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Epidermolysis bullosa simplex (EBS) skin disease is a rare disease, which renders the use of optimal 
design techniques especially important to maximize the potential information in a future study, 
that is, to make efficient use of the limited number of available subjects and observations. A 
generalized linear mixed effects model (GLMM), built on an EBS trial was used to optimize the 
design. The model assumed a full treatment effect in the follow-up period. In addition to this 
model, two models with either no assumed treatment effect or a linearly declining treatment 
effect in the follow-up were assumed. The information gain and loss when changing the number 
of EBS blisters counts, altering the duration of the treatment as well as changing the study period 
was assessed. In addition, optimization of the EBS blister assessment times was performed. The 
optimization was utilizing the derived Fisher information matrix for the GLMM with EBS blister 
counts and the information gain and loss was quantified by D-optimal efficiency. The optimization 
results indicated that using optimal assessment times increases the information of about 110-

120%, varying slightly between the assumed treatment models. In addition, the result showed 
that the assessment times were also sensitive to be moved ± one week, but assessment times 
within ± two days were not decreasing the information as long as three assessments (out of four 
assessments in the trial period) were within the treatment period and not in the follow-up period. 
Increasing the number of assessments to six or five per trial period increased the information 
to 130% and 115%, respectively, while decreasing the number of assessments to two or three, 
decreased the information to 50% and 80%, respectively. Increasing the length of the trial period 
had a minor impact on the information, while increasing the treatment period by two and four 
weeks had a larger impact, 120% and 130%, respectively. To conclude, general applications of 
optimal design methodology, derivation of the Fisher information matrix for GLMM with count 
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data and examples on how optimal design could be used when designing trials for treatment of the 
EBS disease is presented. The methodology is also of interest for study designs where maximizing 
the information is essential. Therefore, a general applied research guidance for using optimal 
design is also provided.

1. Introduction

Epidermolysis bullosa simplex (EBS) is a rare, genetic disease characterized by hyperfragility of epithelial-lined tissues and surfaces 
leading to recurrent blistering particularly of skin and mucous membranes (Has et al., 2020). As there is currently no cure and available 
treatments are limited to symptom alleviation and wound care, a growing number of innovative therapeutic compounds are evaluated 
in clinical trials. One of these trials was a randomized, placebo-controlled, double-blind, 2-period cross-over phase 2/3 trial, which 
assessed the therapeutic potential of the immunomodulatory 1% diacerein cream compared to placebo to reduce the number of 
blisters (Wally et al., 2018).

Sixteen patients in this trial were randomly assigned to either the placebo or the diacerein treatment according to a 1:1 ratio, and 
were treated daily for 4 weeks, followed by a 3-month follow-up. After a washout period, patients were crossed over to the opposite 
treatment, following an identical treatment schedule. In each study period, blisters in the treated body surface area were counted (in 
the clinics) at the start of the treatment period, after 2 and 4 weeks of treatment, and after follow-up (week 16). The primary endpoint 
was the proportion of patients with more than 40% reduction from baseline in the number of blisters after 4 weeks of treatment. 
In this work, the longitudinal raw blister counts (0-16 weeks) are modeled with a generalized linear mixed model (Verbeeck et al., 
2024). An illustration of the design of the EBS study is presented in Fig. 1.

The work presented in this manuscript is conducted within the EBStatMax project of the European Joint Program on Rare Diseases, 
which aims to explore and establish innovative statistical methods for rare diseases. The goal of this paper is to utilize optimal design 
methodology (Fedorov, 2010; Atkinson and Donev, 1992) to enhance the expected information (i.e. outcome) of the EBS trial and 
to investigate how sensitive the information in the designs is with respect to different design choices, such as the number of blister 
assessments, treatment duration, study period length and timing of the blister assessments.

The methodology applied in this paper is neither novel in terms of the statistical methods used nor with respect to the study design 
in general, but it demonstrates how to practically combine knowledge regarding a drug and a disease to provide a rationale for the 
optimal design of future clinical trials using a parametric model, with the aim of extracting a maximum amount of information. This 
is of high relevance as trials for rare diseases may fail not because of a lack of efficacy of a treatment, but due to a lack of appropriate 
study design for the study objectives and hence for lack of power (Day et al., 2018).

