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Abstract
The goal of this paper is to study the number of sliding limit cycles of regularized
piecewise linear visible–invisible twofolds using the notion of slow divergence inte-
gral. We focus on limit cycles produced by canard cycles located in the half-plane
with an invisible fold point. We prove that the integral has at most 1 zero counting
multiplicity (when it is not identically zero). This will imply that the canard cycles can
produce at most 2 limit cycles. Moreover, we detect regions in the parameter space
with 2 limit cycles.
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1 Introduction

The point of departure for the present paper is planar piecewise linear (PWL) systems:

ż =
{
Z+(z) for h(z) > 0,

Z−(z) for h(z) < 0,
z = (x, y) ∈ R

2 (1)

where the vector-fields Z+ = (X+,Y+) and Z− = (X−,Y−) and the function
h : R

2 → R, ∇h �= 0, are each affine. The interest in such systems was perhaps first
sparked by Lum and Chua [52], when they conjectured that the number of limit cycles
of (1) in the continuous case, i.e. when Z+(z) = Z−(z) for all

z ∈ � := h−1(0),

is at most one. This conjecture, which was first proven by Freire et al. [25], led to
subsequent developments [27, 31, 49, 50], where the assumption of continuity of (1)
was relaxed. In such cases, the problem is to determine the maximum number of
crossing limit cycles. These cycles are limit cycles of (1) that intersect � in discrete
points z, where Z−(z) and Z+(z) point in the same direction relative to �; this
is in contrast to so-called sliding cycles, where solutions of (1) slide (due to the
Filippov convention [24]) along a subset of the discontinuity set � where Z±(z) are
in oppositions relative to �, see Sect. 2 for further details. At present, only certain
subcases of the problem have been solved, see [23, 47]. To the best of our knowledge,
3 crossing limit cycles have been realized. We also refer to [5, 7, 28, 30, 48, 51, 54]
and references therein for further background on piecewise smooth systems.

Until recently, the analysis of crossing limit cycles in PWL systems was largely
based upon a case-by-case analysis (see e.g. [26, 32, 33, 45, 46, 53]), depending on
the type of the singularity in h(z) < 0 and h(z) > 0 and whether the singularities
are virtual or not (i.e. whether they are contained within the relevant sets h(z) ≷ 0).
Recently, however, Carmona and Fernández-Sánchez [6] developed the foundations
for a case-independent approach based upon integral representations of the Poincaré
half-maps (see Sect. 2 for further details). In [9], this approach was used to show that
the maximum number of crossing limit cycles is in fact uniformly bounded by 8 and in
[11] the authors gave the first case-independent proof of Lum and Chua’s conjecture.
Finally, in [10] the uniqueness of limit cycles for sewing PWL systems (where there
is no sliding) was also proven using the approach of [6].

Obviously, the interest in bounding the number of limit cycles for (1) is related
to Hilbert’s 16th problem [55], which seeks to bound the number of limit cycles of
polynomial systems. While some progress has been made on the quadratic case [22]
and on Smale’s version of the problem (where the polynomial systems are restricted
to being of Liénard type, see e.g. [12]), Hilbert’s 16th problem remains unsolved to
this day. Recently, some emphasis has been on obtaining good lower bounds on the
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Fig. 1 The fast dynamics of
system (2) with indication of the
slow dynamics along the line of
singular points {y = 0} (blue).
�̃x is a canard cycle (Color
figure online)

x−x
˜Γx

number of limit cycles (see e.g. [1, 17, 19]). A key tool in this effort has been the
slow divergence-integral, developed by De Maesschalck, Dumortier and Roussarie,
see [14–16, 20, 21], in the context of slow–fast systems and canard theory. In particular,
zeros of the slow divergence-integral provide candidates for limit cycles.

Let us briefly explain the slow divergence-integral using the following smooth
slow–fast system with a slow–fast Hopf/canard point [34]

{
ẋ = y,

ẏ = xy + ε
(
c − x + x2F(x)

)
,

(2)

where ε ≥ 0 is a small singular parameter, c ∈ R is close to 0 and F is a smooth
function. The dynamics of system (2) with ε = 0 (often called the fast dynamics) has
a line of singular points {y = 0}. For each singular point different from (0, 0), the
linear part of the vector field has a nonzero eigenvalue. The line is normally attracting
when x < 0 (the nonzero eigenvalue is negative) and normally repelling when x > 0
(the nonzero eigenvalue is positive). Fast movement (ε = 0) happens along parabolas
y = 1

2 x
2 + C . We have a nilpotent singularity at (0, 0) which we call a contact point

between the line of singular points and the parabolas. We refer to Fig. 1.
Near normally attracting or repelling points, there are invariant manifolds asymp-

totic to the line of singular points, and using asymptotic expansions in ε we get (see
[34])

y = ε

(
−c − x + x2F(x)

x

)
+ O(ε2).

If we now reduce the dynamics of (2) to the invariant manifolds, divide out ε and
let ε → 0, we find the slow dynamics [16, Chapter 3]

x ′ = −c − x + x2F(x)

x
, x �= 0.

For c = 0 the slow dynamics has a removable singularity in x = 0 and it points,
at least near x = 0, from the attracting branch of {y = 0} to the repelling branch of
{y = 0}. Assume that the slow dynamics has no singularities. Then we define the slow
divergence-integral associated to the line of singular points at level c = 0:

I(x) =
∫ x

−x

sds

1 − sF(s)
, x > 0.
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(a) V I3 (b) V V1
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Fig. 2 Canard cycles through twofold singularities with sliding (the V I3 case and the VV1 case, see [44]).
In this paper we study the number of limit cycles near canard cycles �x (blue) located in the half-plane
y ≤ 0 with invisible fold point, in the V I3 case. � is the Poincaré half-map defined in Sect. 2.4. Canard
cycles (red) can also appear in the half-plane with visible fold point (Color figure online)

Following [16, Chapter 5], the slow divergence-integral is the integral of the diver-
gence of the vector field (2) for ε = 0, computed along {y = 0}, where the variable of
integration is the time variable of the slow dynamics, called the slow time and denoted
τ (dτ = dx

1−x F(x) ). The function I plays an important role in studying the number of

limit cycles of (2) produced by canard cycles. For a fixed x > 0, the canard cycle �̃x is
a limit periodic set at level (ε, c) = (0, 0) consisting of the segment [−x, x] ⊂ {y = 0}
and the fast orbit from (x, 0) to (−x, 0) (see Fig. 1). If I has a zero of multiplicity
l ≥ 1 at x = x0, then the canard cycle �̃x0 can produce at most l + 1 limit cycles for
(ε, c) close to (0, 0) (see e.g. [15]).

Piecewise smooth (PWS) systems (1) bear some similaritieswith slow–fast systems,
like (2). In Fig. 2, for example, we show phase portraits for two versions (V I3 and
VV1 in the notation of [44]) of so-called twofolds, where orbits of Z− and Z+ have
quadratic tangencies with � at the same point. In Fig. 2a the fold point from “below”
in terms of Z− is “invisible” and the graphic �x consists of the orbit of Z− from (x, 0)
to (�(x), 0) and the segment [�(x), x] ⊂ {y = 0} (which is an orbit segment of
the Filippov sliding vector-field, see Sect. 2). �x is called a sliding cycle of the PWS
Filippov system, but it is reminiscent of the canard cycle �̃x associated to (2) because
it contains both stable and unstable sliding portions of the discontinuity line y = 0;
please compare Figs. 1 and 2a.

The Refs. [3, 44] show that twofolds are generically co-dimension one bifurcations
in PWS systems where two fold points (quadratic tangencies) on either side collide.
It can (depending on the type) also be accompanied by bifurcations of the sliding
vector-field as well as bifurcations of the sliding/crossing regions.

From [56], it is known that one way to formalise the connection between (1) and
slow–fast systems is through regularized PWS systems:

ż = Z+(z)φ(h(z)ε−2) + Z−(z)(1 − φ(h(z)ε−2)), z ∈ R
2, (3)
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where φ : R → R is a smooth regularization function:

φ′(s) > 0 for all s ∈ R, φ(s) →
{
1 for s → ∞
0 for s → −∞ . (4)

In particular, Eq. (3) has a slow manifold (the system (3) being slow–fast upon
blowup y = ε2y2) for all 0 < ε � 1 if the associated limiting system (1) for ε = 0
has sliding. Moreover, the reduced problem on the slow manifold precisely agrees
with the Filippov convention in the singular limit ε = 0.

In [36], the present authors showed that the number of limit cycles of (3) for ε > 0
is unbounded when Z± are quadratic vector-fields. More precisely, we showed that
there exist quadratic vector-fields Z±(·, λ), depending smoothly on a parameter λ,
such that the following statement is true: For any k ∈ N there exist a regularization
function φk satisfying (4) and a continuous function λk : [0, εk[→ R, with εk > 0,
such that (3) with Z±(·, λk(ε)) and φ = φk has at least k + 1 limit cycles. The limit
cycles were all sliding cycles (like �x in Fig. 2a) of (1) in the singular limit ε = 0 and
they were constructed through k simple zeros of a slow divergence-integral that was
associated with the so-called V I3 twofold of PWS systems [44], see Fig. 2. In [37], the
authors develop the notion of slow divergence integrals for regularized PWS systems
(3) further.

The purpose of this paper is to begin the analysis of sliding cycles in regularized
PWL systems. In this paper, we focus on the V I3-case, see Fig. 2a. The V I3-case
corresponds to collision of a visible and an invisible tangencies of Z+ and Z− with
� upon parameter variation and it is, following [3, 44], characterized by Z± being
anti-collinear at the twofold and by the sliding vector-field pointing from the stable
to the unstable sliding region (with nonzero speed). If we fix local coordinates such
that the twofold is at the origin and � = {y = 0}, then the definition of V I3 takes the
following form:

⎧⎪⎨
⎪⎩
X+(0, 0) > 0,

Y+(0, 0) = 0,
∂
∂x Y

+(0, 0) > 0,

⎧⎪⎨
⎪⎩
X−(0, 0) < 0,

Y−(0, 0) = 0,
∂
∂x Y

−(0, 0) < 0,

(5)

and (
X− ∂

∂x
Y+ − X+ ∂

∂x
Y−

)
(0, 0) > 0, (6)

see [3, 44], and the following system

Z−(x, y) =
[−1 + d−y
−x + t−y

]
, Z+(x, y) =

[
b+ + a+

11x + a+
12y

a+
21x + a+

22y

]
,

with b+ > a+
21 > 0 and Z− in Liénard form, is a normal form in the PWL context,

see Proposition 2.1 below. V I3 is also a bifurcation of a singularity of the sliding
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vector-field (going from a saddle to a node, like the canard point of slow–fast system
[43]), see [3, 44].

In this paper,we show (when the slowdivergence integral is not identically zero) that
the family of canard cycles∪x∈J�x for the V I3 twofold (blue in Fig. 2a), with J ⊂ R+
being a compact interval, can produce at most 2 limit cycles of (3). This will follow
from [36] and Theorem 3.1 in Sect. 3, which states that the slow divergence integral
has at most 1 zero counting multiplicity in J (Remark 3 in Sect. 3). Interestingly,
the proof of Theorem 3.1 uses the case-independent approach of [6] to characterize
the half-maps and we relate the existence of zeros of the slow-divergence integral to
crossing cycles of a sewing PWL system using [10]. We also present precise results,
depending on the region of parameter space, and find that 2 sliding limit cycles can
exists for (3) in cases where the singularity of Z− is hyperbolic (saddle, focus or node).
In contrast, at most one limit cycle can exists in cases where Z− has a center or no
singularities (Remark 3 and Sect. 4).

In a separate paper [35], we consider the remaining cases, including the VV1
case (Fig. 2b). More precisely, sliding limit cycles can be produced by canard cycles
detected in the half-plane with visible fold point (see red graphics in Fig. 2).We expect
the existence of 3 sliding cycles in regularized PWL V I3 and VV1 systems.

We finally emphasize that regularized PWS systems (3) occur naturally in many
different applications, including in models of friction (see [2, 4, 13, 41]). Moreover,
there has recently been a desire to understand how PWS phenomena (folds, grazing,
boundary equilibria [44]) unfold in the smooth version [3, 38–40, 42]. For this purpose
methods fromGeometric Singular Perturbation Theory (GSPT) and blowup have been
refined to deal with resolving the special singular limit of (3), see [36, 40, 41].

The paper is organized as follows: In Sect. 2, we first review some basic concepts of
Filippov PWS systems and present a normal form for the PWL V I3-case, see Sects. 2.1
and2.2. In Sect. 2.3, we define our regularized PWL V I3 twofold model and introduce
the notion of slow divergence integral. Finally, in Sect. 2.4 we present some results on
a Poincaré half-map based on the work of [6]. Subsequently, we then state our main
result about the upper bound for the number of zeros of the slow divergence integral,
Theorem 3.1 in Sect. 3. During the reviewing process, an anonymous referee provided
an alternative proof of Theorem 3.1, available in Sect. 3, that does not distinguish
between cases depending on the spectrum of the linear systems (see also Remark 2),
but rather uses the integral characterizations of Poincaré half-maps [6] (see Sect. 2.4),
and apply results of [8, 10]. In Sect. 4, we proceed to deal with the different cases
(saddle, focus, proper and improper node, etc.) separately; collectively, these results
also prove Theorem 3.1. In each case, we state precise cyclicity results for canard
cycles, depending on the region of parameter space (see Theorems 4.1, 4.3, 4.5, 4.7
and 4.9 in Sect. 4); for more details about the definition of cyclicity, we refer the reader
to Sect. 2.3. In particular, we detect regions in the parameter space with 2 sliding limit
cycles.
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Fig. 3 Illustration of a PWS visible fold �T , that locally divides � into a crossing set �cr (orange) and
a sliding set �sl (pink, stable in the present case). On �sl we assign Filippov’s sliding vector-field Zsl ,
which is defined as the convex combination of Z±(q) that is tangent to � at q ∈ � (Color figure online)

2 Background

2.1 Filippov PWS Systems

In the following, we review the most basic concepts of PWS systems. For this purpose,
wewill follow [36, Section 2] (which is based upon [3, 18, 44]). Notice that henceforth
we write LZ±(h) := ∇h · Z± for the Lie-derivative of h in the direction Z±. We also
write (LZ±)2(h) := LZ±(LZ±(h)).

The discontinuity set � = {h(z) = 0} of (1) is frequently called the switching
manifold [18, 29] and it is divided into three disjoint sets � = �cr ∪ �sl ∪ �T

characterized in the following way:

(1) The subset �cr ⊂ � consisting of all points q ∈ � where

LZ+(h)(q)LZ−(h)(q) > 0,

is called “crossing”, see Fig. 3 (orange).
(2) The subset �sl ⊂ � consisting of all points q ∈ � where

LZ+(h)(q)LZ−(h)(q) < 0,

is called “sliding”. It is said to be stable (resp. unstable) if LZ+(h)(q) < 0 and
LZ−(h)(q) > 0 (resp. LZ+(h)(q) > 0 and LZ−(h)(q) < 0). Figure3 illustrates
(in pink) stable sliding (unstable sliding can be obtained by reversing the arrows).

(3) The subset�T ⊂ � consisting of all points q ∈ � where eitherLZ+(h)(q) = 0 or
LZ−(h)(q) = 0 is called the set of tangency points. If q ∈ �T andLZ+(h)(q) = 0
then q is called a tangency point from above. Tangency points from below are
defined similarly. Finally, q is a double tangency point if it is tangency point from
above and from below.

Along �cr , trajectories can be extended from Z+ to Z− or from Z− to Z+ by
concatenating orbits of Z+ and Z−. In contrast, trajectories of Z± reach �sl in finite
time and to be able to continue trajectories a vector-field has to be defined along �sl .
Themost commonway to do this is by using the Filippov convention, where the sliding
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vector-field Zsl is assigned on �sl :

Zsl(q) = Z+(q)p(q) + Z−(q)(1 − p(q)), p(q) := −LZ−(h)

LZ+(h) − LZ−(h)
(q), (7)

for q ∈ �sl , see Fig. 1. In this way, one can define a forward solution and a backward
solution through any point, see [24, 44]. These solutions are (clearly) not unique in
general, but this allows us to define ω and α-limit sets. The choice (7) is motivated by
examples [18], but importantly it also relates to the ε → 0 limit of (3), see [36] and
Sect. 2.3 below.

Frequently, we will suppose that h(x, y) = y, which is without loss of generality
in the PWL case (and locally in the nonlinear case). In this case, Zsl = (Xsl , 0)which
defines Xsl (a one-dimensional vector-field on �sl ⊂ {y = 0}).

We further classify the points in �T as follows (see also [18]):

(4) A point q ∈ �T is a fold point from “above” if the orbit of Z+(·) through q has a
quadratic tangency with � at q, i.e.

⎧⎪⎨
⎪⎩
Z+(q) �= 0,

LZ+(h)(q) = 0,

(LZ+)2(h)(q) �= 0.

We define a fold point from “below” in terms of Z− in a similar way.
(5) A fold point q ∈ �T from “above” is said to be visible, if the orbit of Z+(·)

through q is contained within y > 0 in neighborhood of q. It is said to be invisible
otherwise. In terms of Lie-derivatives, we clearly have (LZ+)2(h)(q) > 0 iff q
satisfying Z+(q) �= 0 and LZ+(h)(q) = 0 is visible. Fold points from below
are classified in a similar way. In particular, (LZ−)2(h)(q) < 0 iff q satisfying
Z−(q) �= 0 and LZ−(h)(q) = 0 is visible.

The fold point illustrated in Fig. 3 (black dot) is visible from above.

2.2 Twofolds and a Normal Form for the PWL VI3-Case

Now, we finally arrive at the concept of twofolds in PWS systems. These are double
tangency points that are fold points for both vector-fields and play the role of canard
points in the analysis of (3), see [36].

(6) A twofold q ∈ �T is a point with quadratic tangencies from above and from
below. In terms of Lie-derivatives we have:⎧⎪⎨

⎪⎩
Z±(q) �= 0,

LZ±(h)(q) = 0,

(LZ±)2(h)(h)(q) �= 0,

with these equations understood to hold for both ±.
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(7) A twofold is said to be visible–visible, visible–invisible, invisible–invisible accord-
ing to the “visibility” of the fold from above and below, respectively, see item (5)
above.

The paper [44] gave a characterization of twofolds. There are seven different cases,
two cases of visible–visible (called VV1,2), three cases of visible–invisible (V I1,2,3),
and finally two cases of invisible–invisible (I I1,2). The different subcases (of visible–
visible, visible–invisible and invisible–invisible) are determined by (a) whether there
is sliding (VV1, V I2, V I3 and I I1) or not (VV2, V I1 and I I2), and (if there is sliding:)
by (b) the direction of sliding flow and finally (c) whether the unfolding leads to
singularities on �sl of the sliding vector-field, see also [42, Fig. 2]. In the present
paper, we focus on the V I3-case which we characterize in the following result.

Proposition 2.1 Consider a PWL system (1) with h(z) = y and Z± affine, having a
V I3 twofold at the origin, i.e. Z± = (X±,Y±) satisfy (5) and (6). Then there exists
an invertible affine map  : (x, y) → (x̃, ỹ) such that Z̃± := ∗(Z±) are given by

Z̃−(x̃, ỹ) =
[−1 + d− ỹ
−x̃ + t− ỹ

]
, Z̃+(x̃, ỹ) =

[
b+ + a+

11 x̃ + a+
12 ỹ

a+
21 x̃ + a+

22 ỹ

]
. (8)

Here b+ > a+
21 > 0, �sl =] − ∞, 0[∪]0,∞[, �T = {0},

t− = tr(DZ−), d− = det(DZ−),

and

X̃sl(x) = 1

1 + a+
21

(
b+ − a+

21 + a+
11x

)
.

Proof We write

Z±(z) = A±z + b±,

with A± = [a±
i j ] and b± = [b±

1 , b±
2 ]T . Then the conditions (5) and (6) become

⎧⎪⎨
⎪⎩
b+
1 > 0,

b+
2 = 0,

A+
21 > 0,

⎧⎪⎨
⎪⎩
b−
1 < 0,

b−
2 = 0,

A−
21 < 0,

and

b−
1 a

+
21 − b+

1 a
−
21 > 0. (9)
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Since a−
21 �= 0, we can transform Z− into a Liénard form Z̃− with ã−

11 = 0 using an
y-fibered isomorphism defined by

(x, y) → x̃ = x − a−
11

a−
21

y.

Dropping the tildes, we can then subsequently apply the scalings

(x, y) →
{
x̃ = |b−

1 |−1x,

ỹ = |b−
1 |−1|a−

21|−1y

This gives Z̃±(z̃) = Ã± z̃ + b̃± with

Ã+ = [ãi j ], b̃+ =
[
b̃+
1
0

]
, Ã− =

[
0 det(A−)

−1 tr(A−)

]
, b̃− =

[−1
0

]
,

Setting a+
21 := ã+

21, b
+ := b̃+

1 , Eq. (9) becomes b+ −a+
21 > 0. The expression for X̃ sl

follows easily from (7). This completes the proof. ��
In the rest of this paper, when we refer to (8), we use Z±, Xsl instead of Z̃±, X̃ sl .

2.3 Regularized PWL VI3 Twofold and the Slow Divergence Integral

We now consider (3) with h(x, y) = y in the form

ż = Z+(z, λ)φ(yε−2) + Z−(z, λ)(1 − φ(yε−2)), (10)

where 0 < ε � 1, λ ∼ 0 ∈ R, Z±(·, λ) = (
X±(·, λ),Y±(·, λ)

)
are planar affine

vector-fields, depending smoothly on a parameter λ, and Z±(·, 0) = Z±(·), with
Z±(·) defined in (8). We add the following technical assumptions on φ.

(A1) The function φ has the following asymptotics when s → ±∞:

φ(s) →
{
1 for s → ∞,

0 for s → −∞.

(A2) The function φ is strictly monotone, i.e., φ′(s) > 0 for all s ∈ R.
(A3) The function φ is smooth at ±∞ in the following sense: Each of the functions

φ+(s) :=
{
1 for s = 0,

φ(s−1) for s > 0,
, φ−(s) :=

{
φ(−s−1) for s > 0,

0 for s = 0,

are smooth at s = 0.
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Assumption (A3) means that (10) is a regular perturbation of Z+(·, λ) or Z−(·, λ)

outside any fixed neighborhood of y = 0, see [36]. Moreover, it is well-known (see
[56] and [36, Theorem 2.2]) that once Assumption (A2) holds, sliding in (8) implies
existence of local invariant manifolds for (10), which carry a reduced flow that is a
regular perturbation of ẋ = Xsl(x), with Xsl given in Proposition 2.1:

Xsl(x) = 1

1 + a+
21

(
b+ − a+

21 + a+
11x

)
. (11)

When a+
11 �= 0, Xsl has a simple zero

x∗ = −b+ − a+
21

a+
11

�= 0, (12)

and when a+
11 = 0, Xsl(x) is positive for all x ∈ R.

The following assumption plays an important role when we study the existence and
number of sliding limit cycles of (10), see [36].

(A4) We assume that

∂

∂λ
Y− ∂

∂x
Y+ �= ∂

∂λ
Y+ ∂

∂x
Y− (13)

at (z, λ) = (0, 0).

Let us explain themeaning ofAssumption (A4). The fold point (x, y) = (0, 0) from
above and below is persistent to smooth perturbations of (8). Indeed, The Implicit
Function Theorem and (5) imply the existence of smooth λ-families of fold points
z+ = (x+(λ), 0) from above in terms of Z+(·, λ) and fold points z− = (x−(λ), 0)
from below in terms of Z−(·, λ), for λ ∼ 0, with x±(0) = 0. If we assume non-zero
velocity of the collision between z+ and z− for λ = 0 at the origin z = 0:

x ′+(0) − x ′−(0) =
(

−
∂
∂λ
Y+

∂
∂x Y

+ +
∂
∂λ
Y−

∂
∂x Y

−

)
(0, 0) �= 0,

then we get (13).
Following [36, Section 3], to study the existence and number of sliding limit cycles

of (10) produced by the canard cycle �x (Fig. 2a) for (ε, λ) ∼ (0, 0), we use the slow
divergence integral associated to the segment [�(x), x] at level λ = 0:

I (x) =
∫ x

�(x)

(Y+ − Y−)2

X−Y+ − X+Y− (u, 0, 0)φ′
(

φ−1
( −Y−

Y+ − Y− (u, 0, 0)

))
du, (14)

for x > 0. See (3.1) in [36]. Now, if we use (8), then (14) becomes

I (x) = (1 + a+
21)φ

′
(

φ−1

(
1

1 + a+
21

)) ∫ x

�(x)

udu

Xsl(u)
. (15)
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Notice that I (0) = 0 and that the expression in front of the integral in (15) is positive;
roots of I are therefore independent of the regularization function, see Remark 1. The
domain of I is a subset of the domain of� (Sect. 2.4) and it depends on the location of
x∗ defined in (12). More precisely, the domain of I is the biggest subset [0, μ[ (μ > 0
or μ = +∞) of the domain of � such that the sliding vector field Xsl given in (11)
is positive on [�(x), x], for all x ∈ [0, μ[. It should be clear that the domain of I is
equal to the domain of � when a+

11 = 0. For more details see later sections.

Remark 1 As emphasized by (15), in the PWL case the φ-dependent term of the inte-
grand of I in (14) is a constant and can therefore go outside the integration. In this
sense, our analysis in the PWL case will be independent of the regularization func-
tion. This is in contrast to the general case, see [36]. There we constructed an arbitrary
number of limit cycles by varying φ, even in the case where Z− is affine and Z+ is
quadratic.

We assume that

λ = ελ̃

where λ̃ ∼ 0.We denote by Cycl(�x0) the cyclicity of the canard cycle�x0 inside (10),
for x0 ∈]0, μ[. More precisely, we say that the cyclicity of �x0 inside (10) is bounded
by N ∈ N if there exist ε0 > 0, δ0 > 0 and a neighborhood U of 0 in the λ̃-space such
that (10) has at most N limit cycles, lying within Hausdorff distance δ0 of �x0 , for all
(ε, λ̃) ∈]0, ε0] ×U . We call the smallest N with this property the cyclicity of �x0 and
denote it by Cycl(�x0).

We define Cycl(∪x∈J�x ) in a similar way, where J = [θ, μ−θ ] (resp. J = [θ, 1
θ
])

for μ > 0 (resp. μ = +∞), with any small and fixed θ > 0.
The following theorem is a direct consequence of [36].

Theorem 2.2 Consider (10) and suppose that Assumptions (A1) through (A4) are
satisfied. Then the following statements are true.

1. If I (x0) < 0 (resp. I (x0) > 0), thenCycl(�x0) = 1and the limit cycle is hyperbolic
and attracting (resp. repelling) when it exists. Moreover, if I has no zeros in ]0, μ[,
then Cycl(∪x∈J�x ) = 1.

2. If I has a zero of multiplicity l ≥ 1 at x = x0, then Cycl(�x0) ≤ l+1. When I has
at most l ≥ 1 zeros in ]0, μ[, counting multiplicity, then we have Cycl(∪x∈J�x ) ≤
l + 1.

3. Suppose that I has exactly l ≥ 1 simple zeros x1 < · · · < xl in ]0, μ[. If xl+1 ∈
]xl , b[, then there is a smooth function λ̃ = λ̃c(ε), with λ̃c(0) = 0, such that (10)
with Z±(·, ελ̃c(ε)) has l + 1 periodic orbits Oε

1, . . . ,Oε
l+1, for each ε ∼ 0 and

ε > 0. The periodic orbit Oε
i is isolated, hyperbolic and Hausdorff close to the

canard cycle �xi , for each i = 1, . . . , l + 1.

Proof Statements 1 and 2 follow from [36, Proposition 3.2], and Statement 3 follows
from [36, Theorem 3.1]. ��
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2.4 Poincaré Half-Map

In this section, we focus on Z− defined in (8) (remember we drop the tildes). The
study of the transition map (often called Poincaré half-map) from x > 0, y = 0 to
x < 0, y = 0 by following the orbits of Z− in forward time can be found in [6]. We
denote by � the Poincaré half-map (Fig. 2a). From [6, Theorem 8] and [6, Theorem
19] it follows that we can use an integral characterization for the Poincaré half-map�:

∫ x

�(x)

−udu

V (u)
= 0, (16)

where

V (x) = d−x2 − t−x + 1.

Notice that V is related to the characteristic polynomial associated with Z−:

P(λ) = λ2 − t−λ + d−,

by

V (u) = u2P(u−1),

for u �= 0. From this, it can be easily seen that the following lemma holds.

Lemma 2.3 The following statements are true.

1. If d− �= 0, then Z− defined in (8) has a singularity at (x, y) = ( t−
d− , 1

d− ) with
eigenvalues

κ± = t− ±
√

(t−)2 − 4d−

2
. (17)

2. If d− �= 0 and (t−)
2 −4d− ≥ 0, then the invariant affine eigenline corresponding

to the eigenvalue κ± in (17) is given by

x = κ∓y + 1

κ∓
, (18)

and it intersects the x-axis at the zero x = 1
κ∓ of the polynomial V .

3. If d− = 0 and t− �= 0, then the line

x = t−y + 1

t−
(19)

is invariant w.r.t. Z−. Moreover, the line intersects the x−axis at the zero x = 1
t−

of V .
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We denote by xL and xR the zeros of V in Lemma 2.3:

xL , xR = 1

κ±
, (20)

where we assume that xL < xR if xL �= xR .
The set �x ∪ Int(�x ) belongs to the class (S0) defined in [6] (that is, �x ∪ Int(�x )

contains no singularities of Z−). For more details we refer to Sects. 4.2–4.4, Appen-
dices A andB. The Poincaré half-map� can be extended to�(0) = 0 and it is analytic
in its domain of definition (see [6]). The following discussion is based on Lemma 2.3.
If (t−)

2 − 4d− < 0, then Z− has a focus or center in {y > 0}, and the domain of � is
[0,+∞[ and the image of � is ]−∞, 0] (Fig. 10 in Sect. 4.4 and Fig. 12 in Appendix
A). When d− < 0, Z− has a hyperbolic saddle in {y < 0} and the stable (resp.
unstable) straight manifold of the saddle intersects the x-axis at x = xR > 0 (resp.
x = xL < 0). In this case the domain of � is [0, xR[ and the image of � is ]xL , 0]
(Fig. 4 and Sect. 4.2). When Z− has a hyperbolic node in {y > 0} with distinct eigen-
values (d− > 0 and (t−)

2 −4d− > 0), then two straight-line solutions corresponding
to the eigenvalues intersect the x-axis at x = xL and x = xR with 0 < xL < xR
or xL < xR < 0. If 0 < xL < xR (resp. xL < xR < 0), then the domain of � is
[0, xL [ (resp. [0,+∞[) and the image of � is ] − ∞, 0] (resp. ]xR, 0]). We refer to
Fig. 6 and Sect. 4.3. System Z− may have a hyperbolic node in {y > 0} with repeated
eigenvalues (d− > 0 and (t−)

2 − 4d− = 0). In this case we have one straight-line
solution (corresponding to the eigenvalue) which intersects the x-axis at x = xR �= 0.
If xR > 0 (resp. xR < 0), then the domain of � is [0, xR[ (resp. [0,+∞[) and the
image of � is ] − ∞, 0] (resp. ]xR, 0]). If Z− has no singularities (d− = 0), then
there exists an invariant line intersecting the x-axis at x = 1

t− (t− �= 0) or orbits of

Z− are parabolas y = 1
2 x

2 + c (t− = 0). In the former case, the domain and image of
� are respectively [0, 1

t− [ and ] − ∞, 0] if t− > 0 or [0,+∞[ and ] 1
t− , 0] if t− < 0,

whereas in the latter case the domain and image of � are respectively [0,+∞[ and
] − ∞, 0]. We refer to Fig. 13 and Appendix B.

The function V is positive on the domain and image of �. Using (16) we get

�′(x) = xV (�(x))

�(x)V (x)
. (21)

We have �′ < 0 and �′(0) = −1.

3 Number of Zeros of the Slow Divergence Integral

Recall that the slow divergence integral I is given by (15). Our goal is to study the num-
ber of zeros (counting multiplicity) of I in ]0, μ[. We show that I is either identically
zero or has at most 1 zero (counting multiplicity) in ]0, μ[. We define the following
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two quantities (see [8, Theorem 1]):

ξ0 = −a+
11 + t−(b+ − a+

21)√
b+ − a+

21

and ξ∞ = − (a+
11)

2
d−

b+ − a+
21

. (22)

Theorem 3.1 If ξ0 �= 0 or ξ∞ �= 0, then I has at most 1 zero counting multiplicity in
]0, μ[. If ξ0 = ξ∞ = 0, then I is identically zero.

Remark 2 The result follows from our case-by-case analysis in Sect. 4, but in the
reviewing process an anonymous referee made us aware of [10, Theorem A] and a
connection between zeros of the slow-divergence integral and a sewing PWL system,
see (23). This leads to a more elegant proof of Theorem 3.1, which we include below.

Proof We first assume that ξ0 �= 0 or ξ∞ �= 0 and prove that the slow divergence
integral I has at most one zero in ]0, μ[ (counting its multiplicity). Equivalently, we
must prove that the function

Ī (x) =
∫ x

�−(x)

−udu

b+ − a+
21 + a+

11u

has a at most one zero in ]0, μ[ (counting its multiplicity), where b+ > a+
21 > 0 and

�− (called � in Sect. 2.4) is the forward Poincaré half-map of the linear system{
ẋ = −1 + d−y,

ẏ = −x + t−y,

associated to the Poincaré section {y = 0}.
As stated in [6] (see also [8, 10]), it is clear that (for b+ > a+

21) the backward
Poincaré half-map �+ of the linear system⎧⎪⎨

⎪⎩
ẋ =

√
b+ − a+

21,

ẏ = −x + a+
11√

b+−a+
21

y,

associated to the Poincaré section {y = 0}, is given by the integral characterization∫ x

�+(x)

−udu

b+ − a+
21 + a+

11u
= 0.

Therefore, the slow divergence integral I (or, equivalently, Ī ) has a zero if and only if
the sewing PWL system

{
ẋ = −1 + d−y,

ẏ = −x + t−y,
if y < 0,

⎧⎪⎨
⎪⎩
ẋ =

√
b+ − a+

21,

ẏ = −x + a+
11√

b+−a+
21

y,
if y > 0, (23)
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has a crossing periodic orbit. From [10, Theorem A] it follows that system (23) has at
most one isolated crossing periodic orbit (that is, one limit cycle) and this limit cycle,
if it exists, is hyperbolic. This implies that I has at most one zero in ]0, μ[ (counting
its multiplicity).

Moreover, from [8, Theorem 1] it follows that system (23) has a crossing period
annulus if and only if ξ0 = ξ∞ = 0. This implies that I is identically zero in this case.

Notice that the coefficient β from [8, Theorem 1] is zero and, if ξ0 = 0, then

sign

(
a+
11√

b+−a+
21

)
= −sign(t−) (recall that b+ > a+

21). The condition (H) from [8,

Theorem 1] holds because aL = 1 > 0, aR = −
√
b+ − a+

21 < 0 and aL12a
R
12 =

(−1)(−1) = 1 > 0 (the notation aL , aR, aL12, a
R
12 comes from [8]). These conditions

can be easily checked after applying (x, y) → (y, x) to (23). ��

Remark 3 If the condition “ξ0 �= 0 or ξ∞ �= 0" of Theorem 3.1 is satisfied, then
Cycl(∪x∈J�x ) ≤ 2. This follows directly from Statement 2 of Theorems 2.2 and 3.1.
Since the slow divergence integral I can have a simple zero in ]0, μ[ (see Theo-
rems 4.3, 4.5, 4.7 and 4.9 in Sect. 4), a direct consequence of Statement 3 of Theorem
2.2 is that there exists a regularized PWL system (10) with 2 hyperbolic limit cycles.

Remark 4 We point out that limit cycles of (10) near so-called boundary graphics �0
(the origin (x, y) = (0, 0)) and �b cannot be studied using Theorem 3.1 and Theorem
2.2. As shown in the following section, the graphics �b can contain (1) the zero x∗
of the sliding vector-field Xsl as its corner point (in this case μ = x∗ if x∗ > 0 or
μ = �−1(x∗) if x∗ < 0), see e.g. Figure4b, d in Sect. 4, (2) a hyperbolic saddle
located away from the line y = 0, see Fig. 4a, c, e, (3) both the corner point x∗ and the
hyperbolic saddle away from y = 0, etc. This—along with the description of canard
cycles in the half-plane with a visible fold—are topics of further study.

In this paper we do not treat periodic orbits of (10) when I ≡ 0. We leave this
to future work. We expect that the analysis of such a case will depend upon the
regularization function.

4 Case-by-Case Study of the Cyclicity of Canard Cycles

Theorem 3.1 in Sect. 3 provides an upper bound for the number of sliding limit cycles
of system (10) (see Remark 3). In this section, we assume that ξ0 �= 0 or ξ∞ �= 0,
with ξ0, ξ∞ defined in (22), and give detailed cyclicity results for (10), working with
different phase portraits of Z− (see Sect. 2.4). We distinguish between the saddle case
(Theorem 4.3 in Sect. 4.2 and Remark 7), the node case (Theorems 4.5 and 4.7 in
Sect. 4.3), the focus case (Theorem 4.9 in Sect. 4.4), the center case (Statement 2 of
Theorem 4.1 and Appendix A) and the case without singularities (Statement 1 of
Theorem 4.1 and Appendix B). We find that the slow divergence integral can have
a zero in the hyperbolic cases (saddle, node and focus), but not in the remaining
cases (center and the case without singularities). We provide sufficient and necessary
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conditions for zeros of the slow divergence integral as well as information on boundary
graphics (that will be relevant in future work).

Remark 5 It is not difficult to see that our sufficient conditions for a zero of the slow
divergence integral are compatible with [8, corollary 2] [upon using the connection
between zeros of the slow divergence integral and crossing cycles of the sewing system
(23)]. Moreover, the part I �= 0 of items 6–9 of Theorem 4.3, items 8–9 of Theorem
4.5, items 6–7 of Theorem 4.7, items 4–5 of Theorem 4.9, and of the center case
follows from [10, Proposition 5]. Indeed, if system (23) has a crossing periodic orbit,
then the traces must have opposite signs, that is, sign

(
a+
11

) = −sign(t−).

Theorem 2.2 plays an important role in proving the above mentioned theorems.
Let us denote by Ĩ (x) the integral in (15). Using (21) it follows that

Ĩ ′(x) = x(x − �(x))
a+
11d

−x�(x) + d−(b+ − a+
21)(x + �(x)) +

√
b+ − a+

21ξ0

(1 + a+
21)X

sl(x)Xsl(�(x))V (x)
,

(24)

for all x ∈ [0, μ[. From (24), �(x) < 0 for x > 0 and the definition of the domain of
� and I it follows that

Ĩ ′(x) = �(x)�(x), (25)

where �(x) > 0 for all x ∈]0, μ[ and

�(x) = a+
11d

−x�(x) + d−(b+ − a+
21)(x + �(x)) +

√
b+ − a+

21ξ0.

Using (25) it is clear that x = x0 ∈]0, μ[ is a zero of multiplicity l of Ĩ ′ if and only if
x = x0 ∈]0, μ[ is a zero of multiplicity l of �.

We may assume that t− ≥ 0. Indeed, system (8) is invariant under the symmetry
(x, a+

11, a
+
22, t

−, t) → (−x,−a+
11,−a+

22,−t−,−t), and, if we denote by�d−,t− (resp.
Id−,t−,b+,a+

11,a
+
21
) the Poincaré half-map� (resp. the slow divergence integral I ) of (8),

then using (15) we get

Id−,t−,b+,a+
11,a

+
21

(x) = −Id−,−t−,b+,−a+
11,a

+
21

(−�d−,t−(x)).

Id−,−t−,b+,−a+
11,a

+
21
is the slowdivergence integral of (8)wherea+

11, a
+
22, t

− are replaced

with −a+
11,−a+

22,−t−. Since �′
d−,t− < 0, the above formula implies that x > 0 is a

zero of Id−,t−,b+,a+
11,a

+
21
if and only if −�d−,t−(x) > 0 is a zero of Id−,−t−,b+,−a+

11,a
+
21

(with the same multiplicity). We conclude that the case t− < 0 follows from the case
t− > 0.

First we prove the following theorem.

Theorem 4.1 Consider the slow divergence integral I (x), with x ∈ [0, μ[, defined in
(15). The following statements are true.
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1. Suppose that d− = 0 and ξ0 �= 0. Then the interval [0, μ[ is bounded and, if
ξ0 < 0 (resp. ξ0 > 0), then I < 0 (resp. I > 0) on ]0, μ[. For any small θ > 0,
we have Cycl(∪x∈[θ,μ−θ]�x ) = 1. The limit cycle is attracting (resp. repelling) if
it exists.

2. Suppose that ξ∞ �= 0 and t− = 0. Then the interval [0, μ[ is bounded and, if
a+
11 > 0 (resp. a+

11 < 0), then I < 0 (resp. I > 0) on ]0, μ[. For any small θ > 0,
Cycl(∪x∈[θ,μ−θ]�x ) = 1 and the limit cycle is attracting (resp. repelling) if it
exists.

Proof Statement 1. Suppose that d− = 0 and ξ0 �= 0. If t− = 0, then a+
11 �= 0 and

the sliding vector field Xsl has a simple zero at x = x∗ defined in (12). This and the
fact that for d− = t− = 0 the domain and image of � are respectively [0,+∞[ and
] − ∞, 0] (Sect. 2.4) imply that the domain [0, μ[ of I is bounded. If t− > 0, then the
domain of � is [0, 1

t− [ (Sect. 2.4), and [0, μ[⊂ [0, 1
t− [ is bounded.

Since d− = 0, we have

�(x) =
√
b+ − a+

21ξ0,

with � defined in (25). Now, if ξ0 < 0 (resp. ξ0 > 0), then Ĩ ′(x),�(x) < 0 (resp.
Ĩ ′(x),�(x) > 0) for all x ∈]0, μ[. Since Ĩ (0) = 0, we have that Ĩ and I are negative
(resp. positive) on ]0, μ[. The rest of the statement follows directly from Statement 1
of Theorem 2.2.
Statement 2. Suppose that ξ∞ �= 0 and t− = 0. If d− < 0, then [0, μ[ is bounded
because the domain of � is bounded (see the saddle case in Sect. 2.4). If d− > 0, then
the domain and image of� are respectively [0,+∞[ and ]−∞, 0] (see the center case
in Sect. 2.4). Since x∗ is well-defined (a+

11 �= 0), this implies that [0, μ[ is bounded.
Since t− = 0, we have �(x) = −x and

�(x) = −a+
11V (x).

Notice that V (x) = d−x2 + 1 when t− = 0. The function V is positive on the
domain of �. If a+

11 > 0 (resp. a+
11 < 0), then Ĩ ′(x) < 0 (resp. Ĩ ′(x) > 0) for all

x ∈]0, μ[. The rest of the proof is now analogous to the proof in Statement 1. ��
For more details about the domain [0, μ[ of I in Theorem 4.1 see Appendices A

and B.
It remains to study the case where d− �= 0 and t− > 0 (Sects. 4.1–4.4). We have

Theorem 4.3 in Sect. 4.2 (the saddle case), Theorems 4.5 and 4.7 in Sect. 4.3 (the node
case) and Theorem 4.9 in Sect. 4.4 (the focus case).

The main idea in the proof of the above mentioned theorems is to study mutual
positions of the curve y = �(x) and the curve �(x, y) = 0 where

�(x, y) = a+
11d

−xy + d−(b+ − a+
21)(x + y) +

√
b+ − a+

21ξ0. (26)

Wewill see that, for d− �= 0 and t− > 0, there is at most 1 intersection (multiplicity
counted) between the curve y = �(x) and the curve�(x, y) = 0 in the fourth quadrant
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with x ∈]0, μ[. Then this implies that �(x) = �(x,�(x)) (or, equivalently, Ĩ ′) has
at most 1 zero counting multiplicity in ]0, μ[. Using Rolle’s theorem and Ĩ (0) = 0,
we conclude that Ĩ (or I ) has at most 1 zero counting multiplicity in ]0, μ[ (see also
Theorem 3.1).

Remark 6 The function � corresponds to the function F in [10, Eq. (23)]. This relates
to a connection between the sign of Ĩ ′(x) (which determines the stability of the sliding
(canard) cycles for 0 < ε � 1) and the stability of the corresponding crossing cycles
of the related sewing system (23). It is therefore also our expectation that the case-
dependent results in the present section, can be obtained by working on (23). In fact,
[45, Theorem 2] applied to (23) implies, under assumptions of item 5 of Theorem 4.9,
that I has at most one zero. From [53, Theorem 1.1] it follows that (23) has no limit
cycles (resp. at most one limit cycle) if a+

11t
− ≥ 0 (resp. a+

11t
− < 0). We will not

pursue the connection to (23) further in the present manuscript.

In Sect. 4.1 we classify the curves defined by the equation �(x, y) = 0 and find
contact points between these curves and the orbits of system (34) defined in Sect. 4.1.

4.1 Properties of the Curves Defined by1 = 0

Consider the function � defined in (26). In further details, notice first that

�(x, y) = �(y, x), (27)

∇�(x, y) =
[
(1 + a+

21)d
−Xsl(y)

(1 + a+
21)d

−Xsl(x)

]
, (28)

�(x, x∗) = −a+
11V (x∗). (29)

Then, for d− �= 0 and t− > 0, we distinguish between the following 3 cases.

1. If a+
11d

− �= 0, t− > 0 and V (x∗) = 0, with x∗ defined in (12), then by (27) and
(29)

�(x, y) = a+
11d

−(x − x∗)(y − x∗), (30)

and�(x, y) = 0 therefore represents the union of two lines x = x∗ and y = x∗. In
this case we will see that y = �(x) and �(x, y) = 0 have no intersection points.
For further details, see Sects. 4.2 and4.3.

2. If a+
11d

− �= 0, t− > 0 and V (x∗) �= 0, then �(x, y) = 0 represents a hyperbola

y = hp(x) :=
−

√
b+ − a+

21ξ0 − d−(b+ − a+
21)x

d−(1 + a+
21)X

sl(x)
. (31)
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It follows from (27) that the function hp is an involution. The graph of y = hp(x)
has a vertical asymptote x = x∗ and a horizontal asymptote y = x∗, and

hp(0) = t−x∗ − 1

d−x∗ , hp′(x) = − (a+
11)

2
V (x∗)

d−(1 + a+
21)

2Xsl(x)2
. (32)

In this case we will prove that y = �(x) and �(x, y) = 0 have at most 1 inter-
section counting multiplicity in the fourth quadrant with x ∈]0, μ[. Moreover, we
show the existence of a transversal intersection for some parameter values satis-
fying the above condition. See Sects. 4.2–4.4.

3. If a+
11 = 0, d− �= 0 and t− > 0, then �(x, y) = 0 represents a line

y = t−

d− − x . (33)

In this case we prove that y = �(x) and �(x, y) = 0 have no intersection points.
See Sects. 4.2–4.4.

It can be easily seen that in cases 1–3 we have �(xL , xR) = �(xR, xL) = 0 where
xL and xR are defined in (20).

Lemma 4.2 Suppose that d− �= 0 and t− > 0. Consider the function �(x) defined in
(25), with x ∈]0, μ[, and � defined in (26). The following statements are true.

1. Suppose that d− < 0. If the curve �(x, y) = 0 lies above (resp. below) the curve
y = �(x) for all x kept in an interval J ⊂]0, μ[, then �(x), Ĩ ′(x) > 0 (resp.
�(x), Ĩ ′(x) < 0) for all x ∈ J .

2. Suppose that d− > 0. If the curve �(x, y) = 0 lies above (resp. below) the curve
y = �(x) for all x kept in an interval J ⊂]0, μ[, then �(x), Ĩ ′(x) < 0 (resp.
�(x), Ĩ ′(x) > 0) for all x ∈ J .

Proof We will prove Statement 1. Statement 2 can be proved in the same fashion as
Statement 1.

Let d− < 0. Suppose first that a+
11 �= 0 and V (x∗) = 0. Then � is given in (30).

If the curve �(x, y) = 0 (that is, y = x∗) lies above the curve y = �(x) with
x ∈ J ⊂]0, μ[, then x∗ > �(x) for all x ∈ J . Using (30) we get

�(x) = �(x,�(x)) = a+
11d

−(x − x∗)(�(x) − x∗) > 0, ∀x ∈ J .

We used d− < 0, x∗ > �(x) for all x ∈ J and a+
11(x − x∗) > 0 for all x ∈ J . Let us

prove that a+
11(x − x∗) > 0 for all x ∈ J . If a+

11 > 0, then (12) implies that x∗ < 0.
Since x > 0 for all x ∈ J , it follows that a+

11(x − x∗) > 0 for all x ∈ J . If a+
11 < 0,

then x∗ > 0. Using the definition of the domain [0, μ[ of I (Sect. 3), it is clear that
μ ≤ x∗. Thus, x < x∗ for all x ∈ J . This implies that a+

11(x − x∗) > 0 for all x ∈ J .
The case where the curve�(x, y) = 0 (that is, y = x∗) lies below the curve y = �(x)
can be studied in a similar way. We get �(x) < 0 for all x ∈ J .
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Now, suppose that a+
11 �= 0 and V (x∗) �= 0. If the curve �(x, y) = 0 lies above

the curve y = �(x) with x ∈ J , then hp(x) > �(x) for all x ∈ J , with hp defined
in (31). If we substitute (31) in hp(x) > �(x) and if we use d− < 0, then we get
�(x) > 0 for all x ∈ J . The case where the curve �(x, y) = 0 lies below the curve
y = �(x) can be studied in a similar way. We obtain �(x) < 0 for all x ∈ J .

Finally, suppose that a+
11 = 0. If the curve �(x, y) = 0 lies above the curve

y = �(x)with x ∈ J , then t−
d− − x > �(x) for all x ∈ J . We use (33). Since d− < 0,

we have �(x) > 0 for all x ∈ J . The case where the curve �(x, y) = 0 lies below
the curve y = �(x) can be studied in a similar way. We have �(x) < 0 for all x ∈ J .

��
Notice that y = �(x) is the x ≥ 0-subset of the stable manifold of the hyperbolic

saddle point (x, y) = (0, 0) of the following polynomial system of degree 3

ẋ = yV (x),

ẏ = xV (y).
(34)

This can be easily seen from (21) (see also [6, Remark 16]). It is clear that system
(34) is invariant under the symmetry (x, y) → (y, x). It is important (Sects. 4.2–4.4)
to calculate the number of contact points between the orbits of system (34) and the
curve �(x, y) = 0. The contact points are solutions of

∇�(x, y) · (yV (x), xV (y)) = 0,

�(x, y) = 0.
(35)

Using (28) the first equation in (35) becomes

(1 + a+
21)d

− (
xV (y)Xsl(x) + yV (x)Xsl(y)

)
= 0 (36)

Recall that Xsl(x∗) = 0 for a+
11 �= 0. Therefore if a+

11d
− �= 0, t− > 0 and

V (x∗) = 0, then (36) implies that all points on the lines x = x∗ and y = x∗ are the
contact points. On the other hand, if a+

11d
− �= 0, t− > 0 and V (x∗) �= 0 and if we

substitute (31) in (36), we get the following equation for contact points

V (x)

(
−

√
b+ − a+

21ξ0 + a+
11d

−x2
)

= 0. (37)

Using (37) the contact points are: (x, y) = (xL , xR), (x, y) = (xR, xL) (if (t−)
2 −

4d− ≥ 0), and (x, y) = (xC ,−xC ) and (x, y) = (−xC , xC ) where

xC =
√
t−x∗ − 1

d− , (38)

if t−x∗−1
d− ≥ 0. Let us recall that xL , xR are defined in (20) and x∗ is defined in (12).
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When d− �= 0, t− > 0 and a+
11 = 0, then we substitute (33) in (36) and get the

following equation for contact points:

V (x) = 0. (39)

4.2 The Saddle Case

In this section we suppose that d− < 0. Then Z− has a hyperbolic saddle at (x, y) =
( t−
d− , 1

d− ) with eigenvalues κ− < 0 and κ+ > 0 given in (17). From (18) it follows
that the stable manifold of the hyperbolic saddle is given by x = κ+y + xR and the
unstable manifold is given by x = κ−y+ xL where xL < 0 and xR > 0 are defined in
(20). It is clear that the stable (resp. unstable) manifold intersects the x-axis at x = xR
(resp. x = xL ). We refer to Fig. 4.

