
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Integrating order picking and vehicle routing decisions in a dynamic

e-commerce setting

Peer-reviewed author version

D'HAEN, Ruben; RAMAEKERS, Katrien; Archetti, Claudia & BRAEKERS, Kris

(2024) Integrating order picking and vehicle routing decisions in a dynamic

e-commerce setting. In: Computers & operations research, 170 (Art N° 106762).

DOI: 10.1016/j.cor.2024.106762

Handle: http://hdl.handle.net/1942/43456

Integrating order picking and vehicle routing
decisions in a dynamic e-commerce setting

Ruben D’Haen1,2, Katrien Ramaekers1, Claudia Archetti3, and Kris
Braekers1

1Research Group Logistics, UHasselt, Agoralaan Building D, 3590
Diepenbeek, Belgium

2Research Foundation Flanders (FWO), Leuvenseweg 38, 1000 Brussel,
Belgium

3Department of Information Systems, Decision Sciences and Statistics,
ESSEC Business School, 3 Avenue Bernard Hirsch, 95000 Cergy, France

June 26, 2024

E-mail: ruben.dhaen@uhasselt.be (corresponding author), katrien.ramaekers@uhasselt.be,
claudia.archetti@essec.edu, kris.braekers@uhasselt.be

Abstract

Responding to e-commerce orders as quickly as possible is indispensable for compa-
nies competing in the current retailing landscape. After a customer orders online, the
requested items should be picked in the warehouse and delivered to the customer’s loca-
tion. Previous research showed the benefits of integrating the order picking and vehicle
routing decisions in a static context. To achieve shorter customer response times, we
propose multiple new algorithms in this study, able to handle the integrated problem
of picking and delivery in a setting with dynamic order arrivals and considering more
complex picking policies. We develop and implement four online large neighbourhood
search algorithms, differing in their degree of integration between picking and routing
decisions. The algorithms are tested on different operational settings. Differences be-
tween the algorithms and the impact of the operating context are analysed by use of an
ANOVA. The results highlight the importance of integrated decision-making, as well as

1

the large impact of the operating context on the operational efficiency. Furthermore, we
demonstrate the environmental impact of stringent customer requests. These insights
can be used by companies to optimise their operations.

Keywords

Order picking; Vehicle routing; Integrated decision making; Order batching; Metaheuris-
tics

1 Introduction

E-commerce sales have rapidly grown during the past decade. The share of companies
offering an e-commerce sales channel has grown accordingly, increasing the competition
to attract and retain customers. Customers may be persuaded by offering a lower price
for home deliveries or by shorter delivery delays [Alnaggar et al., 2021]. Same-day
deliveries are no exception anymore, with some companies even going as far as promising
delivery within one or two hours [Ulmer, 2017]. To be able to attain these customer
service levels, and to do so at reasonable costs, efficient order handling processes are
indispensable.

Two important steps in order handling are the order picking and order delivery
processes. In the order picking process, ordered items are collected from their storage
locations. Afterwards, the order delivery process transports the picked orders to the
customer’s location. Traditionally, these processes are optimised individually. Extensive
research is available on the optimisation of order picking (see reviews of de Koster et al.
[2007] and van Gils et al. [2018]) and vehicle routing individually (e.g., see Toth and
Vigo [2014] and Braekers et al. [2016] for a general overview of the vehicle routing
problem, and Archetti and Bertazzi [2021] for a discussion on recent developments and
challenges related to same-day deliveries). In the traditional optimisation approach,
order picking and delivery are considered as two separate processes, where every order
is assigned a cutoff time between picking and delivery (i.e., a picking deadline) based on
a simple rule of thumb. This traditional optimisation approach ignores the interaction
between both problems, leading to suboptimal solutions for the combined order handling
process. For example, orders are only considered to be available for delivery after their
picking deadline, although some orders may have been picked long before this time.
By considering order picking and delivery as an integrated optimisation problem, an
intelligent choice for this cutoff time can be made. If an order is only scheduled for
routing very late, the picking operations may be postponed. Similarly, if an order is
already picked very early during the planning period, it may be added to a delivery
route starting long before the cutoff time under the traditional approach.

2

In this paper we study how order picking and vehicle routing decisions can be op-
timised jointly. This leads to a complex optimisation problem in which order picking
and vehicle routing decisions are interdependent. Within a vehicle routing context, the
synchronisation of delivery or pick-up operations has been studied before (see the liter-
ature reviews of Drexl [2012] and Soares et al. [2023]). Moreover, synchronisation has
been considered within two-echelon vehicle routing problems (see the literature review of
Sluijk et al. [2023]). However, the synchronisation of order picking and vehicle routing
decisions has some additional particularities, e.g., the same order picking completion
time for all orders within a single pick tour, and multiple locations that need to be vis-
ited in the warehouse for a single order. Previous research already studied the integrated
order picking and vehicle routing problem (IOPVRP) and highlighted the possible ef-
ficiency improvements of integrated optimisation [Moons et al., 2018, Schubert et al.,
2018]. The order picking problem involved was kept quite simple in this research, as
orders are picked individually, i.e., no order batching is allowed, despite the large bene-
fits associated with order batching [Chen and Wu, 2005, de Koster et al., 2007]. Order
batching was considered later by Kuhn et al. [2021], showing a highly improved per-
formance on the combined order picking and vehicle routing problem. Still, in each of
these contributions, the routing of the order pickers in the warehouse is determined by
an S-shape heuristic, avoiding the real integration of order batching, picker routing and
batch scheduling [D’Haen et al., 2023]. With an S-shape routing policy, order pickers
have to traverse the entire aisle if there is at least one item to pick in that aisle. While
this policy is relatively efficient if there are on average many picks per aisle, an opti-
mised routing policy allows for increased flexibility, e.g., by turning around within an
aisle if this reduces the picking distance. In this study, we go beyond the state-of-the-art
by considering the integrated order batching, picker routing (with an optimised routing
policy) and batch scheduling problem in the picking part of the IOPVRP, i.e., a complex
picker-to-parts setting is considered.

Additionally, up to now, research on the IOPVRP considered a static problem setting
in which all orders are known at the start of the planning period. In the e-commerce
setting that many companies face nowadays, new orders arrive while the operations are
ongoing. Therefore, we consider a setting in which orders arrive dynamically during the
picking and routing operations. The contributions of this study are therefore multiple:

• We extend the IOPVRP to consider the integrated order batching, picker routing
and batch scheduling problem in the order picking part of the problem.

• A procedure to handle dynamic order arrivals is proposed, making the setting more
applicable in practice, i.e., the online integrated order picking and vehicle routing
problem (o-IOPVRP) is considered.

• We introduce several new metaheuristic algorithms to solve the o-IOPVRP. These
algorithms differ in the level of integration between both subproblems and in the

3

way this integration is achieved (e.g., iterating between optimising the subprob-
lems, or defining neighbourhoods over the joint problem). The algorithms’ per-
formance is analysed to understand the impact of their components and how to
best integrate the decisions. Additionally, differences in the solution structure
of the algorithms are analysed to obtain insights into the characteristics of good
solutions.

• Insights in the benefits of integration are deduced from the algorithms’ perfor-
mance on a series of test instances, leading to valuable knowledge for academia
and practitioners. We show that integrated decision-making can lead to substantial
improvements in solution quality compared to sequential decision-making (aver-
age reductions in tardiness and distance traveled of 74% and 17%, respectively).
Furthermore, our results indicate that the best performance is achieved when alter-
nating between global and local neighbourhoods during the optimisation, providing
valuable insights for tackling similar integrated optimisation problems.

• We test the algorithms on a diverse set of instances, constructed to mimic differ-
ent operating contexts. The results lead to an understanding of the importance
of the operating context and its impact on the the operating efficiency as well as
the environmental impact of the operations. Customers being a bit more flexible
regarding their delivery preferences, i.e., accepting a slightly longer delivery de-
lay and a wider delivery time window, has a large impact on the travel distance.
Reductions in distance of up to 18% can be achieved, highlighting large efficiency
improvements, leading to both savings for the company and a reduction in environ-
mental impact of the delivery operations. This finding is valuable for practitioners
and may be used to convince customers in being less demanding to reduce their
environmental impact.

The remainder of this paper is structured as follows. First, Section 2 gives an overview
of the literature related to this study. Next, Section 3 gives a detailed description
of the problem studied in this paper. Section 4 proposes the different metaheuristic
algorithms, followed by the computational experiments in Section 5. Finally, conclusions
are presented in Section 6.

2 Literature review

This section discusses the most relevant literature for the IOPVRP. First, literature on
the subproblems is discussed. Section 2.1 refers to the literature on integrated solution
approaches for the order picking problem, more specifically, where order batching, picker
routing and batch scheduling decisions are made in an integrated manner. Next, an
overview of vehicle routing problems with release dates, the VRP most closely related

4

to the one encountered in the IOPVRP, is given in Section 2.2. Finally, literature on
the IOPVRP is discussed in Section 2.3.

2.1 Order picking problem

This section gives a brief overview of the most relevant literature regarding the integrated
(online) optimisation of the order picking problem. For a more elaborate discussion re-
garding online order batching problems and integrated order picking, we refer to D’Haen
et al. [2023] and van Gils et al. [2018], respectively. The order picking problem consid-
ered within the IOPVRP is the integrated order batching, picker routing and batch
scheduling problem. In this problem, the decisions regarding which orders to combine
in a single pick tour (order batching), in which sequence the item locations of a pick
tour are visited (picker routing) and the assignment and sequence of the tasks to pickers
(batch scheduling) are made in an integrated manner. The integrated problem including
all three subproblems was first studied by Chen et al. [2015] for a setting with a single
order picker. Later, the setting was extended to include multiple order pickers by Scholz
et al. [2017] and van Gils et al. [2019]. In an e-commerce setting, the dynamic arrival of
orders should be accounted for. Literature on integrated decision-making in the online
context is rare. Rubrico et al. [2011] consider the integration of order batching and
picker routing with dynamic order arrivals. Batch scheduling is performed by simple
scheduling heuristics, preventing real integration. Real integration in the online context
was introduced by D’Haen et al. [2023], who studied the integration of order batching,
picker routing and batch scheduling for the first time in the online context.

2.2 Vehicle routing problem with release dates

After picking an order, the order becomes available for delivery. Since the picking
completion time is known once an order is scheduled for picking, the time of availability
of this order for delivery is known in advance. The VRP considered is therefore a VRP
with release dates (VRP-rd). Furthermore, since new orders arrive during the planning
period, an online VRP with release dates is considered in our setting.

The VRP-rd has only recently received attention in the literature. An overview of
the literature is given in Table 1. In the first article on the VRP-rd, Archetti et al.
[2015] study a setting with a single vehicle, as well as a setting with an infinite number
of vehicles. The objective of the study is proving the complexity of the VRP with release
dates, rather than solving the problem. In specific settings, i.e., a line or star graph,
the problem can be solved in polynomial time. This research was extended by Reyes
et al. [2018] to consider order due times. A first solution approach for the single vehicle
VRP-rd on a general graph is proposed by Archetti et al. [2018] and is based on an
iterated local search algorithm.

5

Table 1: Literature on vehicle routing problems with release dates.

Vehicles Trips/vehicle Due times TW Dynamic

S
in
gl
e

M
u
lt
ip
le

S
in
gl
e

M
u
lt
ip
le

Archetti et al. [2015] x x x x
Cattaruzza et al. [2016] x x x
Shelbourne et al. [2017] x x x
Archetti et al. [2018] x x
Reyes et al. [2018] x x x x
Archetti et al. [2020] x x x
Li et al. [2020] x x
Soman and Patil [2020] x x x
Li et al. [2021] x x x
Yang et al. [2021] x x x

Most of the literature on the VRP-rd considers multiple vehicles. Some authors
consider a setting in which every vehicle can make a single trip only [Shelbourne et al.,
2017, Soman and Patil, 2020, Yang et al., 2021]. In these studies, orders have a due
time before which they should be delivered. In other articles, vehicles are allowed to
perform multiple trips. This setting is studied by Li et al. [2020] without order due
times. Cattaruzza et al. [2016] consider a setting with multiple vehicles, each allowed
to perform multiple trips, where orders should be delivered within a time window. This
setting is most closely related to the VRP encountered in our work. Yet, all orders are
static in their work, contrary to the problem studied in this paper (and order picking is
not considered).

While extensive research exists on the dynamic VRP [Ojeda Rios et al., 2021], many
of the associated decisions, e.g., waiting strategies or the use of stochastic information,
are not as useful in our problem context. Since orders should be picked before delivery
can begin, vehicles can already wait for the picking completion times (i.e., the release
dates in the VRP) of known orders. Adding a waiting strategy for the VRP for unknown
orders would lead to even longer waiting times, and may not be feasible in highly dynamic
settings as considered in this study. For literature reviews on dynamic vehicle routing,
we refer to Pillac et al. [2013], Psaraftis et al. [2016] and Ojeda Rios et al. [2021]. To
the best of our knowledge, only a single paper considers the VRP-rd in a dynamic
setting. In the work of Archetti et al. [2020] a single vehicle performs the delivery of
dynamically arriving orders. Contrary to our work, stochastic information about future
orders is available, and this information is shown to lead to better performance than the
deterministic scenario.

