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Abstract 

The i-DREAMS project focuses on establishing a framework known as the ‘Safety Tolerance Zone (STZ)’ to ensure 
drivers operate within safe boundaries. This study compares Long-Short-Term-Memory Networks and shallow Neural 
Networks to assess participants’ safety levels during i-DREAMS on-road trials. Thirty German drivers’ trips and Forty-
Three Belgian drivers were analyzed using these methods, revealing factors contributing to risky behavior. Results 
indicate i-DREAMS interventions significantly enhance driving behavior, with Neural Networks displaying superior 
performance among the algorithms considered.
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1  Introduction
In the modern era, road safety stands as a critical global 
concern, given the alarming statistics of approximately 
1.3  million annual fatalities resulting from road acci-
dents, along with millions more enduring non-fatal inju-
ries [20]. This persistent challenge has spurred significant 
research efforts and technological innovations aimed at 
curbing these alarming figures and creating safer road 
environments. In response to the alarming global road 
safety crisis, extensive research efforts and technological 

advancements have been dedicated to creating safer road 
environments.

Intelligent Transportation Systems (ITS) have emerged 
as a transformative force, utilizing advanced technolo-
gies to enhance road safety significantly. ITS have revo-
lutionized road safety measures by harnessing the power 
of real-time data analysis and advanced technologies. 
These systems, encompassing various innovative solu-
tions such as smart traffic management, predictive ana-
lytics, and vehicle-to-vehicle communication, have 
drastically reduced accidents and improved overall traf-
fic management [11]. By enabling proactive measures 
and optimizing traffic flow, ITS has played a pivotal role 
in minimizing risks on the roads, thus making significant 
strides toward achieving global road safety goals.

The integration of sophisticated machine learning 
techniques, such as Long Short-Term Memory (LSTM) 
networks and Neural Networks (NN), has further pro-
pelled road safety efforts. LSTM networks, known for 
their ability to comprehend complex temporal patterns, 
and Neural Networks, with their deep learning capabili-
ties, have been instrumental in predicting and preventing 
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road accidents. Researchers have harnessed LSTM net-
works to analyse sequential driving data, accurately 
anticipating hazardous driving behaviours and enabling 
timely interventions [5]. Additionally, Neural Networks, 
through their capacity to process vast datasets, have been 
deployed to identify intricate patterns within driving 
behaviour data, enhancing the precision of safety predic-
tions [21].

By leveraging the predictive power of LSTM networks 
and Neural Networks, road safety predictions have 
reached unprecedented accuracy levels. The fusion of 
these advanced technologies with real-time data from 
Intelligent Transportation Systems holds the promise of 
creating comprehensive, proactive safety measures, ulti-
mately making our roads safer for everyone [6, 21].

The i-DREAMS project, funded by the European Com-
mission Horizon 2020 initiative, strives to establish a 
‘Safety Tolerance Zone’ (STZ) ensuring safe driving 
behaviour. Through continuous monitoring of risk fac-
tors related to task complexity (e.g., traffic and weather) 
and coping capacity (e.g., driver’s mental state and vehi-
cle status), i-DREAMS aims to determine appropriate 
STZ levels and interventions, maintaining drivers within 
safe limits. The STZ comprises ‘Normal’, ‘Dangerous’, 
and ‘Avoidable Accident’ levels. ‘Normal’ indicates a low 
likelihood of a crash, ‘Dangerous’ implies an increased 
possibility, and ‘Avoidable Accident’ suggests a high prob-
ability with time for preventive action.

Building upon i-DREAMS principles, this paper com-
pares machine-learning techniques (LSTM and Neural 
Network) to identify risky driving behaviour levels. Data 
from 30 German drivers and 43 Belgian drivers were ana-
lysed, and the models were developed based on these 
principles and objectives. The paper is organized into 
sections exploring the project’s introduction, the meth-
odology including the aim of the study, the characteristics 
of the experiment, the machine learning techniques used 
on driving behaviour analysis and their results. Conclu-
sions drawn shed light on the NN’s and LSTM’s models 
ability to predict risky driving behaviour and risky driv-
ing instances.

2 � Background
Naturalistic driving studies (NDS) have been widely uti-
lized in recent years to examine unsafe driving behavior 
[13]. There are certain traffic, driver, vehicle, and envi-
ronmental factors that affect the risk of driving [16]. 
Furthermore, recent studies focus on identifying driv-
ing behaviors and categorizing them as risky or safe in 
order to improve road safety [14]. Researchers have uti-
lized models to evaluate unsafe driving behavior based 

on the driver’s state [5] and specific features of the driver, 
such as demographics [18], in a more anthropocentric 
approach.