When using optimal design in a clinical trial, the level of information contained in the trial is quantified with the expected Fisher 
information (Fedorov, 2010; Atkinson and Donev, 1992). The idea of optimal design is to change certain aspects of the trial and 
to evaluate the respective influence on the expected information about model parameters, particularly on parameters related to the 
treatment effect (efficacy) of an experimental treatment. The derivation of the expected Fisher information based on an estimated 
GLMM is described in Section 2, which also contains information on the methodology used to assess various design aspects. Section 3, 
describes how the information derived from a study changes in response to the different design parameters investigated. Finally, 
Section 4 discusses results and contemplates how the methods presented here are generalizable to other rare diseases.

2. Methods

The starting point of this work is a reanalysis of a diacerein versus placebo phase 2/3 study, in which changes in blister counts 
were modeled with a modeling average (MA) approach (Wally et al., 2018; Verbeeck et al., 2024; Aoki et al., 2017). The MA approach 
used a pool (𝑛 = 16) of different generalized linear mixed effect models (GLMMs), including different sources of variability, such as 

Fig. 1. An illustration of the standard design used in the placebo-controlled, double-blind, 2-period cross-over phase 2/3 trial described by Wally et al. (Wally et al., 
2018). The left-hand box represents the first trial period (TP1), which includes a treatment arm (diacerein) and a placebo arm with a 1:1 ratio. The next trial period 
(TP2) starts after a washout period, upon which the two treatment groups switch treatments (cross-over design). The x-axis indicates the blister count assessment 
2

times relative to the start of each trial period.
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Fig. 2. Illustration of the different treatment effect models used in the optimal design. The models are illustrated on the log link function scale, i.e. log mean blister 
counts, versus study period time (in weeks). The illustration assumes both placebo and treatment in study period 1 (TP1). No treatment effect (trt) in the follow-up 
versus placebo (left panel), equal (full) treatment effect in follow-up period and the treatment period versus placebo (mid panel, the best MA model) and linear 
declining treatment effect in the follow-up period versus placebo (right panel).

period effects 𝑃𝑖 (TP1 (𝑖 = 1) versus TP2 (𝑖 = 2)), time effects 𝑡𝑘 (blister count assessment time 𝑡 for patient 𝑘) and treatment effects 
𝐺𝑖𝑘 (placebo versus diacerein in period 𝑖 for patient 𝑘). The most informative model from the MA approach, i.e. the model with the 
highest MA weight (𝑤 = 0.58) and hence the most influential GLMM, was reused in this work on the optimal blister count assessment. 
The conditional expectation of the blister outcome, 𝑦𝑖𝑘𝑡 , given the patient-specific random effects 𝒃𝑘, is described by the following 
GLMM:

𝜇𝑖𝑘𝑡 =𝐸(𝑦𝑖𝑘𝑡|𝒃𝑘) = 𝑔−1(𝒙′
𝑖𝑘𝑡
𝜷 + 𝒛′

𝑖𝑘𝑡
𝒃𝑘), (1)

with 𝒙𝑖𝑘𝑡 and 𝜷 , the vectors of the fixed effects variables and parameters, 𝒛𝑖𝑘𝑡 and 𝒃𝑘 vectors of the random effects variables and 
parameters and 𝑔−1 an inverse link function. The random effects are assumed to follow a multivariate normal distribution with mean 
zero and covariance matrix Ω, i.e., 𝒃𝑘 ∼ (0, Ω). The blister counts are assumed Poisson distributed and hence a log link function 
was used. The model with the highest weight (𝑤 = 0.58) from the MA approach (Verbeeck et al., 2024) is:

log(𝜇𝑖𝑘𝑡) = 𝑔(𝐸(𝑦𝑘𝑡|𝒃𝑘)) = 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽𝑡𝑟𝑡𝐺𝑖𝑘 + 𝛽𝑡𝑖𝑚𝑒𝑡𝑘 + 𝛽𝑝𝑒𝑟𝑖𝑜𝑑𝑃𝑖 + 𝛽𝑡𝑟𝑡∶𝑡𝑖𝑚𝑒𝐺𝑖𝑘𝑡𝑘+

𝛽𝑝𝑒𝑟𝑖𝑜𝑑∶𝑡𝑖𝑚𝑒𝑃𝑖𝑡𝑘 + 𝒛′
𝑘𝑡
𝒃𝑘,

with 𝐺𝑖𝑘 a treatment group indicator (diacerein versus placebo), 𝑃𝑖 a trial period indicator (TP1 versus TP2) and 𝑡 the continuous 
period time (in weeks). The random effect models used were

𝒛′
𝑘𝑡
𝒃𝑘 = 𝑏0,𝑘𝑃𝑖 + 𝑏1,𝑘(1 − 𝑃𝑖),

where (
𝑏0𝑘
𝑏1𝑘

)
∼𝑁

((
0
0

)
,Ω

)
.

The fixed effects parameters of this GLMM estimated from the EBS trial data are:

𝜷′ =
(
𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝛽𝑡𝑟𝑡, 𝛽𝑡𝑖𝑚𝑒, 𝛽𝑝𝑒𝑟𝑖𝑜𝑑 , 𝛽𝑡𝑟𝑡∶𝑡𝑖𝑚𝑒, 𝛽𝑝𝑒𝑟𝑖𝑜𝑑∶𝑡𝑖𝑚𝑒

)
= (1.8510,−0.0482,−0.0604,−0.3494,−0.0833,0.0730)

and the inter-patient variability parameters for each period were estimated as

Ω̂ =
(
0.182 0.179
0.179 0.502

)
.

Note that 𝛽𝑡𝑟𝑡 as well as 𝛽𝑡𝑟𝑡∶𝑡𝑖𝑚𝑒 ∗ 𝑡 are accounted for when calculating the total treatment effect at time 𝑡. Moreover, the estimated 
model assumes a continuation of the drug’s effect throughout the treatment period and the follow-up. This is a quite strong assumption, 
which arguably impacts the optimal design assessment. Therefore, two additional drug effects models were investigated: (1) a linearly 
declining drug effect in the follow-up period, and (2) a model assuming no drug effect in the follow-up period. The three evaluated 
treatment models are illustrated in Fig. 2.

2.1. Optimal design

In this work, the expected information from various designs of the EBS trial were classified using an optimal design approach. In 
3

optimal design evaluation, the expected Fisher information matrix (FIM) is often used to quantify the level of information in a design. 
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Furthermore, a single criterion, i.e., the determinant of the Fisher information matrix, was used as a single metric of the information, 
referred to as the D-criterion. Other criteria, such as A-optimal, common for linear models, C-optimal etc. are also available (Atkinson 
and Donev, 1992). However, the D-optimal approach is one of the most adopted criteria for nonlinear models and was used in this 
paper since the approximate FIM is derived for nonlinear random effect models even though the model with the highest weight from 
the MA approach was a linear model. The paragraph below describes a linearized version of a FIM that is used for GLMMs with 
Poisson distributed data, based on the work by Longford (Longford, 1994) and Ogungbenro et al. (Ogungbenro and Aarons, 2011). 
See also Stroup, Bolker and Madden et al. (Stroup, 2012; Bolker, 2015; Madden et al., 2002) for more information about GLMMs and 
design of experiments.

The patient-specific 𝐹𝐼𝑀𝑘 is dependent on the model 𝑓 , the patient-specific elementary design 𝝃𝑘, and the model parameters 𝜷
(fixed effects) and 𝒃𝑘 ∼ (0, Ω) (random effects):

𝐹𝐼𝑀(𝝃𝑘) =

(
𝐽𝑇
𝑘
𝑉 −1
𝑘

𝐽𝑘 0
0 1

2𝐹𝑘

)
,

where

𝐹𝑘 = tr

(
𝑉 −1 𝜕𝑉

𝜕𝜔𝑟

𝑉 −1 𝜕𝑉

𝜕𝜔𝑠

)
,

𝐽𝑘 =
𝜕𝝁𝑘

𝜕𝜷
,

𝑉𝑘 ≈𝑍𝑘Ω𝑍𝑇
𝑘
+𝑊𝑘,

𝑊𝑘 = diag(𝜇𝑘,1,… , 𝜇𝑘,𝑛𝑘
),

𝑍𝑘 =
𝜕𝝁𝑘

𝜕𝒃𝑘
,

𝑙𝑜𝑔(𝜇𝑘) = 𝑓 (𝝃𝑘,𝜽,𝒃𝑘)

