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Abstract

The degree distribution, referred to as the delta-sequence of a 

network is studied. Using the non-normalized Lorenz curve, we 

apply a generalized form of the classical majorization partial 

order. 

Next, we introduce a new class of small worlds, namely those 

based on the degrees of nodes in a network. Similar to a 

previous study, small worlds are defined as sequences of 

networks with certain limiting properties. We distinguish 

between three types of small worlds: those based on the 

highest degree, those based on the average degree, and those 

based on the median degree. We show that these new classes 

of small worlds are different from those introduced previously 

based on the diameter of the network or the average and 

median distance between nodes. However, there exist 

sequences of networks that qualify as small worlds in both 

senses of the word, with stars being an example. Our approach 

enables the comparison of two networks with an equal number 

of nodes in terms of their “small-worldliness”. 
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Finally, we introduced neighboring arrays based on the degrees 

of the zeroth and first-order neighbors.

Keywords: network theory; Lorenz curves; generalized Lorenz 

majorization, small worlds; degrees; comparison of networks; 

trees; neighboring array

1. Introduction

Consider an undirected network or graph G = (V,E), where V 

denotes the set of vertices or nodes, and E denotes the set of 

edges or links. In this text, the terms graph and network refer 

to the same mathematical concept and are used 

interchangeably. A path of length n is a sequence of vertices 

(v0, …vk, vk+1, …, vn) such that {v0, …, vn-1} and {v1, …, vn} are 

sets (being sets each consist of different elements) and for k= 

0,…, n-1, vk is adjacent to vk+1. A cycle is a path for which the 

starting point v0 coincides with the endpoint vn. A graph is 

connected if there exists (at least one) path between any two 

vertices. If #V = N, then the degree of node i, i = 1, …, N, i.e., 

the number of edges connected to node i, is denoted as . In 

this article we always assume that G is connected, hence all 

degrees are strictly larger than zero. A shortest path between 

two nodes in G is a path with the smallest length. The length of 

a shortest path defines a distance in the mathematical sense of 

the word in the set of network nodes. Then the diameter of a 

network is defined as the supremum of the distances between 

its nodes. As there is no natural order among the nodes in a 
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network we assume that their degrees are ranked in decreasing 

order. We note that we use the term ‘decreasing order’ also 

when the decrease is not strict. 

Notation

The array of degree values of the nodes in a network G with N 

nodes is denoted as

.                     (1)

where . We will informally refer to such an array as a delta-

sequence, consisting of delta-values. Clearly, , a notion which is 

known as the total degree of the network. It is easy to see that 

2(N-1)  N(N-1). The lower bound is obtained e.g., for a chain 

consisting of N nodes, see further, while the upper bound is 

obtained for a complete graph where each node is connected to 

each other node.

As real-world networks are often dynamic we will work, as we 

did in a previous study on small-world networks (Egghe & 

Rousseau, 2024), within the context of a sequence of finite 

node sets  of networks  , i.e., # = N Of course, also all edge 

sets EN are finite.

Before moving on to examples and theory we recall the 

following definitions.

1.1 Definition:  Free or unrooted tree (Knuth, 1973, p. 363)
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A free or unrooted tree is a connected graph with no cycles. 

Equivalently it is a connected graph such that removing any 

edge makes it disconnected. Another equivalent definition 

states that if v and v’ are different vertices, then there exists 

exactly one path from v to v’. As we will never use the notion of 

the root of a tree, we will just use the term ‘tree’ for “free 

tree”.  

1.2 Definition. Isomorphic graphs

Two graphs G and G’ are isomorphic if there exists a bijection f 

between the vertices of G and G’ such that there is an edge 

between vertices u and v in G if and only if there is an edge 

between the vertices f(u) and f(v) in G’.

1.3 Definition: Spanning tree of a connected graph

A spanning tree of an N-node connected graph is a set of N-1 

edges that connects all nodes of the network and contains no 

cycles. A graph may have different (non-isomorphic) spanning 

trees.

1.4 Examples of networks and their delta-sequences

1.4.1 The complete network on N nodes

The delta-sequence of an N-node complete network is

In this case  N(N-1) and its diameter is 1. 