Other studies [15, 16, 21] have proposed models for 
identifying unsafe driving based on characteristics related 
to driving behavior, such as speed, time to collision, 
and time to headway. Overtaking behaviour of motor-
ized vehicles by measuring the lateral distance between 
the bike and passing vehicle and a statistical model was 
developed to predict the probability of an unsafe critical 
maneuver and cyclists’ safety perception [22].

Furthermore, the continuous development of Intelli-
gent Transportation Systems (ITS) as well as the increas-
ing availability of real-time data streams from in-vehicle 
sensors, GPS systems, and mobile devices has opened 
new opportunities for the application of machine learn-
ing models in real-time risk prediction and Advanced 
Driver Assistance Systems (ADAS). By continuously 
analyzing sensor data and contextual information, these 
models can provide timely alerts and warnings to drivers, 
assist in making safer driving decisions, and contribute to 
the prevention of crashes.

Machine learning is emerging as a powerful tool also in 
the field of road safety and it has become crucial to ana-
lyze the complex and heterogeneous data that are today 
available from new technologies [23, 24]. In recent years, 
classification models have been widely used to identify 
risky driving behavior. Several studies have explored the 
application of ML and DL techniques for classifying risky 
driving behaviors. For example [1], developed an LSTM-
based model to identify driving behavior using sensor 
data, based on three levels of driving behavior (i.e., nor-
mal, drowsy, or aggressive) defined by the authors.

However, while ML and DL techniques show promise 
in classifying risky driving behaviors, several challenges 
persist, including data collection, preprocessing, feature 
selection, model generalizability, and interpretability of 
learned representations. Overcoming these challenges is 
pivotal to ensuring the reliability and applicability of ML 
and DL models in real-world driving scenarios.

Despite numerous research endeavours on analysing 
driver behaviour through ma-chine learning algorithms, 
there are currently no comparable studies in this specific 
domain that investigate both machine learning (ML) and 
deep learning (DL) algorithms [12].In summary, ML and 
DL models represent powerful tools for comprehending, 
forecasting, and mitigating risky driving behavior. Their 
advanced algorithms, coupled with extensive data, hold 
transformative potential for road safety efforts.

Given the context of the paper, exploring the appli-
cation and effectiveness of Neural Networks (NN) 
and Long Short-Term Memory (LSTM) models 
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within the framework of these challenges and oppor-
tunities can provide a nuanced understanding of 
their impact on driving behaviors in different cul-
tural contexts. Continued research and collabora-
tion in this field are imperative to fully harness the 
benefits of advanced algorithms in enhancing driving 
safety, particularly in the unique driving contexts of 
Germany and Belgium.

3 � Data description
Within the i-DREAMS project, a naturalistic driv-
ing experiment was carried out involving 30 drivers 
from Germany and a large database of 5,344 trips and 
84,434  min was created. As for the Belgian drivers 
the database consisted of a varied number of drivers 
across the different phases of the experiment, with 39 
drivers remaining consistent throughout the phases, 
7163 trips and 147,337 min. The on-road trial experi-
ment was carried out in four phases:

Phase 1: monitoring − 30 German car drivers, 
1,397 trips (23,617 min) and 39 Belgian car drivers, 
1,173 trips (23,725 min).
Phase 2: real-time interventions − 30 German car 
drivers, 1,322 trips (19,469  min) and 43 Belgian car 
drivers, 1,549 trips (31,414 min).
Phase 3: real-time & post-trip interventions − 30 
German car drivers, 1,129 trips (17,704 min) and 51 
Belgian car drivers, 1,973 trips (40,121 min).
Phase 4: real-time. post-trip interventions & gamifica-
tion − 30 German car drivers, 1,496 trips (23,644 min) 
and 49 Belgian car drivers, 2,468 trips (52,077 min).

The on-road experiment was planned and executed 
based on established principles found in the relevant 
literature, emphasizing the evaluation of interventions 
aimed at aiding drivers in adhering to safe driving prac-
tices [7, 9, 17]. The experiment consisted of four distinct 
phases. The Phase 1, represents the monitoring phase, 
where no interventions were implemented and lasted 4 
weeks. Phase 2 refers to the in-vehicle interventions, by 
providing real-time warnings using adaptive ADAS and 
had a duration of 4 weeks. Following, in Phase 3, which 
lasted 4 weeks, drivers received feedback on their driving 
performance through the app and in Phase 4 the drivers 
received feedback likewise in Phase 3, but additionally 
at the same time gamification elements were also active. 
Phase 4 lasted 6 weeks. All four phases concentrate on 
observing driving behaviour and assessing the influence 
of real-time interventions like in-vehicle warnings, as 
well as interventions after the trip such as post-trip feed-
back and gamification, on driving behaviour. A sample of 

the dataset used in this study is provided at the end in 
the section of Appendix A.

