights in the marginal effect of x on y.
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Cochran-Mantel-Haenszel (CMH)

The non-model-based CMH test of conditional independence between y and x while con-

trolling for z in the 2× 2×n table of a three-way table x, y, z (with z the pair dimension),

conditions on both the totals xi1 + xi2 and yi1 + yi2. So, in our regression model set-

ting, the CLR and CMH approaches essentially coincide, but CMH’s original inference is

based on the approximate large-sample chi-squared distribution rather than on the exact

small-sample distribution. Next to testing conditional independence, Mantel and Haenszel

additionally proposed an estimator for the common odds ratio.

Normal random intercept (NRI)

Here, the abundant number of αi parameters is eliminated by considering them as an

unobserved sample from a random effects distribution. The standard choice is the normal

distribution αi ∼ N(α, σ2
u), such that, after averaging (integrating), the likelihood depends

on the slope βP and the parameters α and σ2
u of the normal random effect’s distribution.

As the unobserved αi’s are characterized by the normal random intercept distribution,

this approach allows for estimates of the latent marginal intra-pair correlation ρ and the

marginal effect of x on y, albeit only approximately. The variance component σ2
u determines

the latent intra-pair correlation ρ. If σu = 0, then ρ = 0, and next the (very rough)

approximation

ρ ≈ σ2
u

σ2
u + π2/3

,

holds, based on the expression for linear models with π2/3 the variance of the logistic

distribution (of the latent continuous response variable underlying the logistic regression

model). A detailed discussion of differences between the latent and manifest correlations

for binary outcomes is offered by Milanzi et al. (2015). Zeger et al. (1988) proposed, for σu
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small and with φ(u;α, σu) the density of the normal distribution, the approximation

∫
exp(u+ βPxij)

1 + exp(u+ βPxij)
φ(u;α, σu)dα ≈ exp(βMxij)

1 + exp(βMxij)
,

where βM = cβP with c = 1/

√
1 +

(
16

√
3

15π
σu

)2
. This allows an approximate estimate for

the marginal slope and marginal OR.

Note that, for a probit model, the conditional probit model with normal random effect

does imply a marginal model of probit form, with c = 1/
√

1 + σ2
u. But a major disadvan-

tage of the probit model is that it does not provide an odds ratio interpretation for the

regression parameters.

Comparison of CLR, CMH, NRI

These pair-specific models share the same starting point and deal with the abundant num-

ber of pair-specific intercepts. It can be proven (Agresti, 2002) that the conditional ML

estimate, the MH estimate and the ML NRI-estimate for the OR are all equal to the ratio

of the off-diagonal counts in the 2 × 2 matched pairs table. Contrary to the CMH/CLR

approach, the NRI approach allows the approximate estimation of the marginal slope and

OR parameter and the intra-pair correlation. Also, interpretation is slightly different, as

the inference from the NRI model applies to the population of pairs rather than only those

sampled. The price to pay is the need to assume a parametric distribution for the αi.

We introduce other pair-specific models, also allowing a more direct interpretation, in

Sections 2.4 and 2.5, but first we discuss some genuinely marginal models.

2.3 Marginal models

Marginal models extend logistic regression by including, explicitly or implicitly, a corre-

lation structure for the clustered data, in our case the pairs (Yi1, Yi2), in the estimation

procedure. This extension can take place at the level of the likelihood function or at the
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level of the estimating equations.

Generalized estimating equations (GEE)

Generalized estimating equations (Liang and Zeger, 1986; Zeger et al., 1988) modify the

estimating equations of logistic regression by introducing a so-called working correlation

structure, resulting in equations that no longer derive from a (correctly specified) likeli-

hood. Even if the working correlation structure is misspecified, it results in consistent

estimates for the slope βM (and the OR). The so-called sandwich estimator applies em-

pirical evidence to adjust the standard errors in case the working correlation structure is

inappropriate. Working correlation structures include the independence, exchangeable, un-

structured, autoregressive structures. As in our case all clusters are just pairs and thus of

size 2, the non-independence structures all coincide. Inference on the regression parameters

is asymptotic (typically Wald type based). Formal inference on the correlation parameter

is not available.

Bivariate logistic regression (BLR)

A bivariate logistic regression model extends the likelihood function by applying a bivari-

ate probability distribution for (yi1, yi2). The quadrinomial distribution P (yi1 = k, yi2 =

ℓ), k, ℓ = 0, 1 can be applied as such or reparameterized in terms of three parameters of

interest, in our case the marginal parameters P (yi1 = 1), P (yi2 = 1), and an association

parameter. Here, we choose the correlation ρ = cor(yi1, yi2), but the OR is another option.

With the choice of correlation, the resulting model is known as the Bahadur model Ba-

hadur (1961), with no higher order associations. All features of ML are available, including

inference about the correlation parameter. Considerable detail on the Bahadur model can

be found in Aerts et al. (2002).
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Comparison GEE and BLR

Both approaches are marginal models. They do not consider pair-specific models and do

not measure variation across the pair-specific models (otherwise than indirectly through

the intra-pair correlation).

Given that, for paired data without covariates that we are considering here, there is no

room to misspecify the correlation structure in GEE, unless independence would be chosen,

the estimates under GEE and BLR will be identical, apart from the fact that BLR also

yields a standard error for the correlation parameter. This will be exemplified in the data

analysis.

2.4 Pair-specific random intercept models allowing marginal in-

terpretation

Bridge random intercept (BRI)

The Bridge distribution for the random pair effect was developed to ensure that the con-

ditional and marginal distributions are both of a logistic form with a simple algebraic

relationship between the linear predictor functions so that the parameters in the condi-

tional model can readily be marginally interpreted; see Wang and Louis (2003) for binary

random intercept models. Replacing the normal distribution for the random intercept in

the NRI model by such a bridge distribution, guarantees that the marginal logit model (1)

holds but with slope βM related to

βM =
βP√

1 + 3σ2
b/π

2
= βP (1− ρ),

with σ2
b the variance of the bridge distribution and ρ = corr(yi1, yi2|βP = 0) the intra-pair

correlation.
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Marginalized multilevel model (MMM)

The marginalized multilevel model (MMM), as introduced by Heagerty (1999), Heagerty

and Zeger (2000) and extended by Griswold and Zeger (2004), specifies a separate model for

the marginal and conditional means and links them using a connector function depending

on covariates, marginal parameters, and the random-effect specification, allowing both a

marginal and conditional interpretation of the parameters. For the “logit-probit-normal

model,” the conditional model can in our situation be written as, with Φ(·) the standard

normal cdf,

Φ−1(P (yij = 1|ui)) = δij + ui, (3)

with

ui ∼ N(0, σ2
m),

and

δij = (
√
1 + σ2

m)Φ
−1(expit(α + βMxij)).

The corresponding marginal model is our basic logistic regression model (1), with the

slope still enjoying the log-odds ratio interpretation. Connections between the BRI and

MMM are discussed in Molenberghs et al. (2013). To our knowledge, there is no (exact or

approximate) analytical expression available for the intra-pair correlation ρ.

