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Abstract

Immunopeptidomics is becoming an increasingly important field of study. The

capability to identify immunopeptides with pivotal roles in the human immune

system is essential to shift the current curative medicine towards personalized

medicine. Throughout the years, the field has matured, giving insight into the

current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun

proteomics workflows is malpractice because immunopeptidomics faces numerous

challenges. While many of these difficulties have been addressed, the road towards

the ideal workflow remains complicated. Although the presence of Post-

translational modifications (PTMs) in the immunopeptidome has been demon-

strated, their identification remains highly challenging despite their significance for

immunotherapies. The large number of unpredictable modifications in the im-

munopeptidome plays a pivotal role in the functionality and these challenges. This

review provides a comprehensive overview of the current advancements in im-

munopeptidomics. We delve into the challenges associated with identifying PTMs

within the immunopeptidome, aiming to address the current state of the field.
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1 | INTRODUCTION

Our immune system has the capability to eliminate potential
threats by engaging in intricate interactions between T cells
and immunopeptides. Immunopeptides undergo processing
and are bound to the major histocompatibility complexes
(MHC), also referred to as human leukocyte antigen (HLA)
complex in humans and will be presented on the surface of
the cell. Through the presentation of immunopeptides, cells

can communicate their internal condition to immune cells.
When aberrant (none‐self) proteins are being processed
inside the cell, T‐cell receptors on T‐cells can recognize
the immunopeptide‐MHC complexes and will trigger an
immune response. This process is essential for the detection
and elimination of infections, and the removal of aberrant or
cancerous cells.

In Immunopeptidomics, mass spectrometry is used
for the analysis of immunopeptides. The comprehensive
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overview of this peptide repertoire, commonly known as the
immunopeptidome, serves as a valuable tool for unraveling
immune recognition mechanisms and pathways. Beyond
this primary application, it also provides insights into the
cell's proteome, contributing to a deeper understanding of its
physiological state, pathological conditions, and various cel-
lular alterations (Shapiro & Bassani‐Sternberg, 2023). As the
field of immunopeptidomics advances, it significantly en-
hances our understanding of the intricate relationship
between the immune system and different disease states.
Immunopeptidomics, or the study of antigen presentation
has shown its usefulness in many applications including the
fields of personalized medicine, cancer immunotherapy,
vaccinology, and related sciences (Arnaud et al., 2021;
Barbier et al., 2022; Chu et al., 2022; Yamamoto et al., 2019).

In recent decades, significant advancements have been
made in the field of immunopeptidomics, largely propelled
by developments in sample preparation techniques, the
enhanced sensitivity of mass spectrometry, and progress in
bioinformatics. These strides build upon the pioneering
work of Donald Hunt and Hans‐Georg Rammensee in the
early 1990s (Falk et al., 1991; Rammensee et al., 1993;
Rötzschke et al., 1990). The aforementioned advancements
have facilitated the examination and characterization of
the immunopeptidome of cells or tissues in various states,
such as healthy, stressed, and infected, while requiring
ever smaller input material. This has, therefore, con-
tributed to the creation of extensive databases (Marcu
et al., 2021; Shao et al., 2018) and initiatives aimed at
comprehensively mapping the human immunopeptidome
(Vizcaíno et al., 2020). Identifying immunopeptides in
general presents obstacles in both experimental and bio-
informatic aspects, even more so when considering pep-
tides that carry a posttranslational modification (PTM)
(Faridi et al., 2018; Kacen et al., 2022; Smith & Rogowska‐
Wrzesinska, 2020). The abundance of immunopeptides can
range from a minimum of a single copy to over 10,000
copies per cell (Hassan et al., 2014). This emphasizes
the necessity for a high sensitivity and a large dynamic
range of the mass spectrometry instrumentation (MS)
typically used in immunopeptidomics. Furthermore, in
contrast to the tryptic peptides generally analysed in pro-
teomics, peptide antigens (immunopeptides) bound to
MHC complexes are shorter (especially MHC I peptides)
and often lack the typical basic amino acid residue at the
C‐terminus found in tryptic peptides. These factors result
in unfavorable ionization properties and less predictable
fragmentation patterns, ultimately posing challenges for
interpretation of the spectra and identifying the peptides
(Dudek et al., 2016).

The domain of cancer immunotherapy represents
probably one of the most intriguing field of application for
immunopeptidomics. For decades, researchers have

concentrated on identifying tumor immunopeptides suit-
able for integration into epitope‐specific cancer im-
munotherapies, aiming to elicit T‐cell‐mediated removal
of tumors (Abbott & Ustoyev, 2019). These immunopep-
tides, known as tumor‐specific antigens (TSAs) or
neoantigens, result from the accumulation of generic al-
terations in cancers and must be absent in healthy tissue
to minimize the potential for on‐target off‐tumor effects.
Besides generic alterations and dysregulated transcription,
neoantigens can also derive from dysregulated RNA
splicing (Apavaloaei et al., 2020) or carry a PTM. Evidence
of neoantigens derived from mutated proteins (Hogan
et al., 1998) and PTM (Andersen et al., 1999; Haurum
et al., 1999) has been documented for decades, both eli-
citing strong T‐cell responses. However, despite their
potential as leads for therapy, modified peptides are very
often ignored in immunopeptidomics studies. This is
likely due in part to the challenges that come with their
identification which will be discussed later in this manu-
script (Kacen et al., 2022). The peptides derived from
dysregulated posttranslational modified proteins and pre-
sented by the MHC present an additional source of tumor‐
specific antigens that are interesting leads for cancer im-
munotherapies, potentially being highly specific but less
dependent on a patient's personal genetic mutation pro-
file. By decoding the distinct immunopeptides exhibited
on malignant cells, scientists can customize individualized
therapeutic interventions that effectively utilize the
immune system's capabilities to target and eradicate these
deviant cells specifically (Chakraborty et al., 2024).

This review delves into the field of immunopeptidomics,
emphasizing the significance of PTMs on peptides bound to
the MHC molecule as potential indicators of tumor‐specific
antigens or neoantigens. It provides an in‐depth exploration
of PTMs within the immunopeptidome, shedding light on
the challenges associated with their identification. The
comprehensive outline of the immunopeptidomics work-
flow is accompanied by a specific focus on detecting and
characterizing PTMs. The review outlines various PTMs
discovered in immunopeptidomics studies, highlighting the
most common ones. Amidst the inherent complexity of
identifying PTMs, the narrative extends to an overview of
bioinformatic tools crucial for PTM identification, particu-
larly those relevant to the intricate landscape of the
immunopeptidome.

2 | IMMUNOPEPTIDE
PROCESSING AND PRESENTATION

T‐lymphocytes play a crucial role in the adaptive
immune system by scanning the organism's tissues for
infected and aberrant cells and eliminating them.
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Conventional T‐cells recognize repertoires of en-
dogenously processed peptides bound to the MHC of
cells. These immunopeptides can arise from intracellular
pathogens, pathogen products absorbed from the
extracellular fluid, or the natural cycling of regular (self‐)
proteins (Istrail et al., 2004).

There are two classes of MHC molecules: MHC I,
recognized by CD8+ effector T cells, and MHC II, rec-
ognized by CD4+ T helper cells. While MHC I is present
in all somatic cells, except red blood cells, MHC II is
mainly expressed by professional antigen‐presenting
cells. The peptides linked to MHC I and MHC II differ
in length, intracellular pathways through which they are
derived, and immune system functions, as extensively
reviewed in (Cresswell et al., 2005) and (Roche &
Furuta, 2015). Briefly, MHC I immunopeptides are
shorter, predominantly 8–12 amino acids long, while
MHC II peptides have more significant length variability,
ranging from 13 to 25 amino acids (Wieczorek
et al., 2017).

Figure 1 provides an overview of the antigen pro-
cessing and presentation pathway of MHC I and II.
Intracellular degradation of proteins into peptides
through the proteasome plays a central role in processing
MHC‐presented peptides (Kloetzel, 2001). MHC I‐bound
peptides primarily result from the proteolysis of en-
dogenous cytosolic proteins (Blum et al., 2013).
Ubiquitin‐labeled intracellular proteins, including those
associated with pathogens, undergo degradation by the
cytosolic proteasome. The products are then transported
into the endoplasmic reticulum (ER) via the transmem-
brane protein TAP (transporter associated with antigen
processing), where a variety of peptides are preselected
and evaluated for binding to the MHC I molecule by the
peptide loading complex, composed of the chaperones
tapasin, calreticulin, and ERp57 (Blees et al., 2017).
Peptides are N‐terminally truncated by the aminopepti-
dase ERAP before and after loading onto the MHC
complex. Finally, the entire peptide‐MHC complex is
transported to the cell surface via the Golgi complex and

FIGURE 1 Overview of major histocompatibility complex (MHC) Class I and Class II antigen presentation pathways: This
schematic illustrates the key steps in MHC Class I and Class II antigen presentation pathways. In MHC Class I pathway (left),
endogenous antigens are processed within the cytoplasm and presented on the cell surface to cytotoxic CD8+ T cells. In MHC Class II
pathway (right), exogenous antigens are engulfed, processed in endosomes, and presented to CD4+ helper T cells. Both pathways play
crucial roles in immune surveillance and orchestrate adaptive immune responses. Created with BioRender.com. [Color figure can be
viewed at wileyonlinelibrary.com]
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presented to CD8+ effector cells. When the peptide is
recognized and bound by a T‐cell receptor on the CD8+ T
cell, it triggers an immune response. T‐cell receptors on
CD8+ T cells typically recognize “nonself” peptides, such
as those derived from pathogens or aberrant proteins.

In contrast to MHC I‐presented peptides, the MHC II
pathway presents peptides derived from extracellular
proteins, degraded through the endosomal pathway (Suri
et al., 2006). Mass spectrometry studies of MHC II‐bound
peptides indicate that 25%–55% of presented peptides
originate from cytosolic proteins, suggesting that MHC II
antigen processing and presentation are not restricted to
exogenous antigens (Mommen et al., 2016; Stern &
Santambrogio, 2016).

