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Abstract: Optically active color centers in diamond and nanodiamonds can be utilized as quantum
sensors for measuring various physical parameters, particularly magnetic and electric fields, as
well as temperature. Due to their small size and possible surface functionalization, fluorescent
nanodiamonds are extremely attractive systems for biological and medical applications since they
can be used for intracellular experiments. This review focuses on fluorescent nanodiamonds for
thermometry with high sensitivity and a nanoscale spatial resolution for the investigation of living
systems. The current state of the art, possible further development, and potential limitations of
fluorescent nanodiamonds as thermometers will be discussed here.
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1. Introduction

Temperature measurement within a single living cell is an important question for
fundamental biological and medical sciences (for example, mitochondria activity, inflamma-
tions, etc.) as well as further industrial pharmacology applications (for instance, monitoring
of photothermal cancer treatment) [1–3]. Due to this, various fluorescent markers attract
significant attention and are applied to visualize temperature changes inside biological
systems [4–6]. This list contains organic nanoparticles (e.g., fluorescent dye molecules,
polymers, or proteins) [7,8], quantum dots [9], rare-earth doped nanoparticles [10], and
nanodiamonds with color centers [11,12]. Fluorescent markers are an attractive system due
to the low invasive influence of an optical measurement method. Such optical detectors are
typically based on temperature-dependent fluorescent properties, such as spectral shift,
changes in intensity, or lifetime. For biological applications, the stability and reliability
of nanothermometers are crucial due to the initial complexity of investigated systems
and the variation of their internal parameters (chemical components, pH level, viscosity,
etc.) [13–15]. Therefore, the evaluation of suitable biological nanothermometers should be
based not only on their sensitivity and parasitic influence but on environmental stability
and reliability as well.

Organic fluorescent thermometers, including fluorescent dye molecules, fluorescent
polymers, and fluorescent proteins, already recommended themselves very well for imag-
ing and thermometry [7,8]. Depending on the particular type of nanoparticles, the tem-
perature changes will provoke a shift of emission spectra or modify the fluorescent life-
time [4,6–8]. Their most significant advantages are ultra-small size (down to 1–2 nm for
dye molecules) and various available functionalization protocols to control addressed at-
tachment [16]. Organic nanoparticles cannot be used for long-term monitoring due to their
photobleaching [17]. At the same time, talking about biological thermometry, their main
problem is that their optical properties are not only temperature dependent but perform
the response to the environment, for example, the pH level [18] or viscosity [8]. It makes
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temperature measurements less reliable and environmentally unstable. Therefore, it is
hard to define whether the observed fluorescence changes were provoked by variations in
temperature or other parameters.

Quantum dots are interesting optical marker systems. First, their fluorescent spectra
can be efficiently designed by nanoparticle composition and size variation [19]. Such
inorganic nanoparticles can also be functionalized for biological applications [19]. All
these factors made them attractive systems for biological applications [19,20]. Temperature
detection with quantum dots is performed by spectral shift observation or fluorescence
intensity changes [6,9,21]. Nevertheless, they also have some disadvantages, particularly
for biological applications. First, they are toxic materials [22]. Therefore, cell poisoning
can cause temperature changes during the measurements, leading to parasitic influence
and cell death. Second, their photo blinking, which makes them excellent marks for super-
resolution imaging, prevents long-term monitoring [23]. Third, their fluorescence intensity,
which is used for thermometry [21], also depends on the variation of the pH level [24].

Rare-earth doped nanoparticles, presented in various chemical compositions, are
another type of inorganic nanoparticle that can be used for nanoscale thermometry [10].
Their temperature response can be observed in a few different ways, mainly changes in
fluorescence intensity [10], the shift of emission spectra [10], or changes in lifetime [25]. The
toxicity of rare-earth doped nanoparticles has not been entirely determined and remains
under study [26]. Such nanoparticles are also used for sensing the chemical composition
of the surrounding environment [27]. Since sensing protocols are based on the optical
properties of rare-earth doped nanoparticles, environmental instability can also influence
temperature measurements.

Another essential point for biological study, especially for investigating cellular
metabolism, is the observation of not only temperature changes but also the measure-
ment of the absolute temperature. The organic and inorganic fluorescent nanoparticles
discussed above cannot provide this because their properties depend on environmental
conditions. Thus, it is impossible to provide a one-to-one correspondence between fluores-
cence and temperature. It is highly critical for biological systems due to many simultaneous
chemical reactions going on all the time [13–15]. For example, one of the most discussed
papers about the absolute local temperature of mitochondria [28] claimed that it can reach
up to 50 ◦C. However, such measurements were conducted with the fluorescent probe
MitoThermo Yellow without correcting the parasitic environment-related fluorescence
changes and are still under discussion in the community [29].

The alternative to the already-named sensors is fluorescent nanodiamonds (ND), whose
optical properties are related to various types of lattice defects called color centers [11,12].
Optically active diamond defects are characterized by extreme photostability that allows
long-term imaging and sensing [30]. One of the advantages of ND for biological study is
that they are inert and nontoxic materials [31]. At the same time, the surface of ND can
be chemically functionalized to make them more bioactive [32,33], for example, usable
for drug delivery [34] or attachable to chosen intracellular parts [35]. Various diamond
color centers offer different experimental protocols for temperature sensing (Figure 1).
Currently, the three most commonly studied types of such optically active diamond defects
are Nitrogen-Vacancy, Silicon-Vacancy, and Germanium-Vacancy. Each of them has its
own advantages and disadvantages. Nevertheless, the most crucial reason to use ND for
biological thermometry in opposition to previously named nanoparticles is the insensitivity
of their fluorescent properties to the environment around diamond nanocrystals (pH level,
ion concentrations, etc.), which will be described in detail later. Therefore, in the current
review, NDs with these three types of well-known color centers will be deeply discussed,
with a focus on their applications for thermometry for biological applications. Indeed,
nothing is perfect, and diamond color centers are not, either; thus, additional stress will be
given to possible limitations of ND utilization.
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Figure 1. Crystal structures of diamond optically active defects: Nitrogen-, Silicon-, and Germanium-
Vacancy centers. Temperature measurement protocols are based on the shift of optically detected
magnetic resonance (ODMR) for the Nitrogen-Vacancy center only and on the shift of zero phonon
line (ZPL) for all named defects.

2. Fluorescent Nanodiamonds

The first temperature sensing protocols with diamond color centers were realized
on bulk crystals. They are well and deeply summarized in the review [36]. The main
optical properties of color centers are independent of the diamond size. Nevertheless,
some important aspects, for example charge states, related to the diamond surface might
influence the sensitivity of such sensors [37,38]. It becomes extremely valuable for biological
thermometry, where nanodiamonds should be placed inside the living systems. This is
why the following discussion will focus on fluorescent nanodiamonds selectively. The
main parameters, such as type of ND, including color centers, size, fabrication method,
and surface treatment, are presented in Table 1 and completed with the tested temperature
range and achieved sensitivities.

Table 1. Summary of temperature measurements with different types of nanodiamond samples for
biological or potential biological applications.

Color
Center

Size,
nm Type Measurement

Method
Bio
Tests

Temperature
Range, ◦C

Sensitivity,
K Hz−1/2. Ref.

NV 100 ± 50 ND in PHEMA film ZPL shift,
Ensemble No 35–120 0.15–1.1 [39]

NV 35 HPHT milled ND, carboxylated surface ZPL shift No 25–60 – [40]

NV 70 HPHT milled ND, polyfunctional surface
groups ZPL shift No 25–60 – [40]

NV 100 HPHT milled ND, hydroxylated surface ZPL shift Yes 25–60 – [40]
NV 100 Cationic surface, attached to gold nanorods ZPL shift Yes 28–75 2 [41]
NV 100 ± 30 Aggregated ND to microspheres ZPL shift Yes 20–60 0.5 [42]
NV 50 Milled ND ZPL intensity No 22–110 0.3 [43]
NV 50 Milled ND in polyvinyl alcohol ODMR shift No 22–40 0.13 [44]
NV 50 Milled ND ODMR shift Yes 20–30 0.009 [45]
NV 100 Milled ND, carboxylated surface ODMR shift Yes 33–36 1.5 [46]
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Table 1. Cont.

Color
Center

Size,
nm Type Measurement

Method
Bio
Tests

Temperature
Range, ◦C

Sensitivity,
K Hz−1/2. Ref.

