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A B S T R A C T

DNA methylation is an important epigenetic modification involved in gene regulation. Advances in the
next generation sequencing technology have enabled the retrieval of DNA methylation information at
single-base-resolution. However, due to the sequencing process and the limited amount of isolated DNA, DNA-
methylation-data are often noisy and sparse, which complicates the identification of differentially methylated
regions (DMRs), especially when few replicates are available. We present a varying-coefficient model for
detecting DMRs by using single-base-resolved methylation information. The model simultaneously smooths the
methylation profiles and allows detection of DMRs, while accounting for additional covariates. The proposed
model takes into account possible overdispersion by using a beta-binomial distribution. The overdispersion
itself can be modeled as a function of the genomic region and explanatory variables. We illustrate the properties
of the proposed model by applying it to two real-life case studies.
1. Introduction

DNA methylation is a well-studied epigenetic mechanism in which
a methyl group is added onto a nucleotide, commonly cytosine (C)
(Moore et al., 2013; Reinders et al., 2008). The majority of cytosines
undergoing methylation precede guanine (G), forming a CpG site (Beck
et al., 2022). In the last decades, studies have highlighted the im-
portance of DNA methylation in regulating gene expression and cel-
lular function (Hudson et al., 2017; Lister et al., 2009; Ziller et al.,
2013). Moreover, patterns of this biochemical process allow character-
izing many diseases, such as cancer (Shafi et al., 2018; Irizarry et al.,
2009), diabetes (Lu et al., 2022; Bansal and Pinney, 2017), Alzheimer’s
disease, and autoimmune disorders (Hudson et al., 2017).

DNA methylation can be profiled and quantified at single-nucleotide
resolution with bisulfite sequencing. Using this technique, DNA is
treated with sodium bisulfite which converts unmethylated cytosine to
uracil (U), while leaving methylated cytosine unchanged. The methy-
lated and unmethylated variants of cytosine are then sequenced, quan-
tified, and summarized as counts of methylated and unmethylated
cytosines at any given site (Robinson et al., 2014). However, none of
the existing methods can identify 100% of DNA methylation. Incom-
plete conversion, which may be affected by the quality and quantity of

∗ Correspondence to: Department of Epidemiology and Data Science, Amsterdam UMC, VU Amsterdam, De Boelelaan 1089A, Postcode 1081
HV, Amsterdam, The Netherlands.

E-mail address: j.claesen@amsterdamumc.nl (J. Claesen).

purified DNA, can lead to incorrect amount of methylation in a sam-
ple (Olova et al., 2018). The biases and limitations of DNA methylation
have been addressed in several studies (Beck et al., 2022; Olova et al.,
2018; Gong et al., 2022).

Bisulfite sequencing protocols can be implemented on a genome-
wide scale or on a set of targeted regions. Both approaches have
pros and cons, and selecting the correct one may often depend on
the biological questions and availability of the DNA amount (Gong
et al., 2022; Moser et al., 2020). Bisulfite sequencing combined with
next-generation sequencing (NGS) has become more accessible and
cost-efficient as the costs of NGS have dropped dramatically over recent
years (Gong et al., 2022; Olova et al., 2018). Lower costs enable com-
parison of different biological conditions with higher power (Hebestreit
et al., 2013). Moreover, a larger number of samples allows studying
progressive age-related changes in DNA methylation profiles (Klein and
Hebestreit, 2016; Bergman and Cedar, 2013; Maegawa et al., 2010).

Several reviews of statistical methodologies for differential methy-
lation (DM) analysis have been published (Robinson et al., 2014; Shafi
et al., 2018; Klein and Hebestreit, 2016). These statistical approaches
include methods to identify differentially methylated CpG sites (DMCs)
or regions (DMRs). Shafi et al. (2018) provide an extensive overview
that points out important factors which should be taken into account in
vailable online 18 May 2024
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DM analysis, such as biological variation within replicates, sequencing
depth, or spatial correlation between the methylation levels of the CpG
sites.

Identification of DMCs focuses on estimating differences between
groups of samples by using aggregated counts within each group.
Such methods (like, e.g., Fisher’s exact test) do not take biological
variability into account, which can lead to a high number of false
positives (Robinson et al., 2014; Hansen et al., 2012; Ziller et al., 2013;
Klein and Hebestreit, 2016).

Although some methods directly determine DMRs (Zhao et al.,
2021), the vast majority of methods are two-step approaches. First,
individual statistically-significant DMCs are identified. Then they are
subsequently combined into DMRs based on certain criteria (Hebestreit
et al., 2013; Shafi et al., 2018; Hansen et al., 2012).

In the last decade, several smoothing-based approaches aimed at
finding DMRs have been proposed (Shafi et al., 2018; Hansen et al.,
2012; Zhao et al., 2021). These methods not only account for the
spatial correlation between neighboring CpG sites, but also for the
sequencing coverage variability and missingness of CpG sites. How-
ever, most of these methods model the smoothing function for each
sample separately without combining information across samples (Zhao
et al., 2021). To the best of our knowledge, there is only one method,
SOMNiBUS, that directly identifies DMRs across multiple sample while
estimating covariate effects (Zhao et al., 2021). However, in its basic
form, this method assumes that the methylated counts are binomially-
distributed which is only true in the absence of any biological or
technical replicates (Shafi et al., 2018). It is possible to extend the
method by applying a quasi-binomial distribution that allows taking
into account overdispersion. However, the overdispersion is assumed
to be constant, which may be a too restrictive assumption.

In this article, we develop a varying-coefficient model to detect
DMRs while adjusting for covariates. In particular, we assume that
the methylated counts follow a beta-binomial distribution, what allows
accounting for possible overdispersion. Moreover, the proposed model
allows making the overdispersion a function of covariates.

2. Materials and methods

2.1. Data

The proposed varying-coefficient models will be illustrated on two
datasets, i.e., a rheumatoid arthritis (RA) case study (Hudson et al.,
2017), and a colon cancer case study (Hansen et al., 2011).