Autophagy is the primary process delivering intra-
cellular proteins to phagosomes. In this process, protein
aggregates or entire organelles in the cell are encased in a
double membrane and fuse with lysosomes, ensuring the
degradation of proteins and presentation of intracellular
and extracellular protein‐derived peptides via the MHC II
complex (Stern & Santambrogio, 2016). Synthesized
MHC class II molecules form complexes with an invari-
ant chain (Ii), a nonpolymorphic protein. This chain
includes targeting motifs guiding the Ii–MHC class II
complex to antigen‐processing compartments within
endosomal–lysosomal pathways (Cresswell, 1996).

As mentioned, MHC II is expressed primarily by
professional antigen‐presenting cells, such as B cells,
monocytes, macrophages, and dendritic cells. The pre-
sentation of MHC II in dendritic cells activates naïve
CD4+ T cells, which, in turn, aids the activation of
effector CD8+ T cells, triggering the adaptive immune
response. Additionally, MHC II presentation is a crucial
step in the activation of B cells and macrophages
(Unanue et al., 2016). The discovery of MHC II‐restricted
cancer‐ or other disease‐associated epitopes, along with a
thorough understanding of the molecular mechanisms
underlying MHC II antigen processing and presentation
(Alspach et al., 2019; Linnemann et al., 2015), signifi-
cantly improves the capacity to design novel and im-
proved CD8+ and CD4+ T cell‐based therapies through
specific modifications with the potential to lead to per-
sonalized treatment (Chen & Jensen, 2008; Duru
et al., 2020; van Stipdonk et al., 2009).

3 | IMMUNOPEPTIDOMICS
WORKFLOW

3.1 | Sample preparation

The immunopeptidomics workflow consists of multiple
steps and a standardized protocol for this workflow has

been published by Purcell et al. (2019). In this review, we
aim to provide a concise overview of the crucial steps
involved in immunopeptidome analysis. This analysis
differs significantly from classical proteomic approaches,
presenting unique challenges throughout the workflow,
as extensively reviewed by Faridi et al. (2018). Many
hampering factors have been circumvented by improve-
ments in the efficiency of isolating immunopeptides, the
rapid development of instrument sensitivity, and im-
proved bioinformatic pipelines, resulting in the ongoing
project of mapping of the human immune‐peptidome
project (HIPP) (Caron et al., 2017). The starting material
in an immunopeptidomics experiment can consist of cell
lines, primary cells, and fresh or fresh‐frozen tissue
samples. Although the recent advances in the sensitivity
of mass spectrometry (e.g., the increased focus on single‐
cell proteomics) have reduced the amount of material
needed for an immunopeptidome analysis, the amount of
sample material available remains a crucial limiting
factor. An interesting development in that aspect is the
use of patient‐derived organoids (PDO). Hereby, a small
patient biopsy can be multiplied to a larger sample, with
the intent of mimicking the patient's initial biopsy con-
dition (Wang et al., 2022).

Figure 2 provides an overview of the current im-
munopeptidomics workflow. Two well‐established tech-
niques for isolating HLA‐bound peptides from tissue or
cells are mild acid elution (MAE) (Sugawara et al., 1987)
and Immunoprecipitation (Subramanian, 2002). The
commencement of the immunopeptidomics workflow
with immunoprecipitation involves the lysis of tissue or
cells. This critical step employs a mild detergent to en-
sure the solubilization of MHC, a transmembrane pro-
tein, for subsequent processing. Monoclonal antibodies
(mAbs) are then used for the immunoaffinity capture of
MHC‐peptide complexes. The selection of mAbs is con-
tingent upon the research objective and the HLA
allomorph of the investigated cells. A comprehensive list
of commonly used mAbs and their references can be
found in the protocol published by Purcell et al. (2019).
Depending on the research question at hand, using spe-
cific antibodies for a particular HLA allele may offer
higher specificity. Most commonly used for HLA class I
isolation is the mouse mAb W6/32, which is specific to
the heavy chain of HLA‐A, ‐B, and ‐C (Brodsky &
Parham, 1982). This allows for the monomorphic isola-
tion of HLA class I peptides. Polymorphic antibodies,
such as ME1 against HLA‐B07, BB7.2 against HLA‐A02,
and GAP.A3 against HLA‐A*03, target and recognize
determinants carried by specific alleles (Hilton &
Parham, 2013). For HLA II on the other hand, the
pan‐HLA class II antibody supposedly pull down the
HLA molecules DR, DQ, and DP. However,

4 | FLENDER ET AL.
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immunopeptidomics studies have demonstrated poor
specificity towards DQ and DP molecules, hence result-
ing in low yields of peptides bound to these loci and
underrepresentation of DQ and DP in datasets(Nilsson
et al., 2023; Racle et al., 2019). Additionally, even though
a lot of studies focus on DRB1 alleles, it has been shown
that DRB3, 4, and 5 play an important role in forming the
HLA II immunopeptidome, underlying the importance of
full HLA typing (Kaabinejadian et al., 2022). Following
immunoprecipitation, the nonspecific lysate components
are thoroughly washed away, leaving only the MHC‐
peptide complexes. The MHC‐peptide complex is then
eluted from the mAbs using a mild acid, dissociating the
peptide from the MHC. Eluted immunopeptides undergo
additional enrichment processes to reduce complexity
and eliminate contaminants. Standard techniques for
enrichment are solid‐phase extraction (SPE) (Bassani‐
Sternberg et al., 2010) and ultrafiltration using a molec-
ular cutoff (MWCO) filter (Sturm et al., 2021). These
techniques enhance the sensitivity and selectivity of
subsequent analyses. During the enrichment procedure,
it is crucial to remove the intact proteins that are part of
the MHC complex, such as beta 2 microglobulin and the
MHC alpha chain, as their presence interferes with
downstream analysis. Utilizing restricted access material
(RAM) into solid‐phase extraction enhances the recovery

of immunopeptides, particularly favoring hydrophobic
ones. This improvement is attributed to the selective non‐
retention of contaminating proteins by the RAM mate-
rial, allowing for the application of a higher concentra-
tion of organic solvent during the elution process
(Bernhardt et al., 2022). Kuznetsov et al. (2020) published
a thorough review emphasizing various techniques for
the isolation of the immunopeptidome.

MAE, in contrast to immunoprecipitation, utilizes
viable cells to isolate peptides presented by the MHC on
cell surfaces. In this method, cells are treated with a mild
acid, causing peptides to separate from the MHC.
Importantly, it's highlighted that peptides associated with
MHCII are believed to remain unaffected by this process
(Sugawara et al., 1987). When evaluating the two meth-
ods using B‐cell lymphoblasts, the Immunoprecipitation
technique results in a significant 6.4‐fold increase in the
detection immunopeptides (Lanoix et al., 2018). Fur-
thermore, a different study comparing an enhanced MAE
technique with immunoprecipitation revealed a nearly
50% overlap in the number of identifications between the
two approaches (Sturm et al., 2021). There is a crucial
need for a high‐throughput analysis methodology to en-
able the application of immunopeptidomics in mid to
large‐sized cohorts and for future comparative studies.
As Sian et al. suggested, the semi‐automated workflow

FIGURE 2 Workflow of mild acid elution and immunoprecipitation in immunopeptidomics: This overview illustrates the alternative
approaches of mild acid elution (top, in yellow) and immunoprecipitation (bottom, in green) in immunopeptidomics. The yellow pathway
represents mild acid elution, where peptides are gently released from major histocompatibility complex (MHC) molecules, while the
green pathway depicts immunoprecipitation, a technique involving the selective capture of MHC‐peptide complexes using specific
antibodies. Researchers can choose between these two methods based on their experimental goals, providing flexibility in the analysis of
MHC‐bound peptides and contributing to a comprehensive understanding of the immunopeptidome. Created with BioRender.com.
[Color figure can be viewed at wileyonlinelibrary.com]
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revolves around the extraction of MHC‐bound peptides
through for instance magnetic beads for immuno-
precipitation, performed on an automated platform em-
ploying 96‐well plates. According to their protocol, it is
possible to simultaneously process 12 samples, identify-
ing roughly 400 to 13,000 distinct peptides, derived from
cell quantities ranging from 0.5 to 50 million (Lim Kam
Sian et al., 2023). However, it should be noted that in a
high throughput set‐up the MS analysis and the subse-
quent data analysis are very likely to become the bot-
tleneck as both are time‐consuming steps in the analysis.
Considering the significance of both high throughput
and sensitivity, Li et al.'s research team developed a
workflow utilizing a microfluidics platform. This plat-
form facilitates automated liquid handling and mini-
mizes sample transfers. Through this streamlined pro-
cess, the team successfully identified more than 4000 and
5000 MHC‐I‐restricted immunopeptides from 0.2 million
RA957 cells (human B‐cell line) and 5mg of melanoma
tissue, respectively (Li et al., 2023).

3.2 | Mass spectrometry analysis of
isolated immunopeptides

The enriched and cleaned‐up peptides are then subjected
to liquid chromatography (LC) tandem mass spectrometry
(MS) analysis. Selecting the proper instrumentation is
crucial for achieving comprehensive immunopeptidome
coverage. To acquire purified immunopeptides effectively,
it is advisable to employ a high‐end, state‐of‐the‐art LC‐
MS/MS system. Given the biochemical similarities of
immunopeptides, a high‐resolution LC system is
essential. Nano LCs are favored over microflow LCs in
immunopeptidomics approaches, primarily due to the
usual low sample quantities and the need for the highest
possible sensitivity. Some studies suggest the inclusion of
charge‐enhancing additives such as dimethyl sulfoxide or
m‐nitrobenzyl alcohol to enhance performance (Nielsen
& Abaye, 2013; Van Wanseele et al., 2019). However,
the effectiveness of improving electrospray ionization
and sensitivity may vary, depending on factors such as
the emitter source type and specific parameters like
source voltage, temperature, and gas flow. For the mass
spectrometer, opting for a high‐mass accuracy analyzer
is a requirement as it enhances the reliability of peptide
sequence identification. It is important to note that
depending on the MHC allele of the sample, a sub-
stantial number of singly charged peptides may be
present. Strategies for increasing the charge state of
these peptides using chemical derivatization and iso-
baric labeling have been shown (Chen et al., 2018;
Pfammatter et al., 2020).