2.5 Pair-specific random probability models allowing marginal

interpretation

Instead of using normal and other random effects models on the whole real line, a very

natural alternative in our situation here is the use of a beta random effect on the probability

scale.
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Correlated beta model (CBM)

When using random effects for binary data, a very natural and appealing candidate distri-

bution to reflect the “pair-effect” is the beta distribution, also known from its pivotal role

in the beta-binomial distribution. How to use and implement another distribution than the

normal for the random effect has been shown by Nelson et al. (2006), using the probability

integral transform (PIT)

v = F−1(Φ(u)), (4)

with u ∼ N(0, 1) and F the CDF of the random effect distribution of interest. Liu and Yu

(2008) reformulates the likelihood conditional on the non-normal random effect(s) to that

conditional on normal random effect(s). Consider the model, for pair i = 1, . . . , n

yij ∼ Bernoulli(Πij), j = 1, 2,

with random probabilities

Πij ∼ F−1
j (Φ(ui)), ui ∼ N(0, 1), (5)

where F1 and F2 denote the CDF of the beta distribution with parameters α1, β1 and α2, β2

respectively, with

αj =
1− ρ

ρ

eα+βMxij

1 + eα+βMxij
, j = 1, 2,

and

βj =
1− ρ

ρ

1

1 + eα+βMxij
, j = 1, 2.

Note that, by construction, the marginal logit model holds

E(E(yij|Πij)) = E(Πij) =
αj

αj + βj

=
eα+βMxij

1 + eα+βMxij
.
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Straightforward calculations show that the intra-pair correlation, induced by the correlated

random probabilities Πij ∼ F−1
j (Φ(ui)), is represented by

ρ = corr(yi1, yi2|βM = 0) =
1

1 + α1 + β1

=
1

1 + α2 + β2

.

Shared beta model (SBM)

Molenberghs et al. (2010) proposed a modeling framework for hierarchical data with both

normal and conjugate random effects, following on Molenberghs et al. (2007), who had

formulated the version for Poisson data. In this framework, the hierarchy in the data is

captured by normal random effects in the linear predictor, with the conjugate random

effect (e.g., beta for binary data, gamma for count and time-to-event data) for additional

flexibility to model overdispersion. In their and subsequent applications, the conjugate

random effects are observation-specific and hence independent between observations within

the same cluster. Their formal framework, however, does not imply that this is the only

choice. Therefore, we consider a version without normal random effects but with a pair-

specific conjugate (beta) random effect. Precisely, yij is Bernoulli with random probability

Πij = θiκj, where

κj =
eξ0+ξ1xj

1 + eξ0+ξ1xj
, θi ∼ Beta(α, β),

where x1 = 0 and x2 = 1. The pair-specific table with values
∏

j Π
yij
ij (1 − Πij)

(1−yij) takes

the form presented in Table 3.

Table 3: The probabilities of a pair-specific table of the SBM model

yi2
yi1 1 0
1 θ2i κ1κ2 θiκ1 (1− θiκ2)
0 θiκ2 (1− θiκ1) (1− θiκ1) (1− θiκ2)

It is clear that the outcomes, given the Beta random effect, are independent. However,

this is not true for the marginal probabilities, as it should. Setting α = 1/β for identifiability
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reasons, we have that:

E(θi) =
1

β2 + 1
,

E(θ2i ) =
β + 1

(β2 + 1)(β2 + β + 1)
.

Integrating over the Beta random effect, the marginal pairwise probabilities λi,jk are as in

Table 4. Probability Table 4 is valid when β ≥ −1, and independence corresponds to β = 0,

Table 4: The marginal probabilities λi,jk of the SBM model

yi2
yi1 1 0

1 β+1
(β2+1)(β2+β+1)

κ1κ2
1

β2+1
κ1 − β+1

(β2+1)(β2+β+1)
κ1κ2

0 1
β2+1

κ2 − β+1
(β2+1)(β2+β+1)

κ1κ2 1− 1
β2+1

(κ1 + κ2) +
β+1

(β2+1)(β2+β+1)
κ1κ2

which eases interpretation. Should β have been written as a function of α, rather than the

other way around, independence would correspond to α = +∞, which is cumbersome.

Importantly, fitting the marginal model directly allows for negative association. The log-

likelihood can be expressed as:

ℓ =
N∑

i=1

∑

j,k=0,1

ni,jk log(λi,jk).

If no other covariates than an indicator for case versus control are used, the log-likelihood

simplifies to ℓ =
∑

j,k=0,1 njk log(λjk). Fitting this model is straightforward.

Using the expressions in the margins of Table 4, it can be shown that

log

{
P (yij = 1|xij)

P (yij = 0|xij)

}
= logit

(
1

β2 + 1
expit(ξ0 + ξ1xij)

)
, (6)

showing that the rhs of this equation is not of the linear form α + βMxij as in (1), unless

there is no intra-pair association (β = 0, implying ξ1 = βM). Also, the marginal OR for
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the effect of x on y, can be derived as

ORM =
κ2(β

2 + 1− κ1)

κ1(β2 + 1− κ2)
, (7)

which reduces to exp(ξ1) in case β = 0. The equivalent marginal slope can be obtained by

log(ORM). The intra-pair correlation equals

ρ =
β3

(β2 + β + 1)

√
κ1κ2

(β2 + 1− κ1)(β2 + 1− κ2)
.

3 Prime minister’s performance data

3.1 Original MP data

Estimates according to the different methods are shown in Table 5. Ignoring the correlated

nature of matched pairs, LR provides the correct point estimates for marginal slope (-0.163)

and corresponding OR (0.849 = (880× 656)/(944×720)). But the estimated standard error

and the OR confidence intervals are too large, as LR ignores the paired nature of the data.

These standard errors are corrected (from 0.072 to 0.039) in almost exactly the same way

by all marginal methods, and marginalized pair-specific methods. Only the approximate

marginal estimates for NRI are somewhat different (e.g., OR 0.874). This approximation

works well for σu small, but the estimate σ̂u = 5.159 is quite large (as compared to the

mean 1.242 of the random intercept). Note that the use of a probit link would imply the

estimation of the marginal effect from the NRI model, as the marginal effect equals the

pair-specific effect multiplied with 1/
√

1 + σ2
u (Zeger et al., 1988).

One can observe that the loss of efficiency of GEE, as compared to the other full

likelihood approaches, is seemingly negligible. Note that all estimates and standard errors of

GEE-ind and GEE-exch are identical. See Supplementary Material A for explicit analytical

calculations for these identical solutions, which also imply that the AIC value of logistic
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regression is exactly the same as the QIC of GEE-ind and GEE-exch.

The estimates for the intra-pair correlation and corresponding standard errors (if avail-

able) are close for all methods (about 0.70 and 0.02 respectively). Not unexpectedly, the

intra-pair correlation is quite high in this setting. The approximate estimates for NRI are

quite poor (0.89 and 0.013 respectively). Other and improved approximations for estimat-

ing the intra-pair correlation from the NRI model exist, but were not considered further in

this review (Molenberghs et al., 2012).

As expected, the pair-specific slope of the LRF is incorrectly estimated as -1.113, twice

the estimate -0.556 of all other pair-specific slope estimates. The estimated standard error

and OR confidence interval are identical for all pair-specific models (s.e. 0.135 and OR

CI (0.440;0.748)); see also Neuhaus et al. (1994) and Rice (2008). The exact CI for the

CMH/CLR is a little bit wider.

The estimated variance components for the normal NRI and bridge BRI are very similar.