4 � Methodological overview
4.1 � Neural networks (NNS)
An Artificial Neural Network (ANN) is a highly com-
plex and powerful computational model capable of cap-
turing non-linear relationships in data. It operates as a 
parallel processor, simulating the behaviour of neurons 
in the human brain. A multi-layer perceptron ANN, 
which is commonly used for classification tasks, con-
sists of three types of layers: an input layer, an output 
layer, and one or more hidden layers. The input layer 
serves as the entry point for the network, receiving the 
values of the explanatory variables, which represent 
the input data. These variables could be various fea-
tures extracted from the driving dataset, such as vehicle 
speed, acceleration, and headway.

The hidden layer, composed of a varying number 
of neurons, performs calculations by summing the 
weighted inputs from the explanatory variables. Each 
neuron in the hidden layer applies an activation func-
tion, which introduces non-linearity to the model. This 
non-linearity is crucial for capturing complex associa-
tion patterns and representing the intricate relation-
ships between the input features and the target variable, 
such as different levels of risky driving behavior. The 
number of neurons in the hidden layer is typically 
determined through experimentation, as it can impact 
the model’s capacity to learn and generalize from the 
data. In some crash analysis applications, a single hid-
den layer is often sufficient, while more complex prob-
lems may require multiple hidden layers.

Moving to the output layer, this layer aggregates 
the values from the hidden neurons and produces the 
network’s final output. In the context of risky driving 
behavior classification, the output layer would have 
a number of neurons corresponding to the different 
classes or levels of risk. The activation function applied 
in the output layer depends on the nature of the prob-
lem. For instance, in a multi-class classification sce-
nario, the softmax activation function is commonly 
used to calculate the probabilities of each class. These 
probabilities are then used to determine the predicted 
class or level of risky driving behavior.

The design and architecture of the neural network, 
including the number of layers, neurons, and activa-
tion functions, are essential considerations in achiev-
ing accurate and effective classification of risky driving 
behavior. Previous studies [4, 14] have explored the 
application of multi-layer perceptron ANNs in similar 
contexts, highlighting the network’s ability to capture 
complex patterns and associations in driving data.
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4.2 � Long short‑term memory (LSTM) networks
Long Short-Term Memory Models (LSTMs) are a spe-
cialized form of Recurrent Neural Networks (RNNs) 
renowned for their ability to capture long-range 
dependencies [5]. LSTMs have gained widespread 
adoption and exhibit exceptional performance in vari-
ous problem domains. The LSTM-CNN deep learning 
algorithm is predominantly employed for detecting 
abnormal driving behaviour in drivers, boasting supe-
rior recognition accuracy [8]. . Cura A. et al. (2021) [3] 
conducted a study where they developed LSTM and 
CNN-based neural network models to classify and eval-
uate bus driver behaviour, focusing on aspects such as 
deceleration, engine speed pedaling, corner turns, and 
lane change attempts. The CNN architecture demon-
strated superior performance in identifying aggressive 
driving compared to the LSTM network for behavioural 
modeling, providing valuable insights for advancing 
models in this domain.

Unlike conventional RNNs, LSTMs are explicitly 
designed to address the challenge of long-term depend-
encies. They possess an inherent capacity to retain infor-
mation over extended periods, making them particularly 
suitable for tasks involving sequential data modeling.

An LSTM comprises a series of repeating modules that 
form a chain-like architecture [10]. Within these hidden 
units, LSTMs utilize memory blocks to capture long-
term dependencies present in the data. This characteris-
tic has demonstrated remarkable effectiveness in diverse 
time-series tasks, including activity recognition, video 
captioning, and language translation.

The core component of an LSTM is the cell state, also 
known as the memory block. It contains one or multi-
ple memory cells that are regulated by structures called 
gates. These gates control the flow of information into 
and out of the memory block, enabling the LSTM to 
selectively retain relevant sequential information and dis-
card irrelevant information. The gates are formed using 
a combination of sigmoid activation functions and ele-
ment-wise multiplications, allowing precise control over 
information flow throughout the network.

Typically, an LSTM consists of three fundamental 
gates:

1.	 Forget gate: The forget gate determines which infor-
mation to retain or discard from the cell state. It 
employs a sigmoid layer, referred to as the “forget 
gate layer,” to make this decision.

2.	 Input gate: The input gate determines which new 
information to incorporate into the cell state and 
how to update it. It comprises two components: an 

input gate layer, implemented using a sigmoid layer, 
that determines which values to update, and a hyper-
bolic tangent (tanh) layer that generates a vector of 
candidate values to potentially integrate into the 
state. The old cell state is then updated to the new 
cell state based on these components.

