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SUMMARY

In biomedical studies, continuous and ordinal longitudinal variables are frequently encountered. Inmany of
these studies it is of interest to estimate the effect of one of these longitudinal variables on the other. Time-
dependent covariates have, however, several limitations; they can, for example, not be included when the
data is not collected at fixed intervals. The issues can be circumvented by implementing jointmodels, where
two or more longitudinal variables are treated as a response and modeled with a correlated random effect.
Next, by conditioning on these response(s), we can study the effect of one or more longitudinal variables
on another. We propose a normal-ordinal(probit) joint model. First, we derive closed-form formulas to
estimate themodel-based correlations between the responses on their original scale. In addition, we derive
the marginal model, where the interpretation is no longer conditional on the random effects. As a conse-
quence, we can make predictions for a subvector of one response conditional on the other response and
potentially a subvector of the history of the response. Next, we extend the approach to a high-dimensional
casewithmore than two ordinal and/or continuous longitudinal variables. Themethodology is applied to a
case studywhere, amongothers, a longitudinal ordinal response is predictedwith a longitudinal continuous
variable.

KEYWORDS: jointmodel; longitudinal data analysis; probit link; randomeffectsmodel; time-dependent
effects.

1. INTRODUCTION

In many clinical studies the same patients are repeatedly examined, which results in longitudinal
data. This data can be analyzedwith generalized linearmixedmodels. This family ofmodels encom-
passes linear mixed models, which was introduced by Laird andWare (1982). Later the approach
was extended to noncontinuous data by Breslow and Clayton (1993), Wolfinger and O’Connell
(1993) and Engel and Keen (1994). In these models, the correlation induced by the repeated
measurements is capturedwith randomeffects. These effects explicitlymodel the variation between
the subjects.

It can be of interest to model the association between multiple longitudinal responses. A first
option is to treat one of the responses as a predictor, and use it as a time-dependent covariate.
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However, this method has several pitfalls. First, the lag has to be correctly specified, as incorrect
specification can lead to illogical results. An example given by Rizopoulos (2012) is a study where
they found a positive, but insignificant, effect of smoking on the survival of patients with coronary
artery disease (Cavender et al., 1992). However, there was no lagged effect in the model, and hence
only the immediate effect of smoking on deathwas gauged. The explanation of the faulty conclusion
is that most of the smokers had stopped smoking at the last time of follow up before their death.
In the meantime, many patients that were still alive, were still smoking. A second drawback is
the classification of a covariate into an exogenous or endogenous time-dependent covariate. If a
response at time t predicts the value of the covariate at a time s > t, the covariate is endogenous
(Diggle, 2002). Endogenous covariates have important modeling implications. Qian et al. (2020)
have, for example, found that the marginal interpretation of the parameters in a linear mixedmodel
does not hold anymore. Third, attention has to be given to missing data, which will likely occur
in patient studies with follow-up. While ignorability holds for missing data of the response values
under MAR under direct likelihood (Rubin, 1976), this is not the case for missing covariate values.
Fourth, the time-dependent covariate can possibly be an intermediate variable. This means that
the time-dependent covariate is in the causal pathway between another covariate and the response.
As a consequence, including the time-dependent covariate will make the effect of the covariate on
the response disappear. Fi�h, when the responses, as well as time-dependent covariates, are not
collected at fixed intervals, the utilization of time-dependent covariates with lags is not possible.

Joint models provide an alternative to time-dependent covariates. Several approaches for jointly
modeling responses of amixed nature exist. An overview can be found inMolenberghs and Verbeke
(2005) in their Chapter 24. They outline three approaches that are applicable in both hierarchi-
cal and non-hierarchical settings. A first approach employs a bivariate Plackett-Dale distribution
and postulates the existence of an unobserved continuous response that underlies the observed
binary/ordinal response. The second approach, known as the probit-normal formulation, also
assumes the presence of a latent response, with the added feature of errors being correlated to the
continuous response. The third approach is the generalized linear random-effects model, which we
will describe here in greater detail for the longitudinal case.

