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Background: Despite endurance athletes recording their training data electronically, researchers in sports cardiology rely on
questionnaires to quantify training load. This is due to the complexity of quantifying large numbers of training files. We aimed
to develop a semiautomatic postprocessing tool to quantify training load in clinical studies.Methods:Training datawere collected from
two prospective athlete’s heart studies (Master Athlete’s Heart study and Prospective Athlete Heart study). Using in-house developed
software,maximal heart rate (MaxHR) and training loadwere calculated from heart ratemonitored during cumulative training sessions.
The MaxHR in the lab was compared with the MaxHR in the field. Lucia training impulse score, based on individually based exercise
intensity zones, and Edwards training impulse, based on MaxHR in the field, were compared. A questionnaire was used to determine
the number of training sessions and training hours per week.Results: Forty-three athletes recorded their training sessions using a chest-
worn heart rate monitor and were selected for this analysis. MaxHR in the lab was significantly lower compared with MaxHR in the
field (183 ± 12 bpm vs. 188 ± 13 bpm, p < .01), but correlated strongly (r = .81, p < .01) with acceptable limits of agreement
(±15.4 bpm). An excellent correlation was found between Lucia training impulse score and Edwards training impulse (r = .92,
p < .0001). The quantified number of training sessions and training hours did not correlate with the number of training sessions (r = .20)
and training hours (r = −.12) reported by questionnaires.Conclusion: Semiautomaticmeasurement of training load is feasible in awide
age group. Standard exercise questionnaires are insufficiently accurate in comparison to objective training load quantification.
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Despite the widespread use of heart rate (HR) monitors to
precisely quantify external and internal training load (TL), studies in
sports cardiology have consistently relied on questionnaires to
assess TL. These questionnaires are known to be less valid and

reliable to evaluate long-term TL as individuals fail to recall the
amount, type, and intensity of physical activity and have the
tendency to over- or underreport activities (Helmerhorst et al.,
2012; Tran et al., 2020; van Poppel et al., 2010). The limited use
of activity trackers in sports cardiology studies is probably due to the
challenges associated with data analysis and quantification. Explor-
ing the relationship between exercise TL and the development of
clinical symptoms not only requires precise evaluation of symptoms
but also the accurate, valid, and reproducible determination of
accumulated TL over a given period (van Erp et al., 2020). To
date, convenient software to analyze tracking data in a standardized
and (semi-)automated manner for the purpose of large epidemiologi-
cal studies is either unavailable or lacks adequate validation.

TL quantification methods that integrate individual physio-
logical responses, such as the Lucia or Edwards training impulse
(LuTRIMP or eTRIMP), yield the strongest dose–response rela-
tionships between TL and changes in performance (Sanders et al.,
2017). However, these methods are impractical to use in large
samples of athletic populations because calculation of the indices
requires the determination of lactate thresholds (LuTRIMP) or
maximal HR (MaxHR; eTRIMP) by means of a maximal incre-
mental exercise test (Sanders et al., 2017). Hence, software allow-
ing for automated calculation of MaxHR from wearables could
facilitate accurate calculation of TL based on eTRIMP in the
context of epidemiological studies (Cardinale & Varley, 2017).

The primary objective of this study was to develop a semi-
automated tool to quantify MaxHR and TL using electronically
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tracked training data. We evaluated the agreement betweenMaxHR
calculated from wearables compared with MaxHR from exercise
testing. Furthermore, we compared TL quantification based on HR
monitoring during exercise (eTRIMP), with a method that integrates
individual physiological responses (i.e., lactate thresholds) from
maximal incremental exercise testing (i.e., LuTRIMP). Finally,
given the widespread use of questionnaires in the field of sports
cardiology, we compared measured TL with reported TL obtained
by questionnaires.