3.	 Output gate: The output gate filters and determines 
which information to produce as the output from a 
memory block at a specific time step. The output is 
derived from the cell state but undergoes filtering. 
An output gate, consisting of a sigmoid layer, deter-
mines the relevant portions of the cell state to output. 
The filtered cell state then passes through a tanh acti-
vation function to scale the values between − 1 and 
1. Finally, the result is multiplied by the output of the 
sigmoid gate, generating the desired output.

4.3 � Performance metrics
For the classification models, the confusion matrix and 
several performance metrics were utilized to evaluate the 
model’s performance. The confusion matrix provides True 
Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN) metrics. True Positive (TP) represents 
cases where the model correctly identified a real positive. 
On the other hand, False Positive (FP) indicates cases, 
where the model detected an anomaly that did not actually 
exist as Real Positive, and False Negative (FN), means there 
was an actual ‘‘True” that the model failed to detect as an 
anomaly [23, 24]. From the confusion matrix, the following 
well-established error metrics were calculated:

Accuracy, which measures the proportion of correctly 
classified observations, is defined as:

Precision, which quantifies the number of positive class 
predictions that actually belong to the positive class, is 
defined as follows:

Recall, also known as True Positive Rate, which measures 
the proportion of actual positive cases correctly identified 
by the model, is defined as follows:

F1score, which combines precision and recall into a sin-
gle measure, is defined as follows:

(1)Accuracy =
TP + TN

TP + FP + FN + TN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN
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False alarm rate, which measures the proportion of 
negative cases incorrectly classified as positive is defined 
as follows:

4.4 � Methodology analysis
The neural network model is structured as a multi-
layer architecture, where each layer is responsible for 
extracting and learning different levels of patterns 
from the input driving data. The initial layer processes 
basic features, which are then passed on to subsequent 
layers for more complex pattern recognition. The 
training process involves adjusting the model weights 
based on historical driving data, enhancing its ability 
to differentiate between safe and risky driving behav-
iours. This model’s performance is later validated 
using a separate set of data to determine its predictive 
accuracy. The following high-level description dem-
onstrated in Fig.  1 below presents the methodology 
structure.

The LSTM model was structured upon the same meth-
odology, as presented below in Fig. 2.

A snippet of the code for the neural network model 
and long short-term memory model has been provided 
in Appendix A. It is important to add that the NN 
model architecture consists of two dense (fully con-
nected) layers. The first layer has 128 units, and the 
second has 64 units, all using the ReLU activation func-
tion. The output layer is configured with the appropri-
ate number of units based on the classes in the target 
variable, utilising the softmax activation function. The 

(4)f 1− score =
2x(Precision)x(Recall)

(Precision)+ (Recall)

(5)False AlarmRate =
FP

FP + TN

model is optimised using the Adam optimizer with a 
sparse categorical cross-entropy loss function. Dur-
ing training, the model is optimised for 100 epochs 
with a batch size of 32, and 10% of the training data are 
reserved for validation.

The hyperparameter values in the LSTM model 
were chosen based on established practices for work-
ing with similar datasets. The LSTM model is designed 
for sequential data and is composed of two LSTM layers 
with 128 and 64 units, respectively. Both LSTM layers 
use ReLU activation. The ReLU activation function was 
chosen for its ability to capture complex relationships. A 
dropout rate of 0.2 and a recurrent dropout of 0.2 were 
implemented to prevent overfitting. The output layer, 
employing softmax activation, is adapted based on the 
number of classes. The model is compiled with the Adam 
optimizer, a learning rate of 0.001, and sparse categori-
cal cross-entropy loss. Training occurs over 100 epochs 
with a batch size of 64, and 10% of the training data are 
set aside for validation.

5 � Results
5.1 � Neural networks (NNs) for heading and speeding
5.1.1 � German car drivers
The utilization of the Neural Networks (NNs) classifica-
tion algorithms in this study serves as a valuable prepara-
tory phase for the subsequent LSTM classification. Two 
feed-forward multi-layer perceptron models were applied 
to a subset of the German car drivers’ dataset. This sub-
set consisted of data from 30 drivers and 5,340 trips. The 
high accuracy achieved, exceeding 94%, highlights their 
effectiveness in real-time prediction of the STZ. This out-
come supports the notion that real-time STZ prediction 
is indeed feasible. Furthermore, the low false alarm rate, 
with a maximum of 6%, demonstrates the models’ abil-
ity to minimize incorrect predictions and reduce unnec-
essary alerts. The successful application of these neural 

Fig. 1  High-level algorithm description of the neural network model

Fig. 2  High-level algorithm description of the long short-term 
memory model
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network models paves the way for the implementation of 
LSTM-based approaches, which can leverage the tempo-
ral nature of the data to potentially enhance the precision 
and reliability of the STZ prediction. The upcoming sub-
section will delve further into the LSTM classification, 
building upon the foundations established by the neural 
network models.

After the application of the models, the identified con-
fusion matrix was produced for the two independent var-
iables (i.e. headway and speeding), as shown in Table 1.

From the confusion matrix, the following metrics 
were estimated and are depicted in Table 2.

In Fig.  3, the plot titled “Model Loss” displays the 
progression of the model’s loss during training and 
validation phases across multiple epochs. The x-axis 
represents the number of training epochs, while the 
y-axis represents the corresponding loss values. The 
blue line represents the model’s training loss at each 
epoch. Training loss measures how well the model is 

performing on the training data. As the model learns 
from the training data, the goal is to minimise this 
loss, indicating improved predictive performance. The 
orange line represents the validation loss at each epoch. 
Validation loss measures how well the model general-
ises to unseen data not used during training. It helps to 
identify if the model is overfitting (performing well on 
training data but poorly on new data) or underfitting 
(not capturing the underlying patterns).

The results shown in are in line with relevant litera-
ture on real-time safety evaluations [1], as well as pre-
vious project analyses utilized on simulator data [4]. 
Precision and f1-score metrics are probably lower due 
to the greater amount of ‘normal’ STZ level instances as 
compared with ‘dangerous’ conditions.

5.1.2 � Belgium car drivers
The results from the Belgium car drivers dataset as 
demonstrated in the Tables  3 and 4 indicate that the 
models performed well, especially in the case of speed-
ing prediction, where it achieved high accuracy and 
recall. For headway prediction, while the accuracy is 
slightly lower than that of speeding, the precision and 
recall values are balanced, indicating a good ability to 
identify true positive cases without many false positives 
or false negatives.

These findings suggest that the models are effective 
in classifying instances of headway and speeding, with 
the speeding model showing particularly strong perfor-
mance in identifying positive cases. The absence of false 
positives in both cases (FP = 0) is a notable achievement, 
signifying a low rate of incorrectly identified positive 
cases.

Table 1  Confusion data matrix for headway and speeding

Variable TP FP FN TN Sum

Headway 33,378 0 1400 82 34,860

Speeding 2178 1987 63 30,632 34,860

Table 2  Assessment of classification model for headway and 
speeding for German car drivers

Variable Accuracy Precision Recall f1-score False Alarm Rate

Headway 95.98% 100.00% 95.97% 97.95% 0.00%

Speeding 94.12% 52.29% 97.19% 68.00% 6.11%

                      (a)                                      b)
Fig. 3  Model loss of the neural network of German car drivers for headway (a) and speeding (b)
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A descending trend in both training and validation loss 
is achieved in the neural network of Belgium car driv-
ers for headway (a) and speeding (b) as demonstrated in 
Fig. 4 below.

The analysis of the results reveals a commendable 
performance by the models, especially in predicting 
instances of speeding. The model not only demon-
strated high accuracy, indicating the overall correct-
ness of its predictions, but also exhibited a high recall 
rate. This high recall implies that the model success-
fully identified the majority of actual positive cases of 
speeding. Similarly, the headway prediction, while hav-
ing a slightly lower accuracy compared to speeding, 
maintained a balance between precision and recall. 
This equilibrium signifies the model’s ability to accu-
rately pinpoint true positive cases without generat-
ing excessive false positives or missing actual positive 
instances.

5.2 � Long short‑term memory (LSTM) for heading 
and speeding of level 0 and 1

5.2.1 � German car drivers
Building upon the foundations laid by the previously 
mentioned neural network models, the subsequent sub-
section focuses on the application of Long Short-Term 
Memory (LSTM) classification for real-time prediction 
of the Steering Torque Zone (STZ). The LSTM approach 
capitalizes on the temporal nature of the data to poten-
tially enhance the precision and reliability of the STZ 
prediction. The LSTM models were trained and evalu-
ated using a subset of the German car drivers’ dataset, 
consisting of data from 30 drivers and 5,340 trips.

The LSTM models, while showing a lower level of accu-
racy and precision compared to the previous neural net-
work models, still exhibit a fair level of performance in 
predicting headway and speeding incidents.

For headway prediction, the model accurately identi-
fies approximately 45.57% of instances, which is a signifi-
cant improvement from random chance. The precision of 
42.13% indicates that when the model predicts a positive 
case, it is correct 42.13% of the time. The recall of 45.57% 
implies that the model captures 45.57% of all actual posi-
tive cases. The F1-score of 41.11% signifies a balanced 
measure of precision and recall.

In the case of speeding prediction, the model per-
forms slightly better with an accuracy of 53.14%. The 
precision of 49.54% indicates that nearly half of the pos-
itive predictions made by the model are accurate. The 
recall of 53.14% shows that the model captures 53.14% 
of all actual speeding cases. The F1-score of 50.81% 
indicates a balanced trade-off between precision and 
recall.