Those of the MMM and CBM models are (not surprisingly) substantially different. The

AIC value for all full likelihood models equals 3508.3. That of the CBM model is a slightly

larger.

Results of the SBM model are not shown, because of the extreme high instability. No

starting values and other options could be identified for obtaining the estimates.
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Table 5: Original MP data: slope estimate (se), odds ratio and confidence interval, intra-pair correlation estimate, variance
component estimate (if present), AIC or QIC, for the different methods. Type of method: M (marginal) and P (pair-specific),
CI type: E (Exact), P (profile likelihood), and W (Wald)

method type slope (se) OR CI (type) cor(se) var comp AIC/QIC∗

LR M -0.163 (0.072) 0.849 (0.738,0.977) (P) - - 4372.0
LRF P -1.113 (0.191) 0.329 (0.225,0.477) (P) - - 3821.2
CMH/CLR P -0.556 (0.135) 0.573 (0.440,0.747) (W) - - 311.6
CMH/CLR P -0.556 (0.135) 0.573 (0.435,0.752) (E) - - 311.6
NRI P -0.556 (0.135) 0.573 (0.421,0.725) (W) σ̂u = 5.159(0.353) 3508.3

M(†) -0.174 (0.042) 0.840 (0.772,0.909) (W) 0.890 (0.013) 3508.3
GEE-ind M -0.163 (0.039) 0.849 (0.787,0.917) (W) - - 4372.0∗

GEE-exch M -0.163 (0.039) 0.849 (0.787,0.917) (W) 0.702 (-) - 4372.0∗

BLR M -0.163 (0.039) 0.849 (0.784,0.914) (W) 0.702 (0.018) - 3508.3
BRI P -0.556 (0.135) 0.573 (0.421,0.725) (W) σ̂b = 5.907(0.396) 3508.3

M -0.163 (0.039) 0.849 (0.784,0.914) (W) 0.707 (0.018) 3508.3
MMM P -0.507 (0.123) 0.602 (0.457,0.748) (W) σ̂m = 2.938(0.197) 3508.3

M -0.163 (0.039) 0.849 (0.784,0.914) (W) - 3508.3
CBM M -0.164 (0.039) 0.850 (0.783,0.914) (W) 0.706 (0.019) σ̂Πi1

= 0.413(0.005) 3508.3
σ̂Πi2

= 0.418(0.005)

(†): ρ ≈ σ2
RI/(σ

2
RI + π2/3); βM ≈ βP

√

1+( 16
√

3

15π
σu)2

(working well only for small σu)
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3.2 Reversed MP data

Consider the lower panel of Table 1, in which the outcomes of the first survey in the original

MP data are reversed, implying a negative association between the two responses of the

same participant. As compared to those of the original MP, the results of the analyses

of the reversed MP data show some remarkable similarities and differences. First, some

models are constrained to accommodate only a positive intra-pair correlation: NRI, BRI,

MMM, CBM. These models can be extended with a particular pair-specific slope as follows:

NRI2

Referring to model (2) with the αi = α + ui, ui ∼ N(0, σ2
u), the random intercept is

accompanied by a particular shared random slope

βi = βP + vi, vi = −2ui, (8)

implying that for xij = 0 (first occasion) the model remains unchanged, whereas for xij = 1

(second occasion), we get α − ui + βP (as rhs in model (2)). So the same pair-specific

intercept works with opposite sign on both occasions.

BRI2

The same modification, but with ui having the bridge distribution.

MMM2

Similarly to NRI2, the rhs of model (3) is changed to δij + ui + vixij , vi = −2ui.

CBM2

Model (5) is modified into Πij ∼ F−1
j (Φ(ui + vixij)), vi = −2ui.

21



Of course, the reversal changes the value and the interpretation of the parameter βP ; the

derived marginal slope parameter βM however remains unchanged. Results are shown in

Table 6. Note that the unmodified pair-specific models NRI, BRI, MMM, and CBM all

reduce to LR (since all variance components are estimated as 0.000). Switching to the

modified models NRI2, BRI2, MMM2, and CBM2, we observe that all marginal (and

marginalized pair-specific) models lead to essentially the same point estimates for the slope

(0.565) and the OR (1.759), except for the approximate value of the NRI2 model. In this

reversed case, the standard errors are corrected in the opposite direction (0.093, larger than

0.072 for LR), and the CI’s for the OR are wider. Note that the estimates for the intra-

pair correlation (with opposite sign) and their standard errors, the variance component

estimates and the AIC values for all these models NRI2, BRI2, MMM2, and CBM2 are

exactly the same as for the models NRI, BRI, MMM, and CBM applied the original MP

data.

For these reversed MP data, the SMB model does not need any modification to cover a

negative intra-pair correlation and now fits easily with (almost exactly) the same estimates

as the NRI2, BRI2, MMM2, and CBM2 models. Note the negative variance for the θ

random scale factor. The GEE-ind and GEE-exch both provide the right estimates, and

without any modification GEE-exch estimates the correlation as negative (-0.702).

Finally, it can be observed that the AIC and QIC values of all (modified) models for

the reversed MP data are identical to the corresponding models for the original MP data,

except for conditional logistic regression (CLR). Moreover, the estimates for the variance

components of the NRI2, BRI2, MMM2, and CBM2 models applied to the reversed MP

data are the same as those of the corresponding NRI, BRI, MMM, and CBM models applied

to the original MP data.
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Table 6: Reversed MP data: estimates of effect (slope with se) and of odds ratio (with confidence interval) according to the
different methods and models.
method type slope (se) OR CI (type) cor(se) var comp AIC/QIC∗

LR M 0.565 (0.072) 1.759 (1.529,2.024) (P) - - 4372.0
LRF P 0.663 (0.078) 1.940 (1.667,2.260) (P) - - 6909.9

CMH/CLR P 0.331 (0.055) 1.393 (1.251,1.551) (W) - - 1856.0
CMH/CLR P 0.331 (0.055) 1.393 (1.249,1.554) (E) - - 1856.0

NRI P=M(†) 0.565 (0.071) 1.759 (1.512,2.005) (W) 0.000 (-) σ̂u = 0.000(0.043) 4374.0
NRI2 P 1.929 (0.336) 6.879 (2.340,11.418) (W) σ̂u = 5.159(0.353) 3508.3

NRI2 M(†) 0.604 (0.099) 1.829 (1.472,2.185) (W) −0.890 (0.013) 3508.3

GEE-ind M 0.565 (0.093) 1.759 (1.465,2.112) (W) - - 4372.0∗

GEE-exch M 0.565 (0.093) 1.759 (1.465,2.112) (W) -0.702 (-) - 4372.0∗

BLR M 0.565 (0.093) 1.759 (1.437,2.081) (W) -0.702 (0.018) - 3508.3

BRI P=M 0.565 (0.071) 1.759 (1.512,2.005) (W) 0.000 (-) σ̂u = 0.000(0.054) 4374.0
BRI2 P 1.924 (0.334) 6.845 (2.362,11.328) (W) σ̂b = 5.907(0.396) 3508.3
BRI2 M 0.565 (0.093) 1.759 (1.437,2.081) (W) -0.707 (0.018) 3508.3
MMM P=M 0.565 (0.072) 1.759 (1.512,2.005) (W) - σ̂m = 0(0.027) 4374.0
MMM2 P 1.752 (0.306) 5.768 (2.310,9.225) (W) σ̂m = 2.938(0.197) 3508.3
MMM2 M 0.565 (0.093) 1.759 (1.437,2.081) (W) - 3508.3