1.4.2 The N-star



5

The N-star consists of a central node and N-1 peripheral nodes, 

each with one link, namely to the center. Then

Its sum is 2(N-1) and its diameter is 2.

1.4.3 The N-polygon

The N-polygon consists of N nodes forming a simple path of 

different nodes, that links to its starting point. Then

Its sum is 2N and its diameter is N/2 for even N and (N-1)/2 for 

odd N. 

1.4.4 The N-chain

The N-chain consists of one path of N different nodes. Then

Its sum is 2(N-1) and its diameter is N-1.

1.4.5 Trees

It is obvious that there is no delta-sequence applicable to all 

trees, but we do have the following lemma.

Lemma (Knuth, 1976, p. 363)

An N-node connected network is a tree if and only if it has N-1 

edges and hence a total degree equal to 2(N-1).  

We note that stars and chains are all special trees. 
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2. The delta-sequence and a generalized majorization 

partial order 

2.1 The standard Lorenz curve and Gini index

As the delta-sequence does not have a fixed sum we first 

consider its (standard) Lorenz curve. The highest Lorenz curve 

for a network with N nodes is obtained for the star. It always 

starts by connecting the origin to the point with coordinates . In 

general, its standard Gini index (Rousseau et al., 2018, formula 

(4.19)) is (N-2)/2N with a limiting value of 0.5. The lowest 

Lorenz curve, with Gini index zero, is obtained for a delta-

sequence consisting of the same numbers, such as for any 

complete network, but also for any polygon. 

2.2 The non-normalized Lorenz curve

In (Egghe & Rousseau, 2023a) we used the so-called non-

normalized Lorenz curve in a continuous context. This study 

and its follow-up (Egghe & Rousseau, 2023b) led to a rigorous 

definition of the notion of global impact. We would say, based 

on (Egghe & Rousseau, 2023b), that the notion of majorization 

in a network does not only depend on the number of links, but 

also on their concentration. 

In the discrete context, the non-normalized Lorenz curve is 

defined as follows.

Definition: Non-normalized Lorenz curves

Let  be a decreasing N-array of non-negative real numbers, 

then the corresponding non-normalized Lorenz curve is the 
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polygonal line connecting the origin (0,0) with the points , j= 1, 

…, N. This curve ends at the point with coordinates  . 

Definition: The non-normalized (or generalized) majorization 

order for N-arrays

If X and Y are decreasing N-arrays of non-negative real 

numbers, then X is majorized by Y, denoted as X  Y if 

                 (2)

The relation  is only a partial order as non-normalized Lorenz 

curves (just like standard Lorenz curves) may intersect, see 

further. If  then obviously X  Y, but the opposite relation does 

not hold. 

Definition. Acceptable measures

If X denotes the set of all decreasing N-arrays of non-negative 

real numbers, then a function m: X  is an acceptable measure 

for the relation  if X  Y implies that m(X) ≤ m(Y). 

It is important to note that the definitions of non-normalized 

Lorenz curves and in particular the notion of the generalized 

Lorenz majorization order, denoted as  , and the corresponding 

acceptable measures are generally applicable to all decreasing 

N-arrays of non-negative real numbers. 

Hence, the above definitions can be applied to the set of delta- 

sequences and the corresponding networks, leading to 

expressions such as    for two N-node networks, but also to the 

gamma-sequences, introduced later in this text. We already 
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note that if T(G) denotes a spanning tree of the network G, 

then T(G)  G.

As an illustration of the importance of the generalized 

majorization order, we recall the following definition.

Definition: Network density (Wasserman & Faust, 1994)

The density D of an undirected network G with N nodes is 

defined as

                           (3)

Clearly, network density is just a normalized total degree. Two 

N-networks with the same density D have non-normalized 

Lorenz curves with the same endpoint, but D does not say 

anything about the exact relation between the two non-

normalized Lorenz curves. In this sense, the majorization 

partial order applied to delta-sequences refines the notion of 

network density.

Let now  and  be the degree sequences of the N-node networks 

G and H, then the following theorem holds.

2.4 Theorem 1

(i)    

(ii)     

(iii)     Md() ≤ Md() and neither does it imply that Md() ≥ Md(), 

where Md stands for the median of a sequence.

(iv) The reverse implications do not hold
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Proof. (i) and (ii) follow trivially from the definition of the 

majorization relation .

(iii) We provide two counterexamples (N=5)

The 5-chain G has a degree sequence   = (2,2,2,1,1) and H 

(see Fig. 1) has a degree sequence    = (3,2,1,1,1). Then    but  

M() = 2 > M() = 1.

Fig. 1. Networks G and H illustrating part (iii)

For G1 and H1 (see Fig. 2) we have   = (3,3,2,2,2) and  = 

(4,3,3,2,2). Then    and M() = 2 < M() = 3.

Fig. 2 Networks G1 and H1 illustrating part (iii)

(iv) For the opposite of case (i) we consider the networks H1 

and H2 (see Fig. 3) with  = (5,3,3,3,3,3) and  = (4,4,4,3,3,2). 

Then neither   , nor   , illustrating that  is a partial, not a 

complete, order. Moreover,  < ,  =   =  and  □
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Fig.3 The networks H1 (left) and H2 (right) used in part (iv)

From our earlier investigation (Egghe & Rousseau, 2023a), we 

know that the following are acceptable measures for  

generalized majorization among delta-sequences:  

A. The Gini index:  Gini() = 

B. The entropy or Theil measure: Th() = 

C. The power measure: P() = 

Being applied to generalized majorization, these measures 

themselves are generalizations of the original ones.

2.5 The network with the lowest non-normalized Lorenz curve.

Theorem 2. An N-node chain is the lowest connected network in 

the generalized majorization partial order (fixed N).

Proof. By the Lemma in 1.4. 5, the endpoint of the generalized 

Lorenz curve of any network that is not a tree is situated 

strictly above that of a tree. Hence, the lowest possible network 

must be a tree. Among all trees, the N-chain has the lowest 

generalized Lorenz curve. 
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Remark. We note that it is not even possible for a general 

network to have a generalized Lorenz curve that at any place is 

situated below that of an N-chain. Indeed, when the endpoint is 

fixed, then the lowest generalized Lorenz curve is the one 

whose classical Lorenz curve is the diagonal. As the lowest 

possible endpoint is 2N, this corresponds e.g., to the N-

polygon, with delta-array (2,2,…, 2). Its cumulative array is 

(2,4,6,…., 2N-4, 2N-2, 2N). Yet, the corresponding array for the 

N-chain is (2,4,6,…., 2N-2, 2N-1,2N), showing that it is not 

possible to be situated (locally) strictly under the generalized 

Lorenz curve of the N-chain.

Remark further that the largest generalized Lorenz curve of an 

N-node network is the one corresponding to the N-complete 

network.

2.6 Examples of non-comparable networks 

We already remarked that the relation  is only a partial order, 

implying that some N-node networks are not comparable. 

Theorem 1 already provided some examples. Here we provide 

some more examples.

a) Case N =5

Consider the networks in Fig. 4
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Fig.4. Incomparable 5-node networks: G1, G2 and G3

For the first and the second network, we have delta-sequences 

(3,3,3,2,1) and (4,2,2,1,1). Hence  and . These networks have 

a different number of links. Consider now G1 and G3 with the 

same number of links. The delta-sequence of G3 is (4,2,2,2,2). 

Then, clearly  and . We further note that D(G1) > D(G2),  and   

but  and .

b) Case N = 6 and beyond.

Consider again the networks shown in Fig.3.

The delta-sequences of H1 and H2 are respectively (5,3,3,3,3,3) 

and (4,4,4,3,3,2). Their sums are equal to 20. Yet,  and  . If we 

add chains of equal length to a node with degree 3, we may 

obtain incomparable networks with any larger number of nodes.  

c) The cases 2 ≤ N ≤ 4. 

i) There is only one network with N = 2, hence any two 

networks are comparable.

ii) The case N=3. Then there are only 2 non-isomorphic 

networks, shown in Fig.5.
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Fig. 5. The two non-isomorphic networks with three nodes.