NV – Milled ND ODMR shift Yes 27–37 – [47]
NV 185 Milled ND ODMR shift Yes 28–38 3 [48]
NV 40 ± 15 HPHP milled ND in a cross-linked nanogel ODMR shift Yes 20–50 0.6 [35]
NV 20,000–30,000 Microdiamond on an optical fiber ODMR shift Yes 22–36 – [49]
NV 100 Milled ND, carboxylated surface ODMR shift Yes 25–45 1.4 [50]
NV 11 Detonation ND ODMR shift No 22–42 0.36 [51]
SiV 200 ± 70 HPHP ND ZPL shift No 22–42 0.521 [52]
SiV 50 HPHT ND with HSA coating ZPL shift Yes 25–38 – [53]
SiV 500 CVD ND on an optical fiber ZPL shift No 20–150 – [54]
SiV 500 CVD ND on an optical fiber ZPL shift Yes 23–45 – [55]
GeV – HPHT ND ZPL shift No −125–125 0.3 [56]
GeV 30 ± 10 Detonation ND ZPL shift No 22–40 1 [57]

2.1. Structure of Nanodiamonds

NDs have the same structure as a normal diamond lattice, with size starting from
a few nm and increasing to large scales depending on final applications [58,59]. The
fluorescent properties of ND are defined by optically active defects inside, known as
color centers [11,12]. Such color centers can be created by impurity incorporation during
diamond growth or afterwards by irradiation and annealing [58,60,61]. There are two main
fabrication techniques: bottom-up and top-down.

Currently, the top-down method is the most popular for biological applications, due
to the large amount of produced samples [59,62]. In this method, big diamond crystals are
milled to the nanoscale size [58,63]. Such big diamond crystals are typically produced by
the high-pressure high-temperature (HPHT) technique [64]. The chemical vapor deposition
(CVD) diamond synthesis method can also be used. CVD provides high-quality diamond
samples, but it is also more expensive [64]. Therefore, it is less common.

The bottom-up techniques include such types of samples as detonation ND [65], CVD
ND growth on a substrate [66,67], and HPHT ND synthesized for a short time [68–71]. The
detonation method delivers the smallest nanocrystals; however, it is more a combination of
diamond cores with graphite shells [65,72]. CVD ND grown on a substrate cannot provide
a large amount of the sample [73]. However, it can be a very powerful technique for fully
controlled fabrication of individual ND or even microdiamonds for some applications [74].
The syntheses of HPHT ND for a short time can provide a large scale of nanocrystals with
more uniform sizes and shapes in comparison to milled ones [68–71]. Thus, this technique
has become more and more popular nowadays.

2.2. Thermometry with Nitrogen-Vacancy Centers

The most investigated and broadly used diamond color center is a Nitrogen-Vacancy
(NV) defect consisting of a substitutional nitrogen atom next to a missed carbon—a vacancy.
It can be found in two optically active charge states: neutral (NV0) and negative (NV−). At
room temperature, their spectra demonstrate zero-phonon lines (ZPL) at 575 and 637 nm,
respectively, with broad phonon sidebands [75]. Both optically active NV charge states
can be used for temperature sensing. The detection method is based on observing the
redshift of ZPL with a temperature increase [39–42]. Such a method is attractive due to
the experimental simplicity since all operations and detection can be conducted purely
optically. The ZPL shift happens linearly with temperature changes, simplifying tempera-
ture determination [39–42]. Many works focus on intracellular thermometry by detecting
ZPL shift. As one example, the work of the group from Jinan University can be chosen
(Figure 2a) [42]. Here, ND with NV centers were used for temperature sensing in different
types of cells, particularly 4T1, C127, and HeLa cells. The temperature distribution was
presented over a single C127 cell (Figure 2b). It demonstrates the temperature gradient
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and indicates that the nuclear close area is 5 ◦C warmer than the cell membrane region
(Figure 2c).

Another all-optical thermometry method with NV centers in ND was suggested in
the paper [43]. In this work, only changes in the intensity of ZPL were observed for
temperature detection. All measurements were taken for nanocrystals smaller than 50 nm.
The experiments were performed with dry ND spin-coated on a quartz slide. To control the
temperature of the system, the sample was placed in a heater with temperature stabilization
within the accuracy of ±1 K. Such optical temperature observation was performed in the
range of 295 K to 383 K [43]. The detected temperature dependence is not linear; however,
there is a one-to-one correspondence. The achieved sensitivity was 300 mK Hz−1/2. Until
now, such a measurement scheme has not been applied to real biological systems. The main
disadvantage of such a technique for biological thermometry is that fluorescent intensity
varies from one nanodiamond to another, which prevents reliable temperature mapping
over the whole living cell.
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and line II—cell membrane. (b) Confocal image of fluorescent ND distributed inside a living C127
cell. (c) Temperature mapping recalculated from the ZPL shift for observed ND in (b). Data from [42].