(2)

and 𝜽 encompasses all model parameters. Once a patient specific 𝐹𝐼𝑀𝑘 is calculated, a FIM representing the complete study cohort 
can be defined by a summation over the information from each elementary (patient’s) design:

𝐹𝐼𝑀 =
𝑁∑
𝑘=1

𝐹𝐼𝑀𝑘(𝝃𝑘),

where 𝑁 is the total number of patients in the study. Note that assuming the same elementary design in each patient enables further 
simplification to the study-level FIM:

𝐹𝐼𝑀 =
𝐽∑

𝑗=1
𝑛𝑗 ⋅ 𝐹𝐼𝑀𝑗 (𝝃𝑗 )

where 𝐽 is the number of unique elementary designs 𝝃𝑗 and 𝑛𝑗 are the number of patients with the elementary design 𝝃𝑗 , and evidently 
𝑁 =

∑𝐽
𝑗=1 𝑛𝑗 . This notation also allows for usage of nonlinear models given a first order approximation of the model around 𝒃𝑘 = 0, 

although in some cases a first-order expansion is insufficient to reach acceptable accuracy (Molenberghs and Verbeke, 2005). In the 
context of nonlinear mixed effects models with continuous data this assumption has shown to predict the expected information well 
(Nyberg et al., 2015).

Here, a D-optimal design approach was used to maximize the determinant of FIM or equally to minimize the joint expected model 
parameter uncertainty. The numerical optimizations were performed in the statistical programming software R, version 4.2, using 
a simplified version of a repeated linear search algorithm with the aim to approximate a global optimum, similar to the line search 
algorithm implemented in the optimal design software PopED (Foracchia et al., 2004; Nyberg et al., 2012b). Furthermore, the level 
of information between two designs (for example A and B) is compared using the D-efficiency:

𝐷eff =
|𝐹𝐼𝑀𝐴|1∕𝑝𝐴|𝐹𝐼𝑀𝐵|1∕𝑝𝐵 ,

where 𝑝𝐴 and 𝑝𝐵 (here 𝑝𝐴 = 𝑝𝐵) is the number of estimated parameters with design A and design B respectively. A 𝐷eff of 100% 
means that design A and B are similarly informative, while a 𝐷eff of 200% and 50% means that design A is twice as informative as 
design B and design A contains half of the information of design B, respectively.

Based on the data from the study by Wally et al. (Wally et al., 2018) and the modeling work presented by Verbeeck et al. (Verbeeck 
et al., 2024) the elementary design, referred to as the standard design, corresponds to 8 patients starting with diacerein treatment and 
8 patients starting with placebo treatment with equal blister assessment times at 𝑡 = {0, 2, 4, 16} weeks. Further, a treatment duration 
of 4 weeks and a follow-up of 12 weeks, repeated in a cross-over design after a wash-out phase, were assumed, analogously to the 
original study. Note that the number of assumed patients in an elementary design will not change the D-optimal design but will affect 
4

the expected uncertainty.
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2.2. Design space

The design space for the four blister count assessment times was defined as 𝑡𝑚𝑖𝑛 = 0 weeks and 𝑡𝑚𝑎𝑥 = 16 weeks where the optimal 
period assessments times 𝑡𝑜𝑝𝑡 were optimized within 𝑡𝑚𝑖𝑛 to 𝑡𝑚𝑎𝑥. In the scenarios investigating the study period length, see subsection 
2.5 below, two additional 𝑡𝑚𝑎𝑥 boundaries were investigated; 𝑡𝑚𝑎𝑥 = 20 weeks and 𝑡𝑚𝑎𝑥 = 24 weeks. The optimal period assessment 
times were forced to be the same in the two treatment periods as well as between the different treatment groups (placebo or diacerein 
treatment). Hence, each patient had 8 blister count observations in total and roughly 128 (2*8*8) observations were expected in the 
full study except for the scenario with fewer/additional assessment times (see Section 2.4).

