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A B S T R A C T   

Accurate estimation of the state of charge (SOC) and internal temperature is the essence of the battery man
agement systems for lithium-ion batteries (LIBs). In this research, an improved sliding mode observer (SMO) is 
presented and evaluated for the estimation of SOC and internal temperature of LIBs by adapting the switching 
gain. The observer is meticulously designed, parametrized, and validated by combining modeling and experi
mentation on a commercial 64 Ah LIB pouch cell. The battery behavior is emulated by a coupled equivalent 
circuit model (CECM) composed of a dual-polarization and a novel thermal model. The proposed observer is 
showcased to estimate the SOC with an average error of <2 % even in the presence of a significant model 
mismatch. The results provide deep insight into the development process of the efficient and robust SMO ob
servers for estimating the internal states of LIBs.   

1. Introduction 

Modeling of the battery behavior is necessary to develop, under
stand, design, and optimize the existing and new battery technologies. 
Mathematical models allow a thorough analysis of the almost unlimited 
design parameters and operational conditions at a relatively small cost. 
Numerous modeling strategies have been proposed in the literature 
[1–4]. These models might be classified as (1) physics-independent, (2) 
semi-physics-based, and (3) physics-based models [1]. Semi-physics- 
based models, known as gray boxes, provide an alternative representa
tion of the physical entity. The most famous alternative battery models 
are equivalent circuit models (ECM) [5], in which electrical elements 
represent the physical processes inside a battery cell. Among equivalent 
circuit models, the dual polarization model, due to well-adjusted accu
racy and computational complexity [6], is frequently used as a design 
model in the online observers to estimate the internal variables of 
lithium-ion batteries (LIBs) such as state of charge (SOC) [7]. There is a 
wide range of thermal models proposed for LIBs among which the 
physics-based [8], data-driven [9,10], and thermal resistance models 
[11] are noteworthy from the recent literature. Particularly, the latter 
type of models is a feasible candidate for on-line prediction purposes 
owing to its simple structure and minimal computational demands [12]. 

The SOC of a LIB might be defined as the ratio of the remaining 
charge inside the anode to the nominal capacity of the cell. Various 
model-based [7] and data-driven [13] estimation methods have been 
established to estimate the SOC since its direct experimental measure
ment is not straightforward. Model-based methods treat the SOC as a 
state variable and employ a variety of algorithms to estimate the SOC 
such as the Kalman filter (KF), extended Kalman filter (EKF) [14,15], 
unscented Kalman filter (UKF) [15–17], H-infinity filter [18,19], pro
portional integral observer (PIO) [20], sliding mode observer (SMO) 
[6,21] and other nonlinear observers. On the other hand, the data- 
driven methods use statistical or machine learning techniques to esti
mate the SOC from the relatively massive historical or real-time data, 
such as artificial neural networks (ANN) [22], support vector machines 
(SVM) [23], fuzzy logic [24,25], and adaptive neuro-fuzzy inference 
system (ANFIS) [26]. 

The performance and reliability of the SOC estimation algorithms 
based on KF rely on the accuracy of both the underlying models and the 
measurements, which are often uncertain and noisy, respectively 
[27,28]. These algorithms are developed based on two assumptions. 
First, that the battery model is accurate, and second, that the noise 
distribution is known. These assumptions make these algorithms less 
resilient and more computationally demanding for online applications. 
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SMO, on the other hand, is a robust and efficient algorithm that can 
ensure the stability and robustness of the system against model un
certainties and external disturbances based on the Lyapunov function 
analysis [29]. Additionally, its simplicity and ease of implementation 
are very attractive aspects for online applications. For instance, Xu et al. 
developed an adaptive sliding mode observer for SOC estimation of a 
liquid metal battery [30]. They applied a recursive least square algo
rithm to identify the ECM model’s parameters. They showed that their 
observer with a new adaptation law had faster convergence, higher 
accuracy, stronger robustness, and lower computational cost than other 
methods. To cite another example, Fereydooni et al. [6] proposed a 
novel adaptive sliding mode with a geometrical control-based adapta
tion law for the internal resistance. They used a P2D model to evaluate 
the performance of the observer and demonstrated a higher accuracy 
and lower computational cost for the SMO relative to the EKF in esti
mating the SOC of a cylindrical battery. Notwithstanding the rich 
literature of the state estimation for lithium-ion batteries, prior in
vestigations often solely adopt the ECM as the design model, over
looking the thermal effects on the model parameters [30–35]. Some 
investigations employ an uncoupled structure for estimating the SOC 
and internal temperature which is computationally limited in capturing 
the intricate interactions between the charge and thermal states of the 
cell [11,36–39]. Moreover, the experimental validation of the proposed 
models is frequently disregarded in the available literature which 
complicates the assessment of the predictions against model un
certainties and measurement noise [6,21,30,33]. 

Here, a novel approach is introduced to estimate the SOC and tem
perature of a 64 Ah commercial lithium-ion pouch cell (Fig. 1a) using an 
adaptive gain SMO (Fig. 1c). The characteristics of the examined cell are 
outlined in Appendix B. The observer design is based on a coupled 
equivalent circuit model (CECM) that combines a dual polarization ECM 

(Fig. 1b) and a simple thermal model. The observer is parametrized and 
validated using the experimental voltage and surface temperature pro
files of the Li-ion pouch cell collected at three different temperatures and 
state-of-health (Fig. 1d). 

2. Battery modeling 

The dual polarization ECM model is used to simulate the electro
chemical behavior of the lithium-ion pouch cell. An ECM typically 
comprises three major parts: a static part to represent the OCV as a 
function of SOC and temperature; a dynamic part represented with a 
combination of RC elements to emulate the kinetics and charge transport 
limitations of the cell; and a source or load to simulate the closed circuit 
for charge and discharge regimes. In the subsequent section, the equa
tions of the coupled equivalent circuit model (CECM) are detailed. 