2.1.1. Rheumatoid arthritis case study
In this study, methylation sequencing data were gathered from

immune cells of 43 individuals. Next to methylation sequencing data,
information on the RA-status (no RA or RA) and the type of immune-
cell (monocyte or T-cell) was gathered. Fig. 1 presents the data for
a region of chromosome 4 (from 102,711,629 to 102,712,032) with
123 unique methylation sites. This region is known to show cell-type
specific methylation (Hillier et al., 2005). A subset of the data is part
of the SOMNiBUS package (Zhao et al., 2021).

2.1.2. Colon cancer case study
Whole genome bisulfite sequencing data were gathered from

matched colon cancer and normal colon of three individuals. The
processed data, which includes all annotated CpG sites on human
chromosome 21 and 22, is a part of the dataBsseq R package (Hansen,
2020). CpG sites with at least 2x coverage in at least two cancer and two
normal samples were analyzed. Fig. 2 presents the data for chromosome
21 with 247,876 unique methylation sites.
2

h

2.2. Methodology

For an 𝑖th methylation site (𝑖 = 1, 2,… , 𝐼), we consider informa-
tion about its chromosomal position, 𝑥𝑖 (in terms of the number of
nucleotides from a starting position), the total number of reads mapped
to this site, 𝑛𝑖, and the number of reads with a methylated cytosine at
this position, 𝑌𝑖. We assume that the distribution of 𝑌𝑖 is beta-binomial
with parameters 𝜋𝑖 and 𝜎𝑖:

𝑃 (𝑌𝑖 = 𝑦) =
𝛤 (𝑛𝑖 + 1)𝛤 (𝜎𝑖)𝛤 (𝑦 + 𝜋𝑖𝜎𝑖)𝛤 {𝑛𝑖 − 𝑦 + (1 − 𝜋𝑖)𝜎𝑖}

𝛤 (𝑦 + 1)𝛤 (𝑛𝑖 − 𝑦 + 1)𝛤 (𝜋𝑖𝜎𝑖)𝛤 {(1 − 𝜋𝑖)𝜎𝑖}𝛤 (𝑛𝑖 + 𝜎𝑖)
. (1)

n particular, the mean value and variance of 𝑌𝑖 are given, respectively,
y

𝐸(𝑌𝑖) =𝑛𝑖𝜋𝑖,

𝑎𝑟(𝑌𝑖) =𝑛𝑖𝜋𝑖(1 − 𝜋𝑖)
{

1 +
𝑛𝑖 − 1

1 + 1∕𝜎𝑖

}

. (2)

Thus, 𝜋𝑖 is the methylation probability, while the scale parameter 𝜎𝑖 >
0 can be seen as capturing overdispersion (relative to the binomial
variation given by 𝑛𝑖𝜋𝑖(1 − 𝜋𝑖)). Note that the total overdispersion is

function of 𝜎𝑖 and 𝑛𝑖. Hence, the overdispersion varies for CpG sites
ith different number of reads. Table S1 provides an overview of model
arameters and their interpretation.

.2.1. Varying-coefficient model
The relationship between the methylation probability, 𝜋𝑖, and the

hromosomal location, 𝑥𝑖, can be flexibly estimated by using smoothing
plines (Green and Silverman, 1994; Ruppert et al., 2003):

ogit(𝜋𝑖) = ln
𝜋𝑖

1 − 𝜋𝑖
= 𝑠(𝑥𝑖)

= 𝛽0 + 𝛽1𝑥𝑖 +⋯ + 𝛽𝑑𝑥
𝑑
𝑖 +

𝐾
∑

𝑘=1
𝑢𝑘𝑏𝑘(𝑥𝑖), (3)

here 𝑑 is the degree of the spline, 𝐾 is the number of knots, 𝑏𝑘(𝑥) is
he set of spline basis-functions, and 𝛽 and 𝑢𝑘 are the coefficients. Note
hat we can express (3) in the following form:

(𝑥𝑖) = (1, 𝑥𝑖,… , 𝑥𝑑𝑖 , 𝑏1(𝑥𝑖),… , 𝑏𝐾 (𝑥𝑖))(𝛽0, 𝛽1,… , 𝛽𝑑 , 𝑢1,… , 𝑢𝐾 )′

= 𝒄′𝑥𝑖 (𝜷
′, 𝒖′)′ = 𝒄′𝑥𝑖𝜽, (4)

here 𝜽 = (𝜷′, 𝒖′)′.
We propose to use varying-coefficient models (Hastie and Tib-

hirani, 1993) to assess the effect of explanatory variables on the
ethylation probability and to detect DMRs. Varying-coefficient mod-

ls allow including multiple smoothing splines in combination with
nteractions between smoothing splines and covariates. In particular,
e consider models of the following form:

ogit(𝜋𝑖) = 𝒛′𝜸 +
𝐽
∑

𝑗=0
𝑠𝑗 (𝑥𝑖) ⋅ 𝑧𝑗 , (5)

here 𝒛 is the column-vector with 𝐽 + 1 coordinates (including 𝑧0 =
as the first coordinate) corresponding to the explanatory variables

escribing a particular sample, 𝜸 is the corresponding vector of coeffi-
ients, and 𝑠𝑗 (𝑥𝑖)⋅𝑧𝑗 is the interaction between a smoothing spline 𝑠𝑗 (𝑥𝑖)
nd the 𝑗th covariate (coordinate) 𝑧𝑗 . Note that, in the case of a factor
ith 𝑚 levels, vector 𝒛 should include values of 𝑚 − 1 dummy binary

ovariates coding the levels of the factor. Consequently, 𝑚− 1 separate
mooth curves are fitted for such a factor.