2.3. Sensitivity of the standard design

Sampling windows (assessment time windows) were determined to investigate how sensitive the standard design is due to changes 
in the blister assessment times. Two different magnitudes of shifts were investigated: ± maximum one week and ± maximum one 
day from the standard design. For the first time point and last time point, an assessment time within 0–2 (day or weeks) and 14–16 
weeks or 15.71 (16 weeks - 2 days) –16 weeks were tested. The sampling windows were calculated using 1000 uniformly distributed 
samples of blister assessment times within the defined sampling windows, corresponding to 1000 different designs. It is assumed that 
all patients use the same assessment times, in each of the 1000 sampled studies.

From a clinical point of view, some flexibility with respect to the assessment times might considerably decrease the trial burden for 
the study participants: Due to the disease, every additional visit at the clinic is burdensome (e.g., even seemingly routine activities 
like changing clothes or additional bandage are very painful for the patients). Therefore, the possibility of combining a study visit 
with a regularly scheduled monitoring visit at the clinic – given that both visits are sufficiently close to each other – has the potential 
of decreasing the frequency of study withdrawal substantially and lowering traveling burden for the patient.

2.4. Changing the number of blister assessments

The information of the design with respect to the number of blister assessments was investigated by optimizing designs with either 
2, 3, 5, 6 assessments (optimized between 𝑡min = 0 weeks and 𝑡max = 16 weeks) in each study period and compared to the standard 
design with 4 assessments per study period by calculating the D-efficiency for each optimal design relative to the standard design.

2.5. Increasing the study period length

The standard design with a 4-week treatment period (using the three different treatment model’s optimal assessment times within 
the 16 weeks period length) and the sensitivity of the standard design with respect to the study period length were investigated by 
optimizing assessment times for a period duration of 16 weeks (standard design), 20 weeks or 24 weeks, still with a fixed treatment 
period length of 4 weeks. Optimal designs were calculated for the three different treatment models and the D-efficiency was calculated 
relative to the standard design.

2.6. Increasing the treatment duration

The standard design with a 4-week treatment period and the sensitivity of the standard design with respect to the treatment 
duration was investigated by altering the treatment duration in the model to either 6 weeks or 8 weeks while keeping the study 
period time fixed to a totality of 16 weeks. For each scenario (4, 6, and 8 weeks) and with the three different treatment models, the 
design was optimized with respect to the blister count assessment times and the D-efficiency was calculated relative to each standard 
design (with optimized assessment times with a 4-week treatment duration).

3. Results

The optimal designs were compared to the standard design by means of the D-efficiency as well as the expected relative standard 
error (RSE), i.e. the uncertainty, of the model parameters. The optimal designs were 𝝃𝑗 = (0, 0, 4, 16) weeks, 𝝃𝑗 = (0, 0, 16, 16) weeks 
and 𝝃𝑗 = (0, 0, 3.88, 16) weeks for the model without treatment effect in follow-up, the model with continuing treatment effect in 
follow-up, and the model with linearly declining treatment effect in follow-up respectively. The RSE’s and respective D-efficiency are 
presented in Table 1. The table also shows that some parameters are difficult to estimate with high precision, such as the treatment 
effect (𝛽𝑡𝑟𝑡) because of the large RSE’s. On the other hand, the treatment effect interaction with time (𝛽𝑡𝑟𝑡∶𝑡𝑖𝑚𝑒) has a stronger impact 
on the blister counts and hence might be more informative from an optimal design perspective.

3.1. Sensitivity of the standard design

The sensitivity of the standard design with respect to variations in blister assessment times (𝑡 = 0,2,4,16) for all simulated follow-

up treatment effects is presented in Fig. 3 and shows that the standard design with no treatment effect in follow-up is very sensitive, 
i.e. shows a large variability in expected information, to ± weekly spreads of assessment times, spreading from an D-efficiency of 
5

slightly above 100% for some designs all the way down to <5% D-efficiency for other designs. The mean D-efficiency of the sampled 
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Table 1

Expected Relative standard errors of the model parameters and D-efficiency for the optimal designs (OD) 
relative to the standard design (Std) which is assumed the same for all treatment effect (trt) models.