CBM M 0.565 (0.072) 1.759 (1.512,2.007) (W) 0.000 (-) σ̂Πi1
= 0.000 (-) 4374.0

σ̂Πi2
= 0.000 (-)

CBM2 M 0.565 (0.094) 1.759 (1.434,2.085) (W) -0.707 (0.018) σ̂Πi1
= 0.414(0.006) 3508.3

σ̂Πi2
= 0.418(0.006)

SBM M 0.565 (0.093) 1.759 (1.437,2.081) (W) -0.702 (0.018) σ̂2
θ = −0.242(0.002) 3508.3

(†): ρ ≈ σ2
RI/(σ

2
RI + π2/3); βM ≈ βP

√

1+( 16
√

3

15π
σu)2

(working well only for small σu)
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4 Myocardial infarction data

Here we consider both directions: the design is according to x|y whereas the objective of

inference focuses on y|x. The key point is the symmetry property OR(x|y)=OR(x|y). The

results are shown in Table 7. When using SAS nlmixed, the Wald CI for the slope was

exponentiated to obtain the CI for the OR. The reason is the poor performance of the ap-

proximate delta-method in this particular setting. Ordinary LR, ignoring the (case,control)-

pairing, leads to slope estimate 0.804 and OR estimate 2.234, irrespective of the direction.

By accounting for matching a control to a case (according to age and gender), one expects

to obtain a smaller standard error and more narrow confidence interval. But one expects

in this situation the intra-pair correlation to be much smaller than for the MP data, and

hence the gain in accuracy is expected to be rather limited. Similarly, one expects the

pair-specific slope and OR to be only slightly larger than the marginal versions. And in-

deed, this is confirmed by the CMH/CLR results, with a slope estimate 0.838 and OR

estimate 2.312. Again, identical results are obtained for both directions. All other pair-

specific models (NRI, BRI) confirm these pair-specific results, but only for the direction

x|y. Not surprisingly, as (yi1, yi2) ≡ (0, 1), the pair-specific NRI and BRI results equal their

marginal results and the LR results in the other direction y|x. The variance component

and corresponding correlation estimates all equal 0.

Turning to the marginal estimates, the BRI slope estimate 0.804 shows a standard error

estimate 0.278, only slightly smaller than the estimate 0.284 from LR. So, the matching

results in an almost ignorable increase in efficiency in this case. The error of the approx-

imation of the marginal estimates for the NRI model is relatively small. The GEE-ind

(in both directions) and GEE-exch (in the x|y direction) lead to the same results as the

marginal estimates derived from the BRI model. The correlation estimate 0.04 from GEE-

exch confirms that the correlation within a pair is close to ignorable. For GEE-exch in

the direction y|x, one gets a slope estimate 0 and a correlation estimate -0.999 (See Sup-
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plementary Material A). The x|y version of the BLR Bahadur model are identical to the

GEE results. The y|x version however provides different estimates for slope and OR, but

the intra-pair correlation is again −1 (see Supplementary Material C). That slope/OR es-

timates are different is related to the restrictions of the parameter space in the Bahadur

model for negative correlations (see Aerts et al. (2002)).

The results for MMM are close to those of BRI, for both directions x|y and y|x. For

the CBM and SBM marginal models, the results for x|y are similar to the other marginal

results, with a correlation estimate of 0.04. In the other direction y|x, the CBM method

estimates the correlation as 0, resulting in the same slope and OR estimates as LR. In this

case, SBM is identical to GEE-exch with 0 slope and correlation −1.

As one would expect, given the case-control design, all marginal models for y|x estimate

the marginal probability that individual j of pair i is a case as 0.5. That probability

P (yij = 1|xij = 1)P (xij = 1) + P (yij = 1|xij = 0)P (xij = 0),

is estimated as

eα̂M+β̂M

1 + eα̂M+β̂M

× 71

288
+

eα̂M

1 + eα̂M
× 217

288
= 0.5. (9)

for different pairs of estimates (α̂M , β̂M) depending on the method. Figure 1 in Supple-

mentary Material D shows those pairs for which equation (9) holds.
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Table 7: MI data: estimates of effect (slope with se) and of odds ratio (with confidence interval; profile likelihood PI, exact
E, Wald W, or exponentiated Wald eW ) according to the different methods and models.

method order type slope (se) OR CI (type) cor(se) var comp (A/Q∗)IC (x|y, y|x)
LR x|y & y|x M 0.804 (0.284) 2.234 (1.292,3.938) (P) - - 394.9, 317.3
LRF x|y & y|x P 1.677 (0.423) 5.348 (2.380,12.579) (P) - - 419.8, 672.1
CMH/CLR x|y & y|x P 0.838 (0.299) 2.312 (1.286,4.157) (W) - - 66.9, 193.1
CMH/CLR x|y & y|x P 0.838 (0.299) 2.313 (1.255,4.453) (E) - -
NRI x|y P 0.838 (0.299) 2.312 (1.280,4.178) (eW ) σ̂u = 0.490(0.557) 319.1

x|y M(†) 0.784 (0.273) 2.190 (1.276,3.760) (eW ) 0.068 (0.144) 319.1
y|x P=M(†) 0.804 (0.284) 2.234 (1.276,3.913) (eW ) 0.000 (-) σ̂u = 0.000(0.121) 396.9

GEE-ind x|y & y|x M 0.804 (0.278) 2.234 (1.296,3.852) (W) - - 317.3∗, 392.9∗

GEE-exch x|y M 0.804 (0.278) 2.234 (1.296,3.852) (W) 0.04 - 317.3∗

GEE-exch y|x M 0.000 (0.000) 1.000 - -0.999 - 399.3∗

BLR x|y M 0.804 (0.278) 2.234 (1.290,3.870) (eW ) 0.040 (0.085) - 319.1
BLR y|x M 0.528 (0.321) 1.695 (0.899,3.197) (eW ) -1 (0) - 202.9
BRI x|y P 0.838 (0.299) 2.312 (1.280,4.178) (eW ) σ̂b = 0.536(0.612) 319.1
BRI x|y M 0.804 (0.278) 2.234 (1.290,3.870) (eW ) 0.041 (0.088) 319.1
BRI y|x P=M 0.804 (0.284) 2.234 (1.276,3.913) (eW ) 0.000 (-) σ̂b = 0.000(0.148) 396.9
MMM x|y P 0.836 (0.297) 2.307 (1.282,4.153) (eW ) σ̂u = 0.286(0.325) 319.1
MMM x|y M 0.804 (0.278) 2.234 (1.290,3.870) (eW ) - 319.1
MMM y|x P=M 0.804 (0.284) 2.234 (1.276,3.913) (eW ) - 396.9
CBM x|y M 0.804 (0.278) 2.234 (1.290,3.871) (eW ) 0.040 (0.086) σ̂Πi1

= 0.076(0.082) 319.1
σ̂Πi2

= 0.093(0.100)
CBM y|x M 0.804 (0.283) 2.234 (1.276,3.912) (eW ) 0.000 (-) σ̂Πi1

= 0.000(−) 396.9
σ̂Πi2

= 0.000(−)
SBM x|y M 0.804 (0.278) 2.234 (1.290,3.870) (eW ) 0.040 (0.085) 319.1
SBM y|x M 0 (-) 1 (-,-) (W) -1 (0.000) 205.6

(†): ρ ≈ σ2
RI

/(σ2
RI

+ π2/3); βM ≈ βP
√

1+( 16
√

3

15π
σu)2

(working well only for small σu)
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5 Further discussion

Several methods and models for analysing binary data from matched pairs have been re-

viewed, some of which are standard approaches for matched 2×2 tables that have been

in use for a long time, while others have been developed more recently for more general

hierarchical data structures. The application of the latter approaches to this basic setting

allows us to i) illustrate that they all can be applied to such basic data, ii) compare the

resulting estimates from different types of models (pair specific, marginal, marginalisable),

iii) discuss methodological connections and insights between all approaches. In particular,

there are settings where always a boundary solution is obtained. Theoretical arguments

are given to explain this.