From Fig. 4 it follows that the domain and image of � are respectively [0, xR[ and
]xL , 0] (see also [6]). The domain of the slow divergence integral I (or Ĩ ) depends
on the location of the singularity x = x∗ of the sliding vector field. We distinguish
between 5 cases.

(a) If a+
11 < 0 (hence x∗ > 0) and xR ≤ x∗, then the domain of I is [0, xR[ and we

consider the canard cycle �x for all x ∈]0, xR[ (see Fig. 4a).
(b) If a+

11 < 0 and x∗ < xR , then the domain of I is [0, x∗[ and we consider the canard
cycle �x for all x ∈]0, x∗[ (see Fig. 4b).

(c) If a+
11 = 0, then we have the same domain of I as in the case (a) (see Fig. 4c).

(d) If a+
11 > 0 (hence x∗ < 0) and xL < x∗, then the domain of I is [0,�−1(x∗)[ and

we consider the canard cycle �x for all x ∈]0,�−1(x∗)[ (see Fig. 4d).
(e) If a+

11 > 0 (hence x∗ < 0) and x∗ ≤ xL , then we deal with the same domain of I
as in the case (a) (see Fig. 4e).

Besides the hyperbolic saddle at the origin, the system (34) has hyperbolic and
attracting nodes at (x, y) = (xR, xR) and (x, y) = (xL , xL), and hyperbolic and
repelling nodes at (x, y) = (xR, xL) and (x, y) = (xL , xR). Notice that the lines
x = xR , x = xL , y = xR and y = xL are invariant (Fig. 5). Let us focus on the
singularity (x, y) = (xR, xL) in the fourth quadrant. Since t− > 0, it is easy to see that
the straight-line solution corresponding to the weaker eigenvalue of (x, y) = (xR, xL)

is x = xR , and the regular orbit of (34) given by y = �(x) tends to (x, y) = (xR, xL)

tangentially to the straight-line x = xR (in backward time).
A detailed statement of Theorem 4.3 below covers all possible mutual positions of

the curve y = �(x) and the curve �(x, y) = 0 (see Fig. 5).

Theorem 4.3 Suppose that d− < 0 and t− > 0. Then xR < 1
t− and the following

statements are true.

1. (a+
11 < 0) If 1

t− < x∗ (Fig.5a), then we have I < 0 on ]0, xR[ and, for any small
θ > 0, Cycl(∪x∈[θ,xR−θ]�x ) = 1. The limit cycle is attracting.

2. (a+
11 < 0) If x∗ = 1

t− (Fig.5b), then we have I < 0 on ]0, xR[ and, for any small
θ > 0, Cycl(∪x∈[θ,xR−θ]�x ) = 1. The limit cycle is attracting.

3. (a+
11 < 0) If xR < x∗ < 1

t− (Fig.5c), then the function I has at most 1 zero (count-
ing multiplicity) on ]0, xR[ and, for any small θ > 0, Cycl(∪x∈[θ,xR−θ]�x ) ≤ 2.
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xRxL x∗ xRxL x∗ xRxL

xRxL x∗ xRxLx∗

(a) xR ≤ x∗ (b) 0 < x∗ < xR (c) a+11 = 0

(d) xL < x∗ < 0 (e) x∗ ≤ xL

Fig. 4 Phase portraits of Z−, with d− < 0 and t− > 0, defined in (8) and the direction of the sliding vector
field (11) along y = 0. Z− has a hyperbolic saddle. We do not draw the corresponding phase portraits of
Z+

There exists x∗ (sufficiently close to 1
t− ) such that I has a simple zero in ]0, xR[

and then, for any sufficiently small θ > 0, Cycl(∪x∈[θ,xR−θ]�x ) = 2.
4. (a+

11 < 0) If x∗ = xR (Fig.5d), then I > 0 on ]0, xR[ and, for any small θ > 0,
Cycl(∪x∈[θ,xR−θ]�x ) = 1 (the limit cycle is repelling).

5. (a+
11 < 0) If 0 < x∗ < xR (Fig.5e), then we have I > 0 on ]0, x∗[ and, for any

small θ > 0, Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).
6. (a+

11 > 0) If xL < x∗ < 0 (Fig.5f), then we have I < 0 on ]0,�−1(x∗)[ and, for
any small θ > 0, Cycl(∪x∈[θ,�−1(x∗)−θ]�x ) = 1 (the limit cycle is attracting).

7. (a+
11 > 0) If x∗ = xL (Fig.5g), we have I < 0 on ]0, xR[ and, for any small θ > 0,

Cycl(∪x∈[θ,xR−θ]�x ) = 1 (the limit cycle is attracting).
8. (a+

11 > 0) If x∗ < xL (Fig.5h), then we have I < 0 on ]0, xR[ and, for any small
θ > 0, Cycl(∪x∈[θ,xR−θ]�x ) = 1 (the limit cycle is attracting).

9. If a+
11 = 0 (Fig.5i), we have I < 0 on ]0, xR[ and, for any small θ > 0,

Cycl(∪x∈[θ,xR−θ]�x ) = 1 (the limit cycle is attracting).

Proof Suppose that d− < 0 and t− > 0. Using (20) we know that

xL = 2

t− −
√

(t−)2 − 4d−
< 0, xR = 2

t− +
√

(t−)2 − 4d−
> 0,

V (xL) = V (xR) = 0 where V (x) = d−x2 − t−x + 1. The graph of V is concave
down because d− < 0. Using the expression for xR it can be easily seen that xR < 1

t− .

Notice that xC ≥ 0 in (38) is well-defined if x∗ ≤ 1
t− . We have
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xRxL

(a) 1
t− < x∗

xRxL

(b) x∗ = 1
t−

xRxL

(c) xR < x∗ < 1
t−

xRxL

(d) x∗ = xR

xRxL

(e) 0 < x∗ < xR

xRxL

(f) xL < x∗ < 0

xRxL

(g) x∗ = xL

xRxL

(h) x∗ < xL

xRxL

(i) a+11 = 0

Fig. 5 The phase portrait of (34) for d− < 0 and t− > 0, with the curve �(x, y) = 0 (red). The part of
the blue curve located in the fourth quadrant is the graph of �. We draw the vertical and horizontal lines
x = x∗ and y = x∗ using dashed lines. (x, y) = (xC , −xC ) and (x, y) = (−xC , xC ) are the intersection
points between the red curve and y = −x . We indicate the contact point (x, y) = (xC ,−xC ) when xC is
positive and contained in the domain of the slow divergence integral I (c) (Color figure online)

Lemma 4.4 Suppose that d− < 0, a+
11 �= 0, t− > 0 and V (x∗) �= 0 (i.e. x∗ �= xL , xR).

Then the following statements are true.

1. If x∗ = 1
t− , then xC = 0.

2. If xR < x∗ < 1
t− , then 0 < xC < xR.

3. If xL < x∗ < xR, then xR < xC < −xL .
4. If x∗ < xL , then −xL < xC < −x∗.

Proof of Lemma 4.4 This follows from elementary calculus using the above expres-

sions for xL,R and xC =
√

t−x∗−1
d− . ��

The expressions for hp(0) and hp′(x) are given in (32).
Proof of Statement 1 of Theorem 4.3. Suppose that 1

t− < x∗. Then hp(0) < 0. Since

xR < 1
t− , we have xR < x∗ and V (x∗) < 0. This, together with (32), implies that

hp′(x) < 0 for all x �= x∗. The graph of hp is given in Fig. 5a (see the red curve).
Since 1

t− < x∗, the contact points between the orbits of system (34) and y = hp(x)
are (x, y) = (xL , xR) and (x, y) = (xR, xL). See the paragraph after (37).

Since xR < x∗, the domain of I is [0, xR[ (see Fig. 4a). We show that I < 0 on
]0, xR[. Since I (0) = 0, it suffices to prove that I ′ < 0 (equivalently, Ĩ ′ < 0 or� < 0)
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on ]0, xR[ (see (25)). We prove that the graph of hp is located below the graph of �

for x ∈]0, xR[. Then Statement 1 of Lemma 4.2 will imply that I ′ < 0 on ]0, xR[.
Using hp(0) < 0 and the paragraph before Theorem 4.3, it is clear that the graph

of hp lies below the graph of � for x > 0 and x ∼ 0 and for x < xR and x ∼ xR .
If we assume that there exists an intersection point between the graph of hp and the
graph of � for x ∈]0, xR[, then there is a contact point between the orbits of system
(34) and y = hp(x) because (34) has a saddle at (x, y) = (0, 0). The x−component
of the contact point is contained in ]0, xR[. This is in direct contradiction with the fact
that (x, y) = (xL , xR) and (x, y) = (xR, xL) are the only possible contact points.
Thus, the graph of hp lies below the graph of � for x ∈]0, xR[. From Statement 1 of
Theorem 2.2 it follows that for any small θ > 0, Cycl(∪x∈[θ,xR−θ]�x ) = 1 (the limit
cycle is attracting because I is negative).
Statement 2. Suppose that x∗ = 1

t− . Then (32) implies that hp(0) = 0. Since xR <
1
t− = x∗, we have hp′(x) < 0 for all x �= x∗ and the domain of I is [0, xR[ (see the
proof of Statement 1). The graph of hp is given in Fig. 5b (the red curve). FromLemma
4.4 (Statement 1) it follows that the contact points between the orbits of system (34)
and y = hp(x) are (x, y) = (xL , xR), (x, y) = (xR, xL) and (x, y) = (0, 0).

We prove that the graph of hp lies below the graph of � for x ∈]0, xR[. This will
imply that I < 0 on ]0, xR[ (see the proof of Statement 1). Clearly, the graph of hp lies
below the graph of� for x < xR and x ∼ xR . If there is an intersection point between
the graph of hp and the graph of� for x ∈]0, xR[, then we have an extra contact point
between the orbits of system (34) and y = hp(x), with the x−component contained
in ]0, xR[. This contact point is different from (x, y) = (xL , xR), (x, y) = (xR, xL)

and (x, y) = (0, 0). This gives a contradiction and implies that the graph of hp lies
below the graph of � for x ∈]0, xR[. The rest of the Statement follows directly from
Statement 1 of Theorem 2.2.
Statement 3. Assume that xR < x∗ < 1

t− . From (32) it follows that hp(0) > 0. Since
xR < x∗, we have hp′(x) < 0 for all x �= x∗ and the domain of I is [0, xR[ (see again
the proof of Statement 1). The graph of hp is given in Fig. 5c. Lemma 4.4 (Statement
2) implies that the contact points between the orbits of system (34) and y = hp(x) are
(x, y) = (xL , xR), (x, y) = (xR, xL), (x, y) = (xC ,−xC ) and (x, y) = (−xC , xC ),
with 0 < xC < xR .

First we prove that there is precisely 1 intersection (counting multiplicity) between
the graph of hp and the graph of � for x ∈]0, xR[. This will imply that I ′ has 1
zero (counting multiplicity) on ]0, xR[. Using Rolle’s theorem and I (0) = 0 we find
at most 1 zero (counting multiplicity) of I on ]0, xR[. Then, from Statement 2 of
Theorem 2.2 it follows that for any small θ > 0 the set ∪x∈[θ,xR−θ]�x can produce
at most 2 limit cycles. The graph of hp lies below the graph of � for x < xR and
x ∼ xR (see the proof of Statement 1) and, since hp(0) > 0, the graph of hp lies
above the graph of � for x > 0 and x ∼ 0. Thus, there exists at least 1 intersection
between the graph of hp and the graph of � for x ∈]0, xR[ (The Intermediate-Value
Theorem). If we assume that we have at least 2 intersections (counting multiplicity),
then, besides (x, y) = (xC ,−xC ), we find at least 1 extra contact point with the
x−component contained in ]0, xR[. This gives a contradiction. Thus, there exists
precisely 1 intersection (counting multiplicity).
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Let us prove that I has a (simple) zero in ]0, xR[ if xR < x∗ < 1
t− and if x∗ is close

enough to 1
t− . Statement 2 implies the existence of x0 ∈]0, xR[ such that I (x0) < 0

for each x∗ < 1
t− and x∗ ∼ 1

t− (I is continuous). On the other hand, we know that
the graph of hp lies above the graph of � for x > 0 and x ∼ 0. Then Statement 1 of
Lemma 4.2 implies that I ′(x) > 0 for all x > 0 and x ∼ 0. Since I (0) = 0, we have
I (x) > 0 for all x > 0 and x ∼ 0. From The Intermediate-Value Theorem it follows
now that I has a zero in ]0, xR[ when x∗ is close enough to 1

t− . Then Statement 3 of
Theorem 2.2 implies that for any sufficiently small θ > 0, Cycl(∪x∈[θ,xR−θ]�x ) = 2.
Statement 4. Suppose that x∗ = xR . The domain of I is [0, xR[ (see the proof of
Statement 1). Since a+

11d
− �= 0 and V (x∗) = 0, points on the lines x = xR and

y = xR are solutions of � = 0 (see Fig. 5d). Since the line y = xR lies above the
graph of � for x ∈]0, xR[, Statement 1 of Lemma 4.2 implies that Ĩ ′(x) > 0 (i.e.,
I ′(x) > 0) for all x ∈]0, xR[. Thus, I > 0 on ]0, xR[. The rest of Statement 4 follows
from Statement 1 of Theorem 2.2.
Statement 5. Suppose that 0 < x∗ < xR . Then (32) and V (x∗) > 0 imply that
hp(0) > 0 and hp′(x) > 0 for all x �= x∗. The graph of hp is given in Fig. 5e.

Since 0 < x∗ < xR , the domain of I is [0, x∗[ (see Fig. 4b). Clearly, the graph of
hp lies above the graph of � for x ∈]0, x∗[ and Statement 1 of Lemma 4.2 implies
that I ′(x) > 0 for all x ∈]0, x∗[. Thus, I > 0 on ]0, x∗[. The rest of Statement 5
follows from Statement 1 of Theorem 2.2.
Statement 6. Suppose that xL < x∗ < 0. From (32) and V (x∗) > 0 it follows that
hp(0) < 0 and hp′(x) > 0 for all x �= x∗. The graph of hp is given in Fig. 5f.

Since xL < x∗ < 0, the domain of I is [0,�−1(x∗)[ (Fig. 4d). It is clear that the
graph of hp lies below the graph of � for x ∈]0,�−1(x∗)[ and I ′(x) < 0 for all
x ∈]0,�−1(x∗)[ (see Statement 1 of Lemma 4.2). Thus, I < 0 on ]0,�−1(x∗)[. The
rest of Statement 6 follows from Statement 1 of Theorem 2.2.
Statement 7. The proof of Statement 7 is similar to the proof of Statement 4. Since
x∗ = xL , the domain of I is [0, xR[ (Fig. 4e).
Statement 8.Suppose that x∗ < xL . From (32) andV (x∗) < 0 it follows thathp(0) < 0
and hp′(x) < 0 for all x �= x∗. The graph of hp is given in Fig. 5h.We use Statement 4
of Lemma 4.4 and see that the contact points are (x, y) = (xL , xR), (x, y) = (xR, xL),
(x, y) = (xC ,−xC ) and (x, y) = (−xC , xC ), with −xL < xC < −x∗.

Since x∗ < xL , the domain of I is [0, xR[ (Fig. 4e). We can prove that the graph
of hp lies below the graph of � for x ∈]0, xR[ (see the proof of Statement 1). Notice
that the x−coordinate of the above contact points is not contained in ]0, xR[.
Statement 9. Suppose that a+

11 = 0. Let us recall that d− < 0 and t− > 0. The
solutions of � = 0 are given by (33) (see the red line in Fig. 5i). From (39) it follows
that the contact points between the orbits of system (34) and the line given in (33) are
(x, y) = (xL , xR) and (x, y) = (xR, xL).

The domain of I is [0, xR[ (Fig. 4c). We can show that the line (33) lies below the
graph of � for x ∈]0, xR[ (see the proof of Statement 1). ��



Sliding Cycles of Regularized Piecewise Linear Visible… Page 27 of 40   256 

4.3 The Node Case

4.3.1 Distinct Eigenvalues

In this section we assume that d− > 0, t− > 0 and (t−)
2 − 4d− > 0. System Z−

has a repelling node at (x, y) = ( t−
d− , 1

d− ) with eigenvalues 0 < κ− < κ+ where κ±
are given in (17). The straight-line solution corresponding to the eigenvalue κ− (resp.
κ+) is given by x = κ+y+ xL (resp. x = κ−y+ xR) where 0 < xL < xR are defined
in (20). We refer to Lemma 2.3 and Fig. 6.

Using Fig. 6 we see that the domain and image of � are respectively [0, xL [ and
] − ∞, 0] (see also [6]). The domain of the slow divergence integral I (or Ĩ ) depends
on x∗. We distinguish between 4 cases.

(a) If a+
11 < 0 (hence x∗ > 0) and xL ≤ x∗, then the domain of I is [0, xL [ and we

consider the canard cycle �x for all x ∈]0, xL [ (see Fig. 6a).
(b) If a+

11 < 0 and x∗ < xL , then the domain of I is [0, x∗[ and we consider the canard
cycle �x for all x ∈]0, x∗[ (see Fig. 6b).

(c) If a+
11 = 0, then we have the same domain of I as in the case (a) (see Fig. 6c).

(d) If a+
11 > 0 (hence x∗ < 0), then the domain of I is [0,�−1(x∗)[ and we consider

the canard cycle �x for all x ∈]0,�−1(x∗)[ (see Fig. 6d).
Apart from the hyperbolic saddle at the origin, system (34) has a hyperbolic and

attracting node at (x, y) = (xL , xL), a hyperbolic and repelling node at (x, y) =
(xR, xR), and hyperbolic saddles at (x, y) = (xR, xL) and (x, y) = (xL , xR) (Fig. 7).
Notice that the invariant line x = xL is the vertical asymptote for the graph of the
Poincaré half-map �.

Theorem 4.5 Suppose that d− > 0, t− > 0 and (t−)
2 − 4d− > 0. Then 1

t− < xL and
the following statements are true.

1. (a+
11 < 0) If xR < x∗ (Fig.7a), we have I < 0 on ]0, xL [ and, for any small θ > 0,

Cycl(∪x∈[θ,xL−θ]�x ) = 1 (the limit cycle is attracting).
2. (a+

11 < 0) If x∗ = xR (Fig.7b), then we have I < 0 on ]0, xL [ and, for any small
θ > 0, Cycl(∪x∈[θ,xL−θ]�x ) = 1 (the limit cycle is attracting).

3. (a+
11 < 0) If xL < x∗ < xR (Fig.7c), then we have I < 0 on ]0, xL [ and, for any

small θ > 0, Cycl(∪x∈[θ,xL−θ]�x ) = 1. The limit cycle is attracting.

xRxL x∗

(a) xL ≤ x∗

xRxL

x∗

(b) 0 < x∗ < xL

xRxL

(c) a+11 = 0

xRxLx∗

(d) x∗ < 0

Fig. 6 Phase portraits of Z− defined in (8) and the direction of the sliding vector field (11) along y = 0,

for d− > 0, t− > 0 and (t−)
2 − 4d− > 0. Z− has a repelling node with distinct eigenvalues. We do not

draw the corresponding phase portraits of Z+
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xRxL

(a) xR < x∗

xRxL

(b) x∗ = xR

xRxL

(c) xL < x∗ < xR

xRxL

(d) x∗ = xL

xRxL

(e) 1
t− < x∗ < xL

xRxL

(f) x∗ = 1
t−

xRxL

(g) 0 < x∗ < 1
t−

xRxL

(h) x∗ < 0

xRxL

(i) a+11 = 0

Fig. 7 The phase portrait of (34) for d− > 0, t− > 0 and (t−)
2 − 4d− > 0, with the curve �(x, y) = 0

(red). The part of the blue curve located in the fourth quadrant is the graph of�.We draw x = x∗ and y = x∗
using dashed lines. (x, y) = (xC ,−xC ) and (x, y) = (−xC , xC ) are the intersection points between the
red curve and y = −x . We draw the contact point (x, y) = (xC , −xC ) when xC is positive and contained
in the domain of I (Fig. 7e) (Color figure online)

4. (a+
11 < 0) If x∗ = xL (Fig.7d), then I < 0 on ]0, xL [ and, for any small θ > 0,

Cycl(∪x∈[θ,xL−θ]�x ) = 1. The limit cycle is attracting.
5. (a+

11 < 0) If 1
t− < x∗ < xL (Fig.7e), then the function I has precisely 1

zero counting multiplicity on ]0, x∗[ and, for any sufficiently small θ > 0,
Cycl(∪x∈[θ,x∗−θ]�x ) = 2.

6. (a+
11 < 0) If x∗ = 1

t− (Fig.7f), then I > 0 on ]0, x∗[ and, for any small θ > 0,
Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).

7. (a+
11 < 0) If 0 < x∗ < 1

t− (Fig.7g), then I > 0 on ]0, x∗[ and, for any small
θ > 0, Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).

8. (a+
11 > 0) If x∗ < 0 (Fig.7h), then I < 0 on ]0,�−1(x∗)[ and, for any small

θ > 0, Cycl(∪x∈[θ,�−1(x∗)−θ]�x ) = 1 (the limit cycle is attracting).
9. If a+

11 = 0 (Fig.7i), then we have I < 0 on ]0, xL [ and, for any small θ > 0,
Cycl(∪x∈[θ,xL−θ]�x ) = 1 (the limit cycle is attracting).
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Proof Suppose that d− > 0, t− > 0 and (t−)
2 − 4d− > 0. From (20) it follows that

xL = 2

t− +
√

(t−)2 − 4d−
> 0, xR = 2

t− −
√

(t−)2 − 4d−
> 0,

with xL < xR , V (xL) = V (xR) = 0 where V (x) = d−x2 − t−x + 1. The graph of
V is concave up (d− > 0). It is not difficult to see that 1

t− < xL . Using (38) xC ≥ 0

is well-defined if x∗ ≥ 1
t− .

Lemma 4.6 Suppose that d− > 0, t− > 0, (t−)
2 −4d− > 0, a+

11 �= 0 and V (x∗) �= 0
(i.e. x∗ �= xL , xR). Then the following statements are true.

1. If xR < x∗, then xR < xC < x∗.
2. If xL < x∗ < xR, then x∗ < xC < xR.
3. If 1

t− < x∗ < xL , then 0 < xC < x∗.
4. If x∗ = 1

t− , then xC = 0.

Now, we prove the statements of Theorem 4.5.
Statement 1. Suppose that xR < x∗. Then (32) and V (x∗) > 0 imply that hp(0) > 0
and hp′(x) < 0 for all x �= x∗. The graph of hp is given in Fig. 7a.

Since xL < xR < x∗, the domain of I is [0, xL [ (see Fig. 6a). It is clear (Fig. 7a) that
the graph of hp lies above the graph of � for x ∈]0, xL [ and Statement 2 of Lemma
4.2 implies that I ′(x) < 0 for all x ∈]0, xL [. Hence, I < 0 on ]0, xL [. Following
Statement 1 of Theorem 2.2, for any small θ > 0, Cycl(∪x∈[θ,xL−θ]�x ) = 1 (the limit
cycle is attracting because I is negative).
Statement 2. Assume that x∗ = xR . The domain of I is [0, xL [ (see the proof of
Statement 1). Since a+

11d
− �= 0 and V (x∗) = 0, � = 0 is the union of x = xR

and y = xR (see Fig. 7b). The horizontal line y = xR lies above the graph of � for
x ∈]0, xL [, and Statement 2 of Lemma 4.2 implies that I ′(x) < 0 for all x ∈]0, xL [.
Thus, I < 0 on ]0, xL [. For any small θ > 0, Cycl(∪x∈[θ,xL−θ]�x ) = 1 (the limit
cycle is attracting). See Statement 1 of Theorem 2.2.
Statement 3. Suppose that xL < x∗ < xR . Then (32) and V (x∗) < 0 imply that
hp(0) > 0 and hp′(x) > 0 for all x �= x∗. The graph of hp is given in Fig. 7c. The
proof of Statement 3 is similar to the proof of Statement 1.

Statement 4.Statement 4 can be proved in the same fashion as Statement 2 (see Fig. 7d).
Statement 5. Suppose that 1

t− < x∗ < xL . From (32) and V (x∗) > 0 it follows that
hp(0) > 0 and hp′(x) < 0 for all x �= x∗. The graph of hp is given in Fig. 7e.
Statement 3 of Lemma 4.6 implies that the contact points between the orbits of system
(34) and y = hp(x) are (x, y) = (xL , xR), (x, y) = (xR, xL), (x, y) = (xC ,−xC )

and (x, y) = (−xC , xC ), with 0 < xC < x∗.
The domain of I is [0, x∗[ (Fig. 6b). First we show that there is precisely 1 intersec-

tion (countingmultiplicity) between the graph of hp and the graph of� for x ∈]0, x∗[.
This will imply that I has at most 1 zero (counting multiplicity) on ]0, x∗[ (see the
proof of statement 3 of Theorem 4.3). Since hp(0) > 0, the graph of hp lies above the
graph of� for x > 0 and x ∼ 0. Notice that�(x∗) is finite and that hp(x) → −∞ as
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x → x∗−. Thus, the graph of hp lies below the graph of� for x < x∗ and x ∼ x∗. We
conclude that there exists at least 1 intersection between the graph of hp and the graph
of � for x ∈]0, x∗[ (The Intermediate-Value Theorem). If we suppose that there exist
at least 2 intersections (counting multiplicity), then, apart from (x, y) = (xC ,−xC ),
we have at least 1 extra contact point with the x−coordinate contained in ]0, x∗[.
This gives a contradiction. Thus, we have found precisely 1 intersection (counting
multiplicity).

Now, we prove that I has a zero in ]0, x∗[. Then the above discussion implies that I
has precisely 1 zero counting multiplicity on ]0, x∗[. Since the graph of hp lies above
the graph of � for x > 0 and x ∼ 0, Lemma 4.2 (Statement 2) implies that I ′(x) < 0
for x > 0 and x ∼ 0. Hence, I (x) < 0 for x > 0 and x ∼ 0. The integral in (15) can
be written as

∫ x

�(x)

udu

Xsl(u)
=

∫ 0

�(x)

udu

Xsl(u)
+

∫ x

0

udu

Xsl(u)
.

Since �(x∗) < 0 (finite) and x∗ = − b+−a+
21

a+
11

> 0, the first component
∫ 0
�(x) tends to a

negative number as x → x∗− (thus, it is bounded). It is clear that the second integral
is divergent:

∫ x
0 → +∞ as x → x∗−. This implies that I is positive for x < x∗ and

x ∼ x∗. From The Intermediate-Value Theorem it follows that I has a zero in ]0, x∗[.
Now, Statement 3 of Theorem 2.2 implies that for any sufficiently small θ > 0 we

get Cycl(∪x∈[θ,x∗−θ]�x ) = 2.
Statement 6. Suppose that x∗ = 1

t− . Then (32) and V (x∗) > 0 imply that hp(0) = 0
and hp′(x) < 0 for all x �= x∗. The graph of hp is given in Fig. 7f. Using Statement
4 of Lemma 4.6, the contact points between the orbits of system (34) and y = hp(x)
are (x, y) = (xL , xR), (x, y) = (xR, xL) and (x, y) = (0, 0).

The domain of I is [0, x∗[ (see the proof of Statement 5). We can prove that the
graph of hp lies below the graph of � for x ∈]0, x∗[ using the same idea as in the
proof of Theorem 4.3 (Statement 2). Then Statement 2 of Lemma 4.2 implies that
I > 0 on ]0, x∗[. Following Statement 1 of Theorem 2.2, for any small θ > 0,
Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).
Statement 7. Suppose that 0 < x∗ < 1

t− . Then we have hp(0) < 0 and hp′(x) < 0 for
all x �= x∗. The graph of hp is given in Fig. 7g. The contact points between the orbits
of system (34) and y = hp(x) are (x, y) = (xL , xR) and (x, y) = (xR, xL).

The domain of I is [0, x∗[ (see the proof of Statement 5). Again, we can show that
the graph of hp lies below the graph of � for x ∈]0, x∗[ using the same technique as
in the proof of Statement 1 of Theorem 4.3. Then Statement 2 of Lemma 4.2 implies
that I > 0 on ]0, x∗[. Using Statement 1 of Theorem 2.2, for any small θ > 0, we get
Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).
Statement 8. Suppose that x∗ < 0. Then hp(0) > 0 and hp′(x) < 0 for all x �= x∗.
The graph of hp is given in Fig. 7h.

The domain of I is [0,�−1(x∗)[ (Fig. 6d). Clearly, the graph of hp lies above the
graph of � for x ∈]0,�−1(x∗)[. Then Statement 2 of Lemma 4.2 implies that I < 0
on ]0,�−1(x∗)[. Again, Statement 1 of Theorem 2.2 implies that for any small θ > 0
Cycl(∪x∈[θ,�−1(x∗)−θ]�x ) = 1 (the limit cycle is attracting).
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2
t−

x∗

(a) 2
t− ≤ x∗

2
t−

x∗
2
t−

2
t−

x∗

(b) 0 < x∗ < 2
t− (c) a+11 = 0 (d) x∗ < 0

Fig. 8 Phase portraits of Z− defined in (8) and the direction of the sliding vector field (11) along y = 0,

with t− > 0 and (t−)
2 − 4d− = 0. Z− has a repelling node with repeated eigenvalues. We do not draw

the corresponding phase portraits of Z+

Statement 9. Assume that a+
11 = 0. Recall that d− > 0 and t− > 0. The curve � = 0

is given by (33). We refer to Fig. 7i. The domain of I is [0, xL [ (Fig. 6c). The graph of
hp lies above the graph of� for x ∈]0, xL [. This, together with Lemma 4.2 (Statement
2) and Theorem 2.2 (Statement 1), implies Statement 9. ��

4.3.2 Repeated Eigenvalues

In this section we assume that d− > 0, t− > 0 and (t−)
2 − 4d− = 0. System Z−

has a repelling node at (x, y) =
(

4
t− , 4

(t−)2

)
with repeated eigenvalues κ± = t−

2 . The

straight-line solution corresponding to the eigenvalue is given by x = t−
2 y + 2

t− . We
refer to Lemma 2.3 and Fig. 8.

In this case the domain and image of � are respectively [0, 2
t− [ and ] − ∞, 0] (see

also [6]). We distinguish between 4 cases.

(a) If a+
11 < 0 (hence x∗ > 0) and 2

t− ≤ x∗, then the domain of I is [0, 2
t− [ and we

consider the canard cycle �x for all x ∈]0, 2
t− [ (see Fig. 8a).

(b) If a+
11 < 0 and x∗ < 2

t− , then the domain of I is [0, x∗[ and we consider the canard
cycle �x for all x ∈]0, x∗[ (see Fig. 8b).

(c) If a+
11 = 0, then we have the same domain of I as in the case (a) (see Fig. 8c).

(d) If a+
11 > 0 (hence x∗ < 0), then the domain of I is [0,�−1(x∗)[ and we consider

the canard cycle �x for all x ∈]0,�−1(x∗)[ (see Fig. 8d).
System (34) has a hyperbolic saddle at the origin and a singularity at (x, y) =( 2

t− , 2
t−

)
which is linearly zero (for more details see Fig. 9). The graph of the Poincaré

half-map � approaches the invariant line x = 2
t− .

Theorem 4.7 Suppose that d− > 0, t− > 0 and (t−)
2 −4d− = 0. Then the following

statements are true.

1. (a+
11 < 0) If 2

t− < x∗ (Fig.9a), then I < 0 on ]0, 2
t− [ and, for any small θ > 0,

Cycl(∪x∈[θ, 2
t− −θ]�x ) = 1 (the limit cycle is attracting).

2. (a+
11 < 0) If x∗ = 2

t− (Fig.9b), then I < 0 on ]0, 2
t− [ and, for any small θ > 0,

Cycl(∪x∈[θ, 2
t− −θ]�x ) = 1 (the limit cycle is attracting).
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x = 2
t−

(a) 2
t− < x∗

x = 2
t−

(b) x∗ = 2
t−

x = 2
t−

(c) 1
t− < x∗ < 2

t−

x = 2
t−

(d) x∗ = 1
t−

x = 2
t−

(e) 0 < x∗ < 1
t−

x = 2
t−

(f) x∗ < 0

x = 2
t−

(g) a+11 = 0

Fig. 9 The phase portrait of (34) for d− > 0, t− > 0 and (t−)
2 − 4d− = 0, with the curve �(x, y) = 0

(red). The part of the blue curve located in the fourth quadrant is the graph of�.We draw x = x∗ and y = x∗
using dashed lines. We draw the contact point (x, y) = (xC , −xC ) when xC is positive and contained in
the domain of I (c) (Color figure online)

3. (a+
11 < 0) If 1

t− < x∗ < 2
t− (Fig.9c), then the function I has precisely 1

zero counting multiplicity on ]0, x∗[ and, for any sufficiently small θ > 0,
Cycl(∪x∈[θ,x∗−θ]�x ) = 2.

4. (a+
11 < 0) If x∗ = 1

t− (Fig.9d), then I > 0 on ]0, x∗[ and, for any small θ > 0,
Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).

5. (a+
11 < 0) If 0 < x∗ < 1

t− (Fig.9e), then I > 0 on ]0, x∗[ and, for any small
θ > 0, Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).

6. (a+
11 > 0) If x∗ < 0 (Fig.9f), then I < 0 on ]0,�−1(x∗)[ and, for any small

θ > 0, Cycl(∪x∈[θ,�−1(x∗)−θ]�x ) = 1 (the limit cycle is attracting).
7. If a+

11 = 0 (Fig.9g), then I < 0 on ]0, 2
t− [ and, for any small θ > 0,

Cycl(∪x∈[θ, 2
t− −θ]�x ) = 1 (the limit cycle is attracting).

Proof Let d− > 0, t− > 0 and (t−)
2 − 4d− = 0. From (20) it follows that xL =

xR = 2
t− and V ( 2

t− ) = 0. The graph of V is concave up and V (x) > 0 for all x �= 2
t− .

Using (38) and (t−)
2 − 4d− = 0 we have xC = 2

t−
√
t−x∗ − 1.
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Lemma 4.8 Suppose that d− > 0, t− > 0, (t−)
2 −4d− = 0, a+

11 �= 0 and V (x∗) �= 0
(i.e. x∗ �= 2

t− ). Then the following statements are true.

1. If 2
t− < x∗, then 2

t− < xC < x∗.
2. If 1

t− < x∗ < 2
t− , then 0 < xC < x∗.

3. If x∗ = 1
t− , then xC = 0.

Now, we prove the statements of Theorem 4.7.
Statement 1. Suppose that 2

t− < x∗. From (32) it follows that hp(0) > 0 and hp′(x) <

0 for all x �= x∗. The graph of hp is given in Fig. 9a. Since 2
t− < x∗, the domain of

I is [0, 2
t− [ (see Fig. 8a). The proof now proceeds in a similar fashion to the proof of

Statement 1 of Theorem 4.5.
Statement 2. Suppose that x∗ = 2

t− . The domain of I is [0, 2
t− [ (see Fig. 8a). The proof

of Statement 2 is similar to the proof of Theorem 4.5 (Statement 2) or Theorem 4.5
(Statement 4).
Statement 3. Suppose that 1

t− < x∗ < 2
t− . From (32) it follows that hp(0) > 0 and

hp′(x) < 0 for all x �= x∗. The graph of hp is given in Fig. 9c. The domain of I
is [0, x∗[ (see Fig. 8b). The proof is now analogous to the proof of Statement 5 of
Theorem 4.5. Instead of Statement 3 of Lemma 4.6 3 we use Statement 2 of Lemma
4.8 and find the following contact points: (x, y) = ( 2

t− , 2
t−

)
, (x, y) = (xC ,−xC ) and

(x, y) = (−xC , xC ), with 0 < xC < x∗.
Statement 4. Suppose that x∗ = 1

t− . We have hp(0) = 0 and hp′(x) < 0 for all x �= x∗
(see Fig. 9d). The domain of I is [0, x∗[ (see Fig. 8b). The proof is similar to the proof
of Statement 6 of Theorem 4.5. Using Statement 3 of Lemma 4.8 the contact points
are (x, y) = ( 2

t− , 2
t− ) and (x, y) = (0, 0).

Statement 5. Suppose that 0 < x∗ < 1
t− . We have hp(0) < 0 and hp′(x) < 0 for all

x �= x∗ (see Fig. 9e). The domain of I is [0, x∗[ (see Fig. 8b). The proof is similar to
the proof of Statement 7 of Theorem 4.5. We have 1 contact point: (x, y) = ( 2

t− , 2
t− ).

Statement 6. Suppose that x∗ < 0. We have hp(0) > 0 and hp′(x) < 0 for all x �= x∗
(see Fig. 9f). The domain of I is [0,�−1(x∗)[ (see Fig. 8d). The proof is analogous to
the proof of Statement 8 of Theorem 4.5.
Statement 7. Suppose that a+

11 = 0. The curve � = 0 is given by (33): y = 4
t− − x .

We refer to Fig. 9g. The domain of I is [0, 2
t− [ (Fig. 8c). The proof is analogous to the

proof of Statement 9 of Theorem 4.5. ��

4.4 The Focus Case

Here we suppose that d− > 0, t− > 0 and (t−)
2 − 4d− < 0. System Z− has a

repelling focus at (x, y) = ( t−
d− , 1

d− ). We refer to Lemma 2.3 and Fig. 10. The domain
and image of � are respectively [0,+∞[ and ] − ∞, 0] (see also [6]). The domain of
the slow divergence integral I (or Ĩ ) depends on x∗ and we have 3 cases.

(a) If a+
11 < 0 (hence x∗ > 0), then the domain of I is [0, x∗[ and we consider the

canard cycle �x for all x ∈]0, x∗[ (see Fig. 10a).
(b) If a+

11 = 0, then the domain of I is [0,+∞[ and we consider the canard cycle �x

for all x ∈]0,+∞[ (see Fig. 10b).
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x∗

(a) 0 < x∗ (b) a+11 = 0

x∗

(c) x∗ < 0

Fig. 10 Phase portraits of Z− defined in (8) and the direction of the sliding vector field (11) along y = 0,

for d− > 0, t− > 0 and (t−)
2 − 4d− < 0. Z− has a repelling focus. We do not draw the corresponding

phase portraits of Z+

(a) 1
t− < x∗ (b) x∗ = 1

t− (c) 0 < x∗ < 1
t−

(d) x∗ < 0 (e) a+11 = 0

Fig. 11 The phase portrait of (34) for d− > 0, t− > 0 and (t−)
2 − 4d− < 0, with the curve �(x, y) = 0

(red). The part of the blue curve located in the fourth quadrant is the graph of �. We draw x = x∗ and
y = x∗ using dashed lines. We indicate the contact point (x, y) = (xC ,−xC ) when xC is positive and
contained in the domain of I (a) (Color figure online)

(c) If a+
11 > 0 (hence x∗ < 0), then the domain of I is [0,�−1(x∗)[ and we consider

the canard cycle �x for all x ∈]0,�−1(x∗)[ (see Fig. 10c).
System (34) has a hyperbolic saddle at the origin (Fig. 11).
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Theorem 4.9 Suppose that d− > 0, t− > 0 and (t−)
2 −4d− < 0. Then the following

statements are true.