Methods

Study Participants

Training data were collected from two international multicenter
studies: the Prospective Athlete Heart study (Pro@Heart) and the
Master Athlete’s Heart study (Master@Heart; de Bosscher, Dausin,
et al., 2022; de Bosscher et al., 2021). Pro@Heart is a prospective
study in which young male and female endurance athletes (cycling,
distance running [≥1,500 m], duathlon, triathlon, rowing, swimming
[≥400 m], or cross-country skiing) competing at national or interna-
tional level are recruited at a starting age between 16 and 23 years,
with the aim to characterize cardiac remodeling during 20 years of
follow-up (de Bosscher, Dausin, et al., 2022). Master@Heart is a
cohort study including middle-aged men between 45 and 70 years
participating in endurance sports, aiming to assess the impact of
endurance sport on cardiac and vascular function (de Bosscher et al.,
2021). For the current study, we included male athletes in whom
≥1 year of training data were available, of which at least 100 training
sessions included HR monitoring. A list of supported devices is
presented in Supplementary Material S1 (available online). At a
minimum, 80% of the training data should have been registered via
a chest-worn HR monitor. All participants gave written informed
consent. The studies were approved by the ethics committee
research of University Hospitals Leuven (S57241 and S61336).

Aerobic Power Assessment and Lab MaxHR

All participants underwent an incremental cardiopulmonary exercise
test on a cycle ergometer to assess peak oxygen consumption,
including a 12-lead electrocardiogram (Avantronic Cylcus2, or Lode
Excalibur Sport, LodeBVMedical Technology; de Bosscher, Dausin,
et al., 2022; de Bosscher et al., 2021). The initial workload was set at
30 W or 60 W and increased by 30 W per minute until exhaustion.

Respiratory gas exchange was analyzed using a breath-by-breath
open-circuit ergospirometry system. Peak oxygen consumption was
determined as the highest mean oxygen consumption measured over
30 s (CORTEX MetaLyzer IIIB R2, or Vyntus CPX, CareFusion).
MaxHR was determined as the highest HR registered during a 5-s
interval at the end of the test and was used for further analyses
(Lab MaxHR).

Aerobic and Anaerobic Threshold Test

In a selection of participants, an additional incremental exercise test
was performed to determine both the aerobic and anaerobic
threshold using lactate measures. During all tests, the subject’s
HR was monitored continuously using a chest strap HR monitor.
The protocols are explained in detail in Supplementary Material S2
(available online).

Data Extraction and Analysis

All individual training data were uploaded and stored on an
electronic data recording platform (Training Peaks, Peaksware).
Raw data files (FIT, GPX, or TCX format) were exported and
pseudonymized. An in-house developed code in R was used for the
postprocessing of the files (Supplementary Material S3 [available
online]). This code is open source and is publicly accessible at
https://github.com/sruizcarmona/trainingpeaks.

All files were screened for duplicates and possible erroneous
data. Duplicated sessions were filtered out based on their unique
identification, the starting time, and the distance covered. Files with
unsupported formats (PWX and SRM), corrupted files, or activities
shorter than 1 min were discarded. Files were excluded if the
following errors were found: average speed >65 km/hr, missing
date of the activity, missing identification of the activity, and
unclear type of sport (Table 1). Activities with at least 50%
adequate HR measurements were used for further analysis. Satis-
factory activity files were processed using a two-step approach to
avoid noise and artifacts that could lead to inaccurate outliers. First,
the initial and the last 10 s of each session were removed to prevent
GPS and other sensor pairing errors. This exclusion window was
automatically extended by another 10 s if the HR on the first 20 s
was >180 bpm, likely due to artifacts upon starting the training.
Second, the raw HR data were smoothed using a 10-s moving
average. Noise from speed data was eliminated using a 20-s
moving average. A longer time window was used for smoothing

Table 1 General Errors Found in the Activity Files Exported From Training Peaks

Total activities Definition Count

Total activities collected 17,304

Activity errors

Multiple sports/rows The activity contains multiple sports (triathlon or duathlon) within the same file 2

Short/no data Activity with no data or <60 s 356

Speed avg. too high Speed above 65 km/hr 3

Unknown Unknown error, impossible to process 157

Wrong year Years in the future 3

File errors

PWX format PWX format not compatible 242

Reading Corrupted file, can’t be opened 64

SRM format SRM format is not compatible 0
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speed data, because of higher variability than in the HR data. These
thresholds were defined in a pilot study in 21 athletes to avoid
bias, reduce data variability, and yet keep pertinent and valid
information on TL without impacting average values. The data
extracted per athlete and per training session are described in
Supplementary Material S4 (available online).