Note that almost all methods produce results that are identical as soon as associa-

tion is accommodated in some form. This is reassuring in the sense that it offers a good

amount of robustness of model choice in the matched pair setting considered here. The

user may then select the simplest and/or most readily available tool, such as, for example

GEE, with implementations in R (geepack) and SAS (the GENMOD and GEE procedures)

among others. Of course, when data would be incomplete, then the likelihood-based meth-

ods have the advantage of being valid under missingness at random, provided regularity

conditions hold, whereas the semi-parametric methods are only valid under missingness

completely at random. Covariates can easily be included in the regression models, whether

conditional, marginal, or random-effects based, while an ad-hoc method such as Cochran-

Mantel-Haenszel does not allow for general covariate settings. Of note, the equality of

results across classes of methods do not automatically carry over to these more general

settings.

An obvious question is to what extent our findings extend to more general settings, such

as multinomial and ordinal data, inclusion of explanatory variables, longitudinal data with

more than 2 occasions, case-control studies with multiple controls per case, etc. Partial
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results and insights are available, scattered over literature, but an equivalent exhaustive

study including all methods and models discussed here, is considered as an interesting but

challenging avenue of further research.

In this paper, we have considered a number of likelihood-based and semi-parametric

methods, but not Bayesian alternatives, even though categorical data models and contin-

gency tables have received attention in the literature (Albert and Chib, 1993; Polson et al.,

2013; Ishwaran and James, 2002). Arguably, the Bayesian framework deserves a separate,

proper treatment, where the choice of priors (non-informative, informative, and regularizing

to accommodate constraints) is examined. Informative priors might be based, for example,

on historic studies, whether also of a matched pairs nature or not. Also, MCMC based

estimation methods will not automatically lead to identical estimates whereas frequentist

methods discussed here do so, always or for certain designs and/or data configurations.

Supplementary Materials

Supplementary materials include: A) a derivation of the point and variance estimators for

GEE, prospective pairs, B) a derivation of the point and variance estimators for GEE,

retrospective pairs, C) a derivation of the point estimators for BLR, retrospective pairs,

D) a figure of α̂M and β̂M for which equation (9) holds, E) SAS code for the reversed MP

data.
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Supplementary Materials

A Point and variance estimators for GEE, prospective

pairs

In this supplementary material, we are concerned with the case where all pairs have xi1 = 0

and xi2 = 1. We will show that the GEE estimator is independent of the working correlation

chosen and that the same is true for the robust variance estimator. The naive variance

estimator of the intercept is still independent of the working correlation structure, but not

that of the key regression parameter βM .

We use the following notation:

P (Yij = 1|xij) =
eα+βMxij

1 + eα+βMxij

where xi1 = 0 and xi2 = 1. Let the number of pairs with Yi1 = r and Yi2 = s be mrs,

(r, s = 0, 1), with
1∑

r=0

1∑

s=0

mrs = n.

The two marginal probabilities are:

µi1 = µ1 =
eα

1 + eα
, (10)

µi2 = µ2 =
eα+βM

1 + eα+βM
. (11)

The corresponding variances are vj = µj(1− µj), (j = 1, 2).

The generalized estimating equations take the form:

U =
n∑

i=1

D′
iV

−1
i (Y i − µi), (12)
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with Y i = (Yi1, Yi2)
′ and, in this case, µi = µ = (µ1, µ2)

′. Further,

Di = D =
∂µi

∂β
=




v1 0

v2 v2


 , (13)

Vi = V =




√
v1 0

0
√
v2


 ·




1 ρ

ρ 1


 ·




√
v1 0

0
√
v2




=




v1 ρ
√
v1v2

ρ
√
v1v2 v2


 , (14)

with ρ the assumed working correlation.

Given the constant nature of matrices (13)–(14), (12) simplifies to:

U = D′V −1


m11




1− µ1

1− µ2


+m10




1− µ1

−µ2


+m01




−µ1

1− µ2


+m00




−µ1

−µ2







= D′V −1




m11 +m10 − nµ1

m11 +m01 − nµ2


 ,

from which it follows that

µ̂1 =
m11 +m10

n
, µ̂2 =

m11 +m01

n
,

and, using (10) and (11):

α̂ = log

(
m11 +m10

m00 +m01

)
, (15)

β̂M = log

(
m11 +m01

m00 +m10

)
− log

(
m11 +m10

m00 +m01

)
. (16)

Clearly, the solution to the estimating equations does not depend on the matrices D and

V . In particular, the estimators do not depend on the working correlation.
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Turning to variance estimation, define:

I0 =
n∑

i=1

D′
iV

−1
i Di = nD′V −1D, (17)

I1 =
n∑

i=1

D′
iV

−1
i var(Y i)V

−1
i Di = nD′V −1WV −1D, (18)

where

W =
1

n

n∑

i=1

var(Y i).

The naive (a.k.a. model based) variance estimator is Vn,β(ρ) = I−1
0 and the robust (a.k.a.

empirically corrected) estimator is Vr,β(ρ) = I−1
0 I1I

−1
0 . It follows from (17), (13), and (14),

that

I0 =
n

1− ρ2




v1 − 2ρ
√
v1v2 + v2 −ρ

√
v1v2 + v2

−ρ
√
v1v2 + v2 v2


 ,

Vn,β(ρ) =
1

nv1v2




v2 ρ
√
v1v2 − v2

ρ
√
v1v2 − v2 v1 − 2ρ

√
v1v2 + v2


 . (19)

Clearly, the naive variance of α̂ does not depend on the working correlation, but the variance

of β̂M does and obviously also the covariance (and correlation) between them.

Before computing the robust variance, it is helpful to first consider the moment-based

estimator of the correlation, which is also what would be used should an exchangeable

working structure be adopted (as well as other structures with non-zero correlation, given

that they coincide for paired data, such as auto-regressive, and unstructured).

ρe =
1

n

n∑

i=1

(yi1 − µ1)(yi2 − µ2)√
v1v2

=
1

n
√
v1v2

[m11(1− µ1)(1− µ2)−m10(1− µ1)µ2 −m01µ1(1− µ2) +m00µ1µ2] .(20)
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To calculate W , consider

n∑

i=1

var(Y i) = m11




1− µ1

1− µ2


 (1− µ1, 1− µ2) +m10




1− µ1

−µ2


 (1− µ1,−µ2)

+m01




−µ1

1− µ2


 (−µ1, 1− µ2) +m00




−µ1

−µ2


 (−µ1,−µ2) .