6

Some optimisation problems in the literature are closely related to a VRP-rd. For
example, the dynamic dispatch waves problem, studied by Klapp et al. [2018] has some
similar characteristics, with orders with an associated release date that should be de-
livered to the customers. However, not all orders should be delivered, leading to order
acceptance decisions that should be made, taking stochastic information on future re-
quests into account. A single vehicle is performing the delivery operations. Additionally,
the routing problem’s complexity is reduced, since all customers are located on a single
line, leading to the trip’s duration being set by this longest distance. In the same-day
delivery literature, related problems can be found, where orders have release dates, based
on stochastic information. Voccia et al. [2017] consider a same-day delivery problem in
which the number of requests that can be fulfilled should be maximised, considering
stochastic information on future requests. Furthermore, the vehicle departures may be
postponed based on the expected future orders. Finally, van Heeswijk et al. [2019] con-
sider the dispatching decision at the depot, where they decide on when a vehicle should
be dispatched, based on stochastic information on future requests.

2.3 Integrated order picking and vehicle routing

An overview of the literature on the integrated order picking and vehicle routing problem
is given in Table 2. The integration of order picking and delivery decisions was first
studied by Zhang et al. [2016, 2018, 2019]. In these studies, order picking operations
are optimised by use of a batching algorithm and S-shape picker routing. The delivery
decisions are very basic, however, since a real VRP is not included in the optimisations.
Rather, orders have a fixed departure time, set by a third-party logistics provider [Zhang
et al., 2016], should only be routed to a certain zone, without considering the individual
customer locations [Zhang et al., 2018], or have a fixed cost in a certain vehicle without
making an actual routing plan [Zhang et al., 2019]. Contrary to later research, the
orders arrive dynamically in Zhang et al. [2016, 2018, 2019], which is characteristic for
an e-commerce setting. The objective in Zhang et al. [2016] is to maximise the number
of delivered orders, meaning that not all orders have to be handled, whereas Zhang et al.
[2018, 2019] minimise the sum of the makespan and delivery cost.

Later research included a real VRP in the integrated problem. Moons et al. [2018]
solve the IOPVRP with an exact algorithm in CPLEX, with cost minimisation as the
objective function. Order picking operations are performed order-by-order, where order
pickers follow an S-shape routing policy. The VRP considers heterogeneous capacitated
vehicles, each allowed to perform a single trip, with time windows at the customer loca-
tions. The results highlight the benefits of integration: a cost reduction of approximately
12% is possible compared to an unintegrated approach. This work is extended with a
heuristic algorithm in Moons et al. [2019], tested on instances of up to 100 orders. Cost
reductions average 1.8% when integrating order picking and vehicle routing, combined
with the possibility to offer a higher service level to the customers. Closely related work

7

Table 2: Literature on integrated order picking and vehicle routing problems.

Batching S-shape VRP Time windows Online
Zhang et al. [2016] x x x
Moons et al. [2018] x x x
Schubert et al. [2018] x x
Zhang et al. [2018] x x x
Moons et al. [2019] x x x
Zhang et al. [2019] x x x
Kuhn et al. [2021] x x x x
Schubert et al. [2021] x x x
Ostermeier et al. [2022] x x x

was conducted by Schubert et al. [2018], with the largest difference being the objective
function: tardiness instead of costs are considered. The iterated local search algorithm
is tested on instances of up to 200 orders, and shows tardiness improvements of 17.2%
on average for the integrated solution approach compared to a sequential approach.

Additional restrictions were later added to the IOPVRP. Schubert et al. [2021] look
at the delivery of large durable consumer goods, which are picked individually in the
warehouse. Delivery scheduling should take the vehicle class into account, since different
services require different vehicles. The results show benefits of the integrated solution
approach in line with earlier research, with the cost improvements depending on the
problem characteristics. A constraint regarding a limited intermediate storage area
between picking and shipping was introduced by Ostermeier et al. [2022]. Again, a
sequential approach is compared to an integrated approach, showing a much larger
number of feasible solutions found by the integrated solution algorithm, highlighting the
importance of integrated decision-making.

Kuhn et al. [2021] make an important contribution by introducing order batching
into the picking part of the IOPVRP. The use of order batching allows for a more re-
alistic problem setting, but at the cost of increased problem complexity. The proposed
solution method is a general adaptive large neighbourhood search (GALNS) algorithm, a
combination of an ALNS with a general variable neighbourhood search. The algorithm
is applied on problem settings with up to 200 orders, with the objective to minimise
tardiness. The results show some interesting insights. Compared to a sequential ap-
proach with discrete picking, tardiness can be reduced by 56% and 52% by introducing
an order batching strategy and moving to an integrated solution approach, respectively.
The combination of both integrated solving and batch picking, can reduce tardiness by
76% in the experimental setup, and 68% in a case study.

Finally, the integration of order picking and vehicle routing is considered by Rijal
et al. [2023], but in a slightly different manner compared to the other articles. Although

8

order batching is considered, the warehouse operations are not modelled in detail. In-
stead, based on real-life data, the required time to pick a batch is estimated by use of
an ordinary least squares regression model, where the batch picking time is based on
the number of items in that batch. The use of an integrated order picking and vehicle
routing algorithm was shown to lead to cost savings of approximately 10% compared to
a sequential optimisation approach.

To conclude, previous research clearly highlights the benefits of integrated decision-
making. Order batching is also proven to be very beneficial, even though the routing
policy studied in the literature was always S-shape routing, while more efficient strategies
exist. In this paper, we study a more complex setting by incorporating a state-of-
the-art order picking strategy, in which picker routing is optimised as well, i.e., the
integrated order batching, picker routing and batch scheduling problem is considered.
Furthermore, a multi-trip VRP is examined in this study. Finally, a large contribution to
the literature is the handling of dynamically arriving orders, which was not yet studied
for the integrated order picking and vehicle routing problem.

3 Online integrated order picking and vehicle rout-

ing problem

In this section, we define the online integrated order picking and vehicle routing problem
(o-IOPVRP) that is studied in this paper. The problem description is given in Section
3.1, followed by a mathematical model in Section 3.2.

3.1 Problem description

In the o-IOPVRP, customers, located at geographically dispersed locations, order some
goods at a retailer operating from a single distribution center. First, the requested items
have to be picked in the warehouse. Next, the picked items should be delivered to the
customer’s locations. The problem consists of finding the most efficient way to deliver
all orders, while adhering to the following constraints.

When looking at the order picking part, all orders should be picked by human order
pickers travelling through the warehouse (picker-to-parts). The warehouse can have any
layout. Orders consist of one or multiple order lines and can be grouped in batches.
Order splitting is not allowed, i.e., all order lines of an order should be allocated to the
same batch. The maximum capacity of the picking device, i.e., the batch capacity, is
expressed as a number of orders. Parallel to allocating orders to batches (order batching
problem), the pickers’ routes through the warehouse to visit all item locations in a batch
have to be determined (picker routing problem) and the batches should be assigned and
scheduled for a picker (batch scheduling problem). A mathematical problem formulation

9

for the order picking part can be found in D’Haen et al. [2023], based on work of van
Gils et al. [2019].

The second part of the problem considers the vehicle routing decisions. The prob-
lem at hand has order release dates in the VRP, since orders can only be loaded in a
vehicle after their picking completion time. The order picking schedule, and the picking
completion time of every order in particular, is thus used as an input in the VRP. The
vehicle fleet consists of a limited number of homogeneous capacitated vehicles, each al-
lowed to perform multiple trips. Every trip starts and ends at the warehouse, where the
departure time of a vehicle trip is at the earliest the maximum of the release times of the
orders included in that trip. Every order belongs to a customer and should be delivered
within the associated time window. If a vehicle arrives early, it has to wait for the start
of the time window. Delivering late is possible, but at the cost of incurring tardiness.
Without loss of generality, we assume that picked items can be loaded as soon as the
picker has completed the associated pick tour, and that the vehicle loading process does
not consume any time. All presented methods can easily deal with situations in which
a fixed delay for packing or loading is incurred.

The objective of the o-IOPVRP is to deliver all orders with as little tardiness as
possible. The objective function is hierarchical, however, with at the second level the
total distance in the VRP. If two solutions have equal tardiness, the solution with a
lower distance is preferred. Note that there is no objective regarding the order picking
part of the problem. Yet, the solution for the order picking problem directly impacts
the delivery schedule, since order release times for the VRP are derived from the order
picking schedule. The underlying assumption is that order pickers (and vehicle drivers)
represent sunk costs, i.e., they are paid for their complete shift, regardless of their actual
working time.

Since an e-commerce setting is considered where customers expect very fast delivery,
an online problem context is studied. Orders arrive dynamically during the planning
period. It is assumed that no information on future order arrivals is available. If this
information were available, taking it into consideration could improve the performance
of the algorithm, as was shown for the order picking problem in D’Haen et al. [2023].
Once an order arrives it can be included in the schedule. However, note that rerouting is
not allowed for both the picking and delivery problems, i.e., the batches that are being
picked and the delivery trips that are being performed at the time of new order arrivals
cannot be modified. A simple graphical representation of the problem is given in Figure
1, with a timeline of the process for a dynamically arriving order given in Figure 2.

3.2 Mixed integer linear programming model

A mixed integer linear programming model for the IOPVRP, i.e., the static counterpart
of the o-IOPVRP, is developed here. The model considers the dynamic arrival of orders,
by including order arrival times. This model assumes all order arrival times are known

10

(a)

(b)

Figure 1: Graphical representation of a toy example for the online integrated order pick-
ing and vehicle routing problem. (a) Initially, three orders are known and scheduled for
both picking and delivery. The orders are picked in two batches, graphically represented
in the warehouse with a solid and dashed line. (b) The gray order is a dynamically
arriving order. Assuming the previous orders have not yet been handled, the schedule
is updated to include the new order. The batches in the order picking problem are
modified, as well as the delivery routes to the customers’ locations.

11

Figure 2: A timeline of the events from order arrival to order delivery. Depending
on the operations, the time between order arrival and batch start, and between batch
completion and trip start can be zero or positive, but never negative. The symbols used
in the figure are introduced in Section 3.2.

at the start of the planning period. In practice, and in our experiments, this information
is not known beforehand. Results of this mathematical model are thus lower bounds on
the objective function value of the online problem that we consider, and are obtained by
considering more information than is available in reality. Nevertheless, the formulation
is presented to formally introduce the optimisation problem considered during the full
planning period.

The optimisation problem clearly consists of an order picking and a vehicle routing
part that are combined to obtain an integrated problem setting. Sets, parameters and
decision variables for the optimisation problem are given in Table 3, with the subprob-
lem for which an entry is relevant highlighted in the last column. Note that the set of
customers is equivalent to the set of customer orders, since, without loss of generality,
we assume every customer is associated with a single order.

Table 3: Notation MIP.

Sets Explanation OPP VRP
κ = {1, 2, ..., |κ|} Set of customers with index k • •
Ω = {1, 2, ..., |Ω|} Set of vehicles with index ω •
Π = {1, 2, ..., |Π|} Set of trips of a vehicle with index π •

Ψ = {0, 1, ..., |Ψ|+ 1} Set of vertices with index ψ (0 and |Ψ| + 1 represent the
depot, 1 to |Ψ| are the locations of all customers in κ)

•

A = {1, 2, ..., |A|} Set of arcs with index α •
Q = {1, 2, ..., |Q|} Set of order pickers with index q •
P = {1, 2, ..., |P |} Set of batches of a picker with index p •
V = {0, 1, ..., |V |} Set of vertices with index v (picker depot is 0) •
W = {V 1, V 2, ..., V S} Set with all possible subsets of vertices V s ⊂ V \ 0 : |V s| > 1 •

12

E = {1, 2, ..., |E|} Set of arcs with index e connecting
a start and end vertex ∈ V •

EV s ⊂ E Subset of arcs with e connecting a start and end vertex ∈ V s •
E−
v ⊂ E Subset of arcs ending in a vertex v ∈ V •

E+
v ⊂ E Subset of arcs starting in a vertex v ∈ V •

Vk ⊂ V
Subset of vertices that should be visited to collect
the items for customer k ∈ κ •

Parameters Explanation OPP VRP
M A large number (Big M notation) • •
λk Lower bound of the time window for customer k ∈ κ •
υk Upper bound of the time window for customer k ∈ κ •
C Vehicle capacity •

tij
Travel time when travelling from location i ∈ Ψ
to location j ∈ Ψ

•

ck Size of order k ∈ κ •
ok Number of order lines of order k ∈ κ •
c Batch capacity (in number of orders) •
te Travel time when travelling across arc e ∈ E (in seconds) •
tsetup Batch setup time (in seconds) •
tsearch Search and pick time to visit a storage location (in seconds) •

t̄k
Arrival time to the system of customer order k ∈ κ with
respect to the start of the planning horizon (t = 0)

•

Decision variables Explanation OPP VRP

ρk
Release time of order k ∈ κ for delivery (i.e., the
picking completion time of this order)

• •

χωπij

Binary decision variable which is equal to 1 if and
only if the arc between i and j is visited by vehicle
ω ∈ Ω in trip π ∈ Π

•

Υωπk
Binary decision variable which is equal to 1 if and only
if vehicle ω ∈ Ω visits customer k ∈ κ in trip π ∈ Π

•

t̂ωπψ
Arrival time of vehicle ω ∈ Ω in trip π ∈ Π at
vertex ψ ∈ Ψ

•

τk Tardiness of order k ∈ κ •

Xqpe

Binary decision variable which is equal to 1 if
and only if arc e ∈ E is traversed by order picker q ∈ Q
in batch p ∈ P

•

Yqpv
The outdegree of vertex v ∈ V (i.e., number of arcs
leaving v) by order picker q ∈ Q in batch p ∈ P •

Zqpv

Binary decision variable which is equal to 1 if and
only if vertex v ∈ V is visited by order picker q ∈ Q
in batch p ∈ P

•

Rqpk

Binary decision variable which is equal to 1 if and
only if order k ∈ κ is completed by order picker q ∈ Q
in batch p ∈ P

•

Tqp
Completion time of the batch completed by
order picker q ∈ Q in batch p ∈ P •

T̄qp
Start time of the batch completed by order picker q ∈ Q
in batch p ∈ P •

13

The formulation of the problem is given below. First, the objective functions are
introduced. Since the objective function of the integrated optimisation problem is min-
imising tardiness in the vehicle routing problem, the constraints of the VRP are intro-
duced first, and are based on Archetti et al. [2018] but adapted to consider multiple
vehicles, multiple trips and time windows. Next, the order picking problem is discussed,
followed by a linking constraint between the subproblems.

Objective function:

Primary objective: min
∑
k∈κ

τk (1)

Secondary objective: min
∑
ω∈Ω

∑
π∈Π

∑
i∈Ψ

∑
j∈Ψ

tijχ
ωπ
ij (2)

∑
ω∈Ω

∑
π∈Π

Υωπ
k = 1 ∀k ∈ κ (3)∑

k∈κ

ckΥ
ωπ
k ≤ C ∀ω ∈ Ω, π ∈ Π (4)

t̂ωπj ≥ t̂ωπi + tijχ
ωπ
ij −M(1− χωπij) ∀(i, j) ∈ A, ω ∈ Ω, π ∈ Π (5)

t̂ωπk ≥ λk ∀k ∈ κ, ω ∈ Ω, π ∈ Π (6)

t̂ωπk ≤ υk + τk ∀k ∈ κ, ω ∈ Ω, π ∈ Π (7)∑
j∈Ψ\{0}

χωπkj =
∑

j∈Ψ\{Ψ+1}

χωπjk = Υωπ
k ∀k ∈ κ, ω ∈ Ω, π ∈ Π (8)

∑
k∈κ

χωπ0k ≤ 1 ∀ω ∈ Ω, π ∈ Π (9)

t̂ωπ0 ≥ t̂
ω(π−1)
|Ψ|+1 ∀ω ∈ Ω, π ∈ Π \ {1} (10)

t̂ωπ0 ≥ ρk −M(1−Υωπ
k) ∀k ∈ κ, ω ∈ Ω, π ∈ Π (11)∑

k∈κ

χωπ0k ≤
∑
k∈κ

χ
ω(π−1)
0k ∀ω ∈ Ω, π ∈ Π \ {1} (12)

t̂ωπψ ≥ 0 ∀ψ ∈ Ψ, ω ∈ Ω, π ∈ Π (13)

χωπij ∈ {0, 1} ∀(i, j) ∈ A, ω ∈ Ω, π ∈ Π (14)

Υωπ
k ∈ {0, 1} ∀k ∈ κ, ω ∈ Ω, π ∈ Π (15)

τk ≥ 0 ∀k ∈ κ (16)

ρk ≥ t̄k ∀k ∈ κ (17)

The primary objective function (1) minimises the tardiness to deliver all orders. If
two solutions have equal tardiness, the solution with the lowest distance, the secondary

14

objective function (2), is preferred. Constraints (3) ensure that every order is assigned
to a single vehicle trip. Constraints (4) make sure not to exceed the vehicle capacity in
any trip. The arrival time of a vehicle at a location should be larger than the arrival
time in the previous vertex and should consider the travel time between the vertices, as
enforced by constraints (5). Delivery at a customer’s location can never occur before the
start of the time window, while late delivery is allowed but leads to tardiness, ensured by
constraints (6) and (7), respectively. Constraints (8) make sure that a vehicle travels to
and from a customer’s vertex in a given trip if this customer is assigned to that vehicle’s
trip. A vehicle can leave the depot at most once per trip, enforced by constraints (9).
A trip cannot start before the previous trip of that vehicle arrived at the depot and
not before all orders included in the trip have been released for delivery (i.e., picking
has been completed), imposed by constraints (10) and (11), respectively. Symmetry
breaking constraints are included by constraints (12). Although they are redundant,
they drastically reduce the search space. Finally, the domain constraints are given by
constraints (13) - (17).

Before the orders can be loaded into a vehicle, they have to be picked in the ware-
house. The formulation of the order picking subproblem is strongly based on the for-
mulation of van Gils et al. [2019], which in turn was based on the formulation of Valle
et al. [2017], with some small modifications to allow for order arrival times (i.e., the time
when a new, dynamic customer order arrives in the system), introduced to account for
the dynamic arrival of orders. The relevant constraints are as follows.

∑
e∈E−

v

Xqpe =
∑
e∈E+

v

Xqpe ∀q ∈ Q, p ∈ P, v ∈ V (18)

∑
e∈E−

v

Xqpe = Yqpv ∀q ∈ Q, p ∈ P, v ∈ V (19)

∑
v′∈V s

Yqpv′ ≥ Zqpv +
∑
e∈EV s

Xqpe ∀q ∈ Q, p ∈ P, v ∈ V s, V s ∈ W (20)

Xqpe ≤ Zqpv ∀q ∈ Q, p ∈ P, v ∈ V, e ∈ E+
v (21)∑

e∈E−
0

Xqpe =
∑
e∈E+

0

Xqpe = Zqp0 ∀q ∈ Q, p ∈ P, e ∈ E (22)

Xqpe ≤ Zqp0 ∀q ∈ Q, p ∈ P, e ∈ E (23)

Rqpk ≤ Zqp0 ∀q ∈ Q, p ∈ P, k ∈ κ (24)∑
e∈E+

v

Xqpe ≥ Rqpk ∀q ∈ Q, p ∈ P, k ∈ κ, v ∈ Vk (25)

∑
k∈κ

Rqpk ≥ Zqp0 ∀q ∈ Q, p ∈ P (26)

15

∑
k∈κ

Rqpk ≤ c ∀q ∈ Q, p ∈ P (27)∑
q∈Q

∑
p∈P

Rqpk = 1 ∀k ∈ κ (28)

Tqp = T̄qp + tsetupZqp0 + tsearch
∑
k∈κ

okRqpk +
∑
e∈E

teXqpe ∀q ∈ Q, p ∈ P (29)

Tqp ≤M
∑
k∈κ

Rqpk ∀q ∈ Q, p ∈ P (30)

T̄qp ≥ Tq(p−1) ∀q ∈ Q, p ∈ P \ {1} (31)

T̄qp ≥ t̄k −M(1−Rqpk) ∀q ∈ Q, p ∈ P, k ∈ κ (32)

Xqpe, Rqpk ∈ {0, 1} ∀q ∈ Q, p ∈ P, k ∈ κ, e ∈ E (33)

Zqpv ∈ [0; 1] ∀q ∈ Q, p ∈ P, v ∈ V (34)

Tqp, T̄qp ≥ 0 ∀q ∈ Q, p ∈ P (35)

Constraints (18) make sure that the number of in- and outbound arcs is equal for
every vertex in every batch. The number of arcs leaving a vertex is computed for every
batch by constraints (19), and this number is used in constraints (20) to avoid sub-tour
creation (as discussed in van Gils et al. [2019]). Constraints (21) make sure to only visit
vertices in a batch when an arc starts in the vertex. Constraints (22) ensure an incoming
and outgoing arc from the depot if the depot is visited. Constraints (23) and (24) force
at least one used arc or one added order to a batch if the depot is included in this
batch. Constraints (25) make sure to visit the vertices of orders assigned to the batch.
If the depot is visited, there should be at least one order assigned to the batch, which is
enforced by constraints (26). Constraints (27) ensure not to exceed the batch capacity,
and constraints (28) make sure an order is only added to a single batch. The completion
time of a batch is set by constraints (29), and constraints (30) make sure a completion
time is computed for all batches. The start time of a batch should be later than the
completion time of the previous batch of that picker, which is enforced by constraints
(31). As orders can have an arrival time, a batch cannot start before all orders in the
batch have arrived, which is imposed by constraints (32). The domain constraints are
given in constraints (33) - (35).

Finally, the order picking and vehicle routing problem should be linked to each other.
An order can only be loaded into a vehicle once it has been deposited at the depot by
the order picker picking the order’s batch. Therefore, the order’s release time in the
VRP is based on its batch completion time from the order picking problem, enforced by
constraints (36).

ρk ≥ Tqp −M(1−Rqpk) ∀q ∈ Q ∀p ∈ P ∀k ∈ κ (36)

16

The formulation outlined in this section has been implemented in CPLEX 20.1.
However, even very small instances with only eight orders take a very long time to
solve or cannot be solved to optimality within four hours. As such, the mathematical
model is used to clarify the problem description, but will not be used in the remainder
of this paper. Instead, because of the computational complexity of the o-IOPVRP, a
metaheuristic algorithm is developed to solve realistically sized instances.

4 Algorithm description

For the o-IOPVRP, multiple optimisation approaches are possible. We develop and test
multiple algorithms, i.e., a sequential algorithm, an iterative algorithm and more in-
volved, integrated algorithms will be compared to quantify the benefits of integrating
picking and delivery operations. The results are used to highlight the benefits of in-
tegration and discuss in which operating context integration is most beneficial. This
section gives an overview of the different algorithms proposed in this study. All solu-
tion algorithms are metaheuristic algorithms, since solving the o-IOPVRP with exact
methods is not feasible within limited computation time. The algorithmic framework for
every algorithm is large neighbourhood search (LNS), in which a solution is repeatedly
partially destroyed and repaired, to move towards better solutions [Shaw, 1998, Pisinger
and Ropke, 2007].

Since this study considers both picking and routing decisions, optimisation algo-
rithms for the picking and routing subproblem individually are first proposed. Next,
these algorithms can be used as components in the algorithms where order picking and
vehicle routing decisions are integrated. To optimise the o-IOPVRP, four optimisation
algorithms are proposed, each dealing with the problem in its own way. The objective is
to find the best way to integrate both problems, in order to deal with the interaction be-
tween order picking and vehicle routing. The baseline is a sequential approach, in which
the subproblems are optimised by using the picking and routing algorithm components
sequentially. A second algorithm is an iterative algorithm, in which repeated optimi-
sation of the individual subproblems is considered, i.e., a local optimisation approach,
staying within a subproblem, is used. A third algorithm is an integrated algorithm, in
which global optimisation is considered, changing both picking and routing decisions at
the same time. Finally, a fourth algorithm, an integrated iterative algorithm, combines
global and local optimisation.

The remainder of this section is structured as follows. First, the optimisation ap-
proach to deal with dynamic order arrivals is discussed in Section 4.1. Next, the al-
gorithm components, i.e., the order picking and vehicle routing algorithms for the in-
dividual subproblems, are proposed in Section 4.2 and Section 4.3, respectively. The
sequential algorithm is outlined in Section 4.4, followed by the iterative algorithm in
Section 4.5. Next, the integrated solution algorithm is discussed in Section 4.6. Finally,

17

Section 4.7 introduces the integrated iterative algorithm.

4.1 Online optimisation strategy

Online optimisation has not been studied yet for the IOPVRP. Therefore, the online
optimisation strategy proposed in this paper is based on the optimisation strategy of
the online order picking problem as studied in D’Haen et al. [2023]. In this strategy, a
sequence of reoptimisation steps is performed during the planning period. A reoptimi-
sation step is performed every time an order picker returns to the depot and consists of
solving a static problem, using all information available at the time of reoptimisation.
At every reoptimisation step, a subset of all orders is known, forming the active order
pool. An active order pool is available for both picking and routing separately, in which
all orders that are known but not yet handled are inserted. Note that the active order
pools of picking and routing can be different if orders have been, or are being, picked,
but the orders have not yet left the warehouse in a vehicle. More specifically, once the
picking operations have started, the active order pool of the picking problem is a subset
of the one of the routing problem.

At the start of the planning period, a schedule for both the order picking and vehicle
routing operations is constructed, containing all orders of the respective active order
pool, with the vehicle routing operations taking the order completion times of the order
picking problem into account. Order pickers are then leaving the depot to collect the
orders, while vehicles can only leave the depot once all orders of their first trip have
been picked.

When an order picker finishes his current batch, he returns to the depot and requests
a new pick list. Once the first picker returns to the depot, the first reoptimisation step is
performed, with a new reoptimisation step being performed every time a picker returns
to the depot until the end of the planning period. Since rerouting is not allowed (for
both pickers and vehicles), a picker returning to the depot is the first time that an order
that arrived after the last reoptimisation step can be considered for picking and can be
added to a picker’s schedule. Furthermore, once it is added to the picking schedule, a
picking completion time is available that allows for the creation of a routing schedule in
which this order is considered.

In a reoptimisation step, the active order pools are first updated. Orders that have
been picked or are currently being picked are removed from the active order pool for
the picking problem, orders that left the depot in a delivery vehicle are removed from
the active order pool for the routing problem and any new orders since the previous
reoptimisation step are added to both active order pools. Next, a complete schedule is
again constructed for both picking and routing, starting from the last available solution
from which any batch or trip that has been started is removed. In a reoptimisation step,
additional information should be taken into account compared to the first optimisation
step, i.e., the completion times of pickers currently picking a batch in the warehouse

18

are considered and can be seen as a release time for this picker, with this time being
the first time a new batch can be assigned to this picker. Similarly, in the routing
problem, vehicles have completion times of their current trips, acting as release dates for
the vehicles. Therefore, in the routing problem, both vehicles and orders have release
times, with the former being set by the delivery trips being performed by the vehicles at
the time of the reoptimisation, and the latter set by the order completion times in the
picking problem. This situation, of having release dates for both multiple vehicles and
orders is unique and not yet encountered in the literature on vehicle routing problems
with release dates.

The reoptimisation procedure is graphically shown in Figure 3. This procedure is
performed every time an order picker returns to the depot, as long as there are orders
remaining to be picked. Once all orders have been picked, the optimisations stop, even
though some orders may still need to be delivered. However, since the VRP optimisation
algorithm takes the picking completion times into account, and since these completion
times will not be modified if no new orders arrive, the final VRP schedule is still based
on the most recent information.

The following sections discuss the developed optimisation algorithms used during the
initial optimisation and the reoptimisation steps.

4.2 Order picking subproblem

In the order picking subproblem considered in this study, a schedule to pick all orders
as efficiently as possible should be constructed, by using an integrated order batching,
picker routing and batch scheduling algorithm. Every order has a release date and a
due date in the order picking problem. The release date is the time the order arrives in
the system, i.e., when the customer order is registered. The picking due date is caused
by the vehicle routing operations following after picking, i.e., an order has to be loaded
into the delivery vehicle before its trip starts and should thus be picked before this
time. In the order picking subproblem, a surrogate objective is used to avoid repeated
re-computation of the impact of changes in the picking schedule on the VRP solution.
The objective function is hierarchical: the primary objective is minimising tardiness
with respect to the picking due dates, the secondary objective is minimising the order
pick time. The algorithm used in this study is based on the large neighbourhood search
algorithm of D’Haen et al. [2023]. This algorithm is the state-of-the-art algorithm for
the online integrated batching, routing and scheduling problem and was shown to have
excellent performance regarding both solution quality and computation time. For a
detailed description of the algorithm, we refer to D’Haen et al. [2023]. As the problem
studied in the current paper adds complexity to the one studied in D’Haen et al. [2023],
the algorithm has been adapted as follows.

1. The local search procedure is deactivated. While the local search procedure was

19

(a)

(b)

(c)

Figure 3: Graphical representation of the online optimisation strategy. Batches and
trips are represented by a rectangle, orders by circles with a number indicating the
order number. The current time is the time when reoptimisation happens, when an
order picker returns to the depot. (a) Final schedule from the previous optimisation
step. (b) Order picker 2 returns to the depot and requests a new pick list. Batches and
trips that have been handled (shown in gray) are removed from the previous schedule.
Batches and trips that are currently being picked and delivered (shown in shaded gray)
are not allowed to be changed. Any new orders (shown in dark gray) are added to both
the picking and routing schedule by two-regret insertion. (c) The optimisation algorithm
reoptimises the schedule. Picker 2 is sent out to pick orders 10 and 14.

20

beneficial to reduce tardiness in the original problem, it is very time consuming.
With the additional complexity of the integration of delivery operations into the
order picking problem and since fast computation times are required in the on-
line problem considered in this study, using the local search procedure is deemed
infeasible. Although the deactivation of the local search will negatively influence
the tardiness, it helps allowing for reduced computation time and a simpler algo-
rithm. Furthermore, because of the high computational burden and the limited
computation time assigned to each algorithm in an optimisation step (instead of a
fixed number of iterations as in the original algorithm), the local search prohibits
performing a meaningful number of LNS iterations, making a comparison between
the different algorithms in this paper impossible.

2. The use of order anticipation is deactivated. In the study of D’Haen et al. [2023],
orders belonged to certain shipping trucks, depending on their destination, and
the expected number of orders was used to reserve space in the picking schedules.
In the IOPVRP, however, orders do not belong to a single shipping truck. Instead,
the routing decisions, including which vehicle will deliver the order and at what
time the vehicle leaves, are part of the decision process. Therefore, it is much
harder to predict where a future order’s delivery location will be, when a vehicle
will depart on a route visiting that destination, and thus before which time the
order should be picked. Therefore, no stochastic information is taken into account
while scheduling the operations.

4.3 Vehicle routing subproblem

The vehicle routing subproblem considered in this study is a multi-trip vehicle routing
problem with release dates and time windows. Orders have unique destinations with
an associated time window within which the delivery should occur. Early delivery is
never allowed, late delivery is minimised, since the minimisation of tardiness is the
primary objective. A secondary objective is the minimisation of the travel distance, but
this objective is only relevant if two solutions have equal tardiness, i.e., the objective
function is hierarchical.

In order to facilitate the integration with the LNS algorithm of the order picking
subproblem, an LNS for the VRP seems a straightforward choice. However, since, to
the best of our knowledge, no LNS algorithms exist for the online VRP with release
dates, a new algorithm was developed. An initial solution for the first optimisation step
is constructed by adding all orders to an individual trip, with the orders being assigned
on the basis of their urgency (i.e., orders with the earliest time window start first). This
solution is given as input to the LNS algorithm. In subsequent reoptimisation steps,
the LNS algorithm starts from the last available solution from the previous optimisation
step by removing handled orders and inserting any new orders with regret-2 insertion.

21

The new orders can be inserted in new trips before or after trips that already existed, or
can be added to trips that already existed in the previous optimisation step. However,
the orders cannot be added to trips that are currently being executed by a vehicle, as
preemptive depot returns are not allowed.

The online VRP-rd algorithm is shown in Algorithm 1. In every iteration of the LNS,
a random destroy and repair operator are selected. The implemented destroy operators
are the following:

• Order Worst : remove the orders that lead to the largest decrease in routing dis-
tance when removed from the solution.

• Order Earliness : remove the orders with the most earliness, i.e., the largest posi-
tive difference of latest delivery time (i.e., the upper bound of the time window)
minus the planned delivery time.

• Order Tardiness : remove the orders with the most tardiness, i.e., the largest pos-
itive difference of planned delivery time minus latest delivery time.

• Order CenterOfGravity : for all orders in all trips, calculate the distance to the
center of gravity (i.e., the mean X- and Y-coordinates of the orders in that trip) of
the trip the order is part of. Remove the orders with the largest distance to their
trip’s center point. This computation of the center of gravity of a route is similar
to the computation in Reimann et al. [2004], but part of a completely different
algorithm (LNS instead of an ant system) and ignores the number of requested
items by a customer.

• Order RelatedDistance: randomly select an initial order to be removed from the
solution. Remove the orders that are closest located to the initial order. This
operator is based on Pisinger and Ropke [2007].

• Order RelatedTime: randomly select an initial order to be removed from the so-
lution. Remove the orders with a latest delivery time closest to the initial order.
This operator is based on Pisinger and Ropke [2007].

• Order Random: randomly select orders to remove from the solution.

• Trip Tardiness : for every trip, compute the tardiness of all orders included (an
order that is delivered in time, has zero tardiness). Destroy the trips for which the
sum of tardiness is highest.

• Trip Earliness : for every trip, compute the earliness of all orders included (an
order that is delivered late, has zero earliness). Destroy the trips for which the
sum of earliness is highest.

22

• Trip Random: randomly select trips to destroy.

First, the number of orders that should be removed is determined based on the
destroy percentage and the size of the problem. Half of these orders are removed with
the selected destroy operator (multiple orders or trips may be removed by a single
operator to achieve the required destroy percentage), while the other half is removed
by random order removals. The random order removals avoid performing the same
deterministic iterations repeatedly and getting stuck in a local optimum. After achieving
the required destroy percentage, the orders are reinserted in the partial solution based on
their insertion cost. The insertion cost is expressed as the increase in tardiness, or, if no
tardiness is involved, as the increase in routing distance. The following repair operators
are implemented, based on the work of Pisinger and Ropke [2007]:

• Greedy insertion: randomly select the uninserted orders one by one and compute
the insertion cost for every possible insertion position of every trip (including a
new trip before or after any existing trip). Reinsert the selected order in the best
position.

• Best insertion: for all removed orders, compute the insertion cost in every possible
position of every trip. Insert the order with the lowest cost in its best position, and
update the insertion costs for all remaining orders. Repeat updating the insertion
costs and inserting the orders one by one until all orders are reinserted. Note that
this operator differs from greedy insertion, since it computes the insertion costs
for all orders that should be inserted and then inserts the order with the lowest
cost in its best position, whereas greedy insertion first selects an order, computes
the insertion costs for this specific order and inserts the order in its best position.
This results in a higher computational complexity of best insertion compared to
greedy insertion.

• Regret-2 insertion: for all removed orders, compute the insertion cost in every
possible position of every trip. Insert the order with the largest cost difference
between its best and second best position first and update the insertion costs for
all other orders. Repeat until all orders are reinserted.

After applying a destroy and repair operator, simulated annealing is used to decide
on the acceptance of the new solution. A solution with less tardiness (denoted by f t in
the algorithm) than the current solution is always accepted, while a tardiness increase
is never allowed. If the tardiness of the new solution is equal to the current solution’s
tardiness, the new solution is always accepted if it has a lower distance (denoted by fd),
while it may be accepted if it has a higher distance, with the probability of acceptance
decreasing for larger distance increases and lower temperatures. By slowly decreasing

23

Algorithm 1: LNS for the VRP subproblem.

1 Input: MaxRunTimeVRP, S0

2 Initialise Best solution S∗, Current solution S0, New solution S1;
3 S∗, S1 ← S0;
4 while RunTime < MaxRunTimeVRP do
5 Select destroy operator randomly;
6 Destroy S1 with selected destroy operator;
7 Select repair operator randomly;
8 Repair S1 with selected repair operator;
9 if (f t(S1) < f t(S∗)) or (f t(S1) = f t(S∗) and fd(S1) < fd(S∗)) then

10 S∗ = S1;
11 S0 = S1;

12 else if (f t(S1) < f t(S0)) or (f t(S1) = f t(S0) and fd(S1) < fd(S0)) then
13 S0 = S1;

14 else if (f t(S1) = f t(S0)) and (fd(S1) > fd(S0)) then

15 if RandNum < e((f
d(S0)−fd(S1))/Temperature) then

16 S0 = S1;

17 Update Temperature;

24

the temperature during the runtime of the LNS, the optimisation is directed from di-
versification to intensification. The temperature is updated in every iteration, following
Equation (37), where T is the temperature for the current LNS iteration, and T0 is the
initial temperature, based on a percentage of the distance of the initial solution. The
temperature changes based on the percentage of the maximum runtime that has been
used during the optimisation step.

T = T0 × TemperatureUpdatePercentage(100×ElapsedRunTime/MaxRunTime) (37)

4.4 Sequential algorithm

To optimise both picking and routing operations, a first step is the sequential solving
of both subproblems. A sequential algorithm can be constructed using the algorithm
components of Section 4.2 and Section 4.3. The order picking operations are optimised
first, leading to a picking completion time for every order. These completion times are
used as release dates for the orders during the optimisation of the routing operations.
In Algorithm 2 the sequential solution procedure is detailed.

Note that this sequential algorithm is not really integrating the picking and routing
decisions, but is performing better than using a fixed ratio between picking and routing
for every order. Here, the ratio is set based on the difficulty of the picking and routing
problem for a specific order. Under the sequential approach considered here, every order
has its own cutoff time, based on the order’s ratio between picking and routing. This
cutoff time is still required when optimising the order picking operations, and functions
as an artificial due time for an order. Although the primary (tardiness) and secondary
(distance) objectives are both based on the VRP, a due time for the orders in the order
picking problem is used to decide on the quality of an order picking solution, i.e., to
compute the tardiness of that solution. By using this intermediate due time, evaluating
the quality of a solution can be done immediately without needing to solve the complete
VRP. This due time can be seen as a temporary cutoff time between picking and delivery.

The cutoff time of every order is based on the minimum picking and routing time
for this order, i.e., it is the average of on the one hand the current time of the system
plus the minimum time required to pick the order individually (i.e., the fastest way to
pick the order) and on the other hand the latest delivery time of the order minus the
minimum time required to deliver the order individually (i.e., the fastest way to deliver
the order). This cutoff time is used as the order due time in the order picking problem.
Once the picking operations have been scheduled, the picking completion time of an
order is used as this order’s release time for the VRP.

This sequential algorithm, considering an order-specific ratio between picking and
routing, is used as a baseline to show the benefits of using algorithms that really integrate
picking and routing.

25

Algorithm 2: Sequential solution algorithm.

1 Input: TotalRunTime
2 Initialise and construct initial picking solution SP , routing solution SR;

3 MaxRunTimePicking = TotalRunTime
2

;// Divide the available time

evenly over both subproblems

4 MaxRunTimeRouting = TotalRunTime
2

;
5 LNSPicking(SP ,MaxRunTimePicking);
// See details in Section 4.2

6 Update order release times VRP based on picking completion times;
7 LNSRouting(SR,MaxRunTimeRouting);
// See details in Section 4.3

4.5 Iterative algorithm

A first step towards integrating the order picking and vehicle routing decisions, is made
by an iterative solution algorithm. In the iterative solution algorithm, the order picking
and vehicle routing algorithms are used multiple times each, one after the other. Similar
to the sequential algorithm, picking operations are optimised first, with the resulting
picking completion times being used as order release dates for the VRP. Afterwards,
the VRP is optimised. However, rather than stopping the optimisation after the VRP
optimisation, the output of the VRP is now used as input for the picking optimisation
algorithm, i.e., the vehicle departure time for an order’s trip is used as the picking due
time, since, to not delay the obtained schedule, every order should be picked before it can
be loaded into a vehicle. The iterative algorithm alternates between picking and routing
optimisation for a predefined number of iterations. The available computation time is
divided evenly over both subproblems and over all iterations. The solution procedure is
shown in Algorithm 3.

In optimising the order picking operations, an artificial due time for every order is
required to decide on the quality of a solution for the order picking problem, as was
detailed in Section 4.4. After solving the order picking problem, the picking completion
times of all orders are available. These completion times are then used as an input for
the VRP, as the picking completion times are the order release dates in the VRP. Based
on these release dates and given the order’s delivery time window at the customer’s
location, the VRP is solved. Now, the second iteration of the iterative procedure can
begin. The solution of the VRP makes new information available for the order picking
problem. Delivery trips can only start once all orders of that trip are picked. Therefore,
for every order in a delivery trip, the vehicle departure time for that trip can be seen as
the due time for the order picking problem, to keep the current vehicle routing schedule
feasible. Based on these new order due times, the order picking problem can be solved,
starting from the final solution of the previous iteration. The resulting new picking

26

Algorithm 3: Iterative solution algorithm.

1 Input: TotalRunTime, MaxIterations
2 Initialise and construct initial picking solution SP , routing solution SR;

3 MaxRunTimePicking = TotalRunTime
2∗MaxIterations

;// Divide the available time

evenly over both subproblems and all iterations

4 MaxRunTimeRouting = TotalRunTime
2∗MaxIterations

;
5 NoIterations = 0;
6 while NoIterations < MaxIterations do
7 LNSPicking(SP ,MaxRunTimePicking);
8 Update order release times VRP based on picking completion times;
9 LNSRouting(SR,MaxRunTimeRouting);

10 Update order due times in picking problem based on vehicle departure times;
11 NoIterations = NoIterations + 1;

completion time for every order can then be used as the new order release time for the
VRP. This cycle continues until the maximum number of iterations, i.e., alternations
between both subproblems, is reached.

Note that if only a single iteration is performed, i.e., solving the order picking prob-
lem, using the picking completion times as input for the VRP followed by solving the
VRP, the iterative algorithm is reduced to the sequential algorithm of Section 4.4.

4.6 Integrated algorithm

As a third algorithm, we propose an integrated algorithm, considering the solutions of
the order picking and vehicle routing problem together. The integrated algorithm is
also based on an LNS framework. When destroying a solution, the algorithm removes
orders from both problems at the same time. During the reinsertion, orders are rein-
serted in both problems. Afterwards, when all orders are reinserted, the decision on
the acceptance of a solution is also made on the overall solution, not separately on the
subproblems. An overview of the integrated approach is shown in Algorithm 4.

We introduce three sets of destroy operators, Dp, Dr and Dj, focusing on the picking,
routing and joint problem, respectively. The use of different sets of destroy operators
allows for a very thorough search procedure, with the objective to destroy inefficient
parts of a solution in both the subproblems and in the overall problem. Set Dp con-
sists of the operators of the order picking subproblem of Section 4.2 and as discussed in
D’Haen et al. [2023], i.e., Dp = {Order Random, Batch DistanceSavings, Batch Aisles,
Batch CoveringArea}. Set Dr consists of the operators of the vehicle routing sub-
problem as discussed in Section 4.3, i.e., Dr = {Order Worst, Order Earliness, Or-
der Tardiness, Order CenterOfGravity, Order RelatedDistance, Order RelatedTime, Or-

27

Algorithm 4: Integrated solution algorithm.

1 Input: TotalRunTime
2 Initialise Best, New and Current solutions (S∗, S1, S0, respectively);
3 Construct initial solution Si;
4 S∗, S0, S1 ← Si;
5 while RunTime < MaxRunTime do
6 Randomly select a set of destroy operators from {Dp, Dr, Dj};
7 For the chosen set, randomly select a destroy operator;
8 Use destroy operator on S1;
9 Randomly select reinsertion in picking or routing schedule first;

10 for every removed order do
// Sequence of orders is randomly chosen

11 Compute cutoff times to test for insertion;
12 for all cutoff times do
13 Greedy insertion in selected subproblem;
14 Update release time or order due time based on first subproblem;
15 Greedy insertion in second subproblem;
16 Save insertion costs;

17 Insert order in S1 in its position with lowest insertion cost;

18 if (f t(S1) < f t(S∗)) or (f t(S1) = f t(S1) and fd(S1) < fd(S1)) then
19 S∗ = S1;
20 S0 = S1;

21 else if (f t(S1) < f t(S0)) or (f t(S1) = f t(S0) and fd(S1) < fd(S0)) then
22 S0 = S1;

23 else if (f t(S1) = f t(S0)) and (fd(S1) > fd(S0)) then

24 if RandNum < e((f
d(S0)−fd(S1))/Temperature) then

25 S0 = S1;

26 Update Temperature;

28

der Random, Trip Tardiness, Trip Earliness, Trip Random}. Finally, set Dj consists of
the operators of the joint problem, i.e., Dj = {Order Tardiness, Order IdleTime, Or-
der Picking/RoutingDistribution}. The operators of the joint problem work as follows:

• Order Tardiness : compute the tardiness for every order, i.e., the positive difference
between actual delivery time and latest delivery time. Remove the orders with the
highest tardiness. This operator removes the same orders as the Order Tardiness
operator of the VRP subproblem.

• Order IdleTime: for every order, compute the time between picking completion
time of this order and the vehicle departure time for the order’s delivery trip.
Remove the orders with the largest idle time.

• Order Picking/RoutingDistribution: for every order, compute (a) the time between
arriving in the system (i.e., the release time in the order picking problem) and the
picking completion time, (b) the time between its vehicle departure time at the
depot and the order delivery time. Remove orders with the most skewed ratio
between (a) and (b), i.e., where picking or routing requires a lot more time than
the other subproblem.

First, one of these sets is selected randomly, after which a random operator from this
set is selected. From the number of orders that should be removed, half of the orders
is removed by the selected destroy operator, the other half is again removed by random
order removals.

Irrespective the chosen set of destroy operators or the specific operator within a set,
the orders are reinserted using the following approach. Testing all possible combinations
of insertion positions in both subproblems before deciding on the best insertion position
leads to a prohibitively large computational effort. Therefore, the orders are inserted in
one of the subproblems first, randomly chosen between picking or routing. To reinsert
the order in the first subproblem, a cutoff time between picking and routing is required,
to be able to compute the insertion quality in different positions. If reinsertion happens
in the order picking problem first, an order due time is required (the release time for the
VRP is then based on the picking completion time). When reinserting in the VRP first,
an order release time should be available (the due time for the order picking problem
is then based on the order’s actual vehicle departure time). Since it seems difficult to
determine which cutoff time would lead to the best solution, multiple cutoff times are
tested to insert the order. To keep the computation times reasonable, a greedy approach
is implemented. First, one of the removed orders is chosen randomly. The decision on
inserting the order first in the picking or routing problem is taken randomly. Insertion
is then performed in the first subproblem in a greedy manner, i.e., the order is inserted
in its lowest cost position, followed by a greedy insertion in the second problem. Then,
for every cutoff time, the best insertion position and the associated costs for both the

29

Figure 4: This figure shows how the cutoff times are set for a setting with five tested
cutoff times, i.e., k = 5. The earliest possible cutoff time is based on the current time
plus the minimum picking time (number 1 in the figure), the latest possible time is based
on the minimum routing time (number 5 in the figure, or k in general). The times in
between are set at equidistant intervals, depending on the number of tested cutoff times.

picking and routing part are saved. The cutoff time and position leading to the lowest
insertion cost are then selected and used to actually reinsert the order in the picking
and routing schedules. This process is repeated until all orders are inserted.

The possible cutoff times are set based on the number of cutoff times that should be
used, denoted by the parameter k (with k ≥ 2), and the minimum picking and routing
time, graphically shown in Figure 4 for k = 5. The earliest cutoff time that may be
used, is the required picking time to pick the order individually, without adding other
orders to the batch, since this leads to the lowest possible picking time for this order
and will be the earliest possible release time for the VRP. Similarly, the latest cutoff
time is set based on the required routing time to deliver the order in a separate trip to
the customer. The latest delivery time minus this routing time is chosen as latest cutoff
time. The remaining cutoff times (i.e., k − 2) are set between the earliest and latest
cutoff time in equidistant intervals.

To decide on the acceptance of a new solution, simulated annealing is included in
the algorithm in the same way as in the VRP, i.e., tardiness increases are never allowed,
while distance increases may be accepted with a decreasing probability.

4.7 Integrated iterative algorithm

Finally, an integrated iterative algorithm is developed, operating as a combination of the
iterative and integrated algorithms discussed in Section 4.5 and Section 4.6, respectively.
The integrated iterative algorithm operates as the iterative algorithm by performing
multiple iterations over different subobjectives. However, in every iteration there are
now three steps, as shown in Algorithm 5. In the first step, the order picking operations
are optimised. Next, based on the final solution of the order picking problem, the order
release dates for the VRP are set. In the second step, the VRP is optimised with the
VRP algorithm. The final solution of the VRP is then used to set the order due times for
the order picking problem. In the third step, the integrated algorithm is used to optimise

30

both problems at the same time. The final schedule is then used as input for the order
picking problem for the next iteration. This iterative solving of order picking operations
individually, vehicle routing operations individually and picking and routing together
with the integrated algorithm is continued until the maximum number of iterations is
reached.

Algorithm 5: Integrated iterative algorithm.

1 Input: TotalRunTime, MaxIterations
2 Initialise and construct initial picking solution SP , routing solution SR;

3 MaxRunTimePicking = TotalRunTime
3∗MaxIterations

// Divide the available time

evenly over the picking, routing and integrated algorithm and

iterations;

4 MaxRunTimeRouting = TotalRunTime
3∗MaxIterations

;

5 MaxRunTimeIntegrated = TotalRunTime
3∗MaxIterations

;
6 while NoIterations < MaxIterations do
7 LNSPicking(SP ,MaxRunTimePicking);
8 Update order release times VRP based on picking completion times;
9 LNSRouting(SR,MaxRunTimeRouting);

10 Update order due times in picking problem based on vehicle departure times;
11 LNSIntegrated(SP , SR,MaxRunTimeIntegrated);
12 NoIterations = NoIterations + 1;

5 Computational experiments

This section gives an overview of the computational experiments, in which the algo-
rithms from Section 4 are tested. For every algorthm, the computation time for the first
optimisation step, i.e., at the start of the planning period, is fixed at 300 seconds. In all
subsequent reoptimisation steps, only 60 seconds of computation time are given as the
algorithms can start from a solution from a previous reoptimisation step. For the se-
quential algorithm, the computation time is evenly divided over the LNS for picking and
the LNS for routing. In the iterative algorithm the total time is evenly divided over the
two subproblems. For the integrated iterative algorithm, the total time is evenly divided
over the picking problem, the routing problem and the integrated problem. However, for
the iterative and integrated iterative algorithms, this assigned time is then once more
divided by the number of times the algorithm iterates over the different search strategies.
All algorithms are implemented in C++. The experiments are performed on an Intel
Xeon Processor Gold 6140 at 2.3 gigahertz.

31

First, Section 5.1 introduces the problem instances on which the algorithms are
tested. Next, Section 5.2 gives an overview of the parameter tuning for the different
algorithms. Finally, the results of the different algorithms are shown and discussed in
Section 5.3.

5.1 Problem instances

To test the algorithms, a series of new problem instances is developed as, to the best
of our knowledge, no instances exist for the o-IOPVRP. The developed instances are
made publicly available at insert website. An overview of the parameters regarding
the layout of the warehouse and general VRP characteristics, is given in Table 4. Note
that the resources for picking (i.e., the number of order pickers) and routing (i.e., the
number of vehicles) were set such that the time required to perform both processes is
somewhat balanced on average. Since, on average, delivery requires much more time per
order than picking, the number of vehicles available is also higher than the number of
order pickers.

The delivery locations of customers are randomly spread over the delivery area, with
the distance between two locations computed by the Euclidean distance. The depot
is located in the middle of the delivery area. The time window at every location is
randomly set, rounded to the nearest minute. The upper bound of the time window
is chosen between two hours after the start of the planning period and the end of the
planning period, i.e., eight hours after the start of the planning period. The lower
bound of a time window is set based on the upper bound and the time window width
(which is discussed later). The delivery vehicles are capacitated, however, capacity is
set sufficiently high in the experiments, making this constraint in fact non-binding in all
instances. This setting was adopted since e-commerce orders are usually small, making
capacity in general not an issue.

The warehouse parameters are based on those of D’Haen et al. [2023]. The number of
order lines per order is randomly generated per order, based on an exponential distribu-
tion with mean 2, which gives an average of 2.6 order lines per order after rounding. The
item locations in the warehouse are randomly chosen, based on an across-aisle storage
policy, where three storage classes are used. Classes A, B and C are assigned 1/6, 1/3
and 1/2 of the SKUs, and 60%, 30% and 10% of the picks, respectively.

The problem instances are developed based on a factorial experimental design, to
allow studying the performance of the algorithms in different operating contexts. The
factorial design consists of two factor levels for every factor. The factors considered are
the number of orders, the size of the delivery area, the order’s urgency and the time
window width. The factor levels for every factor are shown in Table 5.

To test the impact of operating on a different scale, unique order lists are generated
for instances with an average (µ) of 300 and 600 orders. All other factors are variations
on these basic lists of orders, allowing for a fair comparison between the factor levels,

32

Table 4: Warehouse and routing parameter values.

Warehouse parameters Parameter value
Number of warehouse blocks 2
Number of aisles 12
Number of sub-aisles 24
Locations per aisle 240
Storage policy Across-aisle
Storage location length 1.3 m
Storage location width 0.9 m
Pick aisle width 3.0 m
Cross-aisle width 6.0 m
Picker travel velocity 1 m/s
Batch setup time 180 seconds
Search and pick time 10 seconds
Batch capacity in number of orders 10
Avg. number of order lines per order 2.6
Number of order pickers 1 per 150 orders
Routing parameters Parameter value
Vehicle velocity 50 km/h
Vehicle capacity Unlimited
Number of vehicles 1 per 25 orders

Table 5: Factors and factor levels of the experimental design.

Factor Factor levels
Average number of orders 300 600
Size of delivery area Small Large
Order urgency (h) [2,3] [3,4]
Time window width (h) 1 2

33

since all differences are attributable to changing the factor levels, not changes in the list
of orders (e.g., the number of orders in an instance and the coordinates of the customer
locations are identical). Although the average number of orders is set at 300 and 600 for
small and large order lists, respectively, randomness is introduced to mimic a real-life
situation, in which an estimate on the number of orders may be available, but the exact
number of orders is unknown. The exact number of orders is randomly generated based
on a triangular distribution with a minimum, mode and maximum of 0.9µ, µ and 1.1µ,
respectively. The size of the delivery area can be small or large, with large instances
requiring double the time to travel between two customer locations compared to small
instances (i.e., the distances between locations are doubled). The factor order urgency
determines the available time for the picking and routing operations. It is the time
interval between the latest delivery time (i.e., the upper bound of the time window)
and the order’s arrival time in the system (following the definition of urgency of van
Lon et al. [2016]). Given the latest delivery time of an order, the order’s arrival time is
randomly generated to conform to an order urgency within the time interval shown in
Table 5. Finally, the time window width sets the possible delivery times at the customer’s
location. Early delivery, i.e., before the start of the time window, is never allowed, late
delivery is allowed but minimised by the algorithms. Combining all factors results in 2
× 2 × 2 × 2, or 16 factor combinations. For every factor combination, ten instances are
generated and solved four times, once by every algorithm, i.e., the sequential, iterative,
integrated and integrated iterative algorithm.

5.2 Parameter tuning

In the developed algorithms, a few parameters are tuned to optimise the algorithm
performance. For the LNS on the order picking problem, the settings of D’Haen et al.
[2023] are used, since the algorithm is similar. The LNS on the VRP is newly developed.
Here, preliminary experiments have shown that all destroy and repair operators are
often able to find improving solutions. All of the operators are thus included in the
algorithm. In order to avoid confusion, the parameters of the simulated annealing and
the destroy percentage for the VRP are also set as in the order picking algorithm. The
initial temperature in the simulated annealing is therefore equal to 10% of the initial
distance and every 1% of the computation time, the temperature is reduced to 90% of
the current value. The destroy percentage is set at 10% for the LNS algorithms on the
subproblems as well as on the overall problem.

Two parameters for which tuning seems required on a larger scale are the number
of times the iterative and integrated iterative algorithms should iterate over all different
search strategies, and the number of cutoff times that are tested for order insertion in
the integrated and integrated iterative algorithms. To test the algorithm performance
for the different parameter combinations, two order lists were selected, one with 300 and
one with 600 orders. For each of these, the eight combinations of the other factors from

34

Table 6: Parameter tuning results. The best parameter combinations are highlighted in
bold.

Algorithm Iterations cutoffs Tardiness Distance
Iterative 10 - 36,031 543,386

20 - 34,650 538,785
30 - 35,207 540,381

Integrated - 3 29,833 538,068
- 5 28,414 535,378
- 7 32,703 542,656

Integrated iterative 10 3 27,984 534,351
10 5 27,238 534,600
10 7 27,951 533,191
20 3 26,908 533,598
20 5 25,387 532,916
20 7 27,509 532,975
30 3 27,044 532,929
30 5 27,832 530,811
30 7 28,645 533,933

the experimental design were considered, for a total of 32 instances. Every instance is
solved three times by every algorithm and for every parameter combination. For the
number of times the algorithms should switch search strategy, 10, 20 or 30 iterations
for the iterative and integrated iterative algorithm are considered. Moreover, 3, 5 and 7
cutoff times are considered for the integrated and integrated iterative algorithm. Table
6 shows the average results of the parameter tuning, with the best result highlighted
in bold. Based on these results, iterating 20 times over the different algorithms shows
the best performance for both the iterative and integrated iterative algorithm. The best
number of cutoff times is 5 for both the integrated and integrated iterative algorithm.
These values are used in all further experiments.

5.3 Results

This section gives an overview of the results. All instances have been solved by the
sequential, iterative, integrated and integrated iterative algorithms, using the same com-
putation time per optimisation step to obtain a fair comparison between all algorithms.
The assigned computation time is 300 seconds in the first optimisation step, and 60
seconds for all subsequent reoptimisation steps. Note that when solving an instance, a
full run is considered, i.e., not just a single optimisation step but the optimisation at
the start of the planning period and all further reoptimisation steps until the end of the

35

planning period are performed. The reported objective values are the actual tardiness
and distance of the executed vehicle trips. First, Section 5.3.1 gives an overview of the
performance of the different optimisation algorithms. Next, for the best performing al-
gorithm, the impact of the factors of the factorial design are discussed in Section 5.3.2.
Detailed results per instance are available at insert website.

To analyse whether there are differences between the algorithms and between the
factor levels, a mixed ANOVA on both tardiness and routing distance is used. A mixed
ANOVA is used because there are both independent, i.e., between groups variables (i.e.,
the average number of orders in an instance) and dependent observations, i.e., repeated
measures variables (i.e., the different optimisation algorithms, the size of the delivery
area, the order urgency and the time window width). To get reliable results from a
mixed ANOVA, three assumptions should hold: normality, homogeneity of variance and
sphericity of the covariance matrix. Normality and homogeneity of variance should not
pose any problems due to the balanced experimental design used in the experiments
[Field, 2013]. Sphericity is tested with Mauchley’s test and is not violated for most
variables. In the occasions where it is violated, the Greenhouse-Geisser correction is
used to correct the inflated F-test type I error rate [Field, 2013]. The results of the
ANOVA are shown in Appendix A. In case Mauchley’s test of sphericity was violated,
the corrected results are reported. Based on these results, conclusions on whether the
impact of different algorithms and instance characteristics is statistically significant can
be drawn, i.e., if the p value in the last column of the tables is smaller than 0.05, we
conclude that the characteristic has a statistically significant impact on tardiness or
distance, read in Table 9 and Table 10, respectively. For both tardiness and distance,
the impact of the selected algorithm as well as all instance characteristics is statistically
significant (all have p-values of 0.000). In the next sections, the impact of the algorithms
and instance characteristics and their statistical significance (based on the ANOVA
results) is discussed in more detail.

5.3.1 Performance of optimisation algorithms

The results of the different algorithms are shown on Figure 5 and in Table 7. The figure
shows the average tardiness per order and average distance per order over all instances
for every algorithm. In the figure, the bars show the tardiness and the dots indicate the
distance, read on the left and right axis, respectively. The results show that solving the
o-IOPVRP with the sequential algorithm leads to the worst performance. Clearly, the
interaction between order picking and vehicle routing should be addressed. By using an
iterative approach, highly improved solutions to the problem can be obtained, with the
average tardiness per order reducing by more than 67% compared to a sequential ap-
proach. However, the iterative approach is again statistically significantly outperformed
by an integrated approach, with a tardiness reduction of almost 15% when using the
integrated instead of the iterative algorithm. Finally, the graph shows that using the in-

36

Table 7: Algorithm performance over all instances (i.e., 160 in total). The second column
shows the number of times an algorithm obtained the best solution including ties with
other algorithms. The third column shows the number of times an algorithm obtained
a strictly better solution than any other algorithm.

Algorithm Best found solutions (#) Best found solutions excl. ties (#)
Sequential 1 0
Iterative 99 3
Integrated 122 25
Integrated iterative 132 35

tegrated iterative algorithm leads to the best results on average, with a further tardiness
reduction of 3.8%, though the difference with the integrated algorithm is not statistically
significant. Table 7 shows the number of times each algorithm obtained the best found
solution, as well as the number of times it obtained a strictly better solution than the
other solutions. Again, it is clear that addressing the interaction between picking and
routing is required, since the sequential algorithm performs much worse than all other
algorithms. The integrated algorithms once again do better than the iterative one, with
the integrated iterative algorithm performing best.

Next to a remarkable drop in tardiness, the average routing distance per order is
reduced considerably by the algorithms considering the interaction between picking and
routing. More specifically, the distance is reduced by almost 20% by the iterative,
integrated or integrated iterative algorithms compared to the sequential algorithm, with
the same ordering of the algorithms as for tardiness, i.e., integrated iterative performing
better than integrated, which does better than iterative. While the difference in distance
between the integrated and integrated iterative algorithm is not statistically significant
at the 5% level (but it is significant at the 10% level), the integrated iterative algorithm
is significantly better than both the iterative and sequential algorithms.

The results indicate that using an integrated approach is very beneficial, leading
to highly improved results by creating a better fit between the picking and routing
schedules. Furthermore, there is an indication that a cycle of setting good cutoff times
between picking and delivery by using the integrated algorithm, and next optimising the
order picking and vehicle routing problems individually based on these cutoff times, leads
to the best results. Preliminary experiments showed that performing this cycle multiple
times, i.e., an iterative approach, leads to better results than a single run of the integrated
algorithm followed by a single order picking and vehicle routing optimisation. Combined,
it can be seen that using an algorithm that is better tailored to the problem at hand
results in a highly improved service level accompanied by large efficiency improvements,
with the best performance obtained by the integrated iterative algorithm.

37

Figure 5: Average tardiness and travel distance per order over all instances for the
different optimisation algorithms. Tardiness is read on the left axis, travel distance on
the right axis.

38

Table 8: Average tardiness, distance and order pick time (OPT) per order and the
number of batches and trips for the different solution algorithms.

Algorithm Tardiness (s) Distance (km) OPT (s) Batches Trips
Sequential 471.61 24.22 168.29 108.79 56.80
Iterative 146.75 20.47 132.13 62.43 39.02
Integrated 125.12 20.26 133.88 60.90 38.05
Integrated iterative 120.36 20.16 132.60 63.03 37.91

Based on the results, differences in solution structure between the different algorithms
can be explored. Taking a look at the average number of batches and trips per algorithm,
as shown in Table 8, leads to a first interesting observation. The number of batches and
trips for the sequential algorithm is much larger than for the other algorithms. This
indicates that both for the order picking and vehicle routing subproblems, the cutoff
times are, in general, not well set. In the order picking problem, for example, a too early
cutoff time results in order due times that are too stringent. This results in less efficient
batches, since some combinations of orders are rejected due to their resulting tardiness.
Depending on the due times of the orders, this may lead to the creation of two separate,
partially filled batches, instead of one full batch, leading to an increase in the number of
batches per instance. On the other hand, order due dates that are too late, may result
in very efficient picking operations, but may lead to issues in the routing process, since
there is too little time to efficiently route all orders, creating many trips with only few
orders. Furthermore, since in the sequential approach no information about the vehicle
routing problem is taken into account while optimising the order picking operations,
there is a complete lack of fit between both problems. Orders of a single batch may
belong to destinations very far apart, with non-matching time windows. This prohibits
the creation of efficient routes, e.g., by resulting in two separate routes instead of one
larger route, leading to an increase in the number of trips and travelled distance per
order.