2.1. Battery coupled equivalent circuit model (CECM) 

The configuration of the dual polarization model is presented in 
Fig. 1b. Re

s represents the internal ohmic resistance of the cell. The two 
RC branches, including two pure resistance elements, Re

1 and Re
2, and 

two ideal capacitor elements, Ce
1 and Ce

2, account for the kinetics and 
transport limitations inside the cell. E0 represents the equilibrium 
voltage (OCV) of the cell. All the model parameters depend on the SOC 
and operational conditions and considered to be functions of both the 
SOC and the average of surface and core temperatures of the battery 
(T = Tc+Ts

2 ). 
According to Kirchhoff’s voltage law in circuit theory, the cell 

voltage, V0, can be written as 

V0 = E0 − V1(t) − V2(t) − I(t)Re
s (1) 

Fig. 1. The experimentation and modeling methodology for the development of the SMO observer to predict the SOC and core temperature of the (a) 64 Ah Gr/NMC 
commercial Li-ion pouch cell, (b) dual-polarization ECM model, (c) SMO structure, (d) the experimental platform and instrumentation: battery cycler, explosion- 
proof thermal chamber. 
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where V1 and V2 are the voltage drops across the first and second RC 
branches, respectively, of which the time derivatives read 

V̇1 = −
V1(t)
Re

1Ce
1
+

I(t)
Ce

1
(2)  

V̇2 = −
V2(t)
Re

2Ce
2
+

I(t)
Ce

2
(3) 

Assuming Z0 to be the initial SOC of the battery at t0, the instanta
neous SOC of the battery (Z) with a nominal capacity of Ce

n at a given 
time t is 

Z(t) = Z0 +

∫ t

t0

I(τ)
Ce

n
dτ (4) 

Following Eq. (4), the derivative of the SOC with respect to time (Ż) 
can be expressed as 

Ż = −
I(t)
Ce

n
(5) 

The other state variables, the surface and core temperatures, are 
linked to the electrical model parameters through a lumped simplified 
thermal model. In this model, the thermal behavior of the battery is 
approximated by two nodes at the surface (Ts) and center of the cell (Tc). 
The dynamics of temperature at these two nodes can be described by 
considering the irreversible and reversible sources of heat generation 
[40] and heat exchange between the two nodes as well as that between 
the surface node and the cell exterior 

Ṫc =
I(E0 − V0)

2Ct
c

−
I(Tc + Ts)ΔS

2FCt
c

+
Ts − Tc

Rt
cCt

c
(6)  

Ṫs =
I(E0 − V0)

2Ct
s

−
I(Tc + Ts)ΔS

2FCt
s

+
Tc − Ts

Rt
cCt

s
+

(
Tf − Ts

)

Rt
f Ct

s
(7)  

where Tf is the ambient temperature, Rt
f is the convection thermal 

resistance between the cell and exterior, F is Faraday’s constant (96,485 
C/mol), Rt

c is the conduction thermal resistance inside the battery, and 
the Ct

c and Ct
s are the heat capacity of the internal and surface nodes, 

respectively. Also, ΔS represents overall entropy change of the anodic 
and cathodic reactions and can be expressed by ΔS = F ∂E0

∂T . As will be 
discussed later, a key assumption for the observability of the design 
model is that both of core and surface nodes contribute to the heat 
generation of the cell. 

The electrochemical and thermal models should be solved simulta
neously to enable an accurate prediction of the SOC. To develop an 
observable form of our model equations, we need to derive an explicit 
form of the derivative of the model variables. To simplify the calcula
tions, it is assumed that E0 has a piecewise linear dependency on Z and T: 
E0 = κ1T+ κ2Z+ κ3, where T is the average of surface and core tem
peratures. Therefore, entropy change (ΔS) in Eqs. (6) and (7) can be 
substituted by Fκ1. Consquently, the observable equation set of the 
CECM can be represented by combining Eq. (1) with Eqs. (2)–(5): 

V̇0 = −
κ2

Re
sC

e
n
V0 +

(
1

Re
1Ce

1
−

κ2

Re
sC

e
n

)

V1 +

(
1

Re
2Ce

2
−

κ2

Re
sC

e
n

)

V2 +
κ2

2

Re
sC

e
n

Z

+

(
κ1κ2

2Re
sC

e
n
−

κ1

2Rt
c

(
1
Ct

c
−

1
Ct

s

))

Tc +

(
κ1κ2

2Re
sC

e
n

−
κ1

2

(
1

Rt
cCt

c
−

1
Rt

cCt
s
+

1
Rt

f Ct
s

))

Ts +

(

−
κ1

4

(
1
Ct

c
+

1
Ct

s

)

V0

+
κ1κ2

4

(
1
Ct

c
+

1
Ct

s

)

Z −
κ1

2

8

(
1
Ct

c
+

1
Ct

s

)

Tc −
κ1

2

8

(
1
Ct

c
+

1
Ct

s

)

Ts +
1
Re

1

+
1
Re

1
−

κ1κ3

4

(
1
Ct

c
+

1
Ct

s

))

I −
κ1Tf

Ct
sRt

f

− κ2κ3

Re
sC

e
n

(8)  

Ż = −
1

RsCn

(

V0 +V1 +V2 − κ1
Tc + Ts

2
− κ2Z − κ3

)

(9)  

Ṫc = −
V0

2Ct
c
− κ1

I(Tc + Ts)

2Ct
c

+ κ2
IZ

2Ct
c
+ κ3

I
2Ct

c
+

Ts − Tc

Rt
cCt

c
(10)  

Ṫs = −
V0

2Ct
s
− κ1

I(Tc + Ts)

2Ct
s

+ κ2
IZ

2Ct
s
+ κ3

I
2Ct

s
+

(
Tf − Ts

)

