
On the radiation resistance and thermal durability of silver-exchanged zeolites for trapping radioxenon

Christophe Gueibe^{1,2}, Jos Rutten¹, Johan Camps^{1,2}, Dominique Moyaux³, Wouter Schroeyers², Grazyna Gryglewicz⁴, Elien Derveaux² and Sonja Schreurs²

¹ Belgian Nuclear Research Centre (SCK CEN)

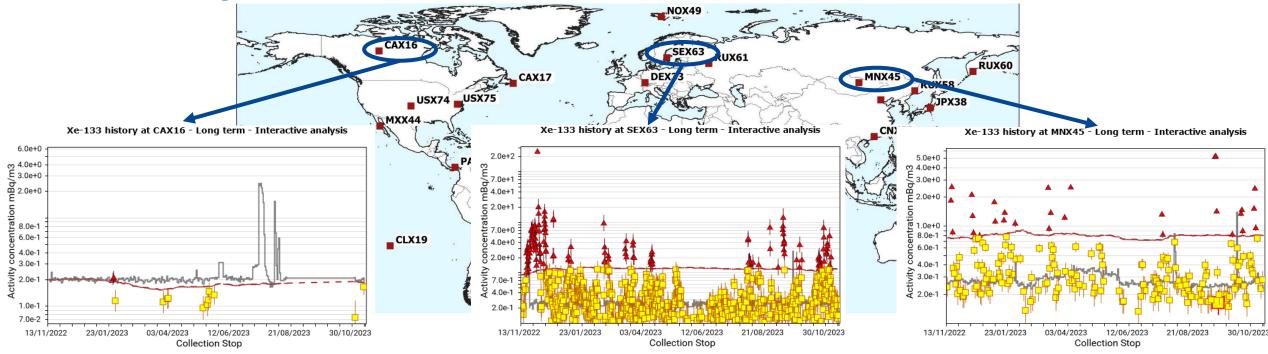
² Hasselt University (UHasselt), CMK

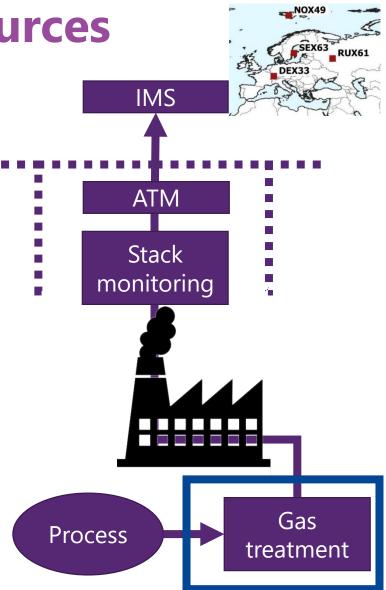
³ Institute for RadioElements (IRE)

⁴ Wrocław University of Science and Technology

WOSMIP 2023 - 5 December 2023

Content


- Introduction
- Thermal durability
- Radiation resistance
- Conclusions & perspectives

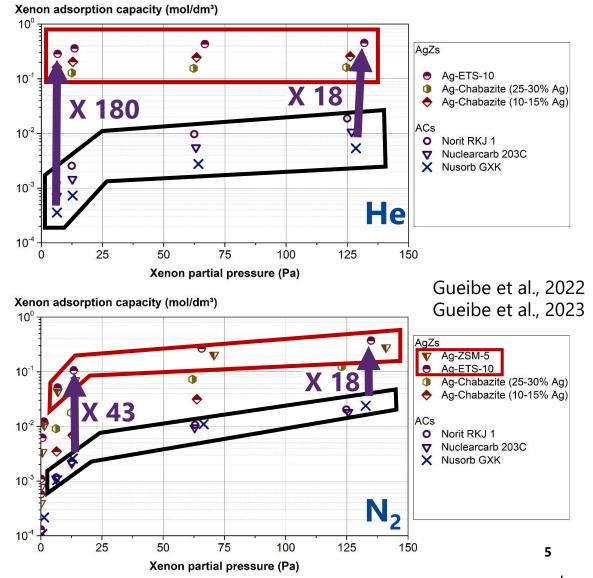

Introduction

- Radioxenon is a key component for the verification of the CTBT
- Detection capability of the IMS noble gas component depends on
 - Number and distribution of stations (31/40)
 - Minimum Detectable Concentration (< 1mBq/m³ for Xe-133)
 - Background level from civilian sources at individual stations