Model (5) specifies that the effect of 𝑧𝑗 depends on the chromosomal
osition 𝑥𝑖 and takes the form described by the smooth function 𝑠𝑗 (𝑥𝑖).
he term 𝒛′𝜸 is included in the model to ensure centering and identifi-
bility of the smooth functions (Wood, 2017). However, depending on
he chosen parameterization of the model, the term may or may not

ave to be included in the model equation (see Section 2.2.5).
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Fig. 1. Rheumatoid arthritis (RA) data. Each point represents methylation frequency for a genomic position for one sample. The points are colored based on the type of immune-cell
(red: Monocyte, blue: T-cell). Transparency is added based on the RA-status (dark: no RA, light: RA).
Fig. 2. Colon cancer data. Each point represents methylation frequency for a genomic position across chromosome 21 for one sample. The points are colored based on the type
of sample type (red: cancer, blue: normal). Transparency is added according to the individual (light: individual 1, medium dark: individual 2, dark: individual 3).
In the case of the beta-binomial distribution (1), model (5) can
be extended by making the scale parameter 𝜎𝑖 a function of explana-
tory variables (Nelder and Pregibon, 1987; Rigby and Stasinopoulos,
1996b,a). In particular, the model then takes the following form:

logit(𝜋𝑖) = 𝒛′𝜋𝜸𝜋 +
𝐽𝜋
∑

𝑗=0
𝑠𝑗 (𝑥𝑖) ⋅ 𝑧𝜋,𝑗 , (6)

log(𝜎𝑖) = 𝒛′𝜎𝜸𝜎 +
𝐽𝜎
∑

𝑗=0
𝑞𝑗 (𝑥𝑖) ⋅ 𝑧𝜎,𝑗 , (7)

with an obvious extension of the notation used for model (5).

2.2.2. Model fitting
Model (5) can be estimated by maximization of the penalized log-

likelihood

𝑙𝑝(𝜸,𝝑,𝝀) = 𝑙(𝜸,𝝑) − 1
2

𝐽
∑

𝑗=0
𝜽′𝑗𝑮𝑗 (𝜆𝑗 )𝜽𝑗 , (8)

where 𝑙(𝜸,𝝑) is the logarithm of the marginal beta-binomial likelihood
(1), 𝝑 = (𝜽′ ,… ,𝜽′ )′, 𝝀 = (𝜆′ ,… , 𝜆′ )′, and 𝑮 (𝜆 ) is a symmetric matrix
3

0 𝐽 0 𝐽 𝑗 𝑗
depending on hyperparameter 𝜆𝑗 that controls the smoothness of the
estimated function 𝑠𝑗 (𝑥𝑖) (Rigby and Stasinopoulos, 2005).

Maximizing the penalized log-likelihood is equivalent to maximiz-
ing the posterior log-likelihood for 𝜸 and 𝝑, given 𝝀 and data 𝒚 (Rigby
and Stasinopoulos, 2005):

log{𝑓 (𝜸,𝝑|𝒚,𝝀)} = log{𝑓 (𝒚| 𝜸,𝝑)} + log{𝑓 (𝝑|𝝀)},

with 𝜽𝑗 ∼  (𝟎,𝑮−
𝑗 (𝜆𝑗 )), where 𝑮−

𝑗 (𝜆𝑗 ) the generalized inverse of 𝑮𝑗 (𝜆𝑗 ).
Maximization of the penalized log-likelihood or posterior

log-likelihood yields an estimate �̂� of 𝝑. The smoothing parameters
𝜆𝑗 can be determined by various methods such as (generalized) cross-
validation or (restricted) maximum likelihood estimation (Wood, 2000;
Rigby and Stasinopoulos, 2005).

The variance–covariance matrix 𝑽 𝜗 of �̂� can be estimated by us-
ing the expression of the variance–covariance matrix of the posterior
density of 𝝑 (Wood, 2013).

Fitting the model without penalization reduces the formula (8) to
the logarithm of the marginal beta-binomial likelihood.
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By using the obvious extension of the notation used in (8), the
penalized log-likelihood for model (6)–(7) is defined as follows:

𝑙𝑝(𝜸,𝝑,𝝀) = 𝑙(𝜸,𝝑) − 1
2

𝐽𝜋
∑

𝑗=0
𝜽′𝜋,𝑗𝑮𝜋,𝑗 (𝜆𝜋,𝑗 )𝜽𝜋,𝑗 −

1
2

𝐽𝜎
∑

𝑗=0
𝜽′𝜎,𝑗𝑮𝜎,𝑗 (𝜆𝜎,𝑗 )𝜽𝜎,𝑗 .

2.2.3. Simultaneous confidence bands
Based on the estimated model (5) or (6)–(7), smooth functions

describing the change of the methylation probability across chromo-
somal positions can be estimated, plotted, and used for finding DMRs.
As point-wise confidence intervals (CIs) do not capture the joint un-
certainty in the estimation of the functions across many positions,
we propose to use simultaneous confidence bands (CBs) for this pur-
pose (Ruppert et al., 2003). These CBs are corrected for multiplicity
and account for the serial correlation. A 100(1-𝛼)% simultaneous CB
for 𝑠(𝑥) is defined as follows:

̂(𝑥) ± 𝑐1−𝛼 × ŝt.dev {�̂�(𝑥) − 𝑠(𝑥)}

where �̂�(𝑥) denotes the estimated smoothed curve, ŝt.dev {�̂�(𝑥) − 𝑠(𝑥)}
denotes the estimated standard deviation of the curve, and 𝑐1−𝛼 is the
1 − 𝛼 quantile of the random variable

supx∈χ
|

|

|

|

|

�̂�(𝑥) − 𝑠(𝑥)

ŝt.dev{�̂�(𝑥) − 𝑠(𝑥)}

|

|

|

|

|

≈ max
1≤𝑖≤𝐼

|

|

|

|

|

|

|

𝒄′𝑥𝑖
(

�̂� − 𝜽
)

ŝt.dev{�̂�(𝑥𝑖) − 𝑠(𝑥𝑖)}

|

|

|

|

|

|

|

, (9)

where 𝒄𝑥𝑖 and 𝜽 are defined in (4).
The quantile can be found by, first, simulating multiple values from

an approximate multivariate normal distribution
(

�̂� − 𝜽
)

∼ 
(

𝟎,𝑽 𝜃

)

,

where 𝑽 𝜃 is the estimated variance–covariance matrix of �̂�. Subse-
quently, for each simulated value, the maximum statistic, defined on
the right-hand-side of (9), is computed. Finally, the so-obtained sample
of the maximum statistics is used to estimate 𝑐1−𝛼 by selecting the
appropriate rank-statistic.

2.2.4. Detection of differentially methylated regions
DMRs between two groups of interest, defined by values 𝑢 and 𝑣

of an explanatory continuous variable (covariate) 𝑧𝑗 , can be found by
deriving the difference curve

𝛥(𝑢 − 𝑣, 𝑥𝑖) = �̂�𝑗 (𝑥𝑖) ⋅ 𝑢 − �̂�𝑗 (𝑥𝑖) ⋅ 𝑣 = (𝑢 − 𝑣)𝒄′𝑥𝑖 �̂�𝑗 , (10)

where �̂�𝑗 =
(

𝜷
′
𝑗 , �̂�

′
𝑗

)′
are the estimated coefficients that yield �̂�𝑗 (𝑥𝑖).

Variance of the difference curve at 𝑥𝑖 can be estimated by

âr{𝛥(𝑢 − 𝑣, 𝑥𝑖)} = (𝑢 − 𝑣)2𝒄′𝑥𝑖𝑽 𝜃𝑗 𝒄𝑥𝑖 ,

where 𝑽 𝜃𝑗 is the estimated variance–covariance matrix of �̂�𝑗 .
For a factor, the difference curve for two levels, represented in

vector 𝒛 by two dummy covariates 𝑧𝑗 and 𝑧𝑘, say, is given by

𝛥(𝑗, 𝑘, 𝑥𝑖) = �̂�𝑗 (𝑥𝑖) − �̂�𝑘(𝑥𝑖) = 𝒄′𝑥𝑖
(

�̂�𝑗 − �̂�𝑘
)

, (11)

where �̂�𝑗 and �̂�𝑘 are the estimated coefficients that yield �̂�𝑗 (𝑥𝑖) and
̂𝑘(𝑥𝑖), respectively. Its variance can be estimated by

V̂ar{𝛥(𝑗, 𝑘, 𝑥𝑖)} =
(

𝒄′𝑥𝑖 ,−𝒄
′
𝑥𝑖

)

𝑽 𝜃𝑗 ,𝜃𝑘

(

𝒄′𝑥𝑖 ,−𝒄
′
𝑥𝑖

)′
.

Subsequently, a simultaneous confidence band for the estimated differ-
ence curve is obtained by the approach outlined in Section 2.2.3. DMRs
are identified by the chromosomal positions at which the simultaneous
4

CB around the estimated difference curve excludes 0.
2.2.5. Rheumatoid arthritis case study
For the RA study introduced in Section 2.1.1, we considered varying-

coefficient models with two explanatory factors, ‘RA’ (with 0 and
1 indicating, respectively, control and RA samples) and ‘Cell-type’
(with 0 and 1 indicating, respectively, monocyte and T-cell), and their
interaction.

We used five knots to make the results comparable with the ones
from SOMNIBUS package. In the primary analysis, we used the pe-
nalized log-likelihood (8); as a sensitivity analysis, we also fitted the
models without penalization.

We implemented the models by using the R-packages mgcv (Wood,
017) and gamlss (Rigby and Stasinopoulos, 2005) (the code can be
ound in the Supplementary Materials). Both packages offer various
ays to specify the models. The most verbose manner is to use variables

RA’ and ‘Cell-type’ as factors with non-ordered levels. In this case, a
eparate smooth function for each of the four groups of observations is
sed to describe the dependence of the methylation probability on the
hromosomal position. A potential disadvantage of this implementation
s a relatively large number of parameters that have to be estimated.
dditionally, in this case, differences between levels of a factor have to
e derived from the estimated curves (see Section 2.2.4).

A potentially more parsimonious implementation is obtained by
onsidering variables ‘RA’ and ‘Cell-type’ as factors with ordered levels.
n that case, for each factor, a difference curve between a reference
evel and the other level is directly estimated.

Note that both implementations require inclusion of the term 𝒛′𝜸
n the model to ensure centering and identifiability of the smoothing
urves.

A third approach, which we adopted, is to treat variables ‘RA’
nd ‘Cell-type’ as numeric (continuous). In that case, smooth curves
escribing the main effect of each factor, as well as their interaction,
re directly estimated. Moreover, the centering of the smooths by
dding 𝒛′𝜸 to the model terms is no longer necessary, yielding a more
arsimonious model. As a result, the following model is obtained:

𝑌𝑖 ∼ BetaBinomial(𝑛𝑖, 𝜋𝑖, 𝜎𝑖),
ogit(𝜋𝑖) = 𝑠0(𝑥𝑖) + 𝑠1(𝑥𝑖)RA + 𝑠2(𝑥𝑖)Cell-type + 𝑠3(𝑥𝑖){RA × Cell-type},

𝜎𝑖 ≡ 𝜎, (12)

here ‘RA’ and ‘Cell-type’ are dummy binary covariates indicating,
espectively, RA and T-cells. In this model, 𝑠0(𝑥𝑖) is a smooth function
escribing the change of the methylation probability across chromo-
omal positions for individuals without RA and cells derived from
onocytes, 𝑠1(𝑥𝑖) and 𝑠2(𝑥𝑖) are the main effects of ‘RA’ and ‘Cell-type’,

espectively, and 𝑠3(𝑥𝑖) is the interaction effect.
Note that, in model (12), the scale parameter, 𝜎𝑖, is assumed to be

onstant. To check this assumption, the following extended model was
lso considered:

𝑌𝑖 ∼ BetaBinomial(𝑛𝑖, 𝜋𝑖, 𝜎𝑖),

ogit(𝜋𝑖) = 𝑠0(𝑥𝑖) + 𝑠1(𝑥𝑖)RA + 𝑠2(𝑥𝑖)Cell-type + 𝑠3(𝑥𝑖){RA × Cell-type},

log(𝜎𝑖) = 𝑞0(𝑥𝑖) + 𝑞1(𝑥𝑖)RA + 𝑞2(𝑥𝑖)Cell-type + 𝑞3(𝑥𝑖){RA × Cell-type}. (13)

n this model, 𝜎𝑖 is a function of the chromosomal position and the
ovariates.