The delta-sequence of the chain on the left is (2,1,1), while the 

delta-sequence of the polygon on the right is (2,2,2). Clearly, 

the chain is strictly smaller than the polygon.

iii) The case N = 4. There are six non-isomorphic connected 4-

node networks. See Fig. 6.

Fig. 6. The six non-isomorphic networks with degree 4.

Referring to these networks, from left to right and from the first 

row to the second, as G1, G2, G3, G4, G5, and G6 we obtain the 

following delta-sequences:

 = (2,2,1,1);  = (3,1,1,1);  = (3,2,2,1); = (2,2,2,2); = 

(3,3,2,2); and = (3,3,3,3). The corresponding cumulative 

distributions are: (2,4,5,6), (3,4,5,6), (3,5,7,9), (2,4,6,8), 
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(3,6,8,10) and (3,6,9,12). Hence we have the following 

relations between these networks (Fig. 7).

Fig.7 Relations between delta-sequences of networks with 4 

nodes

We see that only G2 and G4 are incomparable. We note that the 

(generalized) Gini-indices for these networks are: Gini(G1) = 

17, Gini(G2) = 18, Gini(G3) = 24, Gini(G4) = 20, Gini(G5) = 27 

and Gini(G6) = 30, illustrating the fact that the Gini index is an 

acceptable measure for the generalized majorization order. 

3. Classical small worlds

Starting from the late nineties, researchers like Watts and 

Strogatz (1998), Albert et al. (1999), Barabási and Albert 

(1999), and Newman and Watts (1999) began associating their 

studies on networks with the small-world phenomenon, also 

known as the "six degrees of separation" (Milgram, 1967). In 

essence, a small-world network is defined by its short average 

distance between nodes. 

In a previous article (Egghe & Rousseau, 2024) we studied 

small worlds in this sense and in two variants thereof. In the 

following, we assume we are given a sequence  of finite sets 

and a distance function d defined on each individual level . The 

term “small world” was used there for a sequence  of finite sets 

satisfying one of the properties defined below. 

3.1 Small worlds based on the diameter (SWD)
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If for each , is the diameter of, defined as

                               (4)

then  is a SWD if there exists a finite constant C ≥ 0 such that

                                (5)

Note that  is short for diam(). 

3.2 Small worlds based  on the average distance (SWA)

If , denotes the average distance between two different 

elements in :

                      (6)

then   is an SWA if there exists a finite number C ≥ 0  such that 

                                     (7)

3.3 Small worlds based on the median distance (SWMd)

If , denotes the median distance between two different 

elements in :

               (8)

then  is a SWMd if there exists a finite number C ≥ 0  such that

                                        (9)

Note that {{…}} in (12) refers to a multiset (Rousseau et al., 

2018, 5.13.1), i.e. a “set” in which elements may occur more 

than once. It is obvious that if a sequence of finite sets is an 

SWD  then it is also an SWA and an SWMd (Egghe & Rousseau, 

2024, section 2.4).
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We recall from (Egghe, 2024) that if (G), j = 1,…, N-1, denotes 

the number of times distance j (the shortest distance between 

two nodes) occurs in the network G, then the array  is called 

the  – array of the network G.

4. Degree sequences and small worlds

4.1 Introduction to this section

In this section, we introduce a new class of small worlds, 

namely those based on degrees of nodes in a network. Similar 

to a previous study, small worlds are defined as sequences of 

networks with certain limiting properties. We distinguish 

between different types of small worlds and show that these 

new classes of small worlds are different from those introduced 

previously (Egghe & Rousseau, 2024). However, there exist 

sequences of networks that qualify as small worlds in both 

senses of the word, with stars being an example. 