In joint generalized linear random-effectsmodels, the relation between the responses is symmet-
ric. Here, all longitudinal variables are treated as responses and are modeled with an appropriate
random effects model. The random effects of the different models are allowed to be correlated to
capture the associations. One of the advantages is that the effect of a covariate can be assessed on
multiple outcomes simultaneously and that the association between the responses as well as the
evolution of this association can be assessed. For example, Chakraborty et al. (2003) fitted a joint
model for the continuous HIV-1 RNA concentration in both blood and semen. With the joint
model, he could compare the correlation between both responses between the group with and
withoutHIV treatment.Notably, the use of joint random-effectsmodels is not limited to continuous
responses. In Delporte et al. (2022) a joint model was developed for a longitudinal continuous and
a longitudinal binary response. Not only the latent correlations between the random effects were
scrutinized, but also the correlations between the responses on their original scale could be gauged.
They derived a closed-form formula for the correlation function from the joint model, with the
possibility to include covariates. Their case study focused on the relation between the occurrence
of allergic bronchopulminary aspergilosis (ABPA) andFEVvalues. Basedon the latent correlations,
they found that a better FEV value than expected under themodel resulted in higher probabilities of
lung infection at baseline and that higher increase in lung function than expected under the model
is positively related to a higher probability of absence of ABPA than expected at baseline on the
probit scale. Still, when gauging the correlations on the original scale, the conclusionswere farmore
clinically relevant. We found that the correlation, between the responses as observed, is slightly
stronger for earlier measurements of the ABPA and later measurements of FEV. This suggests that
ABPA at an early stage shows an overall frailty, which exhibits itself later in life. In addition, they
proposed apredictionmodelwhere one of the responses andpotentially the history of the predicted
response are included as predictors in the model.
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Table 1.Number of measurements of theMiniMental State Exam
(MMSE) and Activities of Daily Living (ADL) at each time point.

Response Day 1 Day 3 Day 5 Day 8 Day 12

MMSE 59 58 60 52 38
ADL 60 0 60 0 40

The discrepancy between the manifest and latent correlation in random-effects models is also
discussed in several other papers. For example, Milanzi et al. (2015) caution against drawing
misleading conclusions by using latent and manifest-based correlation reliability measures in-
terchangeably in IRT models. They emphasize that latent correlation-based reliability measures
consistently result in higher values than their manifest correlation-based counterparts. Moreover,
Molenberghs and Verbeke (2005) compare in their Chapter 7 the associations found via the
Bahadur, probit and Dale models. They found a strong downward bias in the marginal correlation
estimates obtained from the Bahadur model in comparison to their probit model counterparts.
Lastly, Fieuws et al. (2006) use joint random-effects models for analyzing binary questionnaire
data. They stress that their interest is in the association between the (latent) concepts underlying
the sets of items, in contrast to the the association between observed responses, for which they
recommend other models.

Some work has been done on the jointmodel for a continuous and a ordinal response. Faes et al.
(2004) used a Plackett-Dale approach to jointly model the birth weight (continuous) and the
probabilities of degrees of malformation (ordinal) of a fetus, where they take into account the clus-
tering induced by a common mother. Still, the model cannot be readily extended to a longitudinal
setting where responses are measured at different time points. Ivanova et al. (2016) formulated a
joint random-effects model in a case study of repeated measures of BMI and clinical targets of
diabetes patients. “Clinical targets” was treated as an ordinal variable. The covariance between the
random intercepts of the variables was examined in order to gauge the association between the
responses. In this paper, we extend the approach of Ivanova et al. (2016) by deriving closed-form
formulas to calculate the correlations between the responses on their original scale. In addition,
a conditional model is derived in order to construct predictions of one response conditional on
the other response(s). The outline of the paper is as follows: Section 2 presents the case study
that serves as the foundation for the subsequent analysis in Section 5. Section 3 discusses the
methodology. It commences with a review of the establishedmethods for clustered continuous and
clustered ordinal responses. Following that, we introduce the normal-ordinal (probit) model and
our methodology based on the joint model. In Section 6 concluding remarks are offered.

2. CASE STUDY

The dataset contains information about the occurrence and progression of cognitive impairment
in 60 elderly hip fracture patients from admission to the twel�h postoperative day (Milisen et al.,
1998).We will focus on the connection between cognitive abilities and functional status and how
the association between both varies over time. Throughout the study, neurocognitive status and
the functional performance were assessed longitudinally; neurocognitive status was measured at
day 1, 3, 5, 8, and 12, while functional status was recorded at day 1, 5, and 12. Table 1 provides
an overview of the number of measurements taken of each response at each time point. Drop-out
occurred because patients were discharged from the hospital before the twel�h post-operative day.
Notably, while deaths were recorded, there were no reported mortalities throughout the duration
of the study.