For comparison purposes, we also considered the binomial model
orresponding to (12):

𝑌𝑖 ∼ Binomial(𝑛𝑖, 𝜋𝑖),

logit(𝜋𝑖) = 𝑠0(𝑥𝑖) + 𝑠1(𝑥𝑖)RA + 𝑠2(𝑥𝑖)Cell-type + 𝑠3(𝑥𝑖){RA × Cell-type} (14)

2.2.6. Colon cancer case study
For the cancer study introduced in Section 2.1.2, we considered a

varying-coefficient model with three explanatory factors, ‘Type’ (with 0
and 1 indicating, respectively, colon cancer and normal colon samples),

‘Pair2’ (with 0 and 1 indicating, respectively, matched samples of
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Table 1
Results of the estimation of the ‘‘Binomial’’ and ‘‘Beta-Binomial’’ models. edf — empirical degrees of freedom; ref.df — reference degrees of freedom.

Smooth terms With interaction

Binomial Beta-Binomial

edf ref.df F-value 𝑝-value edf ref.df F-value 𝑝-value

𝑠0(𝑥𝑖) 2.466 2.861 56.884 <2e−16 1.184 1.337 12.467 7.49e−5
𝑠1(𝑥𝑖)RA 3.352 3.790 5.777 0.002 2.000 2.000 0.442 0.643
𝑠2(𝑥𝑖)Cell-type 4.964 4.985 70.508 <2e−16 4.903 4.989 14.831 <2e−16
𝑠3(𝑥𝑖){RA × Cell-type} 2.000 2.000 1.940 0.143 2.244 2.445 0.048 0.958

𝜎 Est.: NA Est.: 1.039

Smooth terms Without interaction

Binomial Beta-Binomial

edf ref.df F-value 𝑝-value edf ref.df F-value 𝑝-value

𝑠0(𝑥𝑖) 2.460 2.853 111.88 <2e−16 1.036 1.071 47.019 <2e−16
𝑠1(𝑥𝑖)RA 3.261 3.699 15.13 <2e−16 2.000 2.000 2.225 0.108
𝑠2(𝑥𝑖)Cell-type 4.963 4.984 179.66 <2e−16 4.895 4.991 30.080 <2e−16

𝜎 Est.: NA Est.: 1.040
patient 2) and ‘Pair3’ (with 0 and 1 indicating, respectively, matched
samples of patient 3).

The following model is fitted:

𝑌𝑖 ∼ BetaBinomial(𝑛𝑖, 𝜋𝑖, 𝜎𝑖),
logit(𝜋𝑖) = 𝑠0(𝑥𝑖) + 𝑠1(𝑥𝑖)Type + 𝑠2(𝑥𝑖)Pair2 + 𝑠3(𝑥𝑖)Pair3,

𝜎𝑖 ≡ 𝜎, (15)

where ‘Type’, ‘Pair2’ and ‘Pair3’ are dummy binary covariates in-
dicating, respectively, colon type, patient 2 and patient 3 samples.
The inclusion of ‘Pair2’ and ‘Pair3’ covariates adjusts for a potential
individual-patient clustering (matching) effect. In case of a dataset
with more than three patients, the use of an individual-patient random
effect could be considered; model (15) can be seen as a fixed-effect
counterpart. In this model, 𝑠0(𝑥𝑖) is a smooth function describing the
change of the methylation probability across chromosomal positions for
individuals with normal colon samples, and 𝑠1(𝑥𝑖), 𝑠2(𝑥𝑖), and 𝑠3(𝑥𝑖) are
the main effects of ‘Type’, ‘Pair2’ and ‘Pair3’, respectively.

Following the approach recommended in the SOMNiBUS package,
for each region, we used at most 50 knots, which is the number
approximately equal to the number of the unique CpGs in the analyzed
region (at most 1000) divided by 20. In the primary analysis, we fitted
the model without penalization; as a sensitivity analysis, we also fitted
them by using the penalized log-likelihood (8).

3. Results

In this section, we present the results of the analysis of the case
studies. To present the salient features of the proposed approach, in
Section 3.1, we discuss the analysis of the RA-study in more detail. In
Section 3.2, we apply the varying-coefficient model to the colon-cancer
data, with most of the results presented in the Supplementary Materials.

3.1. Rheumatoid arthritis case study

In the first step, we analyze the RA-study data with models (12)
and (14). In the remainder of the text, we refer to those models as the
‘‘Binomial’’ and ‘‘Beta-Binomial’’ model, respectively. We focus on the
results obtained by fitting the models using the penalized log-likelihood
(8).

The upper part of Table 1 presents the results of the ‘‘Binomial’’
and ‘‘Beta-Binomial’’ models. In both models, the interaction term is
not significant at the 5% significance level, while the methylation
probability does seem to vary with the chromosomal position. In the
‘‘Binomial’’ model, the effect of both the ‘RA’ and ‘Cell-type’ covariate
is statistically significant, whereas the effect of ‘RA’ is not signifi-
cant in the ‘‘Beta-Binomial’’ model. In the latter case the estimate
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of 𝜎𝑖 indicates overdispersion. For instance, for a CpG site with 50
reads, the variance increases, as compared to the binomial one, by
49/(1+1/1.039) = 0.2497, i.e., 24.97%.

Any model-based test, however, should be conditional on an eval-
uation of the fit of the model to the data. Fig. 3 presents the worm
plots, detrended Q-Q plots (van Buuren and Fredriks, 2001) for the
‘‘Binomial’’ and ‘‘Beta-Binomial’’ models. For a well-fitting model, the
plot should be a flat line, indicating that the data follow the assumed
model-based distribution. The plot in panel A of Fig. 3 clearly deviates
from such a line. In particular, many points (residuals) fall outside
the 95% point-wise CIs (indicated by the black dotted lines), and the
slope of the fitted curve (indicated by the red solid line) is positive,
suggesting that the variance is underestimated. Thus, the worm plot
indicates that the binomial distribution is not suitable for the RA
dataset. The worm plot of the ‘‘Beta-Binomial’’ model (see panel B of
Fig. 3) is much closer to a flat line (except of some deviation in the
tails), suggesting that the model fits the data better.

In view of the non-significance of the interaction term, the ‘‘Beta-
Binomial’’ model can be simplified by dropping this term. The lower
part of Table 1 presents the results of the model; for completeness,
results for the simplified ‘‘Binomial’’ model are also shown. The ex-
clusion of the interaction term does not change the conclusions: the
effect of ‘RA’ remains statistically not significant in the ‘‘Beta-Binomial’’
model, while the effect of ‘Cell-type’ retains its significance. This is
an important difference as compared to the ‘‘Binomial’’ model, which
consistently suggests the significance of the RA effect. Thus, adjusting
for the overdispersion implies a qualitative difference in the conclusions
drawn from the models.