As suggested by a referee we explain why we think that this 

new approach to small worlds is worth pursuing. The idea of a 

“degree small world” (in short: a DSW) comes from the 

observation that the  and  sequences are basic in network 

theory and that the notion of a small world has (so far) only 

been defined for the alpha-sequence. When considering both 

sequences, we have the intuitive feeling that higher degrees 

are related to smaller diameters, hence smaller worlds. This is 

evidenced by several observations. First, the sum of all delta-

values is equal to 2α1 as a trivial consequence from the 

definitions of the alpha- and delta-sequences. This shows that 
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higher degrees yield more occurrences of direct links, i.e., of 

distance 1 (with N fixed). This, in turn, implies since the sum of 

all alpha-values is equal to N(N-1)/2 (N fixed) that the higher 

indices of the alpha’s, i.e., the larger distances, diminish in 

occurrence. 

For this reason, we are convinced that a degree variant of the 

notion of a small world makes sense. Since now we focus on 

high degrees instead of small distances, we look for a function 

f(N) so that the limit for N tending to infinity of a delta-related 

measure divided by f(N) is equal to infinity, instead of being 

strictly smaller than infinity as in the alpha-case. In the next 

sections, we used δ1 and two other delta-related measures. We 

realize that there is not a unique function f(N) that could be 

used, but we can already exclude some functions by the 

following argument.

It is clear that DSW differs from SW, otherwise, we wouldn’t 

have to make a new study. Yet, we still want extreme network 

cases (such as the complete network and the chain) to yield the 

same qualification in the DSW as in the SW case. For the 

complete network (the “smallest” world) we still must have that 

it is DSW (as it is SW). Now Δ = (N-1, …, N-1) (N times), and 

hence a function such as f(N) = N is excluded, while a function 

such as f(N) = ln(N) is acceptable. Using f(N) = ln(N) is also 

acceptable for the chain, consisting of N-2 times the value 2 

and two times the value 1. Indeed, with f(N) = ln(N) taking the 

limit yields that the chain is not DSW (and it is also not SW). 
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The same argument applies to the N-polygon consisting of N 

times the value 2. A star is DSW, and it also is SW.

We will show further that our new approach enables the 

comparison of two networks with an equal number of nodes in 

terms of their “small-worldliness”. 

4.2. Definitions of small worlds derived from the degree 

distribution

Because we will define here small worlds derived from the 

degree distribution we will use the abbreviation DSW.

4.2.1 Small worlds derived from the largest degree (DSWL)

Let  be an infinite sequence of networks with the Nth network 

having N nodes.

If ,, is the delta-sequence of, then  is a degree small world 

based on the largest degree if

                           (10)

We informally say that  is DSWL.

4.2.2 Small worlds derived from the average degree (DSWA)

If , denotes the average degree in network ,

                           (11)

then  is a degree small world based on the average degree if

                               (12)

In the same vein as above we say that  is DSWA.

Remark
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Strictly speaking it is not necessary to assume that the limits in 

the above formulae exist: the use of e.g., limsup in (5), (7) and 

(9) and e.g., liminf in (10), (12) and (13) could serve as well 

for the idea of a small world (SW). But since the former 

formulae are conform with the ideas of a SW in the literature 

we keep on using lim in the above formulae. 

Also, in the (counter-)examples, the existence of the limits are 

verified (see also further on). In addition, in these limits, we 

have that N is the number of nodes in GN, and hence is also the 

variable in the expression lim N+∞. We admit that some 

examples use a subsequence of , i.e.,  , with , where , but this 

is not a major issue and, in our opinion, not enough reason for 

extending the theory to include limits such as  which is rather 

cumbersome and non-elegant.

4.2.3 Small worlds derived from the median degree (DSWMd)

If  , denotes the median degree of the network GN, then  is a 

degree small world based on the median degree if

                              (13)

We say that   is DSWMd.

4.3.Proposition 1

a) If  is DSWMd, then  is DSWA

b) If  is DSWA, then  is DSWL

c) If  is DSWMd, then  is DSWL

d) the reverse relations do not hold.
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Proof. Implication a) follows from the Markov property (Chow & 

Teicher, 1978), which states that. Hence, if  is DSWMd, then  is 

DSWA.

Implication b) follows from the fact that .

Implication c) follows immediately from implications a) and b), 

or by noticing that   

d) Consider the following sequence of star networks   (Fig. 8)

Fig. 8. Star network (illustrated for N=6)

Then  . Clearly  is DSWL, but not DSWA or DSWMd.

Finally, we have to show that DSWA does not imply DSWMd.

Consider Fig.9, to which we refer as an M-spider, denoted as SM 

(Fig.9 shows a spider with M =5). It consists of a complete M-

node graph, where each node has an extra two links. Hence N= 

3M.
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Fig.9. 5-spider

The delta-sequence of an M-spider is . The average  and hence   

, showing that  is DSWA. As ) = 1, this shows that  is not 

DSWMd.□

4.4 Examples

We have already considered the sequence of stars. Now, we 

have a look at complete graphs, chains, and polygons. 

4.4.1. The sequence of complete graphs. 

For each N, . Hence complete graphs are DSWMd and hence 

also DSWA and DSWL. 

4.4.2. The sequence of chains of length N, . Then  . Chains are 

not small worlds based on their degree sequences.

4.4.3. Polygons  . These are formed by connecting begin and 

end nodes of chains. Their delta-sequences are:  . We see that 

polygons too are not small worlds based on their degree 

sequences. 
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5. The relation between SWs and DSWs

In this section, we will find out if being an SW (Egghe & 

Rousseau, 2024) based on the so-called alpha-sequence, 

implies also being a DSW or vice versa. It will be shown that 

such implications do not exist, which implies that the notions of 

SW and DSW are different concepts.

Two sequences of relations are already known: SWD  SWA  

SWMd, (Egghe & Rousseau, 2024) and DSWMd  DSWA  DSWL 

(see above). We will prove now that there is, in general, no 

relation between these sequences of implications.

5.1 Theorem 3

(i) SWD  DSWL

(ii) DSWMd  SWMd

Proof.(i). We first construct a network  for fixed N > 7. Consider 

a chain with  nodes (step 1). Each of these points has  

descendants (see Fig. 10) (step 2). 



23

Fig.10 Sketch of the construction of a counterexample, used in 

Theorem 3 (i) 

We continue this construction until at step a, we have . We see 

that a is smaller than or equal to any b  for which . Hence we  

take b = . We see that this network’s diameter  satisfies the 

equality . Hence 

which proves that   is SWD. However,  is not DSW because 

each delta-value is smaller than or equal to  +2, so that   

cannot be equal to +∞.

(ii). We will construct a kite consisting of an M-complete 

network and a tail consisting of M-1 nodes (Fig. 11). Hence N = 

2M-1. For fixed N the delta-sequence of this kite, KN, is . We 

see that .

Fig. 11. Kite with N=2M-1 nodes

Now, the kite’s alpha-sequence is: . One may check that  =  

and that .
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Now we see that  =  = 

Then the median is that natural number i  such that i is the first 

number for which (*) > . This means that

and thus . The plus sign is not possible as otherwise i > N, 

hence

> 

Hence: .

Consequently:   which proves that   is not(SWMd).

We further see that the median of the delta-sequence of  

(denoted here as ) is M-1 = (N-1)/2. Hence:

which shows that the sequence  is DSWMd. □

Corollary. If  is DSWL then it is not necessarily SWD.

Proof. Assume that if  is DSWL then it is also SWD. Now  

DSWMd implies DSW (Proposition 1) from which we would 

know that  is SWD, from which it would follow by (Egghe & 

Rousseau, 2024) that  were SWMd, which is a contradiction (by 

Theorem 3).

Proposition 2. Consider  Z1 = and Z2 = , then .
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Proof. It suffices to give one sequence  in the intersection  . We 

know (Egghe & Rousseau, 2.6.2) that the sequence of stars is 

SWD and we also know that this sequence is DSWL. This proves 

this proposition.

Proposition 3. Consider  Z3 = and Z4 = , then .

Proof. Again it suffices to give one sequence in the intersection. 

The sequence  of N-chains is situated in the intersection, see 

Example 4.4.2. Note that also the sequence of N-polygons 

provides another example, see Example 4.4.3.