Rt
f Ct

s
+

Tc − Ts

Rt
cCt

s
(11)  

2.2. Model parametrization and experimentation 

A series of electrochemical tests were conducted to determine the 
parameters of the CECM model and to evaluate the performance of the 
observer. Particularly, the continuous low rate and the intermittent 
pulse-relaxation (dis)charge were used to measure the OCV function and 
RC parameters, respectively. All the tests were carried out inside an 
explosion-proof climate chamber (ESPEC LU-114) at 5, 15, 25 and 35 ◦C 
using a NEWARE CT-8008-5V60A-NTFA battery cycler. For the OCV 
measurement, the cell was first brought to its 100 % SOC using a 
continuous constant-current (CC) step at 0.05C followed by a constant- 
voltage (CV) step with a current cutoff limit of 0.02C. The cell was then 
left at rest for 5 h to achieve a steady state. The cell was then discharged 
with a CC step of 0.02C and the cutoff voltage limit of 3 V. The voltage- 
capacity data recorded during this discharge step was utilized as the 
OCV of the cell (Fig. 2a). In a pulse relaxation test, starting from a fully 
charged cell, a discharge CC pulse of 0.2C is applied for a duration of 10 
min, and then the current is interrupted for a sufficient amount of time 
until a steady state is reached indicated by a voltage difference between 
two consecutive readings of <2 mV (Fig. 2b). The ohmic resistance of 
the cell was calculated as the ratio between the instantaneous voltage 
right after current interruption and the current value (Fig. 3a). The RC 
circuit’s parameters (Fig. 3b–e) were determined by fitting the voltage 
profile of each relaxation interval to the following equation: 

V0(t) = E0 − Re
1exp

(

−
t

Re
1Ce

1

)

− Re
2exp

(

−
t

Re
2Ce

2

)

(12) 

To circumvent the computational challenges, a weighted average 
method was employed to account for the individual thermal contribu
tions from each of the 53 anode and cathode layers. This weighted 
average method calculates an effective set of parameters that accurately 
reflects the overall thermal behavior of the cell. The weight coefficients 
are assigned to each layer commensurate with their volume fraction in 
the cell. Consequently, the thermal model’s parameters set (mbat), which 
particularly includes the specific heat capacity (ct

bat), density (ρbat) and 
thermal conductivity (kt

bat) are calculated according to [41] 

mbat =

∑
Limi

Lbat
(13)  

where Li is the thickness of different layers of the battery and Lbat is the 
battery’s thickness and is equal to the 

∑
Li, as reported in Table B2 in 

the Appendix B. In this regard, the fraction Li
Lbat 

in Eq. (13) represents the 
thermal weight coefficient of the ith layer. The thermal parameters were 
obtained from the literature reporting the experimental data of the cells 
similar to the one used in the present study. The detailed information 
about the chemistry and internal composition of the pouch cell used in 
this work can be found in our recent publication [42]. It is noteworthy 
that the Ct

c = Ct
s = 0.5ct

batρbatLbatAbat and Rt
c = Lbat/kt

batAbat. 

3. Observer design and stability proof 

Considering x(t) = [V0 V1 V2 Z Tc Ts ], y(t) = [V0 Ts ], and 
u(t) = I(t), as a state vector, output, and input of the state space, 
respectively, the CECM can be expressed as follows: 
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ẋ = Ax + Bu + G(x, u, t)
y = Cx (14)  

where A ∈ R6×6 is the system matrix, B ∈ R6×1 is the input coefficient 
vector and C ∈ R2×6is the vector of the output coefficients as following  

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
/

Re
1 + 1

/
Re

1 −
κ1κ3

4
(
1
/
Ct

c + 1
/
Ct

s

)

1
/
Ce

1

1
/
Ce

2

0

κ3
/
2Ct

c

κ3
/
2Ct

s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)  

G(x, u) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(

−
κ1

4

(
1
Ct

c
+

1
Ct

s

)(
V0 − κ2Z −

κ1

2
(Tc + Ts)

))

I

0

0

− κ3
/
Re

sC
e
n

− κ1
I(Tc + Ts)

2Ct
c

+ κ2
IZ

2Ct
c
+ κ3

I
2Ct

c

− κ1
I(Tc + Ts)

2Ct
s

+ κ2
IZ

2Ct
s
+ κ3

I
2Ct

s
+

Tf

Rt
f Ct

s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17) 

In Eq. (14), G(x, u) ∈ R6×1 represents the nonlinear part of the model 
and it can be assumed that 

G(x, u) = Γξ(x, u, t) (18)  

where Γ ∈ R6×1 is the model nonlinear input matrix and ξ(x, u, t) ∈
R(1×1) is an unknown and bounded function as follows 

‖ξ(x, u, t) ‖ ≤ ψ∀x ∈ R6×1, u ∈ R1×1 and t ≥ 0 (19)  

where ψ is a positive constant. To estimate the SOC and internal tem
perature of the studied battery during discharge, the adaptive gain 
sliding mode observer is proposed as follows: 

˙̂x = Ax̂ +Bu+K(y − Cx̂)+ v (20)  

where K is feedback gain and v is an adaptive switching gain function. To 
guarantee the stability and the robustness of the observer, the switching 
gain function is considered as a discontinuous sign function as below 

v =

{
θ̂
(
ey(t)

)
Γsgn

(
ey(t)

)
ey ∕= 0

0 otherwise
(21)  

where ey(t) = y(t) − ŷ(t) = C(x − x̂) = Ce(t). Here, the state estimation 
errors are defined as e = x − x̂ and adaptive switching gain will be 

updated by using the following adaptation law 

˙̂θ
(
ey(t)

)
= α

⃒
⃒ey(t)