Some simple algebra produces:

W =




v1 ρe
√
v1v2

ρe
√
v1v2 v2


 ,

which equals (14) for the specific case when the exchangeable correlation (20) is used.

With exchangeable correlation, W = V , hence I1 = I0 and robust and naive variances

are equal.

Furthermore, it is easy to show that all robust variance estimators are equal, regardless

of the working correlation. It follows from the fact that D and V are constant across

observations and, moreover, that D is a square, invertible matrix:

I−1
0 I1I

−1
0 =

1

n
D−1V (D′)−1D′V −1WV −1DD−1V (D′)−1 =

[
nD′W−1D

]−1
.

So, in conclusion, the point estimators are independent of the working correlation chosen,

with the same holding for the robust variance estimator. The naive variance estimator

for α̂ is also independent of the correlation, but this is not true for the naive variance of

β̂M – the key parameter – which is correct only when the moment-based estimator for the

correlation is used.
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B Point and variance estimators for GEE, retrospec-

tive pairs

Consider now the ‘reverse’ situation of the previous supplementary material, where for

every pair yi1 = 0 and yi2 = 1, and where hence the data are characterized by nrs, the pairs

with xi1 = r and xi2 = s, for r, s = 0, 1.

Considering GEE in this case, leads to the system of equations:

(1− ρ)n11(1− 2µ2)− [n10µ2 − n01(1− µ2)] =

√
v2
v1
ρ[n10(1− µ1)− n01µ1], (21)

(1− ρ)n00(1− 2µ1)− [n01µ1 − n10(1− µ1)] =

√
v1
v2
ρ[n01(1− µ2)− n10µ2], (22)

where µ1 = P (Yij = 1|xij = 0), µ2 = P (Yij = 1|xij = 1), and vr = µr(1− µr), (r = 1, 2).

Starting from ρ = 0, (21)–(22) immediately leads to:

µ̂1 =
n00 + n10

2n00 + n10 + n01

,

µ̂2 =
n11 + n01

2n11 + n01 + n10

,

which, unsurprisingly, coincides with the logistic regression solution.

For general ρ, it follows that a solution is found by setting ρ = −1, µ1 = µ2 = 1/2, a

degenerate solution. This is not unexpected, because in every pair one outcome is 0 and the

other is 1, so maximal heterogeneity. This implies that, while GEE fitting in the setting of

Supplementary Material A is straightforward and an interior solution is guaranteed unless

one of the counts is equal to zero, in the current, matched-pairs setting, GEE with arbitrary

(CS) correlation is infeasible.

Incidentally, the same can be same when employing the bivariate normal likelihood (even

though the outcomes are binary). CS in this case takes the form V = σ2I + dJ , with I

and J the two-dimensional identity and one matrix, respectively. Because the determinant
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|V | = σ2(σ2 + 2d) and the inverse takes the form

V −1 =
1

σ2

(
I − d

σ2 + 2d
J

)
,

the kernel of the log-likelihood takes the form:

ℓ = −n

2
log[σ2(σ2 + 2d)]

−
1∑

r=0

1∑

s=0

nrs

2
(−µr+1; 1− µs+1)

1

σ2(σ2 + 2d)




d+ σ2 −d

−d d+ σ2







−µr+1

1− µs+1


 .

Now choosing µ1 = µ2 = 1/2, σ2 arbitrary, and d = −σ2

2
+ ε, leads to

ℓ = −n

2
log(2σ2)− n

2
log ε− n

4σ2
,

from which it follows that

ℓ
ε→+∞−→ +∞,

which is coherent with the GEE result. This explains why both GEE and mixed-model

software on data of this type either fails to converge or produces results very close to the

above.
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C Point estimators for BLR, retrospective pairs

Consider the same setting as in Supplementary Material B, with now the Bahadur model

(BLR) applied. Adopt the same notation. The log-likelihood takes the form:

ℓ = n11 [log(1− µ2) + log µ2 + log(1− ρ)]

+n10

[
log(1− µ2) + log µ1 + log

(
1− ρ

√
1− µ1

µ1

√
µ2

1− µ2

)]

+n01

[
log(1− µ1) + log µ2 + log

(
1− ρ

√
µ1

1− µ1

√
1− µ2

µ2

)]

+n00 [log(1− µ1) + log µ1 + log(1− ρ)] . (23)

To ensure that the correlation satisfies its range restriction, write

ρ =
ez − 1

ez + 1
,

which of course implies that

z = log

(
1 + ρ

1− ρ

)
.

Further, adopt the notation

θ2k =
µk

1− µk

,

for k = 1, 2, implying

µk =
θ2k

1 + θ2k
, 1− µk =

1

1 + θ2k
.
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Using the new notation, log-likelihood (23) transforms to

ℓ = n11

[
−2 log(1 + θ22) + log θ22 + log 2− log(ez + 1)

]

+n10

[
− log(1 + θ22)− log(1 + θ21) + log θ21 + log

(
1− ez − 1

ez + 1
· θ2
θ1

)]

+n01

[
− log(1 + θ21)− log(1 + θ22) + log θ22 + log

(
1− ez − 1

ez + 1
· θ1
θ2

)]

+n00

[
−2 log(1 + θ21) + log θ21 + log 2− log(ez + 1)

]
. (24)

Calculating the score equation for z produces:

∂ℓ

∂z
= −(n11 + n00)

ez

ez + 1
− n10

2ez

(ez+1)2
· θ2
θ1

1− ez−1
ez+1

· θ2
θ1

− n01

2ez

(ez+1)2
· θ1
θ2

1− ez−1
ez+1

· θ1
θ2

.

If z → −∞, then ez → 0, and ∂ℓ
∂z

→ 0. The three functions in z, present in the expression

for this derivative are monotonically increasing in z, for all values of θ1 and θ2. Given the

minus signs, the denominators decrease, which implies that the derivative monotonically

decreases with z, hence z = −∞, corresponding to ρ = −1, is the only solution.

Calculating the other two derivatives, and plugging in the solution for the correlation

parameter, yields:

∂ℓ

∂θ1
= n00

( −4θ1
1 + θ21

+
2θ1
θ21

)
+ n10

(
2θ1
θ21

− 2θ1
1 + θ21

−
θ2
θ2
1

1 + θ2
θ1

)

+n01

(
− 2θ1
1 + θ21

+
1
θ2

1 + θ1
θ2

)
, (25)

∂ℓ

∂θ2
= n11

( −4θ2
1 + θ22

+
2θ2
θ22

)
+ n01

(
2θ2
θ22

− 2θ2
1 + θ22

−
θ1
θ2
2

1 + θ1
θ2

)

+n10

(
− 2θ2
1 + θ22

+
1
θ1

1 + θ2
θ1

)
. (26)

Consider the potential solution µ1 = µ2 = 0.5, corresponding to θ1 = θ2 = 1. This is

a solution only if n01 = n10, but not otherwise, unlike in the GEE case (Supplementary
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Material B). Hence, the probabilities are to be found by solving (25)–(26). Given that most

but not all terms drop for θ1 = θ2 = 1, the solution will typically not deviate a lot from it.