Table 3  Confusion data matrix for headway and speeding

Variable TP FP FN TN Sum

Headway 37,517 0 80 7915 45,512

Speeding 30,069 0 0 6193 36,462

Table 4  Assessment of classification model for headway and 
speeding for Belgian car drivers

Variable Accuracy Precision Recall f1-score False Alarm Rate

Headway 77.19% 77.64% 77.19% 76.90% 22.81%

Speeding 83.51% 80.71% 83.51% 79.78% 16.49%

                            (a)                                 (b)
Fig. 4  Model loss of the neural network of Belgian car drivers for headway (a) and speeding (b)
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Compared to the previous neural network models, 
these LSTM models show a lower level of accuracy and 
precision. However, it’s crucial to note that LSTMs are 
particularly valuable in capturing sequential patterns and 
temporal dependencies in data. Despite the decrease in 
accuracy and precision, the LSTM models might excel in 
capturing nuanced patterns in the data, especially tem-
poral ones, which could lead to more accurate predic-
tions in specific contexts or time-dependent scenarios 
(Table 5).

A descending trend in both training and validation loss 
is achieved in the LSTM of German car drivers for head-
way (a) and speeding (b) as demonstrated in Fig. 5 below. 
Τhe Divergence or this significant gap between training 
and validation loss in Fig.  5a might indicate overfitting 
(high training performance but poor generalisation).

5.2.2 � Belgium car drivers
It is important to consider that an accuracy below 60% 
may not be satisfactory for a high-performance interven-
tion system, as it could result in a relatively high num-
ber of false alarms or missed detections. However, the 
required level of accuracy depends on the specific use 
case and the associated risks. For instance, in a system 
aimed at detecting potential crashes or safety hazards, a 

higher level of accuracy may be necessary to ensure the 
safety of drivers and other road users.

The LSTM models for Belgium show moderate per-
formance in predicting headway and speeding incidents. 
For headway prediction, the model achieves an accuracy 
of 58.12%, indicating it correctly classifies approximately 
58.12% of the instances. The precision of 35.65% suggests 
that when the model predicts a positive case, it is cor-
rect 35.65% of the time. The recall of 58.12% signifies that 
the model captures 58.12% of all actual positive headway 
cases. The F1-score of 37.33% reflects a balance between 
precision and recall.

In the case of speeding prediction, the model performs 
slightly lower with an accuracy of 48.27%. The precision 
of 25.75% indicates that only a quarter of the positive 
predictions made by the model are accurate. The recall 
of 48.27% shows that the model captures 48.27% of all 
actual speeding cases. The F1-score of 32.59% indicates a 
trade-off between precision and recall.

The LSTM models in Belgium exhibit moderate per-
formance, especially in identifying headway incidents. 
While they demonstrate a capacity to capture positive 
cases, there is room for improvement, particularly in 
reducing false positives and enhancing precision. Fur-
ther refinements in model architecture, feature selection, 
or additional data preprocessing techniques might be 
necessary to enhance the accuracy and reliability of the 
LSTM models for both headway and speeding predic-
tions (Table 6).

A descending trend in both training and validation loss 
is achieved in the LSTM of Belgium car drivers for head-
way (a) and speeding (b) as demonstrated in Fig. 6 below. 
Τhe Divergence or this significant gap between training 

Table 5  Assessment of classification model for headway and 
speeding for German car drivers

Variable Accuracy Precision Recall f1-score False Alarm Rate

Headway 45.57% 42.13% 45.57% 41.11% 54.43%

Speeding 53.14% 49.54% 53.14% 50.81% 46.86%

                           (a)                            (b)
Fig. 5  Model loss of the LSTM model for German car drivers for headway (a) and speeding (b)
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and validation loss in Fig.  6b might indicate overfitting 
(high training performance but poor generalisation).

Aggregate comparisons of F1-scores between 
LSTM and neural networks are presented in the fol-
lowing graphs (Figs.  7 and 8). These figures pre-
sent a comparison of F1-scores achieved by LSTM 
and Neural Network models across multiple epochs 

Table 6  Assessment of classification model for headway and 
speeding for Belgian car drivers

Variable Accuracy Precision Recall f1-score False Alarm Rate

Headway 58.12% 35.65% 58.12% 37.33% 41.88%

Speeding 48.27% 25.75% 48.27% 32.59% 51.73%

                            (a)                            (b)
Fig. 6  Model loss of the LSTM model for Belgian car drivers for headway (a) and speeding (b)

Fig. 7  Aggregate Comparison of LSTM and NN F1-scores for Headway
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for headway classification. Each bar represents the 
F1-score achieved by the respective model at a specific 
epoch. The LSTM model, depicted by blue bars, dem-
onstrates varying performance across epochs, with 
slight fluctuations in F1-scores. In contrast, the Neural 
Network model, shown by orange bars, exhibits rela-
tively stable F1-scores across epochs. This comparison 
provides insights into the performance consistency and 
potential effectiveness of each model in headway and 
speeding classification tasks.

6 � Discussion
The objective of this study was to develop, compare, 
and contrast machine learning techniques for identify-
ing risky driving behaviour. The data used in this study 
comprised trips from a sample of 30 German drivers 
and 43 Belgian drivers, and two machine learning clas-
sifiers, LSTM and a Neural Network, were developed.

Comparing the results of the LSTM model with the 
previous neural network models, it is evident that the 
LSTM model yields lower performance in terms of 
accuracy, precision, recall, F1-score and false-alarm 

rate. The LSTM model achieves a test accuracy lower 
than the accuracy achieved by the previous neural net-
work models mentioned earlier. Similarly, the preci-
sion, recall, F1-score and false - alarm rate metrics also 
indicate lower performance compared to the previous 
models.

Germany’s NN models demonstrate superior perfor-
mance in both accuracy and precision-recall balance 
compared to Belgium’s models and their respective 
LSTM counterparts. Belgium’s NN models, while 
strong, present difficulties in achieving high precision, 
especially for speeding incidents. The LSTM models in 
both countries show potential for capturing temporal 
patterns, but they currently lag behind the NN mod-
els in terms of overall accuracy and precision-recall 
balance.

The contrasting factor between the two methods lies 
in the ability to capture temporal dependencies in the 
data. While the previous neural network models utilized 
a feed-forward architecture without considering the 
temporal aspect, the LSTM model specifically leverages 
the sequential nature of the data to potentially improve 

Fig. 8  Aggregate Comparison of LSTM and NN F1-scores for Speeding
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prediction performance. However, in this case, the LSTM 
model did not outperform the previous models. This out-
come suggests that the temporal dependencies present in 
the data may not be crucial for accurately predicting the 
STZ or that the LSTM model’s architecture and hyper-
parameters need further tuning to achieve better results. 
Further analysis and experimentation may be required to 
determine the optimal approach for predicting the STZ 
accurately.

The results of predictive real-time analyses demon-
strated that the level of STZ can be predicted with an 
accuracy of up to 95%. Additionally, post-trip explana-
tory studies highlighted the capacity of state-of-the-art 
econometric models to provide insights into the complex 
relationship between risk and the interdependence of 
task complexity and coping capacity.

Among the machine learning algorithms, Neural Net-
works proved to be the best approach for capturing com-
plex relationships between various driving parameters 
and predicting the likelihood of potential risks or crashes. 
These algorithms were trained using the i-DREAMS data 
and deployed in real-time applications, such as in-vehicle 
systems or mobile applications, to provide immediate 
feedback and guidance to drivers regarding their driving 
behaviour. This feedback aimed to assist drivers in mak-
ing informed decisions, improving their driving habits, 
and reducing crash risk.

The identification of safe driving behaviour through 
the ensemble of machine learning algorithms and 
i-DREAMS data has the potential to revolutionize road 
safety interventions. By leveraging data-driven insights 
and advanced analytics, this approach can contribute to 
creating a safer driving environment, reducing the num-
ber of crashes, and ultimately saving lives.

7 � Conclusions
The findings of this study have significant implications 
for road safety interventions. The insights derived play 
a pivotal role in refining the capabilities of the STZ by 
providing a deeper understanding of driving behavior 
dynamics and improving the prediction of risky driving 
scenarios. By leveraging machine learning algorithms 
and data-driven insights, it is possible to identify safe 
driving behavior, provide immediate feedback to drivers, 

and ultimately contribute to creating a safer driving 
environment. While our models hold promise, further 
refinement is necessary to fully maximize their potential 
benefits.

Analyzing the long-term impact of interventions, eval-
uating real-time systems, and considering human fac-
tors and driver engagement are crucial areas for further 
investigation. Additionally, assessing the generalizability 
and scalability of the developed models and interventions 
across diverse populations, geographic locations, and 
vehicle types will ensure their broader impact in improv-
ing road safety.

It is important to acknowledge the limitations of 
this study. The dataset used in this research consisted 
of trips from a sample of 30 German drivers and of a 
varied number of Belgian car drivers across the differ-
ent phases of the experiment, with 39 drivers remain-
ing consistent throughout the phases, which may not 
fully represent the diversity of driving behaviors across 
different regions and populations. Furthermore, the 
performance of the LSTM model was lower compared 
to the Neural Network model, suggesting that further 
optimization and tuning may be required for improved 
results.