Neurocognitive status was assessed using the mini-mental state exam (MMSE), which includes
subscales formemory, linguistic ability, concentration, and psychomotor executive skills. Cognitive
status was classified as no impairment (MMSE≥24), moderate impairment (18 ≤ MMSE≤ 23), or
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Figure 1.Observed average (with 95% confidence interval) of the activities of daily living scores on day 1,
5 and 12 (solid) and individual profiles of the 60 subjects (dashed).

severe impairment (MMSE≤ 17) (Milisen et al., 1998; Tombaugh andMcIntyre, 1992). In addi-
tion, the functional status was measured using an adapted version of the Katz ADL-scale (ADL),
which is treated as continuous. ThemeanADL scores and individual profiles are presented at Fig. 1.
A higherADL value indicatesmore dependence on caretakers for activities of daily living, whereas a
higher category of MMSE indicates a lower level of impairment. For exploratory purposes, the point-
biserial correlations between the observed responses at several time points has been calculated (see
Appendix H). It suggests that there exists a moderately strong relation between ADL and both the
event of having severe impairment and the event of having impairment. This correlation seems to
slightly increase over time. However, these correlations are not corrected for covariates and are only
valid when the data would be missing completely at random, which is a very strict assumption.

3. METHODOLOGY

3.1. Model for a single longitudinal continuous response

One of the most popular models for longitudinal continuous variables is the linear mixed model.
Suppose we have N subjects and the jth measurement for subject i is denoted by Yij. The vector
(Yi1, ..Yini) of all ni measurements of subject i is denoted byYi. With this notation, we can write the
model as

Yi|bi ∼ N(Xiβ + Zibi,6i), (3.1)

bi ∼ N(0,D),

where Xi and Zi are, respectively, (ni × k) and (ni × q) dimensional matrices of known covariates
of, respectively, the fixed effects β and the random effects bi. 6i denotes the (ni × ni) dimen-
sional covariance matrix. Notably, i does not mean that the estimates of the variance depends
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on the subject. It indicates that the dimensions of the residual matrix can depend on the subject
(Verbeke andMolenberghs, 2000). We can simplify 6i to σ 2Ii with the assumption that the
random effects fully capture the correlation between the measurements within subjects. This
conditional independence assumption is however not necessary. It can be relaxed by the inclusion
of, for example, serial correlation.

A property of the linear mixed model is that the parameters of the conditional model and the
marginal model are exactly equal. This holds since E[YYY ij] = E[E(YYY ij|bbbi)] = xxx′

ijβ. Still, the marginal
model is defined as

Y i = Xiβ + ǫ∗
i . (3.2)

The residuals ǫ∗
i are here by definition correlated and are normally distributed around 000 with

variance V∗
i . As a consequence, the distribution of the response is

YYY i ∼ N(Xiβ ,V
∗
i ), (3.3)

with V∗
i = ZiDZ

′
i + 6i. More information about linear mixed models can be found in

Verbeke andMolenberghs (2000).

3.2. Model for a single longitudinal ordinal response

A random-effects ordinal regression model can be used for clustered or repeated measures of an
ordinal response. A threshold concept is applied,which assumes that the observedordered response
categories are determined by the value of an underlying continuous response. A series of threshold
values γ1, γ2, ..γd−1 are assumed for the d categories. A response is categorized as category c if the
latent responseY∗

ik surpasses the threshold value γc−1, but not γc. For themeasurement at time k of
this latent response of subject i, k = 1, ..., pi,

Y∗
ik = x′

ikβ + z′
ikbi + ǫik,

is the hierarchical linear mixed model, where xik is the r × 1 vector that contains values for the
covariates of the r-dimensional fixed effects vector β . Next, zik is the q × 1 design vector for the q
randomeffects bi. bi is assumed to follow a normal distribution around 0with the covariancematrix
D. ǫik are the residuals and are assumed to be independently normally distributed withmean 0 and
variance σ 2.

From the latter model for Y∗
ik, the probabilities of the response categories can be derived. The

probability that a response at time k for subject i falls into category c equals

P(Yik = c) = 8

(
γc − ζik

σ

)
− 8

(
γc−1 − ζik

σ

)
,

where ζik = x′
ikβ + z′

ikbi and 8(.) equals the cumulative normal distribution. Similarly, the prob-
ability that a response k of subject i is less than or equal to category c equals

P(Yik ≤ c) = 8

(
γc − ζik

σ

)
.

The choice of the unit and the origin of ζ is arbitrary (Hedeker and Gibbons, 1994). Alternatively,
the logit link function can be applied (Ivanova et al., 2016), but this leads to more cumbersome
calculations and less closed forms can be derived than with the probit link.

In Supplementary Appendix A themarginal random-effects ordinal regression model is derived.
In the latter model, the interpretation is no longer conditional on the random effects. LetZi denote
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the ni × q dimensional design matrix of the random effects and Xi denote the ni × r dimensional
design matrix of the fixed effects. The marginal model is the following:

P(yi ≤ c) = 8(γ c − Xiβ;L
−1
i ), (3.4)

where

Li = I − Zi(D
−1 + Z′

iZi)
−1Z′

i.

3.3. Joint model

The joint mixed model employs a q-dimensional random effects vector ξ i to encompass random
effects linked the ordinal response as well as random effects linked with the continuous response.
This vector follows a multivariate normal distribution with a mean of zero and a covariance matrix
D. ThismatrixD accounts for the correlationbetween repeatedmeasurementsof the same response,
as well as the correlations between (the vectors of) measurements for different responses. We
assume that the responses are independent given the random effects, meaning that the random
effects fully capture the correlation between the responses. Consequently, the joint density of the
responses, given the random effects, is equivalent to the product of the conditional densities of the
individual responses.

The joint marginal density can be obtained by integrating out the random effects out of the
joint density, these calculations can be found in Supplementary Appendix B. Note that the primary
purpose of this joint marginal density is to provide an intermediate result for future calculations.
The joint marginal density is as follows:

f (y1i, y2i ≤ c) = φ(X1iβ;V i)8(γc − X2iβ − αi;Bi), (3.5)

where

V i = Z1iDZ
′
1i + 6i,

αi = Hi(y1i − X1iβ),

Hi = BiZ2iKiZ
′
1i6

−1
i ,

K−1
i = D−1 + Z′

1i6
−1
i Z1i + Z′

2iZ2i,

B−1
i = I − Z2iKiZ

′
2i.

It is possible to extend (3.5) to the high-dimensional case, withmultiple ordinal and/or continuous
responses. Let Y ci represent a vector containing all the measurements of a continuous responses:
Y ci = (Yc

1i1, . . . , Y
c
1in1i

, Yc
2i1, . . . , Y

c
2in2i

, . . . , Yc
ai1, . . . , Y

c
ainai

). Notably, the number of measure-
ments for each response does not have to be the same. Similarly, letYbi denote a vector containing all
themeasurements of the o ordinal responses:Ybi = (Yb

1i1, . . . , Y
b
1ip1i

, Yb
2i1, . . . , Y

b
2ip2i

, . . . , Yb
oi1, . . . ,

Yb
opoi

). Additionally, the matrices Zci and Zbi consist of concatenated matrices of covariates
for the random effects of continuous and ordinal responses, respectively. Specifically, Zci is
formed by combining the matrices of covariates for the separate continuous responses: Zci =
[Zc

1i,Z
c
2i, . . . ,Z

c
ai]

′. Similarly, Zbi is formed by concatenating the matrices of covariates for the

separate ordinal responses: Zbi = [Zb
1i,Z

b
2i, . . . ,Z

b
oi]

′. The matrices of covariates for the fixed
effects are defined in a similar manner: Xci contains the concatenated matrices of covariates for
the continuous responses: [Xc

1i,X
c
2i, . . . ,X

c
ai]

′, while Xbi contains the concatenated matrices of
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covariates for the ordinal responses: [Xb
1i,X

b
2i, . . . ,X

b
oi]

′. Further,6i is a block diagonal matrix with
as blocks the variance-covariance matrices of the continuous responses

6i =




61i 0 ... 0
0 62i .. 0
... ... ... ...
0 0 ... 6ai


.

It is easy to see that the marginal hierarchical model is now

f (yci, ybi ≤ c) = φ(Xciβ;V i)8(γc − Xbiβ − αi;Bi). (3.6)

To be as general as possible, we will use the above expressions for the remainder of the paper.
Due to potential computational difficulties associated with high-dimensional models,

Fieuws and Verbeke (2006) introduced a pseudo-likelihood method to simplify the model fitting.
This involves fitting a bivariate model for every pair of responses and then combining the results.
Kundu (2011) offers a convenient guide to implementing this method in SAS NLMIXED.