⃒
⃒ (22)  

where α is an adaptation constant, and by choosing an appropriate value 
for it, the adaptation speed can be adjusted. To proceed with stability 
proof, by subtracting Eqs. (14) and (20) and by defining A0 = A − KC, 
the dynamics of state estimation can be expressed as 

ė = A0e+G(x, u, t) − v (23) 

A Lyapunov function candidate, including estimation and adaptation 
errors, can be considered as below 

W
(

e, θ̃
)
=

1
2
eTPe+

1
αθ̃2 (24)  

where θ̃ = θ̂ − θd is the adaptation error between the estimated 

switching gain and the desired one. The time derivative of W
(

e, θ̃
)

is 

acquired as 

Ẇ(e, θ̃) =
1
2
(
ėTPe + eTPė

)
+

1
αθ̃θ̇

=
1
2
[
eT ( A0P + PA0

T)e
]
+

1
2
( (

GT − vT)Pe + eTP(G − v)
)
+

1
αθ̃θ̇

(25) 

According to Lyapunov stability, there exists a symmetric definite 
matrix (P) such that it satisfies the following equation 

− Q = A0P+PA0
T (26)  

where Q is a definite and symmetric positive matrix and the Lyapunov 
matrices pair (P, Q) for A0 satisfies a geometrical constraint 

C = ΓTP (27) 

Consequently, Eq. (25) can be rearranged as follows 

Ẇ(e, θ̃) = −
1
2
[
eTQe

]
+
(
ξ(x, u, t)ΓT − vT )Pe +

1
αθ̃θ̇

= −
1
2
[
eTQe

]
+ ξCe − θ̂

(
ey(t)

)
sgn
(
ey(t)

)
ΓTPe +

1
αθ̃θ̇

= −
1
2
[
eTQe

]
+ ξCe − θ̂

(
ey(t)

)
sgn
(
ey(t)

)
ΓTPe + 2(θ̂ − θd)α

⃒
⃒ey(t)

⃒
⃒

= −
1
2
[
eTQe

]
+
(
ξ − θdsgn

(
ey(t)

) )
ey(t)

(28) 

The first term on the right hand of the equation is always negative 
and the following inequality can be written 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− κ2
/
Re

sC
e
n 1

/
Re

1Ce
1 − κ2

/
Re

sC
e
n 1

/
Re

2Ce
2 − κ2

/
Re

sC
e
n κ2

2/Re
sC

e
n

κ1κ2

2Re
sCe

n
−

κ1

2Rt
c

(
1
/
Ct

c − 1
/
Ct

s
) κ1κ2

2Re
sC

e
n
−

κ1

2

(
1

Rt
cCt

c
−

1
Rt

cCt
s
+

1
Rt

f Ct
s

)

0 − 1
/
Re

1Ce
1 0 0 0 0

0 0 − 1
/
Re

2Ce
2 0 0 0

1
/
Re

sC
e
n 1

/
Re

sC
e
n 1

/
Re

sC
e
n − κ2

/
Re

sC
e
n − κ1

/
2Re

sC
e
n − κ1

/
2Re

sC
e
n

− 1
/
2Ct

c 0 0 0 − 1
/
Rt

cC
t
c 1

/
Rt

cC
t
c

− 1
/
2Ct

c 0 0 0 1
/
Rt

cC
t
c − 1

/
Rt

cC
t
c − 1

/
Rt

f C
t
c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)   
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−
1
2
eTQe ≤ −

1
2

λmin(Q)‖e‖2 (29)  

where λmin(Q) is the smallest eigenvalue of Q. Furthermore, the second 
term in Eq. (28) is always negative since 

(
ξ − θdsgn

(
ey(t)

) )
ey(t) =

{
< 0 : ey(t) > 0 θd > ψ
< 0 : ey(t) < 0 θd > ψ (30) 

As ‖ξ(x, u, t) ‖ ≤ ψ , there should be a desired finite switching gain θd 

such that θd > ψ , leading to Ẇ
(

e, θ̃
)
< 0. Therefore, the second method 

of the Lyapunov stability is fulfilled, and as a result, asymptotic 
convergence of state estimation to zero as time tends to infinity is 
ensured. As the switching gain is adaptively updated in response to 
estimation error, the proposed adaptive SMO can provide robust per
formance. However, discontinuity in the sign function of the SMO leads 
to a chattering effect [29], where, without loss of generality, we consider 
a continuous switching function as following 

v =

⎧
⎪⎨

⎪⎩

θ̂
(
ey(t)

)
Γ

ey(t)⃦
⃦ey(t)

⃦
⃦+ δv

ey ∕= 0

0 otherwise
(31) 

The following section will present the experimental and simulation 
results to validate the proposed adaptive SMO for effectively estimating 
SOC. 

4. Results and discussion 

4.1. SOC and temperature effect on ECM parameters 

The OCV variation versus SOC is shown for the four temperatures in 
Fig. 2a. As it is seen, the OCV experiences minimal variation in response 
to temperature changes. Fig. 2b illustrates the current and terminal 
voltage profiles during the deep intermittent discharge of the pristine 
commercial cell at 25 ◦C with 0.2C pulse-relaxation protocol. The same 
test was repeated at 5, 15 and 35◦C, and the key points from the voltage 
response profiles of the cell (Fig. 2b) were used to parametrize the 
CECM. 

The obtained parameters were used to construct and implement the 
CECM as a nonlinear model in the Simulink. The ECM model was 
parameterized for a discrete set of SOC and temperature levels (Fig. 3). 
The ECM parameters for the points lying in-between these finite set of 
temperature and SOC values were obtained by a linear interpolation 

during the implementation of the ECM in the Simulink software. How
ever, in the stage of observer design, the possible variations of the ECM 
parameters for the internal points were ignored within each SOC in
terval. This simplifying assumption reduces the complexity and 
computational expense of the observer and enhances the feasibility of 
proving the convergence stability of the observer. 

Prior to the observer design, the performance of the ECM model was 
rigorously evaluated by contrasting the simulation outputs against 
experimental discharge data. To this end, a fully charged cell was 
isothermally discharged at 25 ◦C with intermittent 0.2C current pulses 
(10 min) and relaxation intervals of 120 min (Fig. 4). The experimental 
SOC values (‘Exp’ legend in Fig. 4) were obtained by the coulomb 
counting of the discharge process. On the other hand, within the ECM 
model, the SOC is a state variable and can be calculated as a function of 
time by solving the corresponding initial value problem defined by the 
ordinary differential equations of the ECM model. The comparison of the 
experiment and simulation confirms the promising performance of the 
ECM model (Fig. 4). 

4.2. Observability of the design model 

Before presenting the performance of the adaptive observer, it is 
crucial to assess the observability of the design model. In the case of a 
linear component, determining the rank of the observability matrix for 
matrices A and C can be done as follows [24] 

Ob(A,C) =

⎡

⎢
⎣

C

CA

⋮

CA5

⎤

⎥
⎦ (32) 

Rank of the Ob(A,C) matrix was calculated and the results show that 
the matrix is not full rank (Fig. C1) which implies a linear correlation 
among the rows or columns. This means that some states of the system 
are not uniquely determined by the available measurements, and 
therefore cannot be fully observed or estimated. Nevertheless, by taking 
the nonlinear part into account, the following matrix should be calcu
lated and added to Ob(AC) matrix [29] 

Fig. 2. (a) OCV profile of the pristine cell at different temperatures, (b) Voltage and current variation for 0.2C pulse-relaxation current and key points for extraction 
of the CECM’s parameters. 
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Fig. 3. Extracted CECM parameters (a) Re
s , (b) Re

1, (c) Re
2, (d) Ce

1 and (e) Ce
2 by using pulse-relaxation response of the pristine cell at different temperatures.  
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Ob(G,C) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L0
G(Cx)

L1
G(Cx)

⋮
L5

G(Cx)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(33)  

where Li
G(Cx) is ith Lie derivative [24] of outputs (y = Cx) with respect 

to G. For instance, L1
G(Cx) is defined as follows: 

The CECM becomes observable by using the higher-order Lie deriv
ative on the coupled system (Fig. C1). It is noteworthy that the inclusion 
of two nodes in the thermal model is beneficial in two respects. First, 
ignoring the heat generation at the surface node results in an observ
ability matrix that is not full-rank, which in turn prevents the observer 
from establishing a mathematical relationship between surface tem
perature and SOC. Second, a thermal model with more than one node 
provides a more representative physical picture of a thick pouch cell 
with 53 layers of cathodes and anodes in which the possible non-uniform 
generation and distribution of heat cannot be ignored. 

4.3. Observer performance 

4.3.1. Observer evaluation by simulation 
In this section, the performance of the adaptive observer will be 

presented at various conditions. The feedback gain matrix (K) and 
switching gain constant (Γ) are attained by optimising the summation of 
mean absolute error (MAE) for voltage, surface temperature, and SOC 
during a 1C pulse relaxation discharge using the fminsearch method: 

K =

[
0.45 − 0.002 0.007 0.004 − 0.001 − 0.002

− 0.001 0.000 − 0.001 − 0.004 − 0.000 0.198

]T

(35)  

Γ =

[
4.8 0 0 0 0 0
0 0 0 0 0 4.1

]T

(36) 

It is worth mentioning that error signals are scaled using their initial 
values to equalize their contribution to the objective function. The 
positive constant α is chosen as 5 × 10− 3 to satisfy the adaptation speed 
for the switching gains function. The adaptation constant impacts the 
two main aspects of the observer’s performance: convergence speed and 
noise robustness. Increasing α accelerates convergence but potentially 
makes the observer less robust to the noise. Conversely, decreasing α 
decelerates the convergence but improves the noise robustness. Here, 
the optimal value of α was fine tuned via a trial and error procedure 
starting from the available values reported for the similar systems in the 
literature (see references [21, 33]) to achieve a satisfactory balance 

between the convergence speed and noise robustness. Also, the initial 
values of the observer were selected with 10 % deviation from the design 
model ones. The ode23tb solver was employed to solve the initial value 
equations to overcome discontinuities aroused from the input signals 
and sign function. Detailed information about the simulation methods in 
the Simulink of the MATLAB software is provided in the Appendix 
(Table D1). To clarify the structure of the observer, Fig. C2 in the Ap
pendix represents a flowchart of the proposed observer. 

First, the pulse relaxation test with constant current was used to 
evaluate the observer’s robustness in handling deviations in the initial 

guess. The simulation involved deviating the initial values of the 
adaptive observer by 5 %, 10 %, and 20 % relative to the design model. 
The results show that unlike the available observers in the literature 
[43,44] the proposed observer of the present study can overcome initial 
condition mismatch and accurately estimate the design model outputs 

Fig. 4. Performance of the design model in simulating the experimental pro
files of (a) voltage and (b) SOC during a deep intermittent discharge of the 
pristine cell with 0.2C current pulses of 10 min duration and 120 min relaxation 
periods at 25 ◦ C. 