Parameter No trt in follow-up Full trt in follow-up Linear trt in follow-up

Std OD Std OD Std OD

𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 7.64 7.40 7.65 7.64 7.58 7.39

𝛽𝑡𝑟𝑡 320.93 277.16 287.54 285.68 321.01 276.99

𝛽𝑡𝑖𝑚𝑒 15.94 15.03 24.01 17.44 15.82 15.02

𝛽𝑝𝑒𝑟𝑖𝑜𝑑 61.82 57.57 57.89 57.95 61.82 57.56

𝛽𝑡𝑟𝑡∶𝑡𝑖𝑚𝑒 57.55 52.07 22.88 16.9 71.17 53.40

𝛽𝑡𝑖𝑚𝑒∶𝑝𝑒𝑟𝑖𝑜𝑑 65.01 56.93 23.57 17.58 70.51 58.61

𝜔2
𝑇𝑃1 38.93 38.22 41.43 43.00 40.22 38.19

𝜔2
𝑇𝑃2 38.57 38.02 39.07 40.17 38.94 38.00

D-Efficiency (%) 100.00 109.48 100.00 120.91 100.00 111.97

Fig. 3. Illustration of D-efficiency based on 1000 sampled designs from the standard design ± one week. The figure is stratified by the different treatment effect models 
in follow-up. The standard designs have blister assessments at week 0,2,4 and 16. The grey solid lines represent the mean D-efficiency.

Fig. 4. Illustration of D-efficiency based on 1000 sampled designs from the standard design ± one day. The figure is stratified by the different treatment effect models 
and the third sample in the standard design around week 4 is marked with different symbols if the assessment time is within or outside of the treatment period. The 
standard designs have blister assessments at week 0,2,4 and 16. The grey solid lines represent the mean D-efficiency.

designs from ± one week within the standard design is around 65%. The model with full treatment effect in follow-up is much less 
sensitive to the spread in assessment time (mean D-efficiency of around 90%) while the linear decline model is somewhere in between 
with an average D-efficiency of 75%. Fig. 4 shows that the standard design is very robust, i.e. small loss of expected information, 
to designs ± one day from the standard design, especially if a full treatment effect in the follow-up is assumed. If a linear decline 
treatment effect or no treatment effect is assumed, the D-efficiency could be as low as 85% and 65%, respectively. However, the 
sensitivity of these designs depends heavily on the number of assessment times with a full treatment effect, favoring more assessment 
times in the full treatment effect period. On average the D-efficiency is quite high in all assumed treatments models, 98%, 94% and 
6

85%, for the full treatment effect, the linear decline treatment effect and no treatment effect in follow-up, respectively.
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Table 2

Expected D-efficiency (%) of the optimal design using different 
assessment times compared to the optimal design using 4 assess-

ment times for each treatment effect model. The D-efficiency of 
the three different treatment effect models in the follow-up is 
tabulated; No = no treatment effect in follow-up period, Full 
= full treatment effect in follow-up period and Linear = Linear 
decay treatment effect in follow-up period.

# assessment times Follow-up trt effect

No Full Linear

6 assessment times 132.19% 131.75% 133.17%

5 assessment times 117.99% 115.69% 118.75%

4 assessment times 100.00% 100.00% 100.00%

3 assessment times 79.21% 79.26% 80.25%

2 assessment times 48.06% 59.56% 48.69%

Table 3

Expected D-efficiency (%) of the optimal design as-

suming different study period lengths compared to the 
optimal design with a study period duration of 16 
weeks. The D-efficiency of the three different treat-

ment effect models in the follow-up is tabulated; No 
= no treatment effect in follow-up period, Full = full 
treatment effect in follow-up period and Linear = Lin-

ear decay treatment effect in follow-up period.