3.4. Conditional models

Conditional models offer a practical approach for making predictions of one subset of measure-
ments, conditional on another subset. This methodology proves particularly valuable in circum-
venting challenges related to time-dependent covariates. In analogy to Section 3.3, we defineYYYci as
a vector composed of all themeasurements of a continuous responses andYYYbi as a vector composed
of all the measurements of o ordinal responses. Next, let ỸYY ci denote a ñi-dimensional subset of the
continuous response vectorYYYci, while ỸYYbi represents a p̃i-dimensional subset of the ordinal response
vector YYYbi. Notably, ỸYY ci and ỸYYbi can contain measurements of different, respectively, continuous
and ordinal responses. By analogy, X̃XXci and X̃XXbi represent the ñi × q and p̃i × q submatrices ofXXXci

andXXXbi. Leveraging the ratios of the marginal distributions, it becomes feasible to derive expected
values and their corresponding prediction intervals. A first conditional expected value is a subset
the continuous responses, given a subset of both continuous and ordinal responses. This specific
na-dimensional subvector of predicted continuous response(s) is denoted as ỸYY

a
ci. This prediction

is conditional on, on the one hand, ỸYY
b
ci, the subvector of length nb of values of the continuous

response vector and, on the other hand, ỸYYbi, the subvector of ordinal responses. The notation will
be as follows: the superscript specifies the submatrices or subvectors; superscript a and b denote,
respectively, the rows a1 until ana and b1 to bnb . In addition, the superscript bb specifies the rows
b1 until bnb and columns b1 until bnb . The superscript ab indicates row a1 until ana and column b1
until bnb . The conditional expected value is as follows:

E[Ỹa
ci|Ỹ

b
ci = ỹbci, ỹbi ≤ c] =

(
(EiV

−1
i X̃ciβ)a + Eabi (Ebbi )−1(ỹbci − (EiV

−1
i X̃ciβ)b)

)

+

(
(EiH

′
iB

−1
i )a − Eabi (Ebbi )−1(EiHiB

−1
i )b

)
κ , (3.7)

where κ equals the expected value of the truncated normal distribution with varianceTTTi, mean FFFi
and limits]−∞;ddd]. This expression is implemented in standard statistical so�ware, such as in the R
package tmvtnorm. The analytical expression can be found in Manjunath andWilhelm (2021).
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In addition,

E−1
i = H′

iB
−1
i Hi + V−1

i ,

T−1
i = (EiH

′
iB

−1
i )b

′

(Ebbi )−1(EiH
′
iB

−1
i )b + B−1

i − (H′
iB

−1
i )′Ei(H

′
iB

−1
i ),

Fi = Ti

(
(EiH

′
iB

−1
i )b

′

(Ebbi )−1(ỹ
b
ci − (EiV

−1
i X̃ciβ)b) + (H′

iB
−1
i )′Ei(V

−1
i X̃ciβ)

)
,

d = γ c − X̃biβ + HiX̃ciβ .

The corresponding prediction interval and the derivations can be retrieved in Supplementary
Appendix C.

A special case of (3.7) is when the continuous response is modeled conditional on solely the
ordinal response. In this case, the expression of the expected value simplifies as follows

E[Ỹ ci |̃ybi ≤ c] = Ei

(
V−1
i X̃ciβ + H′

iB
−1
i κ

)
, (3.8)

where κ is again the expected value of the truncated normal distribution with variance T∗
i , mean

F∗
i and limits ]−∞; ddd]. Further,

T∗−1
i = B−1

i − (H′
iB

−1
i )′Ei(H

′
iB

−1
i )

F∗
i = T∗

i · (H′
iB

−1
i )′Ei(V

−1
i X̃ciβ).

The expressions for the prediction interval and the related details considering the calculations can
be found in Supplementary Appendix D.

Tomake predictions for the ordinal response, we can derive conditional probabilities for a subset
of the ordinal response conditional on a subset of the ordinal response and the continuous response.

We denote the subset for which we calculate the probability of being in category c or lower as Ỹa
bi,

andwe calculate it conditional on a subset of the ordinal response Ỹb
bi, and a subset of the continuous

response, Ỹ ci. The use of the superscripts b, ab and bb is in analogy with (3.7). The conditional
probability can be expressed as follows:

f (ỹabi ≤ c|̃ybbi ≤ c, ỹci) =
8(γ c−X̃biβ−Hi(ỹci−X̃ciβ);Bi)

8(γ b
c−X̃

b
biβ−Hb

i (ỹci−X̃ciβ);Bbb
i )

. (3.9)

A�er applying the logit transformation to ensure that the boundaries are constrained to the
unit interval, the corresponding confidence interval can be calculated using the delta method. The
gradients of the parameters can be found in Supplementary Appendix E.