L1
G(Cx) = ∇(Cx).G =

[
∂Cx

∂x(1)
∂Cx

∂x(2)
∂Cx

∂x(3)
∂Cx

∂x(4)
∂Cx

∂x(5)
∂Cx

∂x(6)

]

G =

[
1 0 0 0 0 0
0 0 0 0 0 1

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(

−
κ1

4

(
1
Ct

c
+

1
Ct

s

)(
V0 − κ2Z −

κ1

2
(Tc + Ts)

))

I

0

0

− κ3
/
Re

sC
e
n

− κ1
I(Tc + Ts)

2Ct
c

+ κ2
IZ

2Ct
c
+ κ3

I
2Ct

c

− κ1
I(Tc + Ts)

2Ct
s

+ κ2
IZ

2Ct
s
+ κ3

I
2Ct

s
+

Tf

Rt
f Ct

s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34)   
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and internal states (Fig. 5). The observer converges for all the states 
within almost 300 s. This rapid convergence is attributed to the ob
server’s simultaneous utilization of voltage and temperature errors for 
the estimations’ correction, an advantage over decoupled observer de
signs that treat voltage and temperature separately [45]. Furthermore, 
the estimation error indicates that the observer can effectively avoid 
chattering. The estimation error for voltage is <10 mV for almost the 
entire simulation period. Still, it exceeds this bound for the last three 
impulses due to the abrupt change in voltage and its higher sensitivity to 
changes in current. Nonetheless, the observer can reduce the estimation 
error within a short period. The SOC and temperature errors fall within 
the bounds of 0.05 and 0.05 ◦C, respectively, demonstrating the robust 
capability of the proposed observer (see Fig. C3 in the Appendix). 

In the next step, the design model and observer were subjected to 
urban dynamometer driving schedule (UDDS) current profile (see 
Fig. C4 in Appendix) to assess the performance of the proposed observer 
under more realistic conditions that more closely resemble real-world 
driving behavior compared to the idealized pulse-relaxation current 
profile. Additionally, a random initial state ([4.5 0 0 0.5 20 20]) was 
selected for the observer. This was done to prevent the observer from 
imitating the design model’s internal states instead of estimating them. 
The estimation results are compared against the actual values in Fig. 6 
suggesting that the proposed observer adeptly tracks the measured 
voltage and surface temperature of the design model (Fig. 6a, d). 
Moreover, the observer estimates the internal states of the design model 
relatively efficiently and robustly, with MAE for SOC and core temper
ature of 0.0272 and 0.0347 ◦C, respectively. The observer quickly re
duces the SOC estimation error from 0.5 to a bound of (− 0.05, 0.05) and 
keeps the error within this bound for the rest of the simulation (Fig. 6b). 
There is a small difference (0.5 ◦C) between surface and core tempera
ture implying a relatively uniform temperature distribution within the 
cell (Fig. 6c–d). This is not surprising for the commercial battery 
investigated here with a large heat transfer area and is in line with the 

reported temperature variations in similar batteries [46,47]. Moreover, 
here, the battery is cooled within a thermal chamber with a natural 
convection which has been shown to result in a more uniform temper
ature distribution compared to the forced convection cooling [48]. In 
the thermal model of the present study, the heat generation term was not 
limited to the core and was also considered for the surface node. This 
ensures not only the observability of the design model but also a more 
realistic thermal picture of the cell. In this regard, the possibility of heat 
generation at the surface node can potentially better simulate the cir
cumstances in which a more uniform temperature distribution is ex
pected. As a further assessment of the proposed observer, a comparative 
evaluation was conducted with the existing adaptive gain SMOs from 
literature (ref. [21, 33]) in estimation of the battery SOC when loaded 
with a UDDS current profile (Fig. C5 in Appendix C). It is important to 
highlight that the adaptive gain observers from ref. 21 and 33 struggled 
when confronted with a significant deviation from the initial design 
model parameters. Therefore, an initial state vector of [4.5 0 0 0.8] was 
used for the comparative investigation. The analysis clearly reveals that 
the observer designed using the CEMC exhibits outstanding performance 
in the estimation of SOC with a MAE of 0.022 compared to 0.028 and 
0.027 with observers of ref. 21 and 33, respectively. 

4.3.2. State estimations against experiments 
The practical merits of the designed observer was evaluated by 

comparing its prediction outputs with the experimental data from a 
commercial 64 Ah Li-ion pouch cell at the pristine and aged conditions 
(Fig. 1 a,d). The target task for the observer was to estimate the SOC and 
core temperature of the pouch cell during a deep constant-current 
discharge at 0.8C starting from a fully charged state. To obtain the 
true values of SOC, the cell was discharged stepwise with the current 
pulses of 0.8C lasting for 30 min each. The current had to be interrupted 
intermittently during the cell discharge to allow the relaxation of the 
voltage towards equilibrium. The voltage at the end of each relaxation 

Fig. 5. Observer performance in estimation of output and internal states of the design model and its robustness to initial condition under pulse-relaxation current: (a) 
V0, (b) SOC, (c) Tc and (d) Ts.
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period (6–7 h) was considered to be the OCV which provides an accurate 
SOC reading to be compared with the observer predictions. The current, 
voltage, and temperature profiles during each current pulse period were 
fed as the input to the observer for state estimations (Fig. 1c). 

The observer’s predictions closely follow the experimental data 
during the whole period of deep discharge for the pristine Li-ion pouch 
cell (Fig. 7). The temperature profile shows some fluctuations induced 
by the noise in the surface temperature measurements. Noteworthy is 
the accurate predictions of the SOC by the observer confirmed by the 
experimental values of the SOC (circle blue markers in Fig. 7c). At the 
end of each current-pulse period, the experimental SOC was determined 
by averaging the cell voltage over the last 10 min of the subsequent 
relaxation period and after consulting the experimental OCV function of 
the cell (Eq. A4, Appendix). 

The proposed observer of this study was parametrized based on a 
pristine pouch cell and therefore its predictions are expected to deviate 
from the true states for the aged cells. It is, however, still interesting to 
evaluate the performance of the observer when confronted with the 
same cell but at a state-of-health (SOH) below 100 %. To do so, the same 
experimental discharge protocol (Fig. 7a) was applied to the other two 
aged batteries with the SOH values of 99 % and 93 %. The observer’s 
performance in estimating the SOC for these aged batteries is summa
rized in Fig. 8. The estimation error is negligible for the cell with SOH =
99 % (Fig. 8a), but as high as 8 % and 6 % at SOC = 40 % and SOC = 15 
%, respectively, for the cell with SOH = 93 % (Fig. 8b). This is not 
surprising since the internal resistances and OCV function of the cell are 

subject to the variations in the presence of aging. Particularly, the OCV 
function of a Li-ion battery is very sensitive to the relative positioning of 
the individual OCVs of the cathode and anode electrodes made thereof. 
This relative positioning (i.e. cell balancing) is known to change due to 
the loss of lithium and/or active-material in either of the electrodes. 
Such evolutions in the cell parameters need to be accounted for in 
designing an observer suitable for the whole lifetime of the cell which is 
the subject of future works. 

5. Conclusion 

This paper introduced an enhanced sliding mode observer (SMO) for 
the robust and immediate estimation of the State of Charge (SOC) and 
internal temperature of the lithium-ion batteries (LIBs). The proposed 
SMO benefits from an adaptive law to adjust the switching gain which is 
enabled by a coupled equivalent circuit model (CECM) representing the 
electrochemical and thermal behavior of the battery. This adaptive 
feature enhanced the robustness of the observer against the un
certainties in the model parameters and disturbances in the measure
ments. The performance of the proposed SMO was rigorously evaluated 
through a combination of simulations and experiments. Results 
demonstrated the remarkable accuracy of the SMO in estimating the 
SOC and internal temperature even under complex load profiles such as 
pulse relaxation and UDDS. The observer proved resilient to initial guess 
deviations and significant model mismatches, effectively mitigating the 
chattering effect. In this regard, the role of the continuous switching and 

Fig. 6. Evaluation of observer accuracy in predicting the design model’s output and state variables using the UDDS current profile (a) V0, (b) SOC, (c) Ts and (d) Tc.  
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adaptive gain features of the observer are noteworthy. The continuous 
switching enables a smooth transition between the states and hence 
avoids the abrupt changes that can otherwise promote chattering. The 
adaptive gain adjusts the system’s gain in real-time according to the 
current state and the error measurements. This adaptability ensures that 
the gain is high enough to maintain a robust control but not so high as to 
produce unnecessary chattering. 

The performance of the observer was investigated with experimen
tation on a commercial 64 Ah LIB cell at both pristine and aged condi
tions. Remarkably, the observer achieved SOC estimates with <1 % and 
3 % error for the fresh and aged cells, respectively. In summary, the 
proposed SMO is showcased to be a promising tool for estimating the 
SOC and internal temperature of the LIBs. This SMO has a potential 
application in battery management systems to enhance the performance 
and safety of the LIB-powered devices. 

Nomenclature 

Abbreviations 

ANFIS adaptive neuro-fuzzy inference system 
ANN artificial neural networks 
CC constant current 
CECM coupled equivalent circuit model 
CV constant voltage 
ECM equivalent circuit model 
EKF extended Kalman filter 
KF Kalman filter 
LIBs lithium-ion batteries 
MAE mean absolute error 
OCV open circuit voltage (V) 
P2D psuedo-2-dimensional 
PIO proportional integral observer 
sgn sign function 
SMO sliding mode observer 
SOC state of charge 
SVM support vector machines 
UDDS urban dynamometer driving schedule 
UKF unscented Kalman filter 

Fig. 7. The experimental (blue solid line and circle markers) and prediction profiles (brown and red) of (a) the current, (b) Voltage, (c) SOC, and (d) internal and 
surface temperature during the deep discharge of the pristine Li-ion pouch cell with current pulses of 0.8C (30 min) and intermittent relaxation periods of 6–7 h. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. The experimental (blue circle markers) and predicted SOC (brown and 
red) compared for two Li-ion pouch cell with (a) SOH = 99 % and (b) SOH =
93 % during the deep discharge with current pulses of 0.8C (30 min) and 
intermittent relaxation periods of 6–7 h. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 
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Variables 

A system matrix 
B input coefficient vector 
C output coefficient vector 
Ce

1 first RC branch capacitance (F) 
Ce

2 second RC branch capacitance (F) 
Ce

n battery capacity (Ah) 
Ct

c heat capacity of the core (J/◦C) 
Ct

s heat capacity of the surface (J/◦C) 
ct

bat specific heat capacity of the surface (J/kg/◦C) 
e estimation error of states 
E0 OCV (V) 
ey estimation error of outputs 
F Faraday constant (sA/mol) 
G model nonlinear part 
I current (A) 
kt thermal conductivity (J/sm◦C) 
K feedback gain 
Li ith lie derivative 
Lbat battery thickness (μm)

Li thickness of battery layers (μm)

mbat thermal model parameters for battery 
mi thermal parameters for layer ‘i’ 
Ob observability matrix 
P symmetric definite matrix 
Q symmetric definite matrix 
Re

1 first RC branch resistance (Ω) 
Re

2 second RC branch resistance (Ω) 
Rt

c conduction thermal resistance inside the battery (s◦C/J) 
Rt

f convection thermal resistance outside the battery (s◦C/J) 
Re

s internal ohmic resistance of the battery (Ω) 
Tc core temperature (◦C)
Tf ambient temperature (◦C)
Ts surface temperature (◦C)
u system inputs 
v adaptive switching gain function 
V0 cell voltage (V) 
V1 polarization voltage (V) 
V2 polarization voltage (V) 
W Lyaponov function 
x states vector 

y outputs vector 
Z SOC 
Z0 initial SOC 
α adaptation constant 
δv estimation error criterion 
Γ nonlinear input matrix 
κ1 OCV derivative to temperature (V/◦C) 
κ2 OCV derivative to SOC (V) 
κ3 OCV bias (V) 
ξ unknown function of design model 
ψ upper bound of unknown function ξ 
λ Eigenvalue 
φ bound of the nonlinear part 
ρ density (kg/m3) 
θd desired adaptive switching gain 
θ̂ estimated adaptive switching gain 
θ̃ error of adaptive switching gain 
ΔS entropy change of overall electrochemical reaction (V/◦C) 

CRediT authorship contribution statement 

Behnam Ghalami Choobar: Writing – review & editing, Writing – 
original draft, Visualization, Software, Methodology, Investigation, 
Conceptualization. Hamid Hamed: Writing – review & editing, Visu
alization, Validation, Methodology, Investigation. Mohammadhosein 
Safari: Writing – review & editing, Visualization, Supervision, Re
sources, Methodology, Funding acquisition. 