Period 
duration

Follow-up trt effect

No Full Linear

16 weeks 100.00% 100.00% 100.00%

20 weeks 102.39% 104.59% 101.94%

24 weeks 103.78% 104.74% 103.78%

3.2. Changing number of assessments

The D-efficiency of the optimal designs using different numbers of blister assessments are presented in Table 2, which indicates 
that the three different models give comparable D-efficiency. Furthermore, Table 2 shows that a 15–20% increase or decrease in 
D-efficiency is seen for each added/removed assessment time with slightly more loss of information for fewer assessment times in 
the full treatment effect model. The optimal designs for the different scenarios are not presented here but they all add additional 
replicated assessment times to the optimal designs for the respective follow-up treatment models.

3.3. Increasing the study period length

The D-efficiency is not very sensitive to increases in the study period duration from 16 weeks (standard design) to either 20 weeks 
or 24 weeks, (Table 3). As expected, the design is more informative with longer duration, but the D-efficiency gain is less than 5% for 
the three models with different treatment effects in the follow-up. Again, the optimal designs (not shown) are similar to the optimized 
designs for the 16-week duration but the late assessment time is pushed towards the end of the study period (at week 20 or week 24).

3.4. Extending the treatment period

Table 4 shows that treatment period length does have a major impact on the D-efficiency for the ‘no effect’ and ‘linear decay 
effect’ model, with an increase of efficiency of roughly 20% for and additional treatment duration of 2 weeks and roughly 30% 
more information if the treatment duration is doubled, i.e., to 8 weeks. This is expected since the parameter related to the treatment 
duration (𝛽𝑡𝑟𝑡∶𝑡𝑖𝑚𝑒) has a relative large impact on the blister count. The full treatment effect in the follow-up model is not affected by 
the change of treatment duration since the treatment effect is similar throughout the entire follow-up period.

4. Discussion

In the examples provided, optimal design methodology was able to increase the information in several aspects of the EBS designs, 
by optimizing blister assessment times, number of assessments, study period, and treatment length. In addition to optimizing designs, 
sensitivity of the standard design with respect to the blister assessment times was also investigated and shows that the design is not 
very sensitive towards switching the optimal design ± one day, as long as the number of assessments within the treatment period 
is similar to in the standard design (3 assessments within the treatment period). Shifting the design ± one week from the standard 
7

design could reduce the information to less than 5% of the information in the standard design (D-efficiency <5%). More combinations 
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Table 4

Expected D-efficiency (%) of the optimal design assum-

ing different treatment period lengths compared to the 
optimal design with a treatment period duration of 4 
weeks. All models assume a study period length of 16 
weeks. The D-efficiency of the three different treatment 
effect models in the follow-up is tabulated; No = no 
treatment effect in follow-up period, Full = full treat-

ment effect in follow-up period and Linear = Linear 
decay treatment effect in follow-up period.

Treatment 
duration

Follow-up trt effect

No Full Linear

4 weeks 100.00% 100.00% 100.00%

6 weeks 117.92% 100.00% 119.46%

8 weeks 131.55% 100.00% 133.27%

of optimizing the design space could be considered, e.g. simultaneously optimizing the period duration, the number of assessments 
and the assessment time. However, for simplicity and run-times reasons we only considered two dimensions at a time.

In this work, an optimal design was sought for the EBS trial, using a pre-specified model with already assumed known parameters. 
This is an often-used approach, even for nonlinear models where the design depends on both the model and the model parameters. 
However, incorrect assumptions regarding the model structure and/or the model parameters could change the optimal design and 
the expected precision. Other approaches, such as robust optimal designs (Tod and Rocchisani, 1997; Nyberg and Hooker, 2012; 
Foo and Duffull, 2010; Dodds et al., 2005; D’Argenio, 1990) or even using the full pool of estimated models from the MA approach 
(Alhorn et al., 2019) could be applied instead. On the contrary, even though robust approaches can be considered, they are in general 
computationally more intensive and for the purpose of showing the benefits and potential with the optimal design approach, the 
pre-specified model and parameter estimates from the MA approach deemed appropriate. In addition, the used single model from the 
MA approach had much of the total model weight and therefore contributed with high importance to the overall MA model (Verbeeck 
et al., 2024). More mechanistic models, e.g. with slow onset treatment effects, could also be considered using the methods presented 
in the paper and may further improve the information gain with the optimal design approach.