Second, the lack of fit between the picking and routing schedules can be illustrated
by looking at the timestamps of different steps in the order handling process, graphically
shown in Figure 6. When looking at the time between the release time of an order in the
system and the time a picker starts picking the batch containing this order, an interesting
insight emerges. The sequential algorithm is hard to interpret, since its tardiness is much
larger than for the other algorithms and it has a much larger number of batches and
trips. The integrated algorithm clearly results in different solutions compared to the
iterative approach. On average, orders have to wait a little longer before a picker starts
working on them, and the variation in this waiting time is much larger. Nevertheless,
the average order pick time per order is barely higher than for the iterative approach,

39

(a)

(b)

(c)

Figure 6: The difference in solution structure between the algorithms is visible in the
boxplots.

40

as shown in Table 8. This indicates that the integrated approach really improves the fit
between picking and routing, by postponing less urgent orders in the picking process,
to first pick orders that allow for improved routing solutions. The integrated iterative
algorithm is situated between the iterative and integrated algorithms, exploiting the best
of both algorithms.

For the idle time between picking and routing, i.e., the difference between picking
completion time of an order’s batch and the starting time of this order’s trip, using
the integrated or integrated iterative algorithm clearly results in a reduction in idle
time. Although somewhat counter-intuitively, this idle time does not seem to explain
the difference in performance between the algorithms well. The sequential and iterative
algorithm have an almost equal idle time between picking and routing, although the
outliers to the upside are somewhat smaller for the iterative algorithm. Nevertheless,
the iterative algorithm performs much better regarding the objective function values.
The reduced idle times for the integrated and integrated iterative algorithms can be
explained by the used destroy operators. One of the operators of the integrated algorithm
is removing orders with the largest idle time between picking and routing, resulting in
an overall lower idle time in the final solution. Interestingly, despite not being a strong
indicator of good performance when looking at the idle time in the final solutions, this
operator was selected during preliminary testing since it did have an effect in finding
better solutions.

The integrated iterative algorithm leading to the best performance can be explained
by the average routing time of an order, computed as the time between starting the
trip at the depot and the order being delivered at the customer’s location. On average,
this time is largest for the integrated iterative algorithm, despite this algorithm having
the lowest tardiness and distance, which indicates an increased efficiency in the delivery
routes. More specifically, by exploiting the interaction between picking and routing, it
is possible to have orders in a vehicle for a longer time without violating the order due
times, i.e., an order can be given priority in the picking process if this order is best loaded
into a trip leaving early for efficient delivery, even if this order’s time window is far in
the future. The integrated algorithm seems to result in the best fit between picking and
routing, e.g., when looking at the idle time before picking, the integrated algorithm has
a larger average idle time compared to the other algorithms because of the consideration
of the delivery process. However, the integrated iterative algorithm has the additional
feature of focusing on optimising each of the subproblems individually, i.e., it balances
the use of global neighbourhoods which focus on setting good cutoff times and local
neighbourhoods which are efficient in optimising each of the subproblems. This way,
the integration between picking and routing can be achieved by optimisation with the
integrated algorithm, which leads to a good indication of the cutoff times to be used
for every order. Next, the subproblems are optimised with a stronger algorithm for the
picking and routing problem separately, while taking the cutoff times into account.

41

Figure 7: Tardiness and travel distance for the factor levels of the factorial design.
Tardiness is read on the left axis, travel distance on the right axis.

5.3.2 Impact of operating context

In this section, the performance of the integrated iterative algorithm is discussed for
different operating contexts, tested on the experimental design outlined in Table 5. The
interpretation of the results for the other algorithms is very similar, but for clarity only
the integrated iterative algorithm is reported. Figure 7 shows the average tardiness and
distance per order for the different settings. All differences in tardiness and distance
between the factor levels are statistically significant.

First, operating on a larger scale, i.e., handling more customer orders within a certain
time period, clearly leads to economies of scale. Both the average tardiness per order
and the average distance per order can be reduced by handling more orders per day. This
result is not surprising, since the chance of receiving two very similar orders for picking
or routing increases. More specifically, two orders with item locations in the warehouse
close to each other can be picked more efficiently by picking them in the same batch,
and two orders with delivery locations close to each other, if having somewhat related
time windows, can be delivered more efficiently by a single vehicle trip.

Next, when looking at the size of the delivery area, it is immediately clear that
operating in a larger area is more difficult if the same operating resources are available,

42

i.e., the same number of order pickers and delivery vehicles. In the experiments, there
was never tardiness when operating in a small delivery area, but quite some tardiness
in the large delivery area. Interestingly, while the travel distances were doubled in a
large delivery area compared to a small area, the average distance per order increases
by over 150% instead of doubling. This effect is most likely caused by the difficulty of
reaching every customer in time, since the distances have doubled but the time windows
remained identical. Additionally, doubling the distance between two locations leads to
less customers being reachable in a certain period of time when starting from a certain
location. This results in less efficient delivery routes, leading to an increase in the
distance per order along with the tardiness increase.

When the time interval between the latest delivery time and the order arrival time
(i.e., the customer ordering online) increases, it becomes significantly easier to deliver
orders in time. Tardiness can be reduced by 80% if on average 3 to 4 instead of 2 to
3 hours are available, with an accompanying distance reduction of 15%. The tardiness
reduction is expected since the available order handling time increases. The distance
reduction can be explained by an increased number of orders available in the system,
and these orders are known more in advance. By taking these orders into account earlier
during the planning period, a more efficient schedule can be constructed for both the
order picking and order delivery processes.

Finally, the time window width also impacts the operating performance. Tardiness
is reduced by almost 30% when the delivery time window is two instead of one hour
wide. Furthermore, there is an associated distance reduction of 4.7%. These results
are explained as follows. By offering a longer accepted delivery interval, it is easier to
deliver two orders whose delivery locations are closely located to one another in time
with a single vehicle, leading to a shorter distance to be travelled. This in turn makes
the operations more efficient, which also positively impacts the tardiness.

Combined, it is clear that the customer expectations and the provided service level
by the company dramatically influence the operating efficiency. Expecting deliveries
within a time window of one hour, while only ordering on average 2.5 hours before the
latest delivery time, results in a much more difficult situation for the retailer compared
to time windows of two hours and an average of 3.5 hours of order handling time. If
no additional resources are available, but customers accept longer time windows and
a bit longer delivery delay, the tardiness can be reduced by more than 90%, while the
distance is reduced by over 18%. Furthermore, this efficiency improvement even leads to
benefits external to the company, as the large reduction in distance will also lead to highly
reduced externalities, e.g., regarding greenhouse gas emissions, noise pollution and traffic
congestion. If customers are a little less demanding, the environmental impact of their
purchases can be dramatically reduced. Based on these results, retailers could highlight
the beneficial environmental effect of selecting a longer time window or longer delivery
delay during the ordering process, to motivate customers to select the environmentally
friendly option.

43

6 Conclusion

With the increasing importance of e-commerce sales for retailers, efficiently organising
the order handling process becomes indispensable. The ordered items should be picked
in the warehouse first, followed by delivery to the customer. The order picking and
order delivery processes are traditionally handled separately. However, improved op-
erating performance can be achieved by taking the interaction between order picking
and order delivery into account. In this paper, several contributions are achieved. We
studied different metaheuristic algorithms to take the interaction between picking and
delivery into account, each algorithm integrating picking and routing to a different ex-
tent. Furthermore, a dynamic context is considered, in which new orders arrive during
the planning period, which has not been studied before for the integrated order picking
and vehicle routing problem. Based on a factorial design, with different factor levels to
mimic different real-life operating contexts, the algorithms have been tested. The re-
sults showed that optimising the order picking and delivery operations in an integrated
manner results in highly improved performance compared to a sequential optimisation
approach, with an analysis of the solution structure indicating a better fit between the
picking and routing operations when using integrated decision-making. The integrated
iterative algorithm showed the best performance, indicating that iterating over setting
the order cutoff times between picking and routing using global neighbourhoods, and
optimising picking and routing decisions individually with local neighbourhoods, results
in the best solutions.

Next, the integrated iterative algorithm was tested for different operating contexts.
Results showed that there are significant economies of scale, with notable improvements
in operating efficiency if more orders are handled. A valuable insight from the experi-
ments is the large cost of offering high customer service levels. The company, but also the
customers should think twice about their environmental impact as well, since a rather
small reduction in customer service level, i.e., accepting delivery within 3.5 instead of 2.5
hours on average and allowing delivery within a two instead of one hour time window,
reduces the routing distance and thus the associated environmental impact by more
than 18%. This result can be used to propose multiple options to the customers, with a
reduction in delivery charges for less demanding customers.

In future research, the impact of using stochastic information can be studied. If
companies can use their historical order data, they may be able to make predictions about
future orders. This information could then be used to develop more advanced dispatching
strategies that consider order pickers (or even vehicles) to wait for future orders to
improve the efficiency of the operations. In this study, all items are available in a single
warehouse. Future studies could look into the effect of having multiple warehouses to
perform the order picking operations, possibly with order consolidation to only have one
delivery at the customer’s location. Finally, the use of more environmentally friendly
options could be explored, e.g., using electric vehicles or cargo-bikes in an urban setting,

44

adding constraints to the vehicle routing problem.

Acknowledgement

Ruben D’Haen is funded by the Research Foundation Flanders [grant number FWO-
11J1721N]. This work is also supported by an FWO junior research project [G021422N].
The computational resources and services used in this work were provided by the VSC
(Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO)
and the Flemish Government.

Declarations of Interest

None.

References

A. Alnaggar, F. Gzara, and J. H. Bookbinder. Crowdsourced delivery: A review of
platforms and academic literature. Omega, 98:102139, Jan. 2021. ISSN 0305-0483.
doi: 10.1016/j.omega.2019.102139.

C. Archetti and L. Bertazzi. Recent challenges in Routing and Inventory Routing: E-
commerce and last-mile delivery. Networks, 77(2):255–268, 2021. ISSN 1097-0037.
doi: 10.1002/net.21995.

C. Archetti, D. Feillet, and M. G. Speranza. Complexity of routing problems with release
dates. European Journal of Operational Research, 247(3):797–803, Dec. 2015. ISSN
0377-2217. doi: 10.1016/j.ejor.2015.06.057.

C. Archetti, D. Feillet, A. Mor, and M. G. Speranza. An iterated local search for
the Traveling Salesman Problem with release dates and completion time minimiza-
tion. Computers & Operations Research, 98:24–37, 2018. ISSN 0305-0548. doi:
10.1016/j.cor.2018.05.001.

C. Archetti, D. Feillet, A. Mor, and M. G. Speranza. Dynamic traveling salesman
problem with stochastic release dates. European Journal of Operational Research, 280
(3):832–844, Feb. 2020. ISSN 0377-2217. doi: 10.1016/j.ejor.2019.07.062.

K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse. The vehicle routing problem:
State of the art classification and review. Computers & Industrial Engineering, 99:
300–313, Sept. 2016. ISSN 0360-8352. doi: 10.1016/j.cie.2015.12.007.

45

D. Cattaruzza, N. Absi, and D. Feillet. The Multi-Trip Vehicle Routing Problem with
Time Windows and Release Dates. Transportation Science, 50(2):676–693, Jan. 2016.
ISSN 0041-1655. doi: 10.1287/trsc.2015.0608. Publisher: INFORMS.

M.-C. Chen and H.-P. Wu. An association-based clustering approach to order batching
considering customer demand patterns. Omega, 33(4):333–343, Aug. 2005. ISSN
0305-0483. doi: 10.1016/j.omega.2004.05.003.

T.-L. Chen, C.-Y. Cheng, Y.-Y. Chen, and L.-K. Chan. An efficient hybrid algo-
rithm for integrated order batching, sequencing and routing problem. International
Journal of Production Economics, 159:158–167, Jan. 2015. ISSN 0925-5273. doi:
10.1016/j.ijpe.2014.09.029.

R. de Koster, T. Le-Duc, and K. J. Roodbergen. Design and control of warehouse
order picking: A literature review. European Journal of Operational Research, 182(2):
481–501, Oct. 2007. ISSN 0377-2217. doi: 10.1016/j.ejor.2006.07.009.

R. D’Haen, K. Braekers, and K. Ramaekers. Integrated scheduling of order picking op-
erations under dynamic order arrivals. International Journal of Production Research,
61(10):3205–3226, May 2023. ISSN 0020-7543. doi: 10.1080/00207543.2022.2078747.
Publisher: Taylor & Francis eprint: https://doi.org/10.1080/00207543.2022.2078747.

M. Drexl. Synchronization in Vehicle Routing—A Survey of VRPs with Multiple Syn-
chronization Constraints. Transportation Science, 46(3):297–316, 2012. ISSN 0041-
1655. Publisher: INFORMS.

A. Field. Discovering Statistics using IBM SPSS Statistics. SAGE, 2013.

M. A. Klapp, A. L. Erera, and A. Toriello. The One-Dimensional Dynamic Dispatch
Waves Problem. Transportation Science, 52(2):402–415, Mar. 2018. ISSN 0041-1655.
doi: 10.1287/trsc.2016.0682. Publisher: INFORMS.

H. Kuhn, D. Schubert, and A. Holzapfel. Integrated order batching and vehicle routing
operations in grocery retail – A General Adaptive Large Neighborhood Search algo-
rithm. European Journal of Operational Research, 294(3):1003–1021, Nov. 2021. ISSN
0377-2217. doi: 10.1016/j.ejor.2020.03.075.