Fig. 4 (panels A–C) presents the estimated smoothed terms for
the simplified ‘‘Beta-Binomial’’ model for the logit of the methylation
probability with 95% point-wise CIs (indicated by the dark gray area)
and simultaneous 95% CBs (indicated by the light gray area). It is clear
that the latter, which accounts for the multiple-testing issue resulting
from consideration of many chromosomal positions, are wider than
the former. Thus, the use of point-wise CIs might lead to an inflated
occurrence of type I errors in identification of DMRs.

Panel A of Fig. 4 shows a clear, almost linear effect of chromosomal
position; its simultaneous 95% CBs exclude 0 across all positions. The
CBs for ‘RA’ (panel C) include 0 across all positions and indicate, in
agreement with the results presented in the lower part of Table 1,
no effect of RA on the probability. On the other hand, the CBs for
‘Cell-type’ (panel B) indicate a statistically significant, positive effect,
i.e., an increase of the methylation probability for the T-cell samples as
compared to monocyte samples, across the entire chromosome except
of narrow region between 102,711,919 and 102,711,961. It is worth
noting that the 95% point-wise CIs would suggest a positive effect also

in that narrow region.
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Fig. 3. The worm plot of the residuals for the ‘‘Binomial’’ (panel A) and ‘‘Beta-Binomial’’ (panel B) models. Black dashed lines indicate the 95% point-wise confidence intervals.
The red solid line is a smooth curve fitted to the points of the worm. If the distributional assumption of the model is suitable for the analyzed data, the solid line should correspond
to the horizontal red dashed line. This is approximately the case for the plot in panel B, but not in panel A.
Fig. 4. Estimated smoothed curves for the ‘‘Beta-Binomial’’ model without the interaction term. Panels A-C: estimates of the smoothed splines (solid black lines) for the various
model terms for the logit of the methylation probability, with the point-wise (dark gray) and simultaneous (light gray) 95% confidence bands. The vertical black bars at the bottom
of the plot indicate the methylated genomic positions. Panel D: worm plot for the model (black dashed lines indicate the 95% point-wise confidence intervals).
Panel D of Fig. 4 shows the worm plot of the model. The plot
indicates that the model fits the data well: the points (residuals) fall
within the 95% CI (black dotted lines) and the fitted curve (red solid
line) is approximately straight and centered around zero.

The effect of cell-type can also be seen in panel A of Fig. 5 that
presents the estimated dependence of the methylation probability on
the chromosomal position for the four groups of samples (indicated
by different shades of red and blue). In particular, the curves for the
monocyte samples (in red; dark for control subjects and light for RA
subjects) differ markedly from the curves for the T-cell samples (in blue;
dark for control subjects and light for RA subjects). Also, there is a clear
separation between the 95% simultaneous CBs for the two smoothed
curves of monocyte samples and the two curves of T-cell samples (panel
6

B of Fig. 5). The lack of the effect of RA is reflected by the overlap of
the 95% simultaneous CBs for the control and the RA samples within
the strata defined by the cell-type status.

The ‘‘Beta-Binomial’’ model (12) assumes that the scale parameter,
𝜎𝑖, is constant. However, the assumption may be too stringent. To
remove it, 𝜎𝑖 can be modeled as a function of explanatory variables.
Towards this aim, the extended model (13) can be considered.

The upper part of Table 2 presents the results for model (13). The
worm plot (panel A of Fig. 6) shows that the model does fit the data
reasonably well.

Results presented in the upper part of Table 2 suggest that the
interaction terms are statistically significant neither for the methyla-
tion probability nor for the scale parameter. Thus, the terms may be
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Fig. 5. Panel A: estimated curves (solid lines) for the methylation probability for the four groups of samples (indicated by different colors), with data points. The points and
estimated curves are colored based on the type of immune-cell (red: Monocyte, blue: T-cell). Transparency is added based on the RA-status (dark: no RA, light: RA). Panel B:
Simultaneous 95% confidence bands for the smoothed curves from panel A.
Table 2
Results of the estimation of the ‘‘Beta-Binomial’’ model with the scale-parameter modeled. edf — empirical degrees of freedom; ref.df — reference degrees of freedom.

Smooth terms With interaction terms

Model for logit(𝜋) Model for log(𝜎)

edf ref.df F-value 𝑝-value edf ref.df F-value 𝑝-value

Intercept 1.000 1.000 17.478 2.99e−5 1.000 1.000 8.657 0.003
RA 2.000 2.000 0.718 0.488 2.483 2.765 1.806 0.208
Cell-type 4.911 4.994 16.755 <2e−16 3.924 4.208 4.959 0.001
RA × Cell-type 2.022 2.044 0.091 0.915 2.000 2.000 1.363 0.256

Smooth terms Without interaction terms

Model for logit(𝜋) Model for log(𝜎)

edf ref.df F-value 𝑝-value edf ref.df F-value 𝑝-value

Intercept 1.000 1.000 44.738 <2e−16 1.000 1.000 33.091 <2e−16
RA 2.000 2.000 2.707 0.067 2.753 3.060 1.704 0.159
Cell-type 4.911 4.994 29.162 <2e−16 4.044 4.365 6.256 2.43e−5
Fig. 6. The worm plot of the residuals for the ‘‘Beta-Binomial’’ model with the scale-parameter modeled: with interaction (panel A) and without interaction (panel B). Black
dashed lines indicate the 95% point-wise confidence intervals. The red solid line is a smooth curve fitted to the points of the worm. If the distributional assumption of the model
is suitable for the analyzed data, the solid line should correspond to the horizontal red dashed line. This is approximately the case for both panels.
dropped from the model. The worm plot (panel B of Fig. 6) suggests a
satisfactory fit of the simplified model to the data. Results for the model
are presented in the lower part of Table 2.
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In particular, the results for the scale parameter indicate that
overdispersion statistically significantly varies across chromosomal po-
sitions and differs between the monocyte and T-cell samples. Thus, the
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Fig. 7. Estimated smoothed splines for the ‘‘Beta-Binomial’’ model without the interaction terms and the scale-parameter modeled. Panel A: estimates of the smoothed splines
(solid black lines) for the various model terms for the logit of the methylation probability, with the point-wise (dark gray) and simultaneous (light gray) 95% confidence bands.
Panel B: estimates of the smoothed splines (solid black lines) for the various model terms for the scale parameter, with the point-wise (dark gray) and simultaneous (light gray)
95% confidence bands. The vertical black bars at the bottom of the plot indicate the methylated genomic positions.
constant-𝜎𝑖 assumption used for the ‘‘Beta-Binomial’’ models presented
in Table 1 may not to be valid. Removing this assumption, however,
does not change the conclusions regarding the methylation probability,
i.e., the presence of a statistically significant effect of chromosomal
position and cell-type.

Fig. 7 presents the estimated smoothed splines corresponding to
the results presented in the lower part of Table 2. Panel A of the
figure presents the smoothed curves for the logit of the methylation
probability. They are very similar to the curves obtained for the ‘‘Beta-
Binomial’’ model that assumed a constant 𝜎𝑖 and no interaction (see
panels A–C of Fig. 4). As compared to panel C of Fig. 4, a slight
narrowing of the simultaneous 95% CBs for the RA effect in Fig. 7
can be observed, which almost results in excluding 0 in a small region
around position 102,712,351. This is in agreement with the marginal
non-significance (𝑝 = 0.067) of the test for the RA effect reported in the
lower part of Table 2 for 𝜋.

The slight gain in precision might be attributed to a more precise
specification of the variance-structure. Panel B of Fig. 7 presents the
smoothed curves for the scale parameter. A clear, almost linear effect
of chromosomal position can be seen; its simultaneous 95% CBs exclude
0 across all positions. The bands for the RA effect include 0 across
all positions and indicate, in agreement with the results presented in
the lower part of Table 2, no effect of RA on overdispersion. On the
other hand, the simultaneous CBs for ‘Cell-type’ indicate a statistically
significant effect in a small region around position 102,712,110 and in
a small region around position 102,712,591.

Fig. 8 presents the estimated dependence of the methylation prob-
ability on the chromosomal position for the four groups of samples
(indicated by different colors) for the ‘‘Beta-Binomial’’ model presented
in the lower part of Table 2. The plots are similar to the graphs
presented in Fig. 4 for the model assuming a constant scale parameter
and illustrate the effect of chromosomal position and the cell-type
status of a sample.

For completeness, we compared the ‘‘Binomial’’ and ‘‘Beta-Binomial’’
models to the results of SOMNiBUS which is, to the best of our knowl-
edge, the only method that directly identifies DMRs across multiple
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sample while estimating covariate effects (Zhao et al., 2021). This
method assumes that the methylated counts follow the binomial distri-
bution. Note that the ‘‘Binomial’’ model (14) resembles the model used
in SOMNiBUS (Zhao et al., 2021). There are two differences, however.
First, SOMNiBUS does not report simultaneous CBs, but it returns point-
wise CIs around the estimated curves. Second, SOMNiBUS accounts for
experimental errors, which may potentially result in incorrect methy-
lation read counts, by using a smoothed Expectation–Maximization
algorithm (Zhao et al., 2021).

Fig. 9 provides the estimated smoothed profiles obtained for model
(14) by using SOMNiBUS. There are only negligible differences between
them and the profiles (not shown) corresponding to the results pre-
sented in the upper part of Table 1 for the same model. Hence, the
overall conclusion (see Table 3) remains the same, i.e., a statistically
significant effect of the chromosomal position, RA, and cell-type on the
probability of methylation. Fig. 10 presents the estimated dependence
of the methylation probability on the chromosomal position for the
four groups of samples (indicated by different colors). A clear effect
of cell-type is visible. Additionally, an RA effect within the genomic
region between 102,712,100 and 102,712,780, more pronounced for
the T-cell samples, can be seen. However, as argued in Section 3.1,
the conclusions are questionable given the issues with the fit of the
binomial model to the data.

SOMNiBUS also allows using a quasi-binomial distribution. The
resulting smoothed profiles are, necessarily, the same as those shown
in Figs. 9 and 10 for the binomial distribution. The estimated value of
the overdispersion parameter 𝜙 is equal to 1.471 (see Table 3). Note
that, in this case, the overdispersion factor is assumed to be constant
and unrelated to the number of reads, unlike in (2) for the beta-
binomial distribution. Adjusting for overdispersion does not change the
significance of the RA effect.

Additionally, we compared the effect of the penalization on the final
statistical decisions and the shapes of the estimated smoothed curves
(see Section 2.2.2). Figure S1 in the Supplementary Materials presents
the estimated smoothed terms for the model without interaction fitted

with (panels A and B) and without penalization (panels C and D),
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Fig. 8. The ‘‘Beta-Binomial’’ model without the interaction terms and the scale-parameter modeled. Panel A: estimated curves (solid lines) for the methylation probability for the
four groups of samples (indicated by different colors), with data points. The points and estimated curves are colored based on the type of immune-cell (red: Monocyte, blue: T-cell).
Transparency is added based on the RA-status (dark: no RA, light: RA). Panel B: Simultaneous 95% confidence bands for the smoothed curves in panel A.
Fig. 9. The estimates of the smoothed splines (solid red lines) for the various model terms for the logit of the methylation probability, with the 95% point-wise confidence intervals
(dashed red lines), obtained for the SOMNiBUS binomial model with the interaction term.
Fig. 10. The estimated curves showing the dependence of the methylation probability on the chromosomal position for the four groups of samples for the SOMNiBUS binomial
model with interaction. Four colors are used to distinguish the different groups of sample (red-black for RA Mono/T-cell and blue–green for no RA Mono/T-cell.).
Table 3
Results of the estimation of the ‘‘Binomial’’ and ‘‘Quasi-Binomial’’ models. edf — empirical degrees of freedom.
Smooth terms With interaction

Binomial Quasi-Binomial

edf Chi.sq 𝑝-value edf F-value 𝑝-value

Position 3.999 343.813 <2e−16 3.999 58.933 <2e−16
T_cell 2.005 302.315 <2e−16 2.003 102.493 <2e−16
RA 3.964 31.366 3.05e−06 3.820 5.469 0.0004
Interaction 2.000 7.283 2.62e−02 2.001 2.430 0.0880