Declaration of competing interest 

No conflict of interest. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This work was supported by funding from the European Union’s 
Horizon 2020 research and innovation program for the Current Direct 
project under grant agreement No.963603.  

Appendix A. Thermal model 

The paper employs a design model for the prismatic batteries that consists of two sub-models: an electrical model and a thermal model. The 
electrical model is based on an equivalent circuit that relates the current (I) and the terminal voltage (V0) of the battery. The thermal model has two 
states: the surface temperature (Ts) and the core temperature (Tc) of the battery. The model assumes that the temperature only can vary across the 
thickness of the pouch cell, which simplifies the calculations and reduces the computational time. 

The battery is discretized into two nodes of surface and core to which the following general energy balance is applied to derive the thermal model: 

Q̇acc = Q̇gen + Q̇in − Q̇out (A1)  

where Q̇acc is the accumulation rate of the thermal energy, Q̇genis the rate of internal heat generation, and Q̇in and Q̇out are the rate of heat influx and 
outflux, respectively. The accumulation rate of energy in each node is explained by: Q̇acc = CtdT

dt , in which the heat capacity (Ct) is considered to be 
different for the surface (Ct

s) and core (Ct
c) of the battery. 

The rate of heat transfer between the nodes and the surface node and the surroundings can be expressed by Q̇ = ΔT/Rt in which ΔT and Rt is the 
temperature difference and the heat transfer resistance, respectively. The heat transfer resistance for the convection and conduction modes are 
described with Rt = 1/hA and Rt = l/ktA, respectively, where h is the convective heat transfer coefficient, A is the surface area, l is the thickness, and kt 

is the thermal conductivity. 
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The rate of internal heat generation consists of two parts: reversible (Q̇Rev
gen ) and irreversible (Q̇Ire

gen). The reversible part is related to the change in the 

entropy (ΔS) of the overall redox reaction of the cell and can be expressed as Q̇Rev
gen = ITΔS/F. The irreversible part is caused by the deviation of the the 

terminal voltage (V0) from the open circuit voltage (E0) of the cell and can be written as Q̇Ire
gen = I(E0 − V0). 

The resulting thermal model consists of the following two equations describing the dynamics of temperature variation for the surface and core 
nodes of the battery: 

Ṫc =
I(E0 − V0)

2Ct
c

−
I(Tc + Ts)ΔS

2FCt
c

+
Ts − Tc

Rt
cCt

c
(A2)  

Ṫs =
I(E0 − V0)

2Ct
s

−
I(Tc + Ts)ΔS

2FCt
s

+
Tc − Ts

Rt
cCt

s
+

(
Tf − Ts

)

Rt
f Ct

s
(A3)  

Appendix B. Battery cell characteristics 

In the present study, a lithium-ion pouch cell with a nominal capacity of 64 to 67.5 ampere-hours (Ah) was experimented. This cell weighs 
~1156.2 g and measures approximately 100.2 ± 1.5 × 352.2 ± 1 × 16.1 ± 0.1 mm. The cell stack consists of 52 layers of NMC cathode and 53 layers 
of graphite anode zig-zag stacked with separator in between. Our recent paper reports a detailed teardown analysis of this cell [42]. The open-circuit 
voltage (OCV) of the cell, as experimentally determined, is documented in Table B1. Additionally, Table B1 presents the physical characteristics of the 
cell used in the model, including the electrode and current collector thicknesses, as well as cell area. Other properties listed in Table B2 were sourced 
from the available literature investigating the similar Li-ion cells. 

OCV analytic equation for pristine cell 

f(x) = p1x9 + p2x8 + p3x7 + p4x6 + p5x5 + p6x4 + p7x3 + p8x2 + p9x+ p10 (B4)  

where the coefficient and 95 % confidence intervals are reported in Table B1.  
Table B1 
Coefficients and 95 % confidence intervals of Eq. B4.   

Value Lower Upper 

p1  − 0.0177  − 0.018  − 0.0175 
p2  − 0.03  − 0.0303  − 0.0298 
p3  0.0884  0.0866  0.0902 
p4  0.1545  0.1531  0.1559 
p5  − 0.1413  − 0.1453  − 0.1374 
p6  − 0.2752  − 0.2777  − 0.2727 
p7  0.0524  0.0491  0.0557 
p8  0.2235  0.2219  0.225 
p9  − 0.1791  − 0.18  − 0.1783 
p10  3.6692  3.6690  3.6694   

Table B2 
Specifications of the cell and obtained parameters for the thermal model.  

Property Battery Copper Collector (ref. [49]) Anode (Graphite) (ref. [50, 51]) Separator 
(ref. [50]) 

Cathode 
(NMC 111) (ref. [50, 51]) 

Aluminum 
collector 
(ref. [49]) 

Thermal conductivity (
W

m◦ C
)  35 385 1 0.5 3.6 238 

Density (kg/m3)  3375 8960 2300 913 4870 2700 

Specific capacity (
J

kg◦ C
)  1055 385 750 2480 840 900 

Length (μm)  146 10 59 25 48 4 
Area (cm2)  650  

Heat capacity (
J

◦ C
)  1800  

Thermal conductive resistance (
◦ C
W

)  
15.6   
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Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.est.2024.112628. 
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