In conclusion, this study has demonstrated the 
potential of machine learning techniques, particularly 
Neural Networks, for identifying risky driving behav-
ior and improving road safety. The development and 
deployment of real-time applications based on these 
techniques can provide drivers with immediate feed-
back and guidance to help them make informed deci-
sions, improve their driving habits, and reduce crash 
risk.

Future research should focus on incorporating con-
textual information, such as weather conditions, road 
infrastructure, and traffic patterns, to enhance the 
accuracy and applicability of the models. Personalized 
driver modeling, considering individual characteristics, 
can also lead to more effective behavior change inter-
ventions. By addressing these areas, we can further 
advance our understanding of safe driving behavior 
identification, refine intervention systems, and ulti-
mately contribute to improving road safety, reducing 
the number of crashes, and preventing injuries on our 
roads.
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Appendix A

Table 7  Dataset sample

grpby_seconds 0 30 60 90 120 150 180 210

trip_uuid_ 223aRz8e5o 
TxyFAfYVLi4S

223aRz8e5o 
TxyFAfYVLi4S

223aRz8e5o 
TxyFAfYVLi4S

223aRz8e5o 
TxyFAfYVLi4S

223aRz8e5o 
TxyFAfYVLi4S

223aRz8e5o 
TxyFAfYVLi4S

223aRz8e5o 
TxyFAfYVLi4S

223aRz8e5o 
TxyFAfYVLi4S

trip_start_ 2021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 00:00

2021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 00:00

2021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 00:00

2021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 00:00

2021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 00:00

2021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 00:00

2021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 00:00

2021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 
00:002021-07-26 
13:16:40 + 00:00

trip_end_ 2021-07-26 
13:23:51 + 00:00

2021-07-26 
13:23:51 + 00:00

2021-07-26 
13:23:51 + 00:00

2021-07-26 
13:23:51 + 00:00

2021-07-26 
13:23:51 + 00:00

2021-07-26 
13:23:51 + 00:00

2021-07-26 
13:23:51 + 00:00

2021-07-26 
13:23:51 + 00:00

iDreams_Headway_
Map_level_−1_
mean
v

−9999 1 0.866667 1 1 0.566667 0 0.666667

iDreams_Headway_
Map_level_0_mean

−9999 0 0.1 0 0 0.1 0.133333 0.333333

iDreams_Headway_
Map_level_1_mean

−9999 0 0.033333 0 0 0.333333 0.8 0

iDreams_Headway_
Map_level_2_mean

−9999 0 0 0 0 0 0.066667 0

iDreams_Headway_
Map_level_3_mean

−9999 0 0 0 0 0 0 0

iDreams_Speeding_
Map_level_0_mean

−9999 0 0 0 0.0333 0.0333 0.0333 0.0333

iDreams_Speeding_
Map_level_1_mean

−9999 0 0 0 0.0333 0.0333 0.0333 0.0333

Code Snippet for the neural network model 

#Define and compile the neural network model.

model = keras.Sequential([.

keras.layers.Dense(128,                           activation=‘relu’, 

input_shape=(X_train.shape [1], )),

keras.layers.Dense(64, activation=‘relu’),

keras .layers .Dense(len(label_encoder.classes_), 
activation=‘softmax’) # Output layer with appropriate 
number of classes])

model.compile(optimizer=‘adam’,

             loss=‘sparse_categorical_crossentropy’,

             metrics=[‘accuracy’])

# Train the model.

history = model.fit(X_train, y_train, epochs = 100, batch_ 
size = 32, validation_split = 0.1).

Code Snipper for the LSTM model  #Define the LSTM 
model with additional details.

model_lstm = Sequential().

model_lstm.add(LSTM(128,        input_shape=(1,      X_
train.shape [1]), activation=‘relu’, dropout = 0.2, 
recurrent_dropout = 0.2))

model_lstm.add(LSTM(64,           input_shape=(1,      X_
train.shape [1]), activation=‘relu’, drop-out = 0.2, 
recurrent_dropout = 0.2))

model_lstm.add(Dense(len(label_encoder.classes_), 
activation=‘softmax’)).

# Compile the LSTM model with specific learning rate.

optimizer = Adam(learning_rate = 0.001).

model_lstm.compile(optimizer = optimizer,
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loss=‘sparse_categorical_crossentropy’,

metrics=[‘accuracy’])

# Train the LSTM model with a specified batch size.

history_lstm = model_lstm.fit(X_train_lstm, y_train, 
epochs = 100, batch_size = 64, vali-dation_split = 0.1).

Abbreviations
WHO	� World Health Organization
NDS	� Naturalistic Driving Simulator
STZ	� Safety Tolerance Zone
NN	� Neural Network
LSTM	� Long Short Term Memory
TP	� True Positives
TN	� True Negatives
FP	� False Positives
FN	� False Negatives
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