6. Delta-sequences and small worlds derived from 

degree distributions

6.1 Theorem 4

Consider the network sequences  and , such that for each  , 

have the same number of nodes. If now, there exists ,  such 

that for each  :    , then 

(a)  is DSWL implies that   is DSWL, and hence DSWA.

(b)  is DSWA implies that   is DSWA.

(c) it does not follow that  is DSWMd implies that   is DSWMd.

(d) the opposite relations of (a) and (b) do not hold.

Proof. Results (a) and (b) follow from the definitions of DWDL 

and DSWA and Proposition 1 in 3.3. The opposite relations of 

(a) and (b) do not hold, because if they did then we would have 

an equivalence in that proposition, which does not hold. 
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Finally, we prove part (c). Inspired by the spider SM we 

construct the following networks. We consider three positive 

natural numbers M, a, and b (a and b stay fixed) and construct 

two networks with N = 2M+a+b nodes. For the first one, 

denoted as S1,N, we take b < a. It consists of a complete (M+a) 

network, where, moreover, on (M+b) of these nodes we add 

one node (by a single link), see Fig. 12. 

Fig. 12 Case M = 3, a = 3, b= 1

Then .

For the second network, denoted as S2,N, we take b > a. It again 

consists of a complete M+a network, on each of these nodes we 

add a singly-linked node, while moreover on b-a nodes we add 

a second, single-linked node, see Fig. 13.
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Fig. 13. Case M =3, a = 1, b=3

Then .

Clearly, for each N. Now = M+a-1, which tends to infinity for N 

(or M) . This shows that   is DSWMd. Further,  (as b > a), which 

shows that  is NOT(DSWMd).

6.2 Definition

Based on Theorem 4, we propose the following definition:

Given two networks G and H with the same number of nodes 

and with delta-sequences  and   , such that     then we say that 

network H is a smaller world than network G in the degree 

majorization sense.  

We explain this statement: one cannot say that a network is a 

small world (at least not in our view as we defined the notion of 

a small world only for network sequences), but it is possible to 

compare two networks in terms of small-worldliness. This is 

done based on the generalized Lorenz curve. This is similar to 
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the use of the classical Lorenz curve for comparing e.g., income 

inequality. 

Theorem 4 shows that the uses of the terms “small world”, 

“smaller world” and “small-worldliness” are consistent. 

7. The neighboring array and the neighboring index

7.1 Definitions

Let G be a connected network with N nodes. If v is a node in G, 

then the neighborhood of v, denoted A(v), is the set {w in G: v 

and w are linked}. Let

Then the neighboring (or gamma) array of G, is denoted as =  , 

where the numbers  are the numbers , defined above, arranged 

in decreasing order. 

Stated otherwise, the gamma-value of a node in a network is 

equal to the sum of the degrees of its zeroth and first-order 

neighbors. Next we define (G) as the neighboring index of G.

7.2 A characterization of the neighboring array.

Let A be the adjacency matrix of an N-node network and let e =  

be the unit array. Then we have the following matrix 

multiplication result.

Theorem 5. 

Proof. It is easy to check (and well-known) that . It is also well-

known that the elements (i,j) of matrix A2, denoted as  , yield 
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the number of paths from node i to node j with length 2. Then  

□

7.3 Proposition 4

                                                        (14)

Proof. Every value  occurs   times for its first-order neighbors, 

plus one more time for its zeroth-order neighbor (itself). □

Remark. By (14)  follows from , but when   is given, it is still an 

open problem if it is possible to construct .

7.4 Examples (with N nodes); we assume that gamma-values 

are given in decreasing order.

7.4.1 The complete N-node network

7.4.2 The star

7.4.3 The polygon (N>2)

7.4.4 Chain (N>3)
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7.4.5 The non-isomorphic networks (N=6).

Consider the networks shown in Fig. 14. Their alpha-sequences 

are the same, namely  and so are their delta-sequences: , but 

their gamma-sequences are different, showing that these 

networks are not isomorphic:  while =. Note that 

This example shows that gamma-sequences in combination 

with alpha- and delta-sequences are stronger than the 

combination of alpha- and delta-sequences alone in detecting 

isomorphism classes. Yet, the combination of alpha-, delta- and 

gamma-sequences is not enough to detect isomorphism as 

shown in the next example.