𝜙 Est.: NA Est.: 1.471
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Fig. 11. Estimated smoothed curves for the model for region 20. Estimates of the smoothed splines (solid black lines) for the various model terms for the logit of the methylation
probability, with the simultaneous (gray) 95% confidence bands for the model with (panels A-B) and without a penalty (panels C-D), respectively. The vertical black bars at the
bottom of the plot indicate the methylated genomic positions.
respectively. There is not much change in the estimated smooth curves,
while there is a loss of precision for the non-penalized analysis reflected
in the wider 95% point-wise CIs (indicated by the dark gray area)
and simultaneous 95% CBs (indicated by the light gray area). This
is expected, given the increased dimension of the parameter space
without penalization. Nevertheless, regardless of whether a penalty was
applied or not, the overall positive effect for T-cell remains statistically
significant (panels A and C), while there is no statistically significant
effect of RA (panels B and D).

3.2. Colon cancer case study

We applied the varying-coefficient model (15) to the colon cancer
data set. We focused on chromosome 21. Fitting the model to the
data on the full chromosome is practically infeasible due to the com-
putational complexity. Therefore, we have selected a sliding window
approach by splitting the chromosome into 249 non-overlapping sub-
regions, each containing at most 1000 unique methylation sites. Other
sliding window approaches are possible (for instance, choosing win-
dows that partially overlap) as long as the number of methylation sites
is not too large; we will not discuss them here. There is a clear gap,
without any data, from position 11,188,105 to 14,338,444 (see Fig. 2).
We performed the analysis separately for the regions before and after
the gap. In the following, we focus on the 245 regions after the gap.

In contrast to the RA case study, the regions are wide and contain
many large gaps. This may pose an issue when fitting the model.
Penalization applied in estimation of the splines causes them to be
excessively smooth, often resulting in straight lines. This can be seen
in Fig. 11 that presents the estimated smoothed curves for region
20, respectively with (panels A and B) and without (panels C and
D) penalization. The same behavior can be seen in Figure S2 in the
Supplementary Materials for region 121. For this reason, we decided
to focus on the results of the non-penalized analysis, as it may offer
a more detailed information about DMRs (perhaps at the cost of a
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reduced precision). Note that, of the 245 regions after the 11,188,105–
14,338,444 gap, the non-penalized model-fitting algorithm did not
converge for 57 regions.

Fig. 12 shows worm plots for the models for the first 64 regions; the
plots for the remaining regions are shown in Supplementary Figures S3–
S5. For most of the regions (e.g., regions 1, 2, 7, or 8), the worm plots
are close to a flat line (except of some deviation in the tails) indicating a
good fit. There are some plots (see, e.g., Figure S3: regions 83 and 121,
Figure S4: regions 138 and 161) that show points (residuals) falling
outside the 95% point-wise CIs (indicated by the black dotted lines).
In general, however, for 155 (83.5%) regions, for which the model
converged, the smoothed worm plot indicates a good fit.

Fig. 13 presents the estimated smoothed terms for model (15) with
simultaneous 95% CBs (indicated by the gray area) for regions 1–64;
for the remaining regions, the smoothed terms are shown in Supple-
mentary Figures S6–S8. For 155 of the regions (after applying the
Benjamini–Hochberg multiple-testing adjustment), the effect of ‘Type’
was statistically significant (at the 5% significance level) in the model.
For those regions, the CBs for the effect indeed exclude, in some sub-
region(s), the value of 0, in accordance with the statistically significant
result of the model-based test. For most of the regions the effect is
negative, i.e., it suggests a decrease of the methylation probability for
the cancer samples as compared to normal samples.

4. Conclusion

Smoothing-based approaches can precisely and accurately estimate
methylation profiles in bisulfite sequencing data while accounting for
biological variability, spatial correlation of the neighboring CpG sites,
and the irregular spacing of methylation sites across genomic locations.
In this article, we introduced a varying-coefficient model for estimating
smooth effects of explanatory variables and detecting DMRs. Systematic
differences between the estimated smoothers are formally assessed by
simultaneous CBs which account for model uncertainty, multiplicity,

and serial correlation.
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Fig. 12. The worm plots of the residuals for regions 1–64. Black dashed lines indicate the 95% point-wise confidence intervals. The red solid line is a smooth curve fitted to
the points of the worm. If the distributional assumption of the model is suitable for the analyzed data, the solid line should correspond to the horizontal red dashed line. Empty
subplots indicate regions for which the model did not converge.
Fig. 13. Estimates of the smoothed splines (solid black lines) for the model term ‘Type’ for the logit of the methylation probability, with the simultaneous (gray) 95% confidence
bands, for regions 1–64. The vertical black bars at the bottom of the plot indicate the methylated genomic positions. Empty subplots indicate regions for which the model did not
converge.
We showed that the assumption that methylation counts are dis-
tributed according to a binomial distribution is likely not valid. In
particular, in the RA study, the data exhibited a clear overdispersion.
Proper modeling of the variance structure is important from a mean-
structure-estimation point of view in case of binary or count data,
because of the mean–variance link. The model that we propose as-
sumes that the methylation data follow the beta-binomial distribution.
Thus, it facilitates accounting for overdispersion. Moreover, the scale
parameter, 𝜎𝑖, can be modeled as a function of explanatory variables. In
this respect, the proposed approach is more flexible than, for instance,
the quasi-binomial model. This has beneficial consequences regard-
ing the estimation and testing of the effects of explanatory variables
on the methylation probability, as illustrated in the analyzed case
study.

The proposed varying-coefficient model can be applied to targeted
methylation sequencing data as well as whole-genome methylation
sequencing data. However, in the latter case, the method requires a
sliding window approach due to computational complexity. Selecting a
11
window size may not be a trivial task: using a larger size reduces the
number of windows, but wider windows not only increase computation
time, but may also include larger gaps between successive CpG sites.
Another question is how many CpG sites should be included in a
window? (Hansen et al., 2012) A larger number of sites per window
may require a larger number of knots, increasing the computation time.
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