Automatic Determination of MaxHR and
Calculation of eTRIMP and LuTRIMP

The determination ofMaxHR is crucial for the calculation of TL. To
exclude the need to perform a maximal exercise test, we developed
an algorithm to extract MaxHR from HR registrations during
training (Tangent MaxHR). First, the kernel density estimate of the
MaxHR for all the training sessions of every athlete was computed.
The kernel density estimation is a smoothed linear version of a
histogram of the MaxHR reached during each training session
(Figure 1, black line). Next, the first derivative for the density
estimate curve was calculated to identify the peak value of the first
derivative of the curve, whereafter the tangent to the downward
slope of the curve was drawn to determine MaxHR (Figure 1, gray
line). We postulated that the intersection of the downward tangent
slope with the x-axis yields a valid estimation ofMaxHR. Because in
some cases the density plot resulted in two different peaks, and the
tangent method was prioritizing the highest one, to improve our
calculations, the number of activities with an HR above the esti-
mated MaxHR after the steepest downward slope intersection was
taken into account (Figure 1, Example 2). A mathematical function
was designed and optimized using a grid search machine learning
algorithm to optimize the cutting point and limit the number of
activities with an HR above the calculated MaxHR. This algorithm

was validated in 150 athletes and their expected MaxHR based on
the density plots. The best set of parameters of the grid search
machine learning algorithmwas chosen given theminimumpossible
error between the expected and calculated values.

For each athlete, we calculated the internal TL based on the total
time (in minutes) spent in predefined HR zones. These zones were
determined based on (a) percentages of their Tangent MaxHR
(eTRIMP) and (b) physiological thresholds obtained from an incre-
mental exercise test (LuTRIMP). Both methods have previously
been described in detail (Lucía et al., 2003; van Erp et al., 2020).
Detailed determination of eTRIMP and LuTRIMP is explained in
Supplementary Material S5 (available online).

Training Questionnaires

The 22 participants from the Master@Heart study were asked to
fill out a questionnaire on the type of sports, weekly training hours,
and level of competition (Supplementary Material S6 [available
online]; de Bosscher et al., 2021).

Statistics

Statistical analyses were performed using GraphPad Prism
(GraphPad Software). Data are presented as mean ± SD unless
otherwise specified. The estimated MaxHR by the tangent
method and the assessed MaxHR during cycle ergometry were
compared using Bland–Altman analyses. Pearson’s correlation
was calculated between eTRIMP, LuTRIMP, Lab MaxHR, and
Tangent MaxHR. Normality was ensured using the Shapiro–
Wilk test. Differences between both studies were evaluated using
Student’s t test or a Wilcoxon test as appropriate. Outliers were
screened using the robust regression and outlier removal tool in

Figure 1 — MaxHR density curve showing the tangent on the steepest downward tangent slope (gray line). The intersection with the baseline axis
is represented by the gray dotted line. Informative annotations, such as number of activities, type of heart rate monitor, and age are added to the plot.
MaxHR = maximal HR; HR = heart rate.
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GraphPad Prism (GraphPad Software; Motulsky & Brown, 2006)
One outlier, an endurance athlete of the Master@Heart trial with
an extreme TL, was identified and removed from the analyses.
Differences between Pro@Heart and Master@Heart athletes
were evaluated using unpaired Student’s t tests for continuous
variables and chi-square tests for categorical data. A two-tailed p
value <.05 was considered statistically significant.

Results

Demographics

Out of 152 athletes that provided their training data by the end of
December 2021, 43 met the inclusion criteria (Leuven n = 27,
Hasselt n = 9, and Australia n = 7) of which in 27 an incremental
exercise test including lactate measurements was available (see
flowchart in Supplementary Material S7 [available online]).

Twenty-one Pro@Heart male athletes (age 21 ± 4 years) and
22 male Master@Heart athletes (age 54 ± 5 years) were included.
The athletes were engaged in cycling, running, duathlon, and
triathlon. Participants recorded 10.2 ± 4.1 hr per week over
258.6 ± 87.4 sessions per year. The average number of recorded
training sessions was higher in Pro@Heart than Master@Heart
(6.0 ± 1.6 vs. 4.0 ± 1.0 sessions per week, p < .001, respectively;
Table 2). Similarly, Pro@Heart athletes trained more hours per
week than Master@Heart athletes (12.6 ± 4.3 hr per week vs.
7.9 ± 2.4; p < .001; Table 2). Peak oxygen consumption was
50.6 ± 6.5 ml·kg−1·min−1 in the Master@Heart athletes and
66 ± 5.9 ml·kg−1·min−1 in the Pro@Heart athletes (p < .0001).