Minimizing the impact of civilian sources

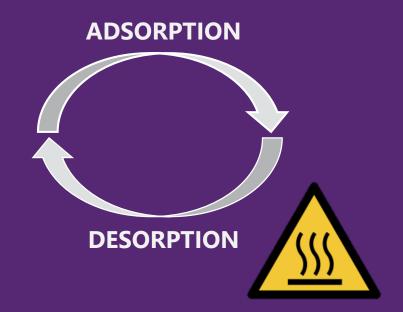
- Further improve IMS stations to maximize the screening capabilities for the four CTBT-relevant isotopes
- Better understand the sources contributing to the civilian background
- Use of stack monitoring for predicting the civilian background by Atmospheric Transport Modelling
- Further reduce radioxenon emissions from civilian sources (specifically to minimize the impact on the CTBT)

Further reduce radioxenon emissions ?


- Silver-exchanged zeolites (AgZs) are more efficient than activated carbon
 - Room temperature
 - P_{xe} < 1000 Pa
 - Xe in He

SCK CEN/57236038

sck cen


• And in N₂ (also Ar)

But AgZs are more sensitive to moisture → Moisture traps are needed

What is their radiation resistance and thermal regeneration durability ?

6

sck cen

First exploration on Ag-ETS-10

- Thermal regeneration durability
 - Regeneration at 170 235°C under He
 - Adsorption of 1000 ppm Xe in He

No significant variation on q_{Xe} \& t_{10\%}

Radiation resistance

sck cen

SCK CEN/57236038

- External gamma irradiation of 1 MGy
- "Only" a few hours of operation at MIPFs

No significant variation on q_{Xe} & t_{10%}

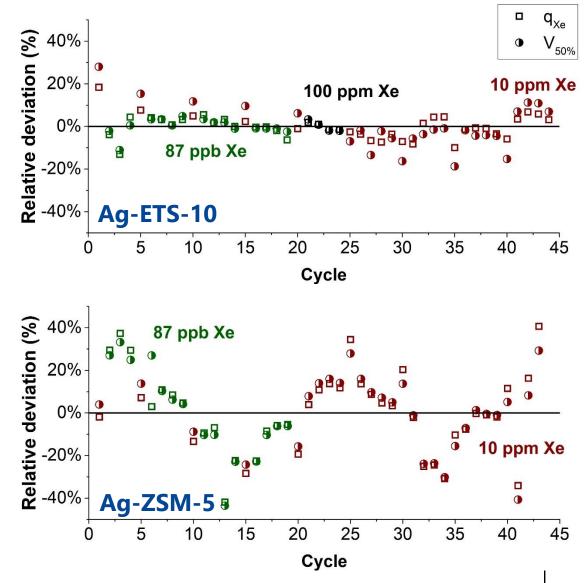
a) _⑧ 40% **q**_{xe} 0 t_{10%} 5555 B 8 Gamma irradiation 6 16 12 18 20 10 60% b) MTZ 50% Average New filling §^{40%}) ZIM 20% 10% 0% 12 16 14 18 6 8 10 20 Cycle

Variations on Mass Transfer Zone (MTZ) are due to packing

Gueibe et al., 2022

New thermal durability investigation

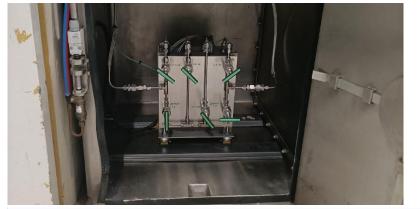
- 44 cycles on Ag-ETS-10
 - Regeneration at $\pm 210^{\circ}$ C (+ test at 260°C) under N₂ (+ test with air)
 - Ads.: 0.087, 10 and 100 ppm Xe in air

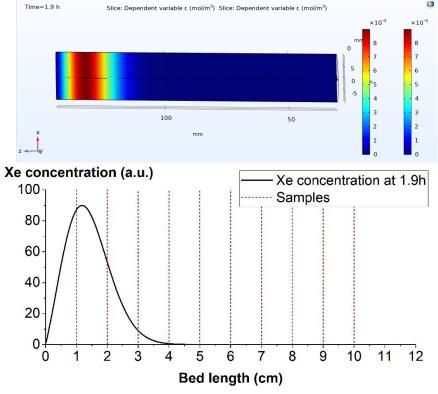

No significant variations on q_{Xe} & V_{50%}
Variations on MTZ

• 43 cycles on Ag-ZSM-5

sck cer

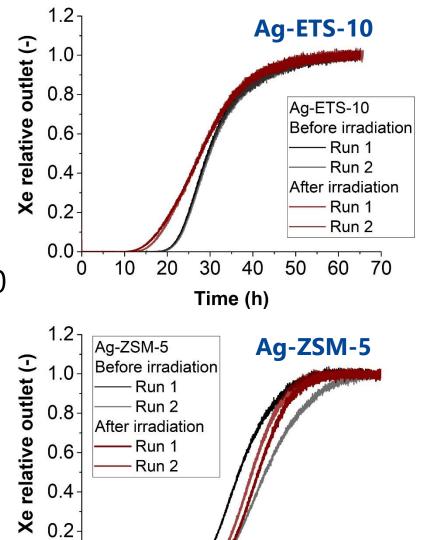
- Regeneration at ±210°C (+ test at 260°C) under N₂ (+ test with air)
- Ads.: 0.087 and 10 ppm Xe in air


Variations on q_{Xe} & V_{50%} likely due to regeneration duration



New in-situ irradiation of AgZs

Adsorption of ~ 50 TBq Xe-133 on ~ 30 g of both AgZs at IRE for 8 days


- Activity distribution estimation with COMSOL Multiphysics[®] (based on stable Xe experiments)
- Estimation of absorbed dose per 1 cm layer (as sampled after irradiation) by MC
 - Current estimate: 10 100 MGy
 - Tens hundreds of hours of operation
- Characterization of the most irradiated sample
 - Xe adsorption at room temperature
 - SEM/EDX, PXRD, ²⁷Al- and ²⁹Si solid-state NMR and microporosity

New in-situ irradiation of AgZs

- No significant degradation on the breakthrough of 10 ppm Xe in nitrogen (packing !)
- No significant differences observed by other characterizations, EXCEPT ²⁹Si NMR on Ag-ETS-10
 - Local changes in the Si environment in Ag-ETS-10

15

20

Time (h)

25

30

0.0

0

5

10

	Ag-ETS-10		Ag-ZSM-5	
Characterization	Thermal cycles	Irradiation	Thermal cycles	Irradiation
SEM/EDX				
PXRD				
²⁷ AI NMR	NA	NA		
²⁹ Si NMR				
Microporosity				

35 40

Conclusions

- 1. Durability for thermal regeneration
 - No significant degradation observed
 - Packing of Ag-ETS-10 is important on the shape of the breakthrough
 - Variations in Xe adsorption on Ag-ZSM-5 likely from desorption duration
- 2. Radiation resistance
 - No significant degradation observed on Ag-ZSM-5
 - No significant degradation observed on Ag-ETS-10, **EXCEPT** on ²⁹Si NMR
 - Changes in the local environment of Si after irradiation
- Publication is being drafted

Perspectives

sck cen

SCK CEN/57236038

- Future potential work
 - Further characterizations of the irradiated samples (e.g. Ag oxidation states)
 - Further investigation on the ²⁹Si NMR result on Ag-ETS-10
 - Effect of impurities on the performances of AgZs (e.g. Cl-containing VOCs)
 - This would require a characterization of the gas stream to be treated at facilities
- New adsorbents in general could
 - Simplify mitigation systems (passive, less pre-conditioning needed, ...)
 - Reduce the operation cost (room temperature, smaller systems, ...)
 - Further reduce radioxenon emissions (equivalent but more efficient systems)

Ideally all three but in practice probably a trade-off between them

Process Safety and Environmental Protection 158 (2022) 576-588

- 41 - TENERS SPRARTEL 41-	Contractor lists and lists of Colores Direct	·····
A CONTRACTOR	Contents lists available at ScienceDirect	Process Safety and Environmental Protection
	Process Safety and Environmental Protection	6014
ELSEVIER	journal homepage: www.elsevier.com/locate/psep	General Change III

Application of silver-exchanged zeolite for radioxenon mitigation at fission-based medical isotope production facilities

Check for updates

Christophe Gueibe^{a,b,*}, Jos Rutten^a, Johan Camps^{a,b}, Dominique Moyaux^c, Wouter Schroeyers^b, Matthias Auer^{d,1}, Sonja Schreurs^b

Separation and Purification Technology 323 (2023) 124433

Contents lists available at ScienceDirect

Separation and Purification Technology

journal homepage: www.elsevier.com/locate/seppur

Silver-exchanged zeolites for collecting and separating xenon directly from atmospheric air

Christophe Gueibe ^{a, b,*}, Jos Rutten ^a, Johan Camps ^{a, b}, Dominique Moyaux ^c, Wouter Schroeyers ^b, Romano Plenteda ^{d,1}, Nikolaus Hermanspahn ^d, Daria Minta ^e, Sonja Schreurs ^b

Thank you for your attention!

SCK CEN/57236038