Fig. 14 Two non-isomorphic networks G (left) and G’ (right)

7.4.6 An example of two non-isomorphic networks with equal 

alpha-, delta-, and gamma-sequences.
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Fig.15. Two non-isomorphic networks with equal alpha-, delta- 

and gamma-sequences

For both networks in Fig. 15, we have AF=(9,6,0,0);  = 

(3,3,3,3,3,3) and Γ = (12,12,12,12,12,12). Yet, they are not 

isomorphic as Fig. 15(a) has triples that are not connected, 

such as {1,5,6}, while such triples do not exist in Fig.15(b). 

Remarks

(a) If two networks have the same total degree  then they do 

not necessarily have the same neighboring index  .

The following networks, shown in Fig.16 (note that they are 

trees) have the same   = 8, but the chain has = 22, while the 

other one has  = 24.
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Fig. 16. Networks with the same total degree but different 

neighboring index (same example as in Fig. 1)

(b)  If two networks have the same neighboring index  then 

they do not necessarily have the same total degree  .

The networks shown in Fig. 17 (with N = 6) have the same 

neighboring index , namely 48, but different total degrees , 

namely 14 and 12.

Fig. 17. Two networks with the same neighboring index but 

different total degree

We close this section by providing examples that the 

majorization relation  is not kept between Δ and Γ.

Concretely:  Δ  Δ’  Γ  Γ’ nor Γ’  Γ  (15)

and Γ  Γ’  Δ  Δ’  nor  Δ’  Δ. (16)

Indeed, for (15) we consider the networks (N=6), see Fig. 18.
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Fig.18. Illustration for (15)

The upper network has Δ = (3,3,3,3,1,1) and Γ = 

(12,12,10,10,4,4) while the lower one has  Δ’ = (3,3,3,3,2,2) 

and Γ’ = (11,11,11,11,8,8). Then Δ  Δ’, but neither Γ  Γ’ nor Γ’ Γ 

holds.

For the case (16) (with N =4) we consider Fig.19.

Fig. 19. Illustration for (16)

For the upper network, we have Δ = (3,1,1,1) and Γ = (6,4, 

4,4) while the lower one has  Δ’ = (2,2,2,2) and Γ’ = (6,6,6,6). 

Consequently: Γ  Γ’, but neither Δ  Δ’, nor Δ’  Δ  holds.

In this context, we have the following open problem (OP).

OP1: does Γ = Γ’ implies Δ = Δ’ ? Even for trees, this problem is 

open. We conjecture that the answer is no. 

8 Conclusion
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We examined the degree distribution of a network and 

presented several examples. Utilizing the non-normalized 

Lorenz curve, we employed a generalized form of the 

majorization partial order. It is important to highlight that this 

represents a novel and fundamental application of the 

generalized Lorenz partial order. Additionally, we introduced 

measures, including a Gini-type index, that respect the 

generalized Lorenz partial order.  

We introduced a new class of small worlds, namely those based 

on the degrees of nodes in a network. Similar to a previous 

study, small worlds are defined as sequences of networks with 

certain limiting properties. We distinguish between three types 

of small worlds: those based on the highest degree, those 

based on the average degree, and those based on the median 

degree. We show that these new classes of small worlds are 

different from those introduced previously based on the 

diameter of the network or the average and median distance 

between nodes. However, there exist sequences of networks 

that qualify as small worlds in both senses of the word, with 

stars being an example. Our approach enables the comparison 

of two networks with an equal number of nodes in terms of 

their “small-worldliness”. This comparison uses generalized 

Lorenz curves and the corresponding notion of generalized 

Lorenz majorization.

Extending the idea of delta- and alpha-sequences we 

introduced gamma-sequences, gave examples, showed their 

relation with delta-sequences, and showed that there exist non-
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isomorphic networks with the same alpha-, delta- and gamma-

sequences.

We end this article by stating two more open problems (OP):

OP2. Apply the generalized Lorenz order to the gamma-

sequence.

OP3. Define and study Small Worlds in terms of the gamma-

sequence.
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