Maximal Heart Rate

Lab MaxHR (183 ± 12 bpm) was lower compared with the
Tangent MaxHR estimated by the software (188 ± 13 bpm,
p < .0001; Figure 2b), irrespective of the study population (Pro@-
Heart 192 ± 9 bpm vs. 197 ± 6 bpm, p < .0001; Figure 2c; Mas-
ter@Heart 175 ± 9 bpm vs. 179 ± 12 bpm, p = .03; Figure 2d). The
mean bias was −5.1 bpm and limits of agreement 15 bpm
(Figure 2e). A strong correlation was found between both mea-
sures of MaxHR (r = .81, p < .05; Figure 2a). Two participants in

the Pro@Heart study showed unexpectedly lower Lab MaxHR
compared with Tangent MaxHR (Figure 2c, red triangles). Care-
ful examination of the source data from these athletes revealed
that maximal effort was achieved (respiratory exchange ratio >
1.1). As expected, Tangent MaxHR was higher in Pro@Heart
compared with Master@Heart (197 ± 6 bpm vs. 179 ± 12 bpm,
respectively; p < .0001).

Training Characteristics

In the subset of participants (n = 27) who underwent a maximal
incremental exercise test, LuTRIMP was 551 ± 163 AU and
eTRIMP 1254 ± 366 AU. LuTRIMP correlated strongly with
eTRIMP (r = .92, n = 27, p < .0001, Figure 3). TL determined by
eTRIMP was higher in Pro@Heart than in Master@Heart
(1788 ± 597 AU vs. 1190 ± 314 AU; p < .001, n = 43; Table 2).

The fraction of total training time spent in the five predefined
HR zones based on Tangent MaxHR was 19% ± 14% in Zone 1,
28% ± 8% in Zone 2, 31% ± 11% in Zone 3, 17% ± 8% in Zone 4,
and 4% ± 3% in Zone 5. There was no difference between the
groups for relative time spent in the predefined HR zones
(Supplementary Material S8 [available online]).

Data Collection Period

To evaluate the influence of the duration of the data collection
period, we calculated the weekly TL using eTRIMP for different
time windows (1, 3, 6, 9, and 12 months). Correlations with the 12-
month eTRIMP were .55, .78, .92, and .97 for the 1-, 3-, 6-, and 9-
month time windows, respectively (all correlations p < .0001).
Bland–Altman analyses revealed a bias of −92 AU, −9 AU,
53 AU, and 36 AU for 1-, 3-, 6-, and 9-month windows, respec-
tively (Supplementary Material S9 [available online]).

Questionnaires

In Master@Heart athletes (n = 22), quantitative TL assessment
derived from HR training logs was compared with the TL evalua-
tion as reported by standard exercise questionnaires at the time of
cardiac preparticipation evaluation (de Bosscher et al., 2021).

Table 2 General Characteristics of the Study Population

Variable Total Master@Heart Pro@Heart

Men, n (%) 43 (100) 22 (100) 21 (100)

Clinical data

Age (years) 38 ± 17 54 ± 5 21 ± 4*

Weight (kg) 72 ± 5.8 74.7 ± 5.7 69.7 ± 6.9*

Height (cm) 178 ± 6 179 ± 6 178 ± 5

VO2peak (ml·kg−1·min−1) 58.5 ± 10.0 50.6 ± 6.5 66 ± 5.9*

Training load by heart rate monitor

Recorded training sessions 259 ± 87 208 ± 51 313 ± 85*

Sessions per week 5.0 ± 1.7 4.0 ± 1.0 6.0 ± 1.6*

Hours per week 10.2 ± 4.1 7.9 ± 2.4 12.6 ± 4.3*

Recorded training sessions with chest heart rate (%) 97.9 ± 4.3 97.1 ± 5.1 98.2 ± 3.6

eTRIMP (AU) 1,481 ± 557 1,190 ± 314 1,788 ± 597*

Note. Data are mean ± SD. AU = arbitrary units; eTRