CENTRE FOR ENVIRONMENTAL SCIENCES

UHASSELT

The integration of power to liquid fuels in international climate regulation for aviation

Robert Malina

GARS Workshop "Decarbonizing Aviation: Where do We Stand Today?" 19 June 2024

What we do in the space of SAF

What we do in the space of SAF

Corbon Offsetting and Reduction Scheme for International Aviation

4 Robert Malina – June 19 2024 – GARS Tal

How does CORSIA work?

Sustainable Aviation Fuel integration in CORSIA in a nutshell

How do fuels qualify under CORSIA?

The GHG criterion

INTERNATIONAL CIVIL AVIATION ORGANIZATION

ICAO document

CORSIA Sustainability Criteria for CORSIA Eligible Fuels

November 2022

1. Greenhouse Gases

1.1: CORSIA-eligible fuel will achieve net greenhouse gas emissions reductions of at least 10% compared to the baseline life cycle emissions values for aviation fuel on a life cycle basis.

> GHG emissions of CEF can be established by means of a *default LC* value or an *actual LC* value

CORSIA Carbon Offsetting and Reduction Scheme for International Aviation

8 Robert Malina – June 19 2024 – GARS Talk

Lifecycle GHG emission calculations under CORSIA

9 Robert Malina – June 19 2024 – GARS Talk

Default LC emission values in CORSIA

Goal is the establishment of default values for **all relevant ASTM-approved SAF pathways** (i.e. feedstock and conversion technology combinations): Each of those has/should have a dedicated default LC value.

Prussi et al. (2021). By now, additional default values have been established.

Scope of CORSIA CEFs

INTERNATIONAL CIVIL AVIATION ORGANIZATION

ICAO document

CORSIA Sustainability Criteria for CORSIA Eligible Fuels

Criteria were originally developed for "traditional" SAF.

Got extended to cover **Lower Carbon Aviation Fuels** recently.

Are currently being extended to account for **PtL Fuels** ("high-electricity-input fuel"), as well.

November 2022

11 Robert Malina – June 19 2024 – GARS Talk

PtL SAF Pathway flow chart and pathway Importance

Importance of PtL SAF:

- More scalable than other SAF
- Very low lifecycle GHG emissions possible
- No/less food versus feed issues

Essential component of the net zero carbon strategy of the industry and regulators!

- 1 Electricity accounting and sourcing
- ² Carbon accounting and sourcing
- ³ Other adjustments to CORSIA sustainability criteria

- 1 Electricity accounting and sourcing
- ² Carbon accounting and sourcing
- ³ Other adjustments to CORSIA sustainability criteria

Electricity accounting and sourcing

ICAO Document 07 – CORSIA Methodology for Calculating Actual Life Cycle Emissions Values

"The calculated LS_f values will include emissions generated during ongoing operational activities (e.g., operation of a fuel production facility, feedstock cultivation and extraction, transportation of feedstock, intermediate products and finished aviation fuels, and other operational activities for life cycle stages 1-6 described in paragraph 2), as well as **upstream emissions associated with the material and utility inputs for operational activities, such as processing chemicals**, <u>electricity</u>, and natural gas. *Emissions generated during one-time construction or manufacturing activities (e.g., fuel production facility construction, equipment manufacturing) will not be included.*"

Embodied emissions of electricity generation are currently not accounted for. Does this matter?

INTERNATIONAL CIVIL AVIATION ORGANIZATION

ICAO document

CORSIA Methodology for Calculating Actual Life Cycle Emissions Values

June 2022

C RSIA Carbon Offsetting and Reduction Scheme for International Aviation

Drivers of relevance of embodied emissions for a SAF pathway

Electricity requirements for SAF pathways

	Increasing Electricity Use		
	Existing CORSIA	Electrified CORSIA	"Pure" PtL
Resource Use Types	 Biogenic C w/ combustion farming Natural gas heat SMR H₂ Combustion transport & distribution 	 Biogenic C w/ electrified farming Electric heat Electrolytic H₂ Electrified transport & distribution 	 Electrified DAC or Waste CO₂ Electric heat Electrolytic H₂ Electrified transport & distribution
% Electricity of Energy Input	0-4%	4-30+%	→ 100%

Visual taken from a joint presentation with N. Keogh and Florian Allroggen (both MIT) at the CRC Lifecycle analysis workshop held at Argonne National Laboratory in October 2023.