Indeed, for these values, (25) equals 0.5(n10 − n01, with (26) its opposite.
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D α̂M and β̂M for which equation (9) holds

Figure 1: Formula (9): slope βM as a function of the intercept αM , with vertical asymptotes
at logit((0.5− 71/288)/(217/288)) = −0.679 and logit(0.5/(217/288)) = 0.679.
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E SAS code for reversed MP data

The data analyses for this paper was generated using SAS software, Version 9.4 of the

SAS System for Windows. Copyright ©2020 SAS Institute Inc. SAS and all other SAS

Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc., Cary, NC, USA.

data spm;

infile "spmrev.dat";

input survey approval pair;

run;

/* LR: logistic regression ignoring the matching*/

proc logistic data=spm descending;

model approval=survey/link=logit clodds=both expb;

run;

/* LRF: logistic regression with fixed effects for pairs*/

proc logistic data=spm descending;

class pair;

model approval=survey pair/link=logit clodds=both expb;

run;

/* CMH/CLR: approach*/

proc freq data=spm;

tables pair*survey*approval / cmh alpha=0.05;

exact COMOR;

run;

proc logistic data=spm;

strata pair;

model approval(event=’1’)=survey;

exact survey / estimate=both;
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run;

/* NRI: random intercept logistic regression with normal distribution*/

proc nlmixed data=spm qpoints=100;

parms alpha=0.36 beta=-0.16 sig=0.5;

pi=exp(alpha+u+beta*survey)/(1+exp(alpha+u+beta*survey));

pi0=exp(alpha)/(1+exp(alpha));

pi1=exp(alpha+beta)/(1+exp(alpha+beta));

pii0=(1+exp(alpha))**(-2);

pii1=(1+exp(alpha+beta))**(-2);

model approval~binary(pi);

random u~normal(0,sig*sig) subject=pair;

estimate ’OR’ exp(beta);

estimate ’rho’ sig*sig/(sig*sig+constant("pi")**2/3);

estimate ’rho0’ sig*sig*(pi0**2)*pii0/(sig*sig*(pi0**2)*pii0+pi0*(1-pi0));

estimate ’rho1’ sig*sig*(pi1**2)*pii1/(sig*sig*(pi1**2)*pii1+pi1*(1-pi1));

estimate ’marginal slope’ beta/sqrt(1+((16*sqrt(3)/(15*constant("pi")))**2)*(sig**2));

estimate ’marginal OR’ exp(beta/sqrt(1+((16*sqrt(3)/(15*constant("pi")))**2)*(sig**2)));

run;

/* NRI2: random intercept and shared random slope logistic regression with normal distribution*/

proc nlmixed data=spm qpoints=100;

pi=exp(alpha+u+(beta-2*u)*survey)/(1+exp(alpha+u+(beta-2*u)*survey));

pi0=exp(alpha)/(1+exp(alpha));

pi1=exp(alpha+beta)/(1+exp(alpha+beta));

pii0=(1+exp(alpha))**(-2);

pii1=(1+exp(alpha+beta))**(-2);

model approval~binary(pi);

random u~normal(0,sig*sig) subject=pair;

estimate ’OR’ exp(beta); /*slightly different CI than exponentiating the interval for beta*/

estimate ’rho’ sig*sig/(sig*sig+constant("pi")**2/3);

estimate ’rho0’ sig*sig*(pi0**2)*pii0/(sig*sig*(pi0**2)*pii0+pi0*(1-pi0));
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estimate ’rho1’ sig*sig*(pi1**2)*pii1/(sig*sig*(pi1**2)*pii1+pi1*(1-pi1));

estimate ’marginal slope’ beta/sqrt(1+((16*sqrt(3)/(15*constant("pi")))**2)*(sig**2));

estimate ’marginal OR’ exp(beta/sqrt(1+((16*sqrt(3)/(15*constant("pi")))**2)*(sig**2)));

run;

/* GEE-ind: generalized estimating equations for the repeated measures*/

proc genmod data=spm descending;

class pair;

model approval = survey / dist=bin link=logit;

repeated subject = pair/type=ind covb ecovb;

estimate ’beta’ survey 1 -1 / exp;

run;

/* GEE-exch: generalized estimating equations for the repeated measures*/

proc genmod data=spm descending;

class pair;

model approval = survey / dist=bin link=logit;

repeated subject = pair/type=exch covb ecovb;

estimate ’beta’ survey 1 -1 / exp;

run;

data spmw;

infile "spmwrev.dat";

input app1 app2;

run;

/* BLR: bivariate Bahadur model with correlation*/

proc nlmixed data=spmw qpoints=200;

parms alpha=0.36 beta=-0.16 rho=0.01;

p1s = 1/(1+exp(-alpha));

ps1 = 1/(1+exp(-alpha-beta));

p11 = p1s*ps1+rho*sqrt(p1s*(1-p1s)*ps1*(1-ps1));
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p10 = p1s - p11;

p01 = ps1 - p11;

p00 = 1 - p1s - ps1 + p11;

ll = app1*app2*log(p11) + app1*(1-app2)*log(p10) + (1-app1)*app2*log(p01)

+ (1-app1)*(1-app2)*log(p00);

model ll ~ general(ll);

estimate ’OR’ exp(beta);

run;

/* BRI: random intercept logistic regression with bridge distribution */

proc nlmixed data=spm qpoints=100;

parms alpha=0.36 beta=-0.16 s1=0.5;

pi=constant("pi");

uni = probnorm(b/s1);

phi = 1.0/sqrt(1 + 3/pi/pi*s1*s1);

Bl = 1/phi*log(sin(pi*uni*phi)/sin(phi*pi*(1-uni)));

tmp = alpha+beta*survey;

expeta = exp(Bl + tmp);

p = expeta/(1 + expeta);

model approval~binary(p);

random b~normal(0,s1*s1) subject=pair;

estimate ’OR’ exp(beta);

estimate ’proportionality constant’ phi;

estimate ’intra-pair correlation’ 1-phi;

estimate ’marginal beta’ beta*phi;

estimate ’marginal OR’ exp(phi*beta);

estimate ’sqrt variance component’ pi*SQRT((phi**(-2)-1)/3);

run;

/* BRI2: random intercept and shared random slope logistic regression with bridge distribution */

proc nlmixed data=spm qpoints=100;

parms alpha=0.36 beta=-0.16 s1=0.5;
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pi=constant("pi");

uni = probnorm(b/s1);

phi = 1.0/sqrt(1 + 3/pi/pi*s1*s1);

Bl = 1/phi*log(sin(pi*uni*phi)/sin(phi*pi*(1-uni)));

tmp = alpha+(beta-2*Bl)*survey;

expeta = exp(Bl + tmp);

p = expeta/(1 + expeta);

model approval~binary(p);

random b~normal(0,s1*s1) subject=pair;

estimate ’OR’ exp(beta);

estimate ’proportionality constant’ phi;

estimate ’intra-pair correlation’ 1-phi;

estimate ’marginal beta’ beta*phi;

estimate ’marginal OR’ exp(phi*beta);

estimate ’sqrt variance component’ pi*SQRT((phi**(-2)-1)/3);

run;