A special case is the conditional density of the ordinal response(s) conditional on solely a
subvector of the continuous response vector. The expected probability is then simplified to

f (ỹbi ≤ c|̃yci) = 8(γ c − X̃biβ − Hi(ỹci − X̃ciβ);Bi). (3.10)

Supplementary Appendix F contains the formulas related to the standard errors.

3.5. Correlation function

By using the property that the responses are independent conditional on the random effects, it
is feasible to deduce a correlation function from the hierarchical joint model. This correlation
captures the manifest correlation, denoted as ρY1ij,Y2ik≤c. It quantifies the relationship between the
continuous response Y1i at time j and the event of an ordinal response Y2i below category c at
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time k. This model-based manifest correlation represents the correlation between the scores on
the original scale, whereas the latent correlation quantifies the correlation between the underlying
random effects. Although calculating the latent correlation is simpler, the scientific interest o�en
focuses on the manifest correlation rather than the latent correlation. The formula for the manifest
correlation function is as follows:

ρY1ij,Y2ik≤c =
− 1

Li
z′
1ijM

−1
i z2ikφ(γc−x′

2ikβ;L
−1
i )

√(
z′
1ijD

∗z1ij+61ij

)
8(γc−x′

2ikβ;L
−1
i )(1−8(γc−x′

2ikβ;L
−1
i ))

, (3.11)

whereD∗ denotes the submatrix ofD relating to the variances and covariances of the randomeffects
of the responsesY1i and Y2i. In addition,M = (D∗)−1 + z′

2ikz2ik.
The details of the derivations and the formulas regarding the standard errors can be found in

Supplementary Appendix G.

4. PARAMETER ESTIMATION

The parameters in the joint random effects model are estimated via maximum likelihood. The
likelihood function of the joint random-effects model is constructed under the assumption that
the responses are independent given the random effects. As a result the likelihood function for a
joint model of the responsesYci and Ybi equals

L(θ) =

N∏

i=1

∫
f1i(yyyci|bbbi)f2i(yyybi ≤ c|bbbi)f (bbbi|DDD)dbbbi, (4.12)

inwhich the vector θ contains all parameters of the conditional distributions and the distribution of
the random effects bbbi. In most cases, numerical approximations are needed for the integral in 4.12.
In this paper, adaptive Gaussian quadrature is used for the estimation, which is implemented in the
SAS procedureNLMIXED (Pinheiro and Bates, 1995;Molenberghs and Verbeke, 2005). The code
for fitting the joint model can be found in Appendix H or via Github.

5. DATA ANALYSIS

In this section, the relationship between the continuous functioning score (ADL) and the ordinal
level of impairment (MMSE) is examined. First, a joint model is implemented, as discussed in
Section 3.3.Here,we fit a linearmixedmodel forADL(as discussed in Section 3.1) and a generalized
linear mixed model with a probit link for MMSE (as discussed in Section 3.2). Next, we allow the
random effects of the responses to correlate to create the joint model. Since Fig. 1 clearly indicates
that the evolution of ADL is not linear, we will include time as a categorical covariate in the linear
mixed model. In contrast, time since the operation is included as a continuous covariate in the
generalized linear mixed model for impairment. The model can be written as

Y1ij = β1,0 + β1,1I(Timeij = 5) + β1,2I(Timeij = 12) + β1,3I(Sexi = F)

+β1,4Ageij + b10i + b11i
Timeij
100

+ ǫ1ij,

8−1(P(Y2ij ≤ c)) = γc −

(
β2,1Timeij + β2,2I(Sexi = F) + β2,3Ageij + b20i + b21i

Timeij
100

)
.

The hierarchical models include several random effects: b10i and b20i are the random intercepts
for, respectively, ADL and MMSE. Next, b11i and b21i are the random slopes for respectively ADL
and MMSE. In order to account for the correlation between the responses, different assumptions
can be made regarding the joint distribution of the random effects such as for example setting
the correlations to 1 (i.e. shared random-effects model). However, we have chosen to make the
distribution as flexible as possible, i.e., not to impose any restriction on the covariance matrix.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/26/1/kxae014/7692336 by H

asselt U
niversity user on 19 August 2025



10 · Delporte et al.

Table 2. Parameter estimates (standard errors) of ADLTOT andMMSE.

Effect ADLTOT MMSE

Intercept 3.42 (4.50) –
γ1 – –19.17 (5.70)
γ2 – –16.61 (5.50)
Time – 0.04 (0.04)
Time 5 –2.68 (0.35) –
Time 12 –3.62 (0.57) –
Sex: Female –1.58 (1.02) –0.37 (1.11)
Age 0.20 (0.05) –0.22 (0.07)
σ 2 3.02 (0.60) –

Table 3. Latent correlations [CI] between the random effects of MMSE and ADL.

b10i b11i b20i b21i

b10i 1
b11i .12 [–.44; .61] 1
b20i –.70[–.89; –.31] –.38 [–.77; .21] 1
b21i .38 [–.80; .95] –.07 [–.98; .98] –.72 [–1; .95] 1

Note that to ensure that the correlation is bounded between −1 and 1, the Fisher-Z-transformation is
applied to compute the confidence intervals, a�er which the values are transformed back to the original
scale.

We assumed that [b10i, b11i, b20i, b21i] ∼ MVN(0,D) and ǫ1i ∼ MVN(0, σ 2Ii). The full SAS code
can be found in Supplementary Appendix H and in Github. Convergence was reached within 10
hours and 19 minutes on a regular laptop (CPU= Processor Intel(R) Core(TM) i7-8850H CPU
@ 2.60GHz, 2592 Mhz, 6 Core(s), 12 Logical Processor(s), RAM= 24GB) and resulted in the
parameter estimates shown in Table 2.

An association between the responses was indicated by a Wald test, by showing that the co-
variances among the random effects of the different responses significantly differ from zero (H0 :
d13 = d14 = d23 = d24 = 0,χ2

df=4 = 12.11, p = 0.02).The latent correlations between the random

effect offer a first glimpse into the relationship between the two responses (Table 3). These values
can be interpreted in terms of the latent random effects. For instance, the correlation between the
random intercepts (r = −.69) shows that immediately a�er the operation, a lower starting value of
ADL (better functioning) than expected based on the covariates, is related to a lower probability of
having a more severe level of impairment than expected based on the covariates. Still, these are the
correlations between the underlying (latent) randomeffects on the probit-scale. It can be of interest
to also examine the manifest correlations, as discussed in Section 3.5, which are the model-based
correlations between the responses on their original scale.

By the use of (3.11) the correlations between the responses on their original scale can be com-
puted. Since these model-based correlations depend on the covariate values chosen, we computed
them for a man of mean age (78). They are displayed in Table 4. Functional impairment is at
each timepoint significantly correlated with the event of a severe cognitive impairment and the
event of impairment. The correlation is quite constant over time, but better cognitive functioning
is consistently related to a higher probability of having no impairment and a lower probability of
having severe impairment.

Table 5 presents the predicted MMSE (Mini-Mental State Examination) statuses on days 8 and
12, conditional onADL (Activities ofDaily Living) scores recorded on days 1 and 8. The latter ADL
scores were set to one standard deviation below, at, or one standard deviation above the respective
day’s mean. Additionally, sex was set to female, and age was set to 78 years. The predictions are
derived from the parameter estimates obtained from the joint model, which were then substituted
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Table 4.Correlations between ADL (higher: lower functioning) andMMSE (cognitive impairment) for a
78-year-old man.

Panel A:Manifest correlations between ADL and the event of having severe impairment.

Time(Impairment)

Time (ADL) 1 3 5 8 12

1 .44 [ .28 ; .58 ] .44 [ .29 ; .57 ] .44 [ .29 ; .57 ] .43 [ .28 ; .57 ] .42 [ .26 ; .57 ]
5 .48 [ .34 ; .60 ] .48 [ .34 ; .60 ] .48 [ .34 ; .60 ] .48 [ .34 ; .61 ] .48 [ .31 ; .61 ]
12 .47 [ .26 ; .65 ] .48 [ .28 ; .64 ] .48 [ .29 ; .64 ] .49 [ .29 ; .64 ] .49 [ .28 ; .65 ]

Panel B: Manifest correlations between ADL and the event of having impairment.

Time(Impairment)

Time (ADL) 1 3 5 8 12

1 .47 [ .31 ; .60 ] .47 [ .32 ; .60 ] .47 [ .33 ; .6 ] .48 [ .34 ; .60 ] .48 [ .32 ; .61 ]
5 .51 [ .38 ; .62 ] .52 [ .39 ; .62 ] .52 [ .41 ; .62 ] .53 [ .41 ; .63 ] .54 [ .41 ; .65 ]
12 .50 [ .30 ; .66 ] .51 [ .32 ; .66 ] .52 [ .34 ; .66 ] .54 [ .37 ; .67 ] .55 [ .37 ; .70 ]

Table 5. Prediction of cognitive impairment based on the history of ADL at time 1 and 5 for a female of 78
years.