W. Li, Y. Wu, P. N. R. Kumar, and K. Li. Multi-trip vehicle routing problem with order
release time. Engineering Optimization, 52(8):1279–1294, Aug. 2020. ISSN 0305-
215X. doi: 10.1080/0305215X.2019.1642880. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/0305215X.2019.1642880.

W. Li, K. Li, P. N. R. Kumar, and Q. Tian. Simultaneous product and ser-
vice delivery vehicle routing problem with time windows and order release dates.

46

Applied Mathematical Modelling, 89:669–687, Jan. 2021. ISSN 0307-904X. doi:
10.1016/j.apm.2020.07.045.

S. Moons, K. Ramaekers, A. Caris, and Y. Arda. Integration of order picking and vehicle
routing in a B2C e-commerce context. Flexible Services and Manufacturing Journal,
30(4):813–843, Dec. 2018. ISSN 1936-6590. doi: 10.1007/s10696-017-9287-5.

S. Moons, K. Braekers, K. Ramaekers, A. Caris, and Y. Arda. The value of integrat-
ing order picking and vehicle routing decisions in a B2C e-commerce environment.
International Journal of Production Research, 57(20):6405–6423, Oct. 2019. ISSN
0020-7543. doi: 10.1080/00207543.2019.1566668.

B. H. Ojeda Rios, E. C. Xavier, F. K. Miyazawa, P. Amorim, E. Curcio, and M. J.
Santos. Recent dynamic vehicle routing problems: A survey. Computers & Industrial
Engineering, 160:107604, Oct. 2021. ISSN 0360-8352. doi: 10.1016/j.cie.2021.107604.

M. Ostermeier, A. Holzapfel, H. Kuhn, and D. Schubert. Integrated zone picking and
vehicle routing operations with restricted intermediate storage. OR Spectrum, 44(3):
795–832, Sept. 2022. ISSN 1436-6304. doi: 10.1007/s00291-021-00664-7.

V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia. A review of dynamic vehicle
routing problems. European Journal of Operational Research, 225(1):1–11, Feb. 2013.
ISSN 0377-2217. doi: 10.1016/j.ejor.2012.08.015.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Com-
puters & Operations Research, 34(8):2403–2435, Aug. 2007. ISSN 0305-0548. doi:
10.1016/j.cor.2005.09.012.

H. N. Psaraftis, M. Wen, and C. A. Kontovas. Dynamic vehicle routing problems:
Three decades and counting. Networks, 67(1):3–31, 2016. ISSN 1097-0037. doi:
10.1002/net.21628.

M. Reimann, K. Doerner, and R. F. Hartl. D-Ants: Savings Based Ants divide and
conquer the vehicle routing problem. Computers & Operations Research, 31(4):563–
591, Apr. 2004. ISSN 0305-0548. doi: 10.1016/S0305-0548(03)00014-5.

D. Reyes, A. L. Erera, and M. W. P. Savelsbergh. Complexity of routing problems with
release dates and deadlines. European Journal of Operational Research, 266(1):29–34,
Apr. 2018. ISSN 0377-2217.

A. Rijal, M. Bijvank, and R. de Koster. Dynamics between warehouse op-
erations and vehicle routing. Production and Operations Management, n/a
(n/a), Aug. 2023. ISSN 1937-5956. doi: 10.1111/poms.14051. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/poms.14051.

47

J. I. U. Rubrico, T. Higashi, H. Tamura, and J. Ota. Online rescheduling of multiple
picking agents for warehouse management. Robotics and Computer-Integrated Manu-
facturing, 27(1):62–71, Feb. 2011. ISSN 0736-5845. doi: 10.1016/j.rcim.2010.06.011.

A. Scholz, D. Schubert, and G. Wäscher. Order picking with multiple pickers and due
dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing,
and Picker Routing Problems. European Journal of Operational Research, 263(2):
461–478, Dec. 2017. ISSN 0377-2217. doi: 10.1016/j.ejor.2017.04.038.

D. Schubert, A. Scholz, and G. Wäscher. Integrated order picking and vehicle routing
with due dates. OR Spectrum, 40(4):1109–1139, Oct. 2018. ISSN 1436-6304. doi:
10.1007/s00291-018-0517-3.

D. Schubert, H. Kuhn, and A. Holzapfel. Same-day deliveries in omnichannel retail:
Integrated order picking and vehicle routing with vehicle-site dependencies. Naval Re-
search Logistics (NRL), 68(6):721–744, 2021. ISSN 1520-6750. doi: 10.1002/nav.21954.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.21954.

P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. In M. Maher and J.-F. Puget, editors, Principles and Practice of
Constraint Programming — CP98, Lecture Notes in Computer Science, pages 417–
431, Berlin, Heidelberg, 1998. Springer. ISBN 978-3-540-49481-2. doi: 10.1007/3-540-
49481-2 30.

B. C. Shelbourne, M. Battarra, and C. N. Potts. The Vehicle Routing Problem with
Release and Due Dates. INFORMS Journal on Computing, 29(4):705–723, Nov. 2017.
ISSN 1091-9856. doi: 10.1287/ijoc.2017.0756. Publisher: INFORMS.

N. Sluijk, A. M. Florio, J. Kinable, N. Dellaert, and T. VanWoensel. Two-echelon vehicle
routing problems: A literature review. European Journal of Operational Research, 304
(3):865–886, Feb. 2023. ISSN 0377-2217. doi: 10.1016/j.ejor.2022.02.022.

R. Soares, A. Marques, P. Amorim, and S. N. Parragh. Synchronisation in ve-
hicle routing: Classification schema, modelling framework and literature review.
European Journal of Operational Research, Apr. 2023. ISSN 0377-2217. doi:
10.1016/j.ejor.2023.04.007.

J. T. Soman and R. J. Patil. A scatter search method for heterogeneous fleet ve-
hicle routing problem with release dates under lateness dependent tardiness costs.
Expert Systems with Applications, 150:113302, July 2020. ISSN 0957-4174. doi:
10.1016/j.eswa.2020.113302.

P. Toth and D. Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

48

M. Ulmer. Delivery deadlines in same-day delivery. Logistics Research, 10(3):1–15, 2017.
ISSN 1865-0368. doi: 10.23773/2017 3.

C. A. Valle, J. E. Beasley, and A. S. da Cunha. Optimally solving the joint order
batching and picker routing problem. European Journal of Operational Research, 262
(3):817–834, Nov. 2017. ISSN 0377-2217. doi: 10.1016/j.ejor.2017.03.069.

T. van Gils, K. Ramaekers, A. Caris, and R. B. M. de Koster. Designing efficient order
picking systems by combining planning problems: State-of-the-art classification and
review. European Journal of Operational Research, 267(1):1–15, May 2018. ISSN
0377-2217. doi: 10.1016/j.ejor.2017.09.002.

T. van Gils, A. Caris, K. Ramaekers, and K. Braekers. Formulating and solving the
integrated batching, routing, and picker scheduling problem in a real-life spare parts
warehouse. European Journal of Operational Research, 277(3):814–830, Sept. 2019.
ISSN 0377-2217. doi: 10.1016/j.ejor.2019.03.012.

W. J. A. van Heeswijk, M. R. K. Mes, and J. M. J. Schutten. The Delivery Dispatch-
ing Problem with Time Windows for Urban Consolidation Centers. Transportation
Science, 53(1):203–221, Feb. 2019. ISSN 0041-1655. doi: 10.1287/trsc.2017.0773.
Publisher: INFORMS.

R. R. S. van Lon, E. Ferrante, A. E. Turgut, T. Wenseleers, G. Vanden Berghe,
and T. Holvoet. Measures of dynamism and urgency in logistics. European Jour-
nal of Operational Research, 253(3):614–624, Sept. 2016. ISSN 0377-2217. doi:
10.1016/j.ejor.2016.03.021.

S. A. Voccia, A. M. Campbell, and B. W. Thomas. The Same-Day Delivery Problem for
Online Purchases. Transportation Science, 53(1):167–184, May 2017. ISSN 0041-1655.
doi: 10.1287/trsc.2016.0732.

W. Yang, L. Ke, D. Z. W. Wang, and J. S. L. Lam. A branch-price-and-cut algorithm
for the vehicle routing problem with release and due dates. Transportation Research
Part E: Logistics and Transportation Review, 145:102167, Jan. 2021. ISSN 1366-5545.
doi: 10.1016/j.tre.2020.102167.

J. Zhang, X. Wang, and K. Huang. Integrated on-line scheduling of order batching and
delivery under B2C e-commerce. Computers & Industrial Engineering, 94:280–289,
Apr. 2016. ISSN 0360-8352. doi: 10.1016/j.cie.2016.02.001.

J. Zhang, X. Wang, and K. Huang. On-line scheduling of order picking and delivery
with multiple zones and limited vehicle capacity. Omega, 79:104–115, Sept. 2018.
ISSN 0305-0483. doi: 10.1016/j.omega.2017.08.004.

49

J. Zhang, F. Liu, J. Tang, and Y. Li. The online integrated order picking and delivery
considering Pickers’ learning effects for an O2O community supermarket. Transporta-
tion Research Part E: Logistics and Transportation Review, 123:180–199, Mar. 2019.
ISSN 1366-5545. doi: 10.1016/j.tre.2019.01.013.

50

Appendix

A ANOVA

Table 9: Results mixed factorial ANOVA on tardiness.

Sum of squares df Mean square F p value
Main effects
AverageOrders 211238.2 1 211238.2 337.744 0.000
Algorithm 14006420 1.685 8311978 1603.911 0.000
SizeArea 18497833 1 18497833 965.523 0.000
OrderUrgency 12596523 1 12596523 6418.32 0.000
TimeWindow 275598.8 1 275598.8 192.134 0.000
Two-way interaction
AverageOrders × Algorithm 39469.51 1.685 23422.81 4.520 0.024
AverageOrders × SizeArea 6744303 1 6744303 352.029 0.000
AverageOrders × OrderUrgency 1255139 1 1255139 639.532 0.000
AverageOrders × TimeWindow 122039.9 1 122039.9 85.080 0.000
Algorithm × SizeArea 3023581 2.452 1232897 717.249 0.000
Algorithm × OrderUrgency 5855566 2.315 2529149 986.636 0.000
Algorithm × TimeWindow 4984.37 2.620 1902.186 1.545 0.219
SizeArea × OrderUrgency 6725464 1 6725464 3043.416 0.000
SizeArea × TimeWindow 319617.4 1 319617.4 222.548 0.000
OrderUrgency × TimeWindow 122.896 1 122.896 0.041 0.841
Residuals
Between subjects 11257.89 18 625.439
Within Algorithm 157188 30.332 5182.319
Within SizeArea 344850.4 18 19158.36
Within OrderUrgency 35326.6 18 1962.589
Within TimeWindow 25819.39 18 1434.411
Within Algorithm × SizeArea 75879.44 44.144 1718.924
Within Algorithm × OrderUrgency 106827.8 41.674 2563.407
Within Algorithm × TimeWindow 58076.95 47.166 1231.329
Within SizeArea × OrderUrgency 39777.14 18 2209.841
Within SizeArea × TimeWindow 25851.08 18 1436.171
Within OrderUrgency × TimeWindow 53522.25 18 2973.458

51

Table 10: Results mixed factorial ANOVA on distance.

Sum of squares df Mean square F p value
Main effects
AverageOrders 93.305 1 93.305 248.891 0.000
Algorithm 1854.61 1.883 984.928 1505.2 0.000
SizeArea 47613.38 1 47613.38 15815.67 0.000
OrderUrgency 2417.185 1 2417.185 1212.005 0.000
TimeWindow 106.447 1 106.447 309.187 0.000
Two-way interaction
AverageOrders × Algorithm 26.202 1.883 13.915 21.266 0.000
AverageOrders × SizeArea 99.054 1 99.054 32.903 0.000
AverageOrders × OrderUrgency 72.736 1 72.736 36.471 0.000
AverageOrders × TimeWindow 12.787 1 12.787 37.142 0.000
Algorithm × SizeArea 67.635 2.315 29.219 99.709 0.000
Algorithm × OrderUrgency 338.585 2.686 126.063 564.186 0.000
Algorithm × TimeWindow 3.784 2.218 1.706 5.866 0.005
SizeArea × OrderUrgency 14.067 1 14.067 7.612 0.013
SizeArea x TimeWindow 9.463 1 9.463 30.730 0.000
OrderUrgency x TimeWindow 37.206 1 37.206 88.906 0.000
Residuals
Between subjects
Within Algorithm 6748 18 0.375
Within SizeArea 54.189 18 3.011
Within OrderUrgency 35.899 18 1.994
Within TimeWindow 6.197 18 0.344
Within Algorithm x SizeArea 12.210 41.666 0.293
Within Algorithm x OrderUrgency 10.802 48.345 0.223
Within Algorithm x TimeWindow 11.612 39.918 0.291
Within SizeArea x OrderUrgency 33.266 18 1.848
Within SizeArea x TimeWindow 5.543 18 0.308
Within OrderUrgency x TimeWindow 7.533 18 0.418

52