An issue which is often present in small sample size studies, such as in rare disease populations, is that model parameters might 
suffer from large uncertainty. This is also the case for some parameters in the model that was used in this work e.g. 𝛽𝑡𝑟𝑡 parameter 
in Table 1. On the other hand, high uncertainty is expected in small studies and is therefore an argument for the importance of 
maximizing the available information.

Increasing the number of blister assessment times from the standard design which had 4 assessment times, increased the signal-to-

noise ratio by adding additional replicated assessment times instead of additional unique assessment times. This is something which 
is seen in optimal design when there is a sufficiently large sample size to identify the model and estimate its parameters. This could 
be addressed by adding autocorrelation components to the model, e.g., AR(1) (autoregressive of order one) models where a blister 
count is dependent on the magnitude of the previous blister count and the distance in time between the assessments (Nyberg et al., 
2012a). However, the magnitude of the auto-correlation might be difficult to assess and therefore a common assumption, which was 
also used in this work, is to ignore any potential autocorrelation.

Finally, the results presented in this paper are based on the assumed model and only considering optimal design theory of infor-

mation while other aspects, such as therapeutic and side effects, are not part of our investigation. For example, it is likely that the 
period length should be extended when testing longer treatment period and that a longer treatment period comes with higher patient 
burden and cost. Nevertheless, such restrictions could be added to the optimal design evaluations and considered if they could be 
specified in a model and/or the design space. However, this does not mean that the considerations presented in this manuscript are 
purely theoretical. In fact, the opposite is true: Optimization of study designs is of crucial importance in Epidermolysis bullosa (as 
well as in other rare diseases), due to the high burden for the patients who participate in a clinical trial. Since the disease is rare, 
the distances between the patients’ cities of residence and specialized centers are usually quite large. Moreover, seemingly routine 
activities of everyday life are very burdensome and painful for the patients. Therefore, from a clinical perspective, the statistical 
questions addressed in this manuscript are very important for designing a clinical trial. At the same time, however, for the reasons 
stated above, we must acknowledge that further refinements and more detailed methodological considerations are needed in order 
to align the results from optimal design theory with “reality”, that is, actually planning and conducting a clinical trial. This does not 
only apply to the work presented in this manuscript but should be regarded as a key aim of research on optimal designs in general.

To conclude, this research illustrates how optimal design methodology can be used to improve and investigate clinical trial designs 
in rare diseases. Optimal design assessments are particularly important when designing studies in small populations, like rare disease 
studies, where it is crucial to maximize the information from the study population.

5. Applied researcher guidance

A recipe on how the research presented could be applied when planning for a study design is presented in Fig. 5. This is not 
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intended to cover all aspects of study design and planning but gives an overview of the specifics using the optimal design theory 
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Fig. 5. Illustration of key steps needed to calculate an optimal study design. Step 1 - Identify the objectives of your optimal design, i.e. design a study which is 
maximizing the study power, estimate all model parameters with as high precision as possible, estimate the number of patients needed to reach 80% study power, 
etc. Step 2 - Build a model from historical data or use a model from literature which represents the relevant outcome of the study, e.g. in this paper the relevant 
outcome was blister counts. Step 3 - Identify what aspects of the design to optimize, i.e. number of patients, study length, number of assessments, etc. In addition, 
define the design boundaries based on e.g. clinical considerations; minimum and maximum number of assessments, minimum and maximum study length, minimum 
and maximum number of patients to include, balance in study arms, etc. Step 4 - Derive the fisher information matrix (FIM) for your model, i.e. for Poisson distributed 
data with GLMM the FIM presented in this paper could be used. For continuous normal distributed data with nonlinear mixed effect models, see e.g. (Foracchia et al., 
2004). Step 5 - Choose the criteria to minimize/maximize, e.g. the joint parameter uncertainty (D-optimal design as used in this paper) or other criteria of relevance. 
These criteria should match the objectives. Step 6 - Calculate the optimal design using an optimal design software (Nyberg et al., 2012b) or by using any suitable 
optimization package.

which is used in this paper. Also note that the objectives, aspects of the design and the design criteria is very specific to the study and 
the drug indication. After applying the methodological steps (Fig. 5), the result will be a design (or multiple designs) that matches 
the objectives.
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