For the NV0 defects, ZPL observation is the only possible method of thermometry. It is
not the most efficient technique since only around 4% of NV fluorescence comes to ZPL [76].
Another measurement method is available for the NV− center only. It is based on observing
the optically detected magnetic resonance (ODMR) (Figure 1). NV− defect has one extra
electron from surrounding donors and, as a result, a spin equal to 1 with possible states
ms = 0, ±1. The spin-dependent fluorescence, explained by different relaxation processes
for ms = 0 and ms = ±1, allows for the optical distinguishing of different spin states.
The relaxation through the metastable state, which is more probable for ms = ±1, is also
responsible for spin conversion and polarization. Initially, ODMR, as well as spin relaxation
times, were used for magnetic field detection, including the investigation of biological
systems [77–81]. During such magnetometry experiments at different temperatures, it was
observed by the group of D. Budker [82] that the positions of ODMR lines depend not only
on the magnetic field due to the Zeeman effect (the split of ODMR) but also on temperature
(the shift of the central ODMR frequency). The temperature increase provokes the shift of
the central position of ODMR lines to the shorter microwave frequencies. Such an ODMR
shift appears linearly with temperature, which makes ND a simple handle system for
absolute temperature sensing. Soon after this first experiment, two groups simultaneously
published papers about thermometry with NV− centers in ND. The experiments provided
in the Stuttgart group showed the sensitivity for ND-based sensors equal to 130 mK
Hz−1/2 for a sample with an average nanocrystal size of 50 nm [44]. The Harvard team
demonstrated the first case of intracellular thermometry by NV− containing ND with a
size of 200 nm and achieved a sensitivity of 9 mK Hz−1/2 [45]. The measured temperature
increase was not biologically related but was artificially made and controlled by adding
gold nanoparticles to convert light into heat. It was a proof-of-principle experiment and
became the foundation of many following works [46–48].

Proof of the insensitivity to the environment of the thermometry ability of ND was
demonstrated in the following work [47]. A group of scientists from Japan tested ND with
NV− centers for temperature sensing in different solvents, particularly in low-pH and high-
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pH solutions, high concentrations of Na+ and Cl− ions, glycerol with high viscosity, surface
polymer coating, and ethanol as an organic solvent (Figure 3a). For all those environments,
the temperature dependence of the ODMR shift (D) was measured (Figure 3b). The results
clearly show that there is almost no influence from the surrounding solution parameters
(ion composition, viscosity, etc.) on the temperature sensing ability of NV containing ND.
It allows us to conclude that NDs can be used inside cells as a robust thermometer without
the need to correct the artificial negative influence of the environment.

Fluorescent ND can also be used for drug delivery and cancer treatment, as was
demonstrated by many groups [34,35,83]. The extreme photostability of ND emission
makes them attractive systems for theranostics applications, where long-term imaging and
high sensing ability are combined with therapeutic effects. For instance, one such utilization
of ND with NV− centers was demonstrated by the group of T. Weil [84]. There, fluorescent
NDs coated with nanogel shell (ND-NG) and additionally functionalized with indocyanine
green molecules (ND-NG-ICG) were used to test cancer photo-treatment under infrared
illumination with simultaneous intracellular thermometry (Figure 4a,b). Indocyanine green
molecule is an approved imaging agent for different clinical applications [85]. Its ability
to be used for cancer diagnosis and treatment is currently being investigated [85]. For
such an application, the determination of optimal concentrations of molecules and light
explosion for effective cancer phototherapy is essential. The ND-based thermometer system
demonstrated in [84] allows us to evaluate the saturation temperature for different ND
concentrations and, as a result, of indocyanine green in water (Figure 4c) and inside living
cells (Figure 4d). The demonstrated measurements monitored the local temperature at the
start of cell apoptosis, which is essential for improving phototherapy protocols.
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Figure 3. (a) ND in various types of solvents (low-pH, high-pH, high ion concentrations, high
viscosity, surface polymer coating, organic solvent) to evaluate the influence of the environment
on NV-based thermometry. (b) The temperature dependence of the ODMR shift (D) for different
solvents. Data from [47].

Another possible biomedical application of ND-based thermometers is related to
inflammation studies and other diseases. For example, neuron thermometry attracts
significant attention from the scientific community due to brain inflammations [86] and
different neurological diseases [87–89], as well as temperature-sensitive channels called
transient receptor potential (TRP) channels [90], etc. Therefore, many groups worldwide
have tried to apply fluorescent ND for neuron thermometry [49,50,52,91]. ND with NV
centers were also proved to be applicable for thermometry in more complex living systems
than just cells. For example, it was demonstrated that ND can be successfully used for
measurements inside a living worm [50].
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Figure 4. (a) Confocal image of ND coating with indocyanine green molecules in a living HeLa
cell (the dashed line is the cell border) after 4 h of incubation. The concentration of coated ND is
10 µg/mL. (b) Selected ODMR spectra of coated ND with and without infrared irradiation (810 nm
lamp; 0.35 W/cm2). (c) Thermal profiles of ND in water without (ND-NG) and with (ND-NG-ICG)
indocyanine green with different concentrations under light irradiation (810 nm lamp; 0.35 W/cm2).
(d) Intracellular thermometry and temperature saturation for NG-NG-ICG and ND-NG over 420 s under
infrared irradiation (810 nm lamp; 0.35 W/cm2) for concentrations of 10 µg/mL. Data from [84].

2.3. Thermometry with Silicon-Vacancy Centers

After the NV-based thermometry, Silicon-Vacancy centers (SiV) in diamond were
discovered to be used for temperature sensing. SiV center consists of an interstitial silicon
atom between two vacancies or a split vacancy. The single available measurement protocol
for SiV-based nanoscale thermometers is that the whole observation is purely optical.
Here, the thermometry is based on observing the redshift of ZPL (Figure 1) [52]. The
general advantage of all-optical measurements in biology is related to the absence of
an external microwave field, which is responsible for parasitic temperature increase. In
contrast to NV centers, the ZPL of a SiV center is at 738 nm and dominates the spectrum,
containing approximately 70% of all emitted photons [91]. It allows the collection of a
higher number of photons for SiV than for NV during the same acquisition time. The
near-infrared shifted fluorescence is also a significant advantage for investigating biological
systems due to the near-infrared window in biological tissue [92]. All these make all-optical
thermometry with SiV containing ND more efficient for biological experiments than for
NV centers (Figure 1). In the case of ND, the first temperature-sensing experiment with
SiV was performed for nanocrystals with a size of 200 nm and demonstrated a sensitivity
of 521 mK Hz−1/2 [52]. For SiV defects, the redshift of ZPL with the temperature increase
goes linearly, which allows the recalculation of absolute temperature changes from the SiV
fluorescence spectrum. The first application of ND with SiV for intercellular thermometry
was demonstrated in [53], where living HeLa cells were incubated with ND coated with
human serum albumin (Figure 5b). There, the cell temperature was stabilized by an
incubator to evaluate the sensing ability of ND with SiV in general (Figure 5c). Another
advantage of ND with SiV centers is that its narrow near-infrared fluorescence can be
separated from optical markers commonly used in biological study (Figure 5a), which
makes dual imaging with simultaneous thermometry possible.
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Figure 5. (a) Dual-confocal imaging of HeLa cells with ND with SiV: channel 1 collects all fluorescent
>560 nm, and channel 2 is selective for SiV emission. (i) and (ii)—cells with ND only, (iii) and
(iv)—cells additionally marked with membrane dye. (b) Confocal imaging of HeLa cells incubated
with ND with SiV centers. (c) Thermometry by the redshift of SiV ZPL measured inside the living
cell, where the incubator stabilized two temperatures. Data from [53].

The broad sensing applications for biological systems with SiV centers in ND were
explored further. The group of I. Vlasov presented a series of works about temperature
probes with SiV defects to investigate living cells [54,55]. Here, the alternative method was
applied. Instead of incorporating ND with SiV centers inside a living cell, ND with SiV was
placed at the end of the glass pipette (Figure 6a) [55]. It allows the probe to be manipulated
and controllably placed for temperature mapping (Figure 6b,c) [54]. This method was
used to measure the temperature of the isolated mitochondria from the mouse brain [55].
These experiments demonstrated that the mitochondria temperature can experience a
temperature difference of 4–22 ◦C and reach an absolute maximum of 45 ◦C.
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2.4. Thermometry with Germanium-Vacancy Centers

Another diamond color center with high potential for thermometry is a Germanium-
Vacancy center (GeV). It has a crystal structure similar to an SiV center. Its spectrum
also predominantly consists of ZPL emission at 604 nm. Therefore, the experimental
sensing protocol is based on observing the shift of ZPL (Figure 1), moving to the longer
wavelengths with heating. The first demonstration of the GeV-based temperature sensor
for a bulk diamond was made in the US-based research group [56]. However, ND with GeV
are not yet as well used as nanocrystals with NV or SiV defects. In the last year, detonation
ND containing GeV centers were recently tested for all-optical nanoscale thermometry [57].
There, the demonstrated sensitivity was at the level of 1 K Hz−1/2 (Figure 7). The obtained
sensitivity is currently not as exciting as for NV or SiV centers. However, it is important
to mention that, in general, detonation ND are significantly inferior in properties to CVD
or HPHT nanocrystals, which were available for NV and SiV experiments earlier. Thus,
these two types of nanodiamond synthesis attract a lot of attention and are actively used
for the fabrication of GeV centers in ND nowadays [57,93,94]. Further improvement of the
production of ND with GeV defects will increase the usability and sensitivity of diamond
nanocrystals with that color center.
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3. Discussion of Possible Limits

Fluorescent ND provide the outstanding possibility to measure temperature, especially
intracellular temperature, independently from the environment [48], which is impossible for
other currently used thermometers based on fluorescent nanoparticles [8,19,24]. The linear
dependences of optical properties of various diamond color centers (ZPL or ODMR) allow
for measuring absolute changes of variable temperature [42,44,45,52,56,57,82]. Detection of
the absolute temperature of the system is fundamentally possible. However, there is an
important point influencing the properties of fluorescent ND and absolute thermometry
that must be addressed for the complete picture. NDs have a broad distribution in size,
shape, and position of color centers inside. Any fabrication and subsequent separation
of ND cannot provide a fully homologized sample. All that influences offsets for the
central position of ODMR or intensity and broadening of ZPL that affect the detection of an
absolute temperature.

One of the first reports about such inhomogeneity of ND was presented in [95] regard-
ing the initial splitting and shift of the ODMR line for NV centers in commercial ND. The
samples were evaluated in a shielded environment to exclude external influence. Figure 8
shows the distributions of such ODMR shifts (a) and splits (b). It indicates that the absolute
temperate determination from a single nanodiamond measurement can be problematic
due to the natural variation of nanocrystal properties. A similar point was addressed
in [48], where ND were tested in different solutions (Figure 3b). Minor variations of the
temperature dependence of ODMR shift and, more importantly, its statistical distribu-
tion also demonstrated that absolute temperature can barely be found from a single spot
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measurement. However, it does not critically influence the observation of temperature
changes monitored with a single nanocrystal. In such experiments, we are interested in
the difference between two ODMR positions at two temperatures and its initial shift is
canceling during calculations.
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Similar inhomogeneity in the initial position and broadening of ZPL was observed for
SiV centers in ND [53]. Here, the positions of ZPL were observed for temperatures ranging
from 25 ◦C to 35 ◦C with a step of 2.5 ◦C, where the cell incubator stabilized the temperature
of the solution (water). Two groups of ND with SiV can be selected: One demonstrates a
good theoretically predicted shift of ZPL with the temperature increase. The second one has
a low match with the theoretical calculation for SiV in a bulk diamond crystal. Therefore,
additional investigation of color centers in ND according to their size and surface is essential
for reliable absolute thermometry. A better understanding of nanodiamond materials will
significantly improve the sensing protocols. It will influence thermometry with fluorescent
nanodiamonds as well as magnetometry, which is also an attractive scientific direction.

4. Conclusions

Fluorescent NDs provide a unique opportunity for nanoscale thermometry with
high sensitivity and nanoscale spatial resolution and are insensitive to the environment.
The non-toxic properties of ND and different chemical functionalization methods allow
for their application to biological study, where their sensing ability can be combined
with theranostics applications. Nevertheless, NV centers recommended themselves as an
outstanding system for biologically oriented magnetometry; effective thermometry based
on them requires the application of an external microwave field that might bring limitations
for intracellular use. Notably, the external microwave field can provoke a slight parasitic
temperature increase, which can be crucial for biochemical reactions and cell biology. In
the case of experiments with 3D tissue, deep measurements can be problematic since they
will require high power of an external microwave field.

On the other hand, diamond color centers like SiV and GeV offer a fully optical
measurement technique. Such an observation method is devoid of microwave-related
problems and is highly promising for biological applications. At the same time, NDs with
color centers provide the possibility of fast temperature mapping of living cells. The further
development of such methods, together with the improvement of ND functionalization for
addressed intracellular attachment, will provide a breakthrough method for cell biology
and pharmacology, especially in combination with organ- and body-on-chip systems.
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