The ongoing improvement of mass spectrometry
instruments has advanced the field of im-
munopeptidomics immensely. For example, cutting‐edge
mass spectrometers coupled with ion‐mobility separation
and/or trapping devices (IMS) offer increased identifi-
cations and improved signal‐to‐noise ratios, further en-
hancing the immunopeptidome analysis process (Meier
et al., 2018). Moreover, a recent study has revealed that
MS/MS spectra from timsTOF instruments exhibit more
reproducibility at low abundances compared to MS/MS
spectra from Orbitrap instruments (Hoenisch Gravel
et al., 2023).

In the realm of immunopeptidomics, three primary
methods are employed for identifying and quantifying
immunopeptides. Most studies in this field rely on data‐
dependent acquisition (DDA) to maximize the amount
of information acquired within an experiment (Caron,
Kowalewski, et al., 2015). In DDA, the ionized im-
munopeptides are first detected in a survey scan (MS1
scan). The most abundant precursor ions detected are
further isolated for fragmentation, generating individual
peptide spectra (fragmentation spectra) and maximizing
the information extracted from the experiment (Gatlin
et al., 2000). However, in DDA, precursor ion selection
follows a straightforward intensity‐dependent rule,
resulting in the (semi‐)random isolation of precursor
ions for fragmentation. This randomness can lead to
inconsistent peptide identification when analyzing the
same sample repeatedly, compromising reproducibility.
Consequently, DDA is less suitable for accurately
quantifying immunopeptides across different samples.
On average, approximately 20% of the selected MHC I
immunopeptides have been observed to vary between
replicate analyses of the same sample (Caron, Espona,
et al., 2015). On the contrary, data‐independent acqui-
sition (DIA) adopts a different approach by acquiring
fragmentation data for all ions within predefined pre-
cursor isolation windows, providing a comprehensive
map of a given sample. Since its introduction in 2004,
several DIA strategies have been described and re-
viewed in detail (Chapman et al., 2014; Distler
et al., 2014; Sajic et al., 2015). DIA captures compre-
hensive data by simultaneously fragmenting and ana-
lyzing all precursor ions in a sample, creating a detailed
digital map of the sample's molecular components.
However, since chimeric spectra are produced from
fragments of multiple peptide precursors rather than
individual fragmentation spectra, successfully im-
plementing a DIA strategy requires the development of
a comprehensive spectral library. A specific constraint
in DIA experiments is the need for specialized ap-
proaches to identify individual peptides, which require
prior knowledge of the peptides' fragmentation and

6 | FLENDER ET AL.
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chromatographic behavior. This information is typically
obtained through the construction of spectral libraries
based on previous DDA analysis of similar samples, or
through the use of retention time and fragmentation
spectra modeling based on peptide sequences. These
approaches are particularly challenging for im-
munopeptidomics, as immunopeptides can vary signif-
icantly between samples depending on the HLA geno-
types present (Lou & Shui, 2024). This can be
challenging, especially when investigating non-
canonical peptides and neoantigens. In proteomics, a
spectral library is typically generated from experimental
data using multiple data‐dependent data sets. Since the
immunopeptidome is by definition patient‐specific, one
cannot easily resort to publicly available datasets to
construct a library. In essence, ideally a specific library
would have to be generated per individual to be com-
prehensive enough to be of use for potentially action-
able immunopeptides. Limited availability of clinical
biopsies makes it difficult to generate DDA data for a
spectral library while still having enough material for
another DIA analysis. Recent prediction models, how-
ever, allow in silico generation of spectral libraries, of-
fering a solution to the challenge of relying on clinical
biopsies for spectral library creation. A recent study
implementing a DIA immunopeptidomics workflow
using spectral libraries of increasing complexity re-
ported compelling results. Utilizing a complex multi‐
MHC spectral library of previously measured DDA
results resulted in a twofold increase in peptide identi-
fication compared to a sample‐specific spectral library
and a threefold increase compared to a DDA approach.
Additionally, the study demonstrated the successful
application of DIA for neoantigen discovery by analyz-
ing DIA data with predicted MS/MS spectra (generated
by a trained model) of clinically relevant immunopep-
tides (Gessulat et al., 2019; Pak et al., 2021). Never-
theless, the utility of these in silico prediction models is
constrained when it comes to identifying PTMs. In the
study mentioned earlier, peptides containing cysteine
were deliberately omitted. This decision was driven by
the fact the trained model for spectral library prediction
assumes the carbamidomethylation of all cysteines,
reflecting the characteristics of the training data upon
which the models rely, derived from proteomics data.

An alternative method for the identification and
quantification of immunopeptides is the targeted data
acquisition mode. In contrast to DDA and DIA, a tar-
geted approach offers high specificity, sensitivity,
reproducibility, quantitative accuracy, and a wide
dynamic range (Gallien et al., 2014; Peterson
et al., 2012; Picotti & Aebersold, 2012). Typically

conducted in Selected/Multiple Reaction Monitoring
(S/MRM) and Parallel Reaction Monitoring (PRM)
modes, this method is commonly employed on triple
quadrupole and quadrupole Orbitrap instruments
(Peterson et al., 2012; Picotti & Aebersold, 2012). It is
important to note that a targeted approach necessitates
prior knowledge of the specific target of interest (Croft
et al., 2013; Gubin et al., 2014; Hassan et al., 2014;
Hogan et al., 2005; Tan et al., 2011). In certain in-
stances, studies employing Selected/Multiple Reaction
Monitoring (S/MRM) for both relative and absolute
quantification have been conducted. For instance, in a
study by Hassan et al. (2014), heavy‐labeled peptides
loaded on MHC class I were utilized for accurate
quantitation of peptide yield isolated using immuno-
precipitation (IP) (Hassan et al., 2014). Utilizing iso-
baric labeling for targeted measurements enables the
simultaneous analysis of multiple samples. A recent
technique known as TOMAHAQ employs synchronous
precursor selection (SPS‐MS3) to enhance quantitative
accuracy. This approach uses a dedicated MS3 frag-
mentation event for quantification, effectively elim-
inating interference from co‐isolated or co‐fragmented
peptides (Pollock et al., 2021; Rose et al., 2019).
Applying this methodology in immunopeptidomics
extends quantitative sensitivity to the low amol/
μL level (Pollock et al., 2021). Despite the advantages
of targeted approaches, the drawback of requiring prior
knowledge about the investigated targets limits their
standalone applicability. Consequently, the imple-
mentation of targeted approaches appears to be more
complementary to other acquisition methods in im-
munopeptidomics and its use is largely restricted to
validation studies.

Another crucial factor influencing immunopeptidome
coverage is the choice of fragmentation technique. In a
study by Mommen et al. (2014), the combination of
electron‐transfer/higher‐energy collision dissociation
(EThcD) led to a threefold increase in the identification of
MHC‐I immunopeptides compared to traditional frag-
mentation techniques like collision‐induced dissociation
(CID), higher‐energy collisional dissociation (HCD), or a
combination thereof. EThcD outperforms conventional
methods in sequencing peptides bound to HLA‐B7 and ‐
B27 molecules, which are challenging due to the preferred
presence of proline or arginine as an anchor residue as
the second amino acid in immunopeptide's sequence. ETD
cannot cleave proline's N‐Cα bond, and CID/HCD faces
difficulties with internal arginine residues. EThcD's dual‐
ion series overcomes these limitations, leading to an
almost twofold improvement in identifying peptides
associated with HLA‐B7 and –B27 peptides.

EXPLORING THE DYNAMIC LANDSCAPE OF IMMUNOPEPTIDOMICS | 7
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4 | THE ROLE AND CHALLENGES
OF PTMS IN
IMMUNOPEPTIDOMICS

4.1 | PTMs—A key role in healthy and
diseased cells

The regulation of cellular activities, including the bio-
logical activity of proteins, cellular localization, and the
assembly of protein complexes, often relies on PTMs that
occur naturally on proteins. Enzymes like kinases,
phosphatases, and glycosyl‐ or acyltransferases, among
others, catalyze these modifications, which are reversible
in most cases. The common naturally occurring PTMs,
such as phosphorylation, glycosylation, methylation,
acetylation, ubiquitination, and citrullination, are es-
sential for cellular processes, including for proper
immune responses (Mann & Jensen, 2003; Seo &
Lee, 2004; Zavala‐Cerna et al., 2014). An overview of the
common PTMs in eukaryotic cells can be seen in
Figure 3.

As previously noted, the modifications of proteins can
result in modified immunopeptides, which are then
presented by MHC I/II molecules, possibly triggering
T‐cell responses. Despite their potential significance,
PTMs on immunopeptides remain understudied. This
primarily stems from the limitation of the methods em-
ployed. In general, detection of PTMs requires highly

sensitive mass spectrometers, dedicated fragmentation
techniques, specific enrichment strategies, and/or dedi-
cated data analysis. These methods have been applied
extensively in proteomics. However, it is only with the
recent advancements in mass spectrometry instrumen-
tation, particularly in terms of enhanced sensitivity, that
the extension of these analyses to immunopeptides has
become feasible.

4.2 | Experimental challenges in mass
spectrometry analysis of PTMs

MS/MS offers a range of essential analytical capabilities for
determining the amino acid sequence of a peptide and, in
most cases, not only identifying a PTM but also pinpointing
the specific amino acid residue it affects. However, analyzing
PTMs using mass spectrometry can be challenging due to
several factors. Numerous reviews discuss the challenges and
approaches for identifying PTMs at the protein and peptide
levels (Doll & Burlingame, 2015; Kim et al., 2016; Smith &
Rogowska‐Wrzesinska, 2020). While many challenges in
detection and localization from a proteomics perspective also
apply to immunopeptidomics, there are key challenges that
significantly impact PTM detection in immunopeptidomics.

To analyze immunopeptides with PTMs using mass
spectrometry, they must be ionized. However, certain
PTMs can affect a peptide's ionization efficiency, making

FIGURE 3 Overview of common posttranslational modifications (PTMs) in eukaryotic cells. The schematic representation illustrates
various PTMs occurring on proteins in eukaryotic cells. [Color figure can be viewed at wileyonlinelibrary.com]
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them more difficult to detect than their unmodified
counterparts (Gao & Wang, 2007). Once a modified im-
munopeptide is ionized, the PTM can alter the peptide's
fragmentation pattern, complicating the accurate inter-
pretation of the mass spectra (Kim et al., 2016). Addi-
tionally, post‐translationally modified peptides are often
less abundant than unmodified peptides, further com-
plicating their detection (Larsen et al., 2006).

Moreover, identifying immunopeptides with PTMs
does not necessarily attribute the modification to a bio-
logical origin. For example, methionine oxidation can
occur during sample preparation, and asparagine dea-
midation is sensitive to pH, temperature, and buffer type,
underscoring the importance of selecting appropriate
sample preparation methods and materials. These sam-
ple preparation artifacts can ultimately complicate data
interpretation (Liu et al., 2013; Morand et al., 1993; Pace
et al., 2013).

Confidently identifying PTMs on a peptide requires
the PTM to persist throughout the sample preparation
process and downstream MS/MS analysis. Chemical
stability is crucial for efficient PTM detection in MS/MS,
with stable PTMs like acetyl‐lysine maintaining integrity
and causing a 42 Da mass increment for the intact pep-
tide. Less stable PTMs, such as phosphoserine and
phosphothreonine, often undergo neutral loss (‐H3PO4)
during MS/MS, resulting in a mass deficit of 98 Da in
fragment ions (Annan et al., 2000). These Δm values
prove valuable for annotating PTM peptide MS/MS
spectra, aiding in the identification of modified peptides.
However assignment of modified residues requires often
a specific approach. In electron transfer dissociation
(ETD), the protein or peptide is fragmented using low‐
energy anions produced by the chemical ionization of
fluoranthene, ETD typically causes fragmentation along
the N‐Cα bonds, preserving the modified amino acids
(Yu & Veenstra, 2021). Beyond sample preparation and
MS/MS analysis, challenges persist in the data analysis
phase of identifying PTMs. These challenges will be
further explored in the forthcoming data analysis
chapter.

4.3 | Significance and applications of
modified immunopeptides

The elusive question concerning modified immunopep-
tides is, whether they do exist in vivo, and what their
relevance is. Can they trigger a specific T‐cell response?
As mentioned earlier, PTMs play a crucial role in the
function and structure of proteins. Since the im-
munopeptidome mirrors the proteome, various PTMs
should be present on MHC I and MHC II (Admon &

Bassani‐Sternberg, 2011). In a couple of studies, the
presentation and recognition by cytotoxic T‐lymphocytes
of modified peptides have been demonstrated for phos-
phorylated and glycosylated peptides in particular
(Andersen et al., 1999; Haurum et al., 1999). More recent
MS and bioinformatics analysis suggest that modified
peptides may account for 12%–25% of the total im-
munopeptidome (Prus et al., 2019). Additionally,
research has demonstrated that the physiochemical al-
terations caused by PTMs can influence the binding
affinity of peptides to specific allotypes, further indicat-
ing that PTMs may have an impact on antigen presen-
tation (Sidney et al., 2018).

Aberrant PTMs have been confirmed to result in
antigenic peptides and the cognate T‐cell receptor (TCR)
recognition in various instances (Apostolopoulos
et al., 2003; Vlad et al., 2002). Notably, these immuno-
genic peptides, arising from dysregulated PTMs in cancer
cells, represent an understudied class of potentially
tumor‐specific (neo)antigens. These neoantigens hold
great potential as lead candidates to be used in anticancer
immunotherapy. Moreover, because they do not involve
patient‐specific or tumor‐specific mutations, they have
the potential of being shared across individuals inde-
pendent of the specific tumor‐associated mutations,
making them promising ‘off‐the‐shelf’ targets for
immunotherapy.

Accumulating evidence suggests that alternative
sources of cancer neoantigens, such as gene fusions,
alternative splicing variants, translated noncoding
sequences ‐and PTMs, hold promise as novel targets for
immunotherapy. Particularly, neoantigens derived from
gene fusions, recurrent mutations in cancer driver genes,
noncoding regions, and aberrant PTMs are more likely to
be shared among patients, providing a readily available
resource for immunotherapy (Capietto et al., 2022; Smith
et al., 2019; Zhou et al., 2019). In the upcoming chapters,
we will explore the PTMs that exhibit the highest
potential as neoantigens, spotlight the modified im-
munopeptides currently identified and briefly describe
the challenges in PTM detection. Advancements and
Applications in Glycosylation Analysis Glycosylation is
essential for physiological and pathological cellular
activities; advancements in analytical techniques have
fueled progress in the study of glycobiology during the
last decade. For a more detailed overview of the function
of glycosylation in health and disease, we refer to the
review written by Reily et al. (2019).

A significant function of glycans is to contribute to
protein stability and solubility, including appropriate
molecular orientation and reduction of nonspecific
protein–protein interactions. However, glycosylation can
also be present on peptides presented by the MHC and

EXPLORING THE DYNAMIC LANDSCAPE OF IMMUNOPEPTIDOMICS | 9
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form tumor‐specific neoantigens (Malaker, Penny,
et al., 2017; Marino et al., 2015). While glycopeptides
have been isolated from MHC‐II molecules for some
time, the evidence for the existence of MHC‐I glycopep-
tides was initially limited (Chicz et al., 1993). The first
documentation of glycosylated MHCI immunopeptides
was reported by Haurum et al. (1999). Their ground-
breaking work demonstrated that naturally presented
MHC‐I peptides include a small subset of glycopeptides,
primarily featuring O‐β‐N‐acetylglucosamine (GlcNAc)
substitutions on serine and threonine residues. Using
synthesized glycopeptides, they further established that
these peptides were immunogenic in mice and could be
transported by the TAP transporter for antigen presen-
tation (Haurum et al., 1999).

Characterizing and quantifying intact glycopeptides
from complex datasets remains challenging due to their
inherent glycan heterogeneity, unique ionization and
separation characteristics, and relatively low abundance
compared to non‐modified peptide counterparts. In a
study conducted by Mukherjee, ion mobility‐coupled
mass spectrometry devices were used to separate glyco-
sylated peptides by their collisional cross‐section (CCS).
Ion mobility emerged as a promising tool for character-
izing glycopeptides due to their distinct physical prop-
erties. By isolating glycopeptides and optimizing glycan‐
dedicated stepped collision energy, the extraction of
information is improved, resulting in less ambiguous and
more complete fragmentation spectra. Although this
study was limited to trypsin‐digested peptides, the anal-
ysis should also be applicable to immunopeptidomics
samples (Mukherjee et al., 2023).

Glycosylation plays a role in many autoimmune dis-
eases and cancer, therefore providing an interesting tar-
get to study in the context of immunopeptidomics.
Rheumatoid arthritis (RA) is linked to specific MHC
class II alleles and is characterized by a recurrent auto-
immune response in the joints. Collagen type II (CII), the
primary component of hyaline cartilage, has been
hypothesized as a potential autoantigen in rheumatoid
arthritis because CII‐specific antibodies are commonly
identified in RA patients. In a study using transgenic
mice expressing human DR4 and human CD4, T cells
predominantly recognized the immunodominant type II
collagen antigen in its glycosylated form (Bäcklund
et al., 2002; Corthay et al., 1998). In tuberculosis, CD8+ T
cells recognize the glycosylated peptide presented by
HLA‐E, a nonclassical MHC I molecule (Harriff
et al., 2017). Additionally, the alteration in protein gly-
cosylation within tumor cells has a decisive impact in all
stages of the disease. This could impact the HLA‐epitopes
and lead to the overexpression of standard glycoproteins
and tumor‐specific glycoproteins (Peixoto et al., 2019).

Several studies have shown T‐cell reactivation towards
glycosylated epitopes presented by MHC I and II, un-
derlining the importance of these epitopes (Kastrup
et al., 2001; Unanue et al., 2016).

In a study profiling the prevalence of PTMs among a
subset of HLA allotypes, about 17%–38% of the identified
HLA I‐bound peptides were found to be post-
translationally modified. Deamidated peptides were
the second most common PTM found in the im-
munopeptidome, accounting for 2.5%–7% of the detected
modified peptides. A large proportion, nearly 59%, of the
deamidated peptides, has the common N‐glycosylation
motif NX (S/T), suggesting that most deamidations
originate from glycosylated proteins that have undergone
deglycosylation via the ER‐associated protein degrada-
tion pathway (ERAD) (Mei et al., 2020). In a study con-
ducted by Malaker, Penny, et al. (2017), investigating
melanoma cell lines, a total of 93 MHC II‐bound
glyco‐peptides were identified (Malaker, Ferracane,
et al., 2017). Out of these peptides, a vast majority carried
the glycosylation on flanking residues, not interfering
with the peptide binding domain of the MHC. Recent
research has identified glycosylated HLA‐DR‐bound
peptides in dendritic cells pulsed with the SARS‐CoV‐2
spike protein. The glycosylation profile of the HLA‐II‐
bound S‐protein‐derived peptides shows substantial
trimming of glycan residues compared to the S protein,
likely due to antigen processing (Parker, Partridge,
et al., 2021).

4.3.1 | Phosphorylation in
immunopeptidomics

Phosphorylation, a common PTM of proteins, involves
the addition of a phosphate group (‐PO4) to specific
amino acid residues, predominantly serine, threonine,
and tyrosine. This modification is a crucial cellular sig-
naling pathway that regulates various physiological pro-
cesses, including cell division, growth, differentiation,
and apoptosis. Dysregulation or overexpression of pro-
tein phosphorylation is implicated in several disorders,
such as cancer, diabetes, and Alzheimer's disease.

Functioning as a vital physiological regulatory
mechanism, phosphorylation is orchestrated by protein
kinases and phosphatases. These enzymes govern diverse
cellular activities, encompassing protein synthesis, cell
division, signal transduction, growth, development, and
aging. Protein kinases, key players in cellular transduc-
tion signaling, are often associated with pathologies,
particularly cancer, when overexpressed or dysfunctional
(Ardito et al., 2017). Exploiting specific modifications,
notably phosphorylation, has become a focal point in

10 | FLENDER ET AL.

 10982787, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/m

as.21905, W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



novel cancer therapies (Mazhar et al., 2019). In the
review by Zeneyedpur et al. (2020), the emphasis is on
utilizing proteomics and next‐generation sequencing to
identify phosphopeptide neoantigens for potential
immunotherapeutic and diagnostic applications in can-
cer and autoimmune diseases (Zeneyedpour et al., 2020).

When conducting phosphorylation analysis, im-
munopurified and phosphorylated peptides can undergo
different enrichment techniques, like immobilized metal‐
affinity chromatography (IMAC). IMAC selectively cap-
tures and enriches phosphorylated peptides for subsequent
mass spectrometry analysis (Ficarro et al., 2002; Zarling
et al., 2006). This technique has been subsequently mod-
ified for enriching phosphorylated immunopeptides (Abelin
et al., 2015). In 1998, a mass spectrometry HLA‐I peptide
analysis revealed the first phosphorylated MHC‐bound
peptide capable of triggering a cytotoxic T‐cell response
(Hogan et al., 1998). Shortly thereafter, a study substanti-
ated the effective transportation of phosphorylated peptides
from the cytosol to the ER by the Transporter Associated
with Antigen Processing (TAP), facilitating their subse-
quent loading onto MHC‐I molecules (Andersen
et al., 1999). Overall, the antigen processing and presenta-
tion pathway exhibit general consistency for both phos-
phoproteins and unmodified proteins, involving both
MHC‐I and MHC‐II presentation. At present, in 15 differ-
ent types of cancer, over 2500 phosphorylated peptides have
been identified, with about 1000 of these peptides being
part of cancer‐associated pathways in multiple cancer types.
Nearly 80% of the studied phosphorylated peptides could
indeed generate memory T cells from monocytes of healthy
donors demonstrating their antigenic properties (Mahoney
et al., 2021). In the case of phosphorylation, modified
peptides that can induce a T‐cell response in healthy donors
are promising immunotherapeutic targets for treatment of
cancers and other diseases (Cobbold et al., 2013). Briefly
summarized, there are multiple examples in which MHC
I‐bound phosphorylated peptides are uniquely expressed on
malignant cells in breast cancer (Hunt et al., 2022), mela-
noma (Topalian et al., 2016), colorectal cancer (Hunt
et al., 2019), leukemia (Cobbold et al., 2013) and other
cancer types (Hunt et al., 2013; Mohammed
et al., 2008, 2017; Zarling et al., 2006). Notable are the
results of a recent preclinical trial utilizing two class I MHC
phosphopeptides to treat high‐risk melanomas (Engelhard
et al., 2020). While adverse effects in patients were minimal,
T‐cell responses were observed for one phosphopeptide in 5
out of 12 patients and 2 out of 12 for the second phos-
phopeptide, demonstrating the potential of specific protein
phosphorylation as a genuine target for T‐cell‐based
immune therapy.

In general, phosphopeptides comprise up to 1% of its
composition and approximately 3%–4% of all PTMs

within the immunopeptidome, underscoring that while
understudied they may provide valuable leads for
immune therapy development (Zarling et al., 2000).

4.3.2 | Citrullination in immunopeptidomics

In general, the detection of citrullinated peptides presents
a challenging task, primarily because of the subtle net
increase in the molecular mass of the peptide, amounting
to only 0.984016 Da. Peptides are not visible in a spectrum
as a single peak, but rather as an isotopic envelope. This
means that the selection of the wrong peaks in this en-
velope can result in a mass shift of + 1 Da, potentially
falsely identifying the peptide as being modified. To en-
sure accurate assignment of the modification, it is
imperative that the fragment ion MS/MS comprehensively
covers the citrullination site and that isotopic distribution
is taken into account (Hensen & Pruijn, 2014).

An analysis of C1R cell lines expressing HLA‐
A*01:01, HLA‐A*02:01, or HLA‐A*24:02 revealed that
approximately 1% of PTM peptides presented by each of
these prevalent MHC‐I allotypes were citrullinated (Mei
et al., 2020). Contrary to other PTMs, citrullination does
not change the structure of the peptide but instead
modifies the electrostatic potential of the side chain
(Sandalova et al., 2022). A study has demonstrated that
the citrullination of an MHC II peptide induces CD4+ T‐
cell response, while the amino acid sequence without the
PTM does not elicit this T‐cell response. This demon-
strates the potential of TCR‐interacting citrullinated
peptides (Ting et al., 2018).

In a study comparing HLA subtypes HLA‐B27:05 and
HLA‐B27:09, where the former is closely linked to anky-
losing spondylitis, it was revealed that peptide citrullina-
tion can markedly change the binding configuration of the
modified epitope (Beltrami et al., 2008). Crystallographic
studies reveal that both HLA subtypes only differ in resi-
due 116 within the peptide binding groove, yet they
present the modified self‐peptide in distinct formations
(Beltrami et al., 2008). These structural disparities lead to
varying responsiveness of CD8+ T cells restricted by HLA‐
B27, indicating that the introduction of citrullinated pep-
tides in presentation holds the capability to impact
immune reactions (Beltrami et al., 2008).

5 | DATA ANALYSIS IN
IMMUNOPEPTIDOMICS

As immunopeptidomics relies on the same technologies
as proteomics, most data analysis concepts are shared.
However, immunopeptidomics suffers from additional
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challenges. Both Menschaert et al. (2010) and Maes et al.
(2019) discussed several of these challenges in the field of
peptidomics from a bioinformatics point of view. In 2018,
Faridi et al. discussed several key challenges within im-
munopeptidomics (Faridi et al., 2018). Specifically, it
discusses the drawbacks of generalizing shotgun prote-
omics workflows in the field of immunopeptidomics and
suggests improvements.

Specific challenges in immunopeptidomics compli-
cate the data analysis in comparison with proteomics. As
mentioned previously, the absence of a specific cleavage
enzyme, less favorable ionization characteristics, and as a
result, less predictable fragmentation patterns all make
identifying immunopeptides more difficult compared to
tryptic peptides in a typical proteomics set‐up. The
absence of specific enzymatic cleavage is a substantial
challenge in immunopeptidomics. One of the key ele-
ments here is that the underlying proteolytic processes
are not completely known and complex since multiple
proteases and peptidases are involved making the out-
come of the protein processing unpredictable and may
vary among individuals. Furthermore, the biochemical
properties, precisely the length and sequence motif,
between immunopeptides are dissimilar and dependent
on the HLA genotype. This requires the algorithm to be
able to perform searches with nonspecific enzymatic
cleavage when relying on reference sequences or spectra,
for example, database search engines or spectral library
searching. Nonspecific cleavage of databases, either
spectral or regular databases, generates a larger variety of
peptides in comparison to specific enzymatic cleavage.
This results in a larger pool of potential peptide
sequences that must be considered during the database
search. This larger search space has three major conse-
quences. Firstly, the increased database size increases the
computational complexity. Secondly, the peptide frag-
ments resulting from a nonspecific cleavage may match
multiple proteins in the database. This ambiguity makes
it challenging to confidently assign a peptide to a specific
protein, leading to a higher probability of incorrect
identifications. Lastly, the larger search space increases
the likelihood of finding peptide‐spectrum matches by
chance, leading to a higher number of false positive
identifications. In addition, the search space in im-
munopeptidomics is frequently extended beyond the
canonical human proteome, by incorporating somatic
mutations (Tretter et al., 2023), pathogen genomes
(Leddy et al., 2021), novel or unannotated open reading
frames (Guilloy et al., 2023; Ouspenskaia et al., 2022),
and PTMs (Kacen et al., 2022). In addition, especially for
MHC‐I, the relatively short length of the peptides (8–12
amino acids) can make the identification even more
difficult. The analysis of short peptides is cumbersome

due to several hindrances. Short peptides have a wide
range of polarity, and very hydrophilic peptides may be
lost during the initial chromatographic separation. When
looking towards the bioinformatics perspective of short
peptides, different issues arise. Typical search engines are
limited towards detecting peptides of a certain length.
Shorter peptides usually acquire lower search engine
scores, and different short peptides can be isobaric.
Lastly, short peptides have a harder time becoming at
least doubly charged. This reduces the information
obtained by MS/MS experiments as noise is increased
and fragmentation of the backbone is reduced (Piovesana
et al., 2019).