18 Robert Malina – June 19 2024 – GARS Talk

Magnitude of embodied emissions per electricity source

For comparison purposes, average US electricity grid CO_2 emissions per kWh in 2022 were approx. 371 g (including embodied emissions).

US Data, from GREET model.

Results for example traditional SAF and PtL pathways

Grid CORSIA Solar w/o Solar w/ Elec. • Process Feedstock LCA Embodied Embodied Use Rapeseed 40.4 1.6 0.1 0 **HEFA** UCO 13.9 1.5 0.1 0 ٠ ETJ 65.7 7.3 0.6 0 Corn grain **iBuOHtJ** 55.8 0.6 0 6.7 Sugarbeet 32.4 ٠ SIP 0 (Net elec. export) Sugarcane 32.8 N/A – Heat & Electricity covered by F-T Corn stover 7.2 internal gen. 0 Pure PtL 35.8

Data taken from a joint presentation with N. Keogh and Florian Allroggen (both MIT) at the CRC Lifecycle analysis workshop held at Argonne National Laboratory in October 2023.

- Including embodied emissions in "traditional SAF" has a relatively small impact on SAF lifecycle emissions.
- For PtL fuels, embodied emissions can have a relatively high impact on SAF lifecycle emissions.
- Criterion/criteria needed that determine for a SAF pathway if embodied emissions are to be included or not.

Grid electricity does not include embodied emissions in CORSIA

Embodied carbon based on current U.S. values from GREET

Emissions (gCO₂e/MJ jet fuel)

Electricity accounting and sourcing

Visual taken from a joint presentation with N. Keogh and Florian Allroggen (both MIT) at the CRC Lifecycle analysis workshop held

at Argonne National Laboratory in October 2023. Robert Malina – June 19 2024 – GARS Talk

21

- 1 Electricity accounting and sourcing
- ² Carbon accounting and sourcing
- ³ Other adjustments to CORSIA sustainability criteria

Potential carbon cycles

Visual taken from a joint presentation with N. Keogh and Florian Allroggen (both MIT) at the CRC Lifecycle analysis workshop held at Argonne National Laboratory in October 2023.

Robert Malina - March 5 2024 - AIREG Talk

- 1 Electricity accounting and sourcing
- ² Carbon accounting and sourcing
- **3 Other adjustments to CORSIA sustainability criteria**

PtL-related development needs for sustainability criteria

November 2022

- The CORSIA sustainability criteria for SAF focus on (biomass) feedstock production and feedstock conversion, in particular.
- There are currently no sustainability provisions that apply to electricity production within CORSIA.
- For PtL fuels that require large amounts of electricity, is an extension of the applicability of sustainability criteria to electricity generation needed? What about potential land-use issues of solar-powered PV, for example?

26 Robert Malina – June 19 2024 – GARS Talk

Some relevant papers

- Prussi, M., Lee, U., Wang, M., Malina, R., Valin, H., Taheripour, F., Velarde, C., Staples, M.D., Lonza, L. and Hileman, J.I., 2021. CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. *Renewable and Sustainable Energy* <u>Reviews</u>, 150, p.111398.
- Malina, R., Abate, M.A., Schlumberger, C.E. and Pineda, F.N., 2022. The role of sustainable aviation fuels in decarbonizing air transport. World Bank Flagship Report. Washington, DC.
- <u>Staples, M.D., Malina, R. and Barrett, S.R., 2017. The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. *Nature Energy, 2(2), pp.1-8.*</u>
- <u>Staples, M. D., R. Malina, P. Suresh, J. I. Hileman, and S. R. Barrett. 2018. Aviation CO2 Emissions Reductions from the Use of Alternative Jet Fuels. *Energy Policy* 114 (March): 342–54.</u>
- Wang, J., M. D. Staples, W. Tyner, W. Zhao, R. Malina, H. Olcay, F. Allroggen, and S. Barrett. 2021. Quantitative Policy Analysis for Sustainable Aviation Fuel Production Technologies. *Frontiers in Energy Research* December: 751722.
- <u>Seber, G., Escobar, N., Valin, H. and Malina, R., 2022. Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels</u> <u>from vegetable oils. *Renewable and Sustainable Energy Reviews*, 170, p.112945.</u>
- Winchester, N., Malina, R., Staples, M.D. and Barrett, S.R., 2015. The impact of advanced biofuels on aviation emissions and operations in the US. *Energy Economics*, 49, pp.482-491.

CENTRE FOR ENVIRONMENTAL SCIENCES

UHASSELT

Thank you for your attention!

June 19, 2024 robert.malina@uhasselt.be