1. (a+
11 < 0) If 1

t− < x∗ (Fig.11a), then the function I has precisely 1 zero counting
multiplicity on ]0, x∗[and, for any sufficiently small θ > 0,Cycl(∪x∈[θ,x∗−θ]�x ) =
2.

2. (a+
11 < 0) If x∗ = 1

t− (Fig.11b), then I > 0 on ]0, x∗[ and, for any small θ > 0,
Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).

3. (a+
11 < 0) If 0 < x∗ < 1

t− (Fig.11c), then I > 0 on ]0, x∗[ and, for any small
θ > 0, Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).

4. (a+
11 > 0) If x∗ < 0 (Fig.11d), then I < 0 on ]0,�−1(x∗)[ and, for any small

θ > 0, Cycl(∪x∈[θ,�−1(x∗)−θ]�x ) = 1 (the limit cycle is attracting).
5. If a+

11 = 0 (Fig.11e), we have I < 0 on ]0,∞[ and, for any small θ > 0,
Cycl(∪x∈[θ, 1

θ
]�x ) = 1 (the limit cycle is attracting).

Proof We suppose that d− > 0, t− > 0 and (t−)
2 − 4d− < 0. Since V (x) > 0 for

all x ∈ R, then, for a+
11 �= 0, we have hp′(x) < 0 for all x �= x∗ (see (32)). From (38)

it follows that xC ≥ 0 is well-defined for x∗ ≥ 1
t− . If x

∗ = 1
t− , then xC = 0, and, if

x∗ > 1
t− , then 0 < xC < x∗.

Statement 1. Suppose that 1
t− < x∗. From (32) it follows that hp(0) > 0. The graph

of hp is given in Fig. 11a. The contact points between the orbits of system (34) and
the hyperbola y = hp(x) are (x, y) = (xC ,−xC ) and (x, y) = (−xC , xC ), with
0 < xC < x∗. The domain of I is [0, x∗[ (see Fig. 10a). The proof is similar to the
proof of Statement 5 of Theorem 4.5.
Statement 2. Suppose that x∗ = 1

t− . We have hp(0) = 0 (see Fig. 11b). The domain
of I is [0, x∗[ (see Fig. 10a). We have 1 contact point: (x, y) = (0, 0). We can show
that the graph of hp lies below the graph of � for x ∈]0, x∗[ using the same idea as
in the proof of Statement 2 of Theorem 4.3. Then the result follows from Statement 2
of Lemma 4.2 and Statement 1 of Theorem 2.2.
Statement 3. Suppose that 0 < x∗ < 1

t− . We have hp(0) < 0. The graph of hp is
given in Fig. 11c. There are no contact points between the orbits of system (34) and
y = hp(x).

The domain of I is [0, x∗[ (see Fig. 10a). Again, we can show that the graph of
hp lies below the graph of � for x ∈]0, x∗[ using the same idea as in the proof of
Statement 1 of Theorem4.3. Then the result easily follows fromStatement 2 of Lemma
4.2 and Statement 1 of Theorem 2.2.
Statement 4. Suppose that x∗ < 0. Then hp(0) > 0 and the graph of hp is given in
Fig. 11d. There are no contact points between the orbits of system (34) and y = hp(x).
The domain of I is [0,�−1(x∗)[ (Fig. 10c).

Let us prove that the graph of hp lies above the graph of � for x ∈]0,�−1(x∗)[.
Suppose that there is an intersection between the graph of hp and the graph of � for
x ∈]0,�−1(x∗)[. This implies the existence of a contact point between the orbits of
system (34) and y = hp(x). This gives a contradiction. Statement 4 follows now from
Statement 2 of Lemma 4.2 and Statement 1 of Theorem 2.2.
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Statement 5.Assume that a+
11 = 0. The graph of (33) is given in Fig. 11e. There are no

contact points between the orbits of system (34) and y = hp(x) because the equation
in (39) has no solutions. The domain of I is [0,+∞[ (Fig. 10b). Again, we can show
that the graph of hp lies above the graph of � for x ∈]0,+∞[ (see the proof of
Statement 4). Then Statement 2 of Lemma 4.2 and Statement 1 of Theorem 2.2 imply
the result. ��

A The Center Case

We suppose that d− > 0 and t− = 0. System Z− has a center at (x, y) = (0, 1
d− ). We

refer to Fig. 12. The domain and image of � are respectively [0,+∞[ and ] − ∞, 0].
We have 3 cases.

(a) If a+
11 < 0 (hence x∗ > 0), then the domain of I is [0, x∗[ (see Fig. 12a). We have

I > 0 on ]0, x∗[, and, for any small θ > 0, Cycl(∪x∈[θ,x∗−θ]�x ) = 1. The limit
cycle is repelling (Statement 2 of Theorem 4.1).

(b) Ifa+
11 = 0, then the domain of I is [0,+∞[ (see Fig. 12b). Since (a+

11, t
−) = (0, 0),

we have I ≡ 0.
(c) If a+

11 > 0 (hence x∗ < 0), then the domain of I is [0,�−1(x∗)[ (see
Fig. 12c). We have I < 0 on ]0,�−1(x∗)[, and, for any small θ > 0,
Cycl(∪x∈[θ,�−1(x∗)−θ]�x ) = 1 and the limit cycle is attracting (Statement 2 of
Theorem 4.1).

Remark 7 When d− < 0 and t− = 0, system Z− has a hyperbolic saddle at (x, y) =
(0, 1

d− ). In this case we can find the domain of I in the same way as in Sect. 4.2 (see
Fig. 4) and then apply Statement 2 of Theorem 4.1 when a+

11 �= 0 (see the center case).

x∗

(a) 0 < x∗

x∗

(b) a+11 = 0 (c) x∗ < 0

Fig. 12 Phase portraits of Z− defined in (8) and the direction of the sliding vector field (11) along y = 0,
for d− > 0 and t− = 0. Z− has a center. We do not draw the corresponding phase portraits of Z+
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B The CaseWithout Singularities

Here we suppose that d− = 0 and t− ≥ 0. Then system Z− has no singularities. If
t− > 0, then the line x = t−y+ 1

t− is invariant w.r.t. Z− (see Fig. 13a–d and Statement

3 of Lemma 2.3). The domain and image of � are respectively [0, 1
t− [ and ] − ∞, 0].

When t− = 0, the domain and image of � are respectively [0,+∞[ and ] − ∞, 0].
We refer to Fig. 13e–g.

We have

(a) If t− > 0 and 1
t− ≤ x∗, then the domain of I is [0, 1

t− [ (see Fig. 13a). When
1
t− < x∗, from Statement 1 of Theorem 4.1 it follows that I < 0 on ]0, 1

t− [. For
any small θ > 0, Cycl(∪x∈[θ, 1

t− −θ]�x ) = 1 and the limit cycle is attracting. When

x∗ = 1
t− , then I ≡ 0.

(b) If t− > 0 and 0 < x∗ < 1
t− , then the domain of I is [0, x∗[ (see Fig. 13b).

Statement 1 of Theorem 4.1 implies that I > 0 on ]0, x∗[, and, for any small
θ > 0, Cycl(∪x∈[θ,x∗−θ]�x ) = 1 (the limit cycle is repelling).

(c) If t− > 0 and a+
11 = 0, then we have the same domain of I as in the case (a) (see

Fig. 13c). Again, Statement 1 of Theorem 4.1 implies that I < 0 on ]0, 1
t− [.

(d) If t− > 0 and x∗ < 0, then the domain of I is [0,�−1(x∗)[ (see Fig. 13d).
We have I < 0 on ]0,�−1(x∗)[ and, for any small θ > 0, we have
Cycl(∪x∈[θ,�−1(x∗)−θ]�x ) = 1 and the limit cycle is attracting (Statement 1 of
Theorem 4.1).

(e) If t− = 0 and 0 < x∗, then the domain of I is [0, x∗[ (see Fig. 13e). We have
I > 0 on ]0, x∗[, and, for any small θ > 0, Cycl(∪x∈[θ,x∗−θ]�x ) = 1 and the limit
cycle is repelling (Statement 1 of Theorem 4.1).

x∗1
t−

(a) 1
t− ≤ x∗

x∗ 1
t−

(b) 0 < x∗ < 1
t−

1
t−

(c) a+11 = 0

x∗ 1
t−

(d) x∗ < 0

x∗

(e) 0 < x∗

x∗

(f) a+11 = 0 (g) x∗ < 0

Fig. 13 Phase portraits of Z−, with d− = 0, defined in (8) and the direction of the sliding vector field (11)
along y = 0. a–d t− > 0. e–g t− = 0. We do not draw the corresponding phase portraits of Z+
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(f) If t− = 0 and a+
11 = 0, then the domain of I is [0,+∞[ (see Fig. 13f). We have

I ≡ 0.
(g) If t− = 0 and x∗ < 0, then the domain of I is [0,�−1(x∗)[ (see Fig. 13g). We

have the same sign of I as in the case (d).
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37. Huzak, R., Uldall Kristiansen, K., Radunović, G.: Slow divergence integral in regularized piecewise
smooth systems (2023). (submitted)

38. Jelbart, S., Kristiansen, K.U., Wechselberger, M.: Singularly perturbed boundary-equilibrium bifurca-
tions. Nonlinearity 34(11), 7371–7414 (2021)

39. Jelbart, S., Kristiansen, K.U., Wechselberger, M.: Singularly perturbed boundary-focus bifurcations.
J. Differ. Equ. 296, 412–492 (2021)

40. Kristiansen, K.U., Hogan, S.J.: Resolution of the piecewise smooth visible–invisible two-fold singu-
larity in R3 using regularization and blowup. J. Nonlinear Sci. 29(2), 723–787 (2018)

41. Kristiansen, K.U.: The regularized visible fold revisited. J. Nonlinear Sci. 30(6), 2463–2511 (2020)
42. Kristiansen, K.U., Hogan, S.J.: Regularizations of two-fold bifurcations in planar piecewise smooth

systems using blowup. SIAM J. Appl. Dyn. Syst. 14(4), 1731–1786 (2015)
43. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368

(2001)
44. Kuznetsov, Yu.A., Rinaldi, S., Gragnani, A.: One parameter bifurcations in planar Filippov systems.

Int. J. Bifurc. Chaos 13, 2157–2188 (2003)
45. Li, S., Liu, S., Llibre, J.: The planar discontinuous piecewise linear refracting systems have at most

one limit cycle. Nonlinear Anal. Hybrid Syst. 41, 14 (2021)
46. Li, S., Llibre, J.: Phase portraits of planar piecewise linear refracting systems: focus-saddle case.

Nonlinear Anal. Real World Appl. 56, 11 (2020)
47. Li, T., Llibre, J.: On the 16th Hilbert problem for discontinuous piecewise polynomial Hamiltonian

systems. J. Dyn. Differ. Equ. 35, 1–16 (2021)
48. Llibre, J., Ordóñez, M., Ponce, E.: On the existence and uniqueness of limit cycles in planar continuous

piecewise linear systems without symmetry. Nonlinear Anal. Real World Appl. 14(5), 2002–2012
(2013)

49. Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems
with two zones. Dyn. Contin. Discrete Impuls. Syst. Ser. B, Appl. Algorithms 19(3), 325–335 (2012)

50. Llibre, J., Teixeira, M.A., Torregrosa, J.: Lower bounds for the maximum number of limit cycles of
discontinuous piecewise linear differential systems with a straight line of separation. Int. J. Bifurc.
Chaos 23(4), 1350066 (2013)

51. Llibre, J., Teruel, A.E.: Introduction to the Qualitative Theory of Differential Systems. Planar, Sym-
metric and Continuous Piecewise Linear Systems. Birkhäuser Advanced Texts Basler Lehrbüch,
Birkhäuser/Springer, Basel (2014)

52. Lum, R.: Global properties of continuous piecewise linear vector-fields. 1. Simplest case in r2. Int. J.
Circuit Theory Appl. 19(3), 251–307 (1991)

53. Medrado, J.C., Torregrosa, J.: Uniqueness of limit cycles for sewing planar piecewise linear systems.
J. Math. Anal. Appl. 431(1), 529–544 (2015)

54. Simpson, D.J.W.: A general framework for boundary equilibrium bifurcations of Filippov systems.
Chaos 28(10), 103114 (2018)

55. Smale, S.: Mathematical problems for the next century. In: Mathematics: Frontiers and Perspectives,
pp. 271–294. American Mathematical Society, Providence (2000)

56. Sotomayor, J., Teixeira, M.A.: Regularization of discontinuous vector fields. In: Proceedings of the
International Conference on Differential Equations, Lisboa, pp. 207–223 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Sliding Cycles of Regularized Piecewise Linear Visible–Invisible Twofolds
	Abstract
	1 Introduction
	2 Background
	2.1 Filippov PWS Systems
	2.2 Twofolds and a Normal Form for the PWL VI3-Case
	2.3 Regularized PWL VI3 Twofold and the Slow Divergence Integral
	2.4 Poincaré Half-Map

	3 Number of Zeros of the Slow Divergence Integral
	4 Case-by-Case Study of the Cyclicity of Canard Cycles
	4.1 Properties of the Curves Defined by overlineΔ=0
	4.2 The Saddle Case
	4.3 The Node Case
	4.3.1 Distinct Eigenvalues
	4.3.2 Repeated Eigenvalues

	4.4 The Focus Case

	A The Center Case
	B The Case Without Singularities
	Acknowledgements
	References