5.1 | Bioinformatic challenges in the
identification of PTMs

In the identification of modified peptides, researchers
typically have two options. They can either specify a
predetermined list of potentially occurring PTMs in a
closed search or perform an open modification search.
During a closed search, a narrow precursor mass window
is used to select candidate peptides to compare the ex-
perimental spectrum against. Only the specified PTMs
will be considered, leaving any unspecified PTMs
undetected. As each PTM that is added will increase the
search space drastically, usually only a handful of PTMs
are considered during a closed search. However, an open
modification search approach allows unbiased detection
of any PTM. During open modification searching, a wide
precursor mass window is used, allowing the matching of
a spectrum from a modified peptide to its unmodified
counterpart in the database. Consequently, a mass shift,
wherein the identified peptide‐spectrum match (PSM)
deviates in mass from the precursor ion, can be observed.
These mass shifts are often attributable only to a single
known PTM or, in some cases, a combination of PTMs,
neutral losses, or chemical modifications. While an open
search enables the handling of numerous unidentified
PTMs, in immunopeptidomics, it is encumbered by two
main challenges. First, the search space expands signifi-
cantly, resulting in longer search times. Second, the
search outcomes are prone to errors, often stemming
from the misidentification of peptide sequences and the
mis‐localization of PTM sites, necessitating additional
postprocessing steps or manual validation of the results
compared to a conventional closed search approach.
Recently, new tools have been emerging to resolve some
of the main challenges in open modification searching
such as reducing the search time, and the identification
of localization of PTMs (An et al., 2019; Avtonomov
et al., 2019; Han et al., 2011).
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Not only is the presence of many PTMs challenging,
but the nature of these PTMs can also make their
detection difficult. Modified peptides are usually less
abundant, making identification more challenging than
their unmodified counterpart, especially in complex
samples, where acquiring high‐quality spectra is difficult.
While easily overlooked, each PTM may also impose
different challenges. Take some of the previously men-
tioned PTMs as an example. Deamidation and Ci-
trullination cause a mass shift of 0.9840 Da, roughly
corresponding to the mass of a single hydrogen atom
(1.0078 Da). The minor mass shift of approximately
1 Da between the deamidated peptide and unmodified
counterpart causes the deamidated peptide to overlap
with the isotopic pattern of the unmodified peptide.
Without employing proper separation techniques, dis-
tinguishing between the deamidated and unmodified
peptides can be highly challenging (Badgett et al., 2017).
Phosphorylation is a labile PTM, especially in the
case of phosphothreonine and phosphoserine. These
modified amino acids are prone to spontaneous
dephosphorylation, causing a mass shift of −80 Da,
making it troublesome to localize the modification. Gly-
cosylation is also a challenging PTM to analyze because
of the variability in the attached polysaccharides. Adding
to this challenge is that glycosylation is often a set of
modifications in a peptide with a high heterogeneity,
resulting in not a single mass shift being associated with
glycosylation, but rather a broad distribution. Also, the
glycans are high molecular weight modifications,
potentially shifting the molecular weight of the peptide
out of the detection region of the MS. Lastly, conven-
tional fragmentation of glycosylated peptides results into
fragmentation of the glycan, yielding a spectrum con-
taining information about the nature of the modification
instead of the peptide sequence or the location of the
modification. This can be circumvented through frag-
mentation by electron‐capture dissociation. A popular
approach to detect glycosylation in peptides is by re-
moving the polysaccharides from the peptide and ana-
lyzing both separately (Mann & Jensen, 2003). Recently,
a deep learning framework, called DeepGlyco, was de-
veloped. DeepGlyco is capable of predicting fragment
spectra of glycopeptides. Leveraging these predictions
makes it possible to create spectral libraries for proces-
sing steps (Yang & Fang, 2024).

A final bioinformatic challenge regarding PTMs is the
localization of the modification within the peptide.
Localization is a crucial aspect of MS‐based proteomics in
general to properly understand the protein function and
regulation. In immunopeptidomics, this is of even greater
importance given the relevance of immunopeptides and
their localization of the modification in terms of T‐cell

recognition and MHC binding affinity. While many
search engines can identify modified peptides, only a few
algorithms have incorporated score statistics for modifi-
cation site localization. In the following sections, we will
mention spectrum search engines suited to address these
issues. Additionally, there are also various postprocessors
available for PTM localization such as A‐score
(Beausoleil et al., 2006), phosphoRS (Taus et al., 2011),
and DeepFLR (Zong et al., 2023). Notably, phosphoRS
and DeepFLR are specifically designed for localization of
phosphorylated residues.

5.2 | Overview of the data analysis
workflow

Figure 4 presents a general workflow for analyzing mass
spectrometry data. In this discussion, we will provide
detailed insights into the data analysis aspects, specifi-
cally focusing on nonspecific enzymatic digestion and
open modifications searching. We will begin by exploring
various peptide identification methods and then examine
the potential benefits of preprocessing steps, such as
spectral clustering and proteogenomics. Finally, we will
delve into rescoring as a post‐processing technique.

5.2.1 | Peptide identification

There are a multitude of strategies available to identify
peptides, each having their advantages and dis-
advantages. They can be classified into three large cate-
gories: Sequence database search algorithms, spectral
library search algorithms and de novo search algorithms.
The choice of identification algorithm can influence the
identification of immunopeptides. A benchmarking
study by Parker et al. benchmarked multiple search en-
gines, finding varying sensitivities and reproducibility
between the different search engines (Parker, Tailor,
et al., 2021). Another benchmark study by Shahbazy et al.
found an increased coverage using DIA instead of DDA
and varying coverage and reproducibility between vari-
ous spectral library‐based DIA tools. They concluded that
a consensus approach yielded the highest confidence in
identifications (Shahbazy et al., 2023). Different algo-
rithms are discussed more in depth with their advantages
regarding open modification searching and identify-
ing PTMs.

Sequence database search algorithms
Database searching remains the most popular peptide
identification method. Database search algorithms com-
pare the experimental spectrum against a theoretical
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fragmentation spectrum generated from candidate pep-
tides in a database. When performing a database search,
there is the option for traditional database search en-
gines, who match the masses obtained from the spectrum
to the theoretical masses of the database or matching the
observed fragment ions to the theoretical fragment ions
of the database. Another method is leveraging sequence
tag‐based approaches, which use short sequences of
amino‐acids, called tags, to identify a spectrum. There
are also hybrid approaches available who combine both
traditional and sequence tag‐based strategies for peptide
identification. The appropriate database can be chosen
based on the topic of the research question at hand.
Several popular sequence database search algorithms are
shown in Table 1.

Regarding user‐friendliness and accessibility, neither
PROMISE nor PRiSM offers a web‐based version or GUI
for their software. Even though both algorithms are very
well suited for the immunopeptidomics setting concern-
ing open modification searching and nonenzymatic
cleavage enzymes, accessibility is essential for most end‐
users. Both algorithms are easily usable when the user
has little coding experience and, therefore, is still note-
worthy. PROMISE was built upon the MSFragger data-
base search engine and has shown promising results in
identifying modified HLA‐1 peptides. Since the devel-
opers of MSFragger developed PROMISE, it may still be
incorporated in the Fragpipe GUI, making it very suit-
able for immunopeptidomics research. On the other
hand, MASCOT, Spectrum Mill, and Ionbot offer cloud
computing possibilities through their web applications,

which is advantageous for researchers who lack the
necessary computational power for large, exhaustive
database searches.

MASCOT, SEQUEST, X!Tandem, and Ionbot do not
allow for nonspecific enzymatic digestion of the theo-
retical database, which will interfere with identifying
nontryptic immunopeptides. Regarding the open modi-
fication searching, MASCOT, SEQUEST, X!Tandem, MS‐
GF+, Spectrum Mill, and Andromeda only allow for a
limited set of possible modifications, leading to possible
missed identifications of unknown modified peptides.
Hence, taking both the absence of a specific cleavage
enzyme and the large number of modifications in im-
munopeptides into account, usage of these algorithms
will be disadvantageous, leading to a reduced number of
identifications. Of course, this still depends on the
research question at hand. MetaMorpheus, MSFragger,
PROMISE, SAGE, Open‐pFind, and PRiSM will be more
suitable for the challenges in immunopeptidomics
research.

There are still other influential parameters when
considering the ideal database search tool. Novel
research has shown that TimsTOF data has an edge over
Orbitrap data for immunopeptidomics experiments due
to increased sensitivity and speed (Hoenisch Gravel
et al., 2023). Hence, compatibility with TimsTOF data is
advantageous. To our knowledge, Spectrum Mill,
Andromeda, and MSFragger are the only algorithms
geared towards TimsTOF data. When the research is
focused on the localization of PTMs, MSFragger with
PTM‐Shepherd (Han et al., 2011), MetaMorpheus with

FIGURE 4 A general description of an immunopeptidomics workflow. The preprocessing, peptide identification, and postprocessing
steps show potential methods of analyzing the highly complex nature of immunopeptidomics data. While some of these aspects have not yet
been commonly applied, their potential will be discussed with respect to immunopeptidomics and open modification searching. Created
with BioRender.com. [Color figure can be viewed at wileyonlinelibrary.com]
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G‐PTM‐D (Li et al., 2017), Andromeda, Mascot, and
Spectrum Mill, are all valid options with separate PTM
localization scores. Lastly, given the increased number of
identifications in immunopeptidomics through lever-
aging DIA approaches, Fragpipe and MSFragger offer the
availability to identify spectra from DIA using DIA‐
Umpire (Tsou et al., 2015).

As a concluding remark regarding database search
engines, the Fragpipe GUI currently offers the most
complete framework for identifying immunopeptides
and is under continuous development to tune in to the
most recent changes within the field. Other algorithms
are also very suitable and have already been applied
within the field, and therefore, mention worthy.

Spectral library search algorithms
Spectral library search engines identify experimental
spectra by comparing these spectra to spectral libraries.
These spectral libraries are often constructed from pre-
viously identified experimental spectra. Spectral libraries
can also be generated using spectral library searching
algorithms or stand‐alone tools such as MS2PIP
(Degroeve & Martens, 2013) or Prosit (Gessulat
et al., 2019). A recent publication by Cox J. discusses the
prediction of spectral libraries with machine and deep
learning applications (Cox, 2023). The advantage of
spectral libraries is that they also contain information
about the intensities of fragment ions and contain data
from noncanonical peptide fragment ions. Spectral li-
braries are available from the National Institute of
Standards and Technology (NIST), PRIDE repository
(Perez‐Riverol et al., 2022), MassIVE‐KB (Wang
et al., 2018), and SysteMHC (Shao et al., 2018). For a long
time, spectral library searching was the only way of
identifying spectra acquired through DIA. Nowadays,
DIA‐Umpire allows for the analysis of DIA data with
tools specifically designed for DDA data (Tsou
et al., 2015). Spectral library searching in proteomics is
reviewed by Griss (2016) and Shao and Lam (2017).
Table 2 summarizes spectral library search algorithms
usable in immunopeptidomics.