Timepoint prediction History ADL (day 1–day 5) P(Impairment=Severe) P(Impairment)

8 14.57–10.87 0.03 [0.00; 0.94] 0.22 [0.12; 0.35]
8 18.10–15.42 0.25 [0.17; 0.36] 0.68 [0.52; 0.80]
8 21.63–19.97 0.72 [0.53; 0.86] 0.96 [0.75; 0.99]
12 14.57–10.87 0.02 [0.00; 1.00] 0.19 [0.47; 0.84]
12 18.10–15.42 0.21 [0.12; 0.35] 0.66 [0.48; 0.80]
12 21.63–19.97 0.69 [0.47; 0.84] 0.95 [0.73; 0.99]

into the conditional model (3.10). The results in Table 5 shows that a history of strong reliance on
a caregiver corresponds to a high probability of cognitive impairment both in the present and in the
immediate future. Furthermore, the confidence intervals emphasize that a lowADLscore, indicative
of low caregiver dependence, holds limited predictive value forMMSE status. This is in contrast to
moderate or high ADL scores, which demonstrate stronger association with MMSE outcomes.

6. CONCLUDING REMARKS

In this research, our primary focus has been on introducing two new methodologies that are built
upon the foundation of joint models: The first methodology involves closed-form expressions to
obtain the manifest correlations from the model between the responses on their original scale,
providing an alternative to investigating latent correlations between the underlying random effects
on the probit-scale. Our second methodology entails employing conditional joint models in lieu
of time-dependent covariates to analyze the effect of a longitudinal predictor on the longitudinal
response. This shi� effectively sidesteps several complications associated with time-dependent
covariates. Firstly, the need for specifying lags is obviated with the joint modeling approach. With
manifest correlations, we can assess the effect of a predictor on the response at each time point.
In addition, our conditional model allows for straightforward adjustments of lags without refitting
the joint model. Secondly, due to the symmetric nature of the relationship in a joint model,
challenges posed by endogeneity or intermediary variables are mitigated. Thirdly, the presence of
missing data necessitates no additional steps, thanks to the principle of ignorability (Rubin, 1976).
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Consequently, ourmethodology becomeshighly suitable for unbalanceddata, as it operateswithout
the requirement of lags or additional methods for handling missing data.

Moreover, our paper extends the application of our conditional model to scenarios involving
multiple longitudinal predictors. By consolidating all predictors into an elongated vector and
adapting the design matrices accordingly, our methodology remains seamlessly applicable.

Illustrating the practical utility of our methodology, we added a case study investigating the
association of two longitudinal responses: a continuous physical functioning score and an or-
dinal mental functioning score. We show that predictions concerning the ordinal response can
be effectively derived from the historical trajectory of the continuous response. In addition, the
missingness is assumed to be at random, and hence results in no additional steps in the data
analysis due to ignorability (Rubin, 1976). Implementation of the joint model can be achieved
through the NLMIXED procedure in SAS. Code is provided in Supplementary Appendix H for
both transforming the data in the correct format and fitting the joint model.

However, it’s worth noting that a limitation of our methodology is its reliance on the propor-
tional odds assumption inherent in the ordinal regression model. Of course, extension to non-
proportionality is possible by having (certain) covariate effects category-dependent. But then, as
always, care needs to be taken to ensure non-negative probabilities ensue. A second drawback is the
computational complexity of a joint model, especially whenmore than two responses are included.
Various methodologies can be used, such as the pairwise fitting approach for high-dimensional
data (Fieuws and Verbeke, 2006), the split-sample approach for large datasets (Molenberghs et al.,
2011), or a combination of both (Ivanova et al., 2017). A third limitation arises from the dependence
of correlations and confidence intervals on the selected random effect structure. Therefore, it is rec-
ommended to model the random effects with a high degree of flexibility, potentially incorporating
splines. Importantly, even within this scenario, our methodology remains applicable.

Further research can be conducted on the bounds of the manifest correlation function. Research
in the context of surrogate markers (Alonso andMolenberghs, 2007) and the Bahadur model
(Molenberghs and Verbeke, 2005) have shown that respectively the bounds of the R2 or the
correlation between dichotomous responses can generally be smaller than one. In addition, it can
be of interest to implement the methodology in a SAS macro to facilitate the usability. Secondly,
other approaches can be explored, such as multiple imputation models, where the value of the one
longitudinal variable is imputed via a random-effects model and then included as a time-dependent
covariate in the other longitudinal model. Still, some issues of time-dependent covariates would
persist, such as endogeneity, possibility of intermediate variables and the definition of lags.
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