/* MMM: Logistic-probit-normal */

PROC NLMIXED data=spm qpoints=200; /* tech=quanew method=hardy;*/

parms alpha=0.36 beta=-0.163 tau=3;

eta_m=alpha+beta*survey;

pi_m = 1/(1+exp(-eta_m));

delta = sqrt(1+(tau*tau)) * probit(pi_m);

eta_c = delta + b;

pi_c = probnorm(eta_c);

MODEL approval ~ binary(pi_c);

RANDOM b ~ NORMAL(0,tau*tau) SUBJECT=pair;

estimate ’OR’ exp(beta);

estimate ’pair-specific slope’ SQRT(1+tau*tau)*beta;

estimate ’pair-specific OR’ exp(SQRT(1+tau*tau)*beta);

run;
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/* MMM2: modified logistic-probit-normal */

PROC NLMIXED data=spm qpoints=200; /* tech=quanew method=hardy;*/

parms alpha=0.36 beta=-0.163 tau=3;

eta_m=alpha+beta*survey;

pi_m = 1/(1+exp(-eta_m));

delta = sqrt(1+(tau*tau)) * probit(pi_m);

eta_c = delta + b -2*b*survey;

pi_c = probnorm(eta_c);

MODEL approval ~ binary(pi_c);

RANDOM b ~ NORMAL(0,tau*tau) SUBJECT=pair;

estimate ’OR’ exp(beta);

estimate ’pair-specific slope’ SQRT(1+tau*tau)*beta;

estimate ’pair-specific OR’ exp(SQRT(1+tau*tau)*beta);

run;

/* CBM: logistic regression with random pi with beta distribution unchanged

but with rho transformed to assure postivity*/

proc nlmixed data=spm method=GAUSS NOAD fd qpoints=50;

parms alpha=-0.364 beta=0.565 rhoeta=-10;

rho=exp(rhoeta)/(1+exp(rhoeta));

pi = exp(alpha+beta*survey)/(1 + exp(alpha+beta*survey)) ;

alpha_re = pi*(1-rho)/rho;

beta_re = (1- pi)*(1-rho)/rho;

alpha_1 = exp(alpha)/(1 + exp(alpha))*(1-rho)/rho;

beta_1 = 1/(1 + exp(alpha))*(1-rho)/rho;

alpha_2 = exp(alpha+beta)/(1 + exp(alpha+beta))*(1-rho)/rho;

beta_2 = 1/(1 + exp(alpha+beta))*(1-rho)/rho;

prob = CDF(’NORMAL’,b) ;

p = quantile(’BETA’,prob,alpha_re,beta_re);

MODEL approval ~ binary(p);

random b~normal(0,1) subject=pair;
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estimate ’OR’ exp(beta);

estimate ’sqrt variance component beta 1’ SQRT(alpha_1*beta_1/(((alpha_1+beta_1)**2)

*(alpha_1+beta_1+1)));

estimate ’sqrt variance component beta 2’ SQRT(alpha_2*beta_2/(((alpha_2+beta_2)**2)

*(alpha_2+beta_2+1)));

estimate ’rho’ 1/(alpha_1+beta_1+1);

estimate ’rho2’ 1/(alpha_2+beta_2+1);

estimate ’alpha1’ alpha_1;

estimate ’alpha2’ alpha_2;

estimate ’beta1’ beta_1;

estimate ’beta2’ beta_2;

run;

/* CBM2: modified logistic regression with random pi with beta distribution unchanged

but with rho transformed to assure postivity*/

proc nlmixed data=spm method=GAUSS NOAD fd qpoints=50;

parms alpha=-0.364 beta=0.565 rho=0.7;

pi = exp(alpha+beta*survey)/(1 + exp(alpha+beta*survey)) ;

alpha_re = pi*(1-rho)/rho;

beta_re = (1- pi)*(1-rho)/rho;

alpha_1 = exp(alpha)/(1 + exp(alpha))*(1-rho)/rho;

beta_1 = 1/(1 + exp(alpha))*(1-rho)/rho;

alpha_2 = exp(alpha+beta)/(1 + exp(alpha+beta))*(1-rho)/rho;

beta_2 = 1/(1 + exp(alpha+beta))*(1-rho)/rho;

prob = CDF(’NORMAL’,b-2*b*survey) ;

p = quantile(’BETA’,prob,alpha_re,beta_re);

MODEL approval ~ binary(p);

random b~normal(0,1) subject=pair;

estimate ’OR’ exp(beta);

estimate ’sqrt variance component beta 1’ SQRT(alpha_1*beta_1/(((alpha_1+beta_1)**2)

*(alpha_1+beta_1+1)));

estimate ’sqrt variance component beta 2’ SQRT(alpha_2*beta_2/(((alpha_2+beta_2)**2)
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*(alpha_2+beta_2+1)));

estimate ’rho’ 1/(alpha_1+beta_1+1);

estimate ’rho2’ 1/(alpha_2+beta_2+1);

estimate ’alpha1’ alpha_1;

estimate ’alpha2’ alpha_2;

estimate ’beta1’ beta_1;

estimate ’beta2’ beta_2;

run;

data approval;

input appr1 appr2 aantal aantal2;

cards;

1 1 794 86

1 0 150 570

0 1 86 794

0 0 570 150

;

run;

/* SBM model */

proc nlmixed data=approval;

parms xi0=0.1 xi1=-0.1 beta=0.1;

mmb=1/(1+beta**2);

vvb=(1+beta)/(beta**2+beta+1)/(beta**2+1);

k1=exp(xi0+xi1)/(1+exp(xi0+xi1));

k2=exp(xi0)/(1+exp(xi0));

alpha=1/beta;

cell11=vvb*k1*k2;

cell10=mmb*k1-vvb*k1*k2;

cell01=mmb*k2-vvb*k1*k2;

cell00=1-mmb*(k1+k2)+vvb*k1*k2;
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if appr1=1 and appr2=1 then ll=aantal2*log(cell11);

if appr1=1 and appr2=0 then ll=aantal2*log(cell10);

if appr1=0 and appr2=1 then ll=aantal2*log(cell01);

if appr1=0 and appr2=0 then ll=aantal2*log(cell00);

model aantal ~ general(ll);

estimate ’alpha’ 1/beta df=1599;

estimate ’difference in proportions’ cell10-cell01 df=1599;

estimate ’odds ratio’ cell11*cell00/cell10/cell01 df=1599;

estimate ’inverse odds ratio’ cell10*cell01/cell11/cell00 df=1599;

estimate ’k1’ k1 df=1599;

estimate ’k2’ k2 df=1599;

estimate ’cell11’ cell11 df=1599;

estimate ’cell10’ cell10 df=1599;

estimate ’cell01’ cell01 df=1599;

estimate ’cell00’ cell00 df=1599;

estimate ’OR2’ k2*(1-mmb*k1)/(k1*(1-mmb*k2)) df=1599;

estimate ’betaM’ log(k2*(1-mmb*k1)/(k1*(1-mmb*k2))) df=1599;

estimate ’rho’ beta**3/(1+beta**2)/(beta**2+beta+1)*sqrt(k1*k2/((1-k1/(beta**2+1))

*(1-k2/(beta**2+1)))) df=1599;

estimate ’vartheta1’ vvb-mmb**2 df=1599;

estimate ’vartheta2’ alpha*beta/((1+alpha+beta)*(alpha+beta)**2) df=1599;

run;
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