Spectral library search algorithms have yet to find
their application in the field of immunopeptidomics.
They are less popular in comparison to database search
algorithms. Their usefulness has been observed in pro-
teomics, especially for DIA experiments, and it may be
worthwhile to investigate their usefulness in im-
munopeptidomics. SpectraST and Scribe provide a simple
GUI to perform rapid spectral library searches. While
ANN‐SoLo does not have a GUI available, it does provide
a step‐by‐step guide to use ANN‐SoLo in Python. The
flexibility of spectral library search engines to perform
open modification searches and nonspecific enzymatic T
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digestion is suitable for the immunopeptidomics scene.
Scribe is limited towards open modification searching
concerning the dependency of the presence of the mod-
ifications in the spectral library.

Each of the aforementioned algorithms is novel and
actively maintained. A proper benchmark study em-
ploying spectral library search algorithms with im-
munopeptidomics data would be required to advise on
the usage of these algorithms.

De novo search algorithms
Given that numerous immunopeptides stem from
low‐abundance RNA expression, the necessity for
transcriptomic‐independent data in neoantigen discovery
becomes evident. A potential solution to identify non-
canonical immunopeptides without expanding the data-
base with proteogenomics is De novo sequencing. De
novo sequencing, being a method independent of data-
bases, holds relevance for immunopeptidomics. Unlike
database searching, it directly extracts sequence tags
from spectra, enabling the identification of non‐tryptic
and noncanonical peptides. MARS, a recently introduced
method for filtering de novo identified immunopeptides,
aids in preselecting those likely originating from non-
canonical sources (Liao et al., 2024). De novo sequencing
does suffer from several pitfalls, leading to a reduced
integration of de novo methods for peptide antigen dis-
covery. De novo sequencing algorithms require high‐
quality spectra to identify peptides correctly. In im-
munopeptidomics, this is challenging due to the nature

of immunopeptides. Because immunopeptides aren't di-
gested by a specific enzyme, the peptide fragmentation by
MS/MS is never fully “complete” and frequently lacks a
consecutive ion series for the nontryptic peptides. Gaps
in the fragment ion series allow alternative sequence
interpretation, resulting in identical probability scores for
isobaric amino‐acid combinations and sequence permu-
tations. Additionally, due to the lower abundance of
immunopeptides, the distinction between signal and
noise is more challenging. Lastly, de novo sequencing is
typically more computationally burdening than database
and spectral library search. Note that with the continu-
ous computational advancements, de novo methods have
become more viable. This has led to an increasing
number of novel algorithms being released over the past
few years. Muth et al. published a review of de novo
algorithms in proteomics in 2018 (Muth & Renard, 2018).
Table 3 shows several algorithms in immunopeptidomics
for open modification searching.

The proliferation of numerous de novo algorithms
makes selecting a sole optimal algorithm impossible.
Each algorithm demonstrates adequate performance in
its respective settings. Hence, we can only consider sev-
eral pivotal arguments when selecting a de novo algo-
rithm to analyse immunopeptidomics data. Pertinent to
user‐friendliness, PEAKS, Novor and PepNet offer a web
application for analysing immunopeptidomics data,
solving the computational burden of de novo methods.
Notably, pNovo offers a very intuitive GUI. Other algo-
rithms require little coding knowledge and Python to

TABLE 3 Comparative overview of de novo algorithms for immunopeptidomics.

Algorithm Principle
Open modification
search possible References

Accessibility (web
application/GUI)

PEAKS Reward/penalty scoring Yes Ma et al. (2003) Web application

Novor Fragmentation and residue
scoring

No Ma (2015) Web application

DeepNovo Neural network No Tran et al. (2017) Neither

pNovo 3 Support Vector Machine Yes Yang et al. (2019) GUI

TagGraph Hybrid Yes Devabhaktuni et al. (2019) Neither

SMSNet Neural network No Karunratanakul
et al. (2019)

Neither

Casanovo Neural networks Yes Yilmaz et al. (2022) Neither

InstaNovo Neural network No Kevin Eloff et al. (2024) Neither

GraphNovo Graph neural networks No Mao et al. (2023) Neither

PepNet Neural network No Liu et al. (2023) Web application

ContraNovo Neural Network No Jin et al. (2023) Neither
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implement them. For the methods based on a neural
network, decent hardware with sufficient memory is
needed to run the models, as the developers have men-
tioned memory‐related challenges.

Despite the performance adequacy demonstrated
on immunopeptidomics data validation, DeepNovo,
SMSNet, and GraphNovo are not suited for true open
searches with open modification searches, making them
unfit for the challenges within immunopeptidomics.
Conversely, Novor, InstaNovo, PepNet, and ContraNovo
permit nonenzymatic digestion but impose restrictions
on the number of allowed or possible modifications
within their models. Lastly, PEAKS, pNovo, TagGraph,
and Casanovo allow for true open searches, positioning
them potentially as optimal models for identifying
immunopeptides.

Presently, several de novo algorithms combine their
sequencing results with database searches to enhance
accuracy and sensitivity, technically making them hybrid
methods, such as PEAKS DB (Zhang et al., 2012), Novor,
DeepNovo, TagGraph, and SMSNet. Considerations such
as the localization of PTMs may also be an influential
factor, a service offered by PEAKS through PEAKS PTM
(Han et al., 2011), pNovo, and TagGraph. Moreover, the
capability to deal with DIA data is pertinent, achievable
within PEAKS, DeepNovo, Casanovo, GraphNovo, and
PepNet.

While individual assessments of each algorithm may
invariably depict it as the superior performer, this review
paper acknowledges the subjectivity inherent in such
claims. An independent benchmarking study, such as
that conducted by Beslic et al. (2023), remains integral
for a fair and impartial evaluation. They compared No-
vor, pNovo 3, DeepNovo, SMSNet, PointNovo, and Ca-
sanovo on three datasets. It is still available through
different pipelines. Their findings indicated that Casa-
novo performed the best.

In summation, each de novo algorithm enumerated
herein demonstrates commendable performance, as only
validated options are referenced. Our first recommen-
dation is PEAKS, as they offer the most complete service.
They continuously develop their framework further to
address issues and offer cloud computing. However, the
caveat lies in the commercial nature of PEAKS. Alter-
natives such as Casanovo and TagGraph, tailored to the
unique requirements of immunopeptidomics, present
valid choices, boasting commendable performance.

5.2.2 | Processing steps in MS data analysis

While the identification method is crucial in identify-
ing the peptides, other factors may influence the

number of peptides identified and control for valid
identifications. Several concepts are discussed con-
cerning immunopeptidomics.

Spectral clustering
The potential of applying spectral clustering to im-
munopeptidomics data is discussed as a preprocessing
step for immunopeptidomics. Spectral clustering algo-
rithms group spectra based on their similar peak patterns
and generate consensus spectra for each cluster. It as-
sumes that all spectra within a cluster belong to the same
peptide in the case of immunopeptidomics. A wide
variety of spectral clustering algorithms are available
such as Bonanza (Falkner et al., 2008), MS‐Cluster
(Frank et al., 2011), PRIDE Cluster (Griss et al., 2013),
Spectra‐cluster (Griss et al., 2016), MaRaCluster (The &
Käll, 2016), msCRUSH (Wang et al., 2019), Falcon
(Bittremieux et al., 2021), and GLEAMS (Bittremieux
et al., 2022). The algorithms differ due to distinctions in
their preprocessing of the spectra, clustering algorithms,
and similarity metrics.

While spectral clustering has yet to find an applica-
tion in the field of immunopeptidomics, primarily due to
typically relatively long computation times, the concept
has sparked a lot of interest. In the initial article on the
Bonanza algorithm, Falkner et al. detected more PTMs,
expected and unexpected, and amino‐acid substitutions
when using spectral clustering. One year later, in 2009,
this was confirmed in a standalone study by Menschaert
et al. using the Bonanza algorithm specifically on pepti-
dome data (Menschaert et al., 2009). Spectra‐cluster,
msCRUSH, and GLEAMS had similar findings in their
papers. Luo et al. performed a benchmark study in 2022
using MaRaCluster and spectra‐cluster on various public
data sets. They evaluated multiple consensus spectrum
generation methods to find the most optimal methodol-
ogy to increase the number of peptide identifications.
Among the data used in the research, a phosphorylated
data set was also used, showing adequate results in
clustering phosphorylated peptides (Luo et al., 2022).
With a vision towards identifying more of the im-
munopeptidome, spectral clustering is an exciting tool
for identifying more immunopeptides.

Proteogenomics
A compelling concept within immunopeptidomics that
holds promise for improving the detection of im-
munopeptides is proteogenomics. Despite the advance-
ments made by MS‐based immunopeptidomics in iden-
tifying these peptides, it is widely acknowledged that a
significant number of immunopeptides still elude
recognition. As previously mentioned, spectra originating
from unknown immunopeptides, mutations, and PTMs
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continue to pose identification challenges when relying
on databases. The term “dark proteome” is frequently
invoked in the literature to describe these proteomics
hurdles. Utilizing proteogenomics emerges as a poten-
tially convenient solution to address and overcome these
persistent challenges.

Proteogenomics is a concept from proteomics where
one enriches the database used for search algorithms
using genomics, transcriptomics, or translatomics (ribo-
seq) data. Coding the nucleotide sequences into amino‐
acid sequences combined with variant calling can add
noncanonical sequences and mutations to the database.
This generates a personalized database adjusted to the
research question or sample. Using an annotated data-
base will allow for the identification of mutations such as
single nucleotide polymorphisms and single amino‐acid
polymorphisms. Recently, these approaches have ex-
panded to the identification of unannotated open reading
frames (ORFs), or out‐of‐frame translated sequences,
which present potential for the development for im-
munotherapies. Within the MaxQuant GUI, there is a
dedicated option to incorporate whole exome sequencing
data into the database. MaxQuant utilizes this sequenc-
ing information for the purpose of mutation calling.
Subsequently, the database enriched with this data can
be explored using the previously outlined algorithms.
Proteogenomics offers the potential to discern personal-
ized immunopeptides, frequently of interest in the con-
text of tumor‐specific immunopeptides. An example of a
proteogenomics workflow is explained by Scull et al.
(2021). They enriched a database using transcriptomics
data followed by a search using PEAKS and PEAKS DB
(Ma et al., 2003; Xin et al., 2022). The use of proteoge-
nomics resulted in more identifications, including non-
canonical HLA peptides. Similar results were obtained
using the MaxQuant workflow (Chong et al., 2020;
Kalaora et al., 2016), MASCOT combined with PEAKS
(Attig et al., 2019; Ternette et al., 2016), and MaxQuant
combined with PEAKS (Qi et al., 2021). For a more in‐
depth discussion on proteogenomics, we refer to the
article of Chong et al. (2022). Chong et al. cover different
strategies and articles which apply proteogenomics
within immunopeptidomics.

It is crucial to highlight that incorporating proteoge-
nomic data into a database for a target‐decoy search
strategy significantly expands the search space. This ex-
pansion, in turn, leads to an elevated false discovery rate
(FDR), rendering the approach impractical. The chal-
lenges associated with FDR have been extensively
deliberated, and for a more in‐depth exploration, we
recommend referring to the publication cited (Aggarwal
et al., 2022).

However, an effective solution has been demon-
strated in reducing the search space. By employing a
filtering mechanism that prioritizes immunopeptides,
researchers can circumvent the complications arising
from the enlarged search space. This strategic reduction
not only mitigates the issues related to FDR but also
enhances the practicality and efficiency of the method-
ology (Scull et al., 2021).

Rescoring
Rescoring is a widely adopted practice in im-
munopeptidomics and proteomics overall. The extensive
search spaces resulting from nontryptic immunopep-
tides, PTMs, and the inclusion of noncanonical
sequences pose challenges for traditional target‐decoy
approaches, leading to adverse effects in accurately esti-
mating the FDR. Rescoring tools aim to circumvent this
problem by taking the scores of identification algorithms
and rescoring them to improve the identification rate.
Some algorithms incorporate additional features such as
retention time or peak intensity predictions to enhance
the identification rate. Each rescoring tool takes a dif-
ferent approach and requires specific output files of
search algorithms. For an extensive review on rescoring
within immunopeptidomics, we refer the readers to the
review paper of Adams et al. (2023). Table 4 shows sev-
eral popular rescoring algorithms.

Percolator is the most used rescoring algorithm. It has
been applied within immunopeptidomics with the
MASCOT, MS‐GF+, and COMET database search algo-
rithms, although it can take input from various com-
monly used algorithms. PeptideProphet is another tra-
ditional rescoring algorithm available. Like Percolator, it
can perform rescoring for a wide range of database
search algorithms. Percolator and PeptideProphet are
integrated within the Fragpipe GUI to combine with
MSFragger. It must be noted that when performing an
open search for immunopeptides within Fragpipe, Per-
colator is used as the default rescoring algorithm. Prosit,
MS2Rescore, and MSBooster are novel tools. Prosit, relies
on Percolator to rescore and can only directly work with
the output from MaxQuant. However, with the release of
Oktoberfest, the tool supports the rescoring of results
from MSAmanda, Mascot, MSFRagger and Andromeda.
Wilhelm et al. recently evaluated the performance of
Prosit on MS‐based immunopeptidomics. Prosit
increased the identification of immunopeptides by sev-
enfold as compared to standard MaxQuant searches
(Wilhelm et al., 2021). MS2Rescore is a rescoring tool
combining output from several sources to enhance pep-
tide identifications. It uses peak intensity predictions
from MS2PIP (Degroeve & Martens, 2013), retention time
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prediction from DeepLC (Bouwmeester et al., 2021), and
rescoring from Percolator (Käll et al., 2007) to strengthen
identifications. The developers specifically evaluated the
tool on immunopeptidomics data. MSBooster is a novel
tool taking a similar approach to MS²Rescore in the sense
that it combines information and predictions from vari-
ous sources. MSBooster can incorporate information
from the LC retention time and ion mobility when using
a timsTOF instrument, for example, and peak intensities
combined with Percolator rescoring. This information is
processed using neural networks to perform a final re-
scoring. MSBooster is integrated within the Fragpipe GUI
to work properly with MSFragger and Percolator. In the
release paper of MSBooster, the algorithm was specifi-
cally evaluated on immunopeptidomics data. When per-
forming open searches for immunopeptides within
Fragpipe, MSBooster is automatically enabled. Lastly,
AlphaPeptDeep is a novel Python framework to construct
deep learning applications within proteomics easily. It
also contains pre‐trained models to predict retention
times, MS2 intensities, and collisional cross sections for
peptides with and without PTMs. AlphaPeptDeep can
use all this information to perform rescoring using Per-
colator and was shown to perform equally well as exist-
ing tools on immunopeptides. INFERYS is a tool for
intensity‐based rescoring of Sequest results. Using this
tool, they claim to increase the number of identified
peptides by 50% (Zolg et al., 2021).

Researchers should be aware of the challenges posed
by PTMs for traditional search engines in controlling the
FDR. As mentioned before, searching for PTMs leads to
an expansion of the search space, resulting in computa-
tional and statistical challenges. Conventional search
engines struggle with handling the sheer number of
possible candidates and differentiating between PTMs

with similar mass shifts. Additionally, by expanding the
search space, the probability of acquiring random mat-
ches between a spectrum and theoretical spectra of (un)
modified spectra increases. This poses challenges for
statistical frameworks to properly control the FDR. In the
article of PROMISE, a subgroup FDR was used. The
identifications were split into three groups: unmodified,
standard search modification types (N‐acetylation and
methionine oxidation) and the other modification types,
making it possible to control the FDR more stringently
(Kacen et al., 2022).

A final point for discussion concerning rescoring is
within the specific setting of open modification search-
ing. Traditional methods, leveraging target‐decoy ap-
proaches, typically require well‐defined targets to dis-
tinguish between true and false positives properly.
A second issue is that target‐decoy approaches often have
one major assumption: homogeneity of the data. To
elaborate on the issue, the target‐decoy method consists
of targets, real peptides, and decoys, artificial data
designed to mimic the characteristics of targets. With
homogenous data, it is easier to define these categories.
In open searches, there is no predefined target in mind. A
wide precursor mass tolerance is set to allow for various
potential PTMs. The lack of a predefined target makes
designing good decoys difficult. Hence, the homogeneity
assumption of target‐decoy approaches typically fails
here as it is harder to distinguish real targets from false
positives, leading to an increased FDR. Rescoring does
not solve this issue, as heterogeneity is also problematic
for rescoring algorithms. While various methods have
been explored, for example, the group‐walk method of
Freestone et al., much improvement is still possible as
future research (Freestone et al., 2022). Additionally, it's
important to recognize that the majority of identified

TABLE 4 An overview of various rescoring algorithms and their principles.

Algorithm Principle References References in immunopeptidomics

Percolator Support vector machine Käll et al. (2007) Bichmann et al. (2019); Mishto
et al. (2022)

PeptideProphet Discriminant function and Bayes
Theorem

Keller et al. (2002) Kacen et al. (2022)

Prosit/Oktoberfest Neural Network Gessulat et al. (2019); Picciani
et al. (2023)

Wilhelm et al. (2021)

MS2Rescore Decision trees Declercq et al. (2022) Declercq et al. (2022)

MSBooster Neural Network Yang et al. (2023) Yang et al. (2023)

AlphaPeptDeep Neural Network Zeng et al. (2022) Zeng et al. (2022)

INFERYS Neural Network Zolg et al. (2021) Zolg et al. (2021)

Note: Each of these algorithms have been used within the immunopeptidomics setting, with references included.
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PTMs in open modification searching may not receive
sufficient support from existing prediction algorithms. To
address this challenge, new approaches like transfer
learning (Wilburn et al., 2023) and innovative algorithms
capable of predicting properties for previously
unexplored PTMs have been introduced (Bouwmeester
et al., 2021; Zeng et al., 2022).

6 | CONCLUSION

Immunopeptidomics stands at the forefront of rapid
development, offering immense potential for therapeutic
applications and addressing fundamental biological
inquiries. Given their unparalleled potential, the primary
emphasis within this dynamic research field is the pur-
suit of neoantigens. Despite this focus, numerous chal-
lenges still warrant careful consideration. A pivotal ave-
nue for further exploration lies in expanding the scope of
research to encompass immunopeptides‐bearing PTMs.
Several PTMs have successfully been identified on im-
munopeptides, with a subset already advancing into
clinical phases as targets in T‐cell therapy. Research ef-
forts have demonstrated the remarkable capability of
T‐cells to recognize PTMs on immunopeptides, some-
times serving as the impetus for recognition. The ex-
pansion toward PTMs holds promise for uncovering new
targets and forging novel avenues in the development of
treatments for cancer and other diseases. However, the
identification and localization of PTMs pose formidable
experimental and computational challenges, a task
already demanding in the realm of proteomics and fur-
ther compounded in the intricate landscape of im-
munopeptidomics. While substantial progress has been
achieved in the field of immunopeptidomics, the journey
is far from over. The evolving landscape presents exciting
prospects for future research, and it is with anticipation
that we await the unfolding possibilities that lie ahead in
this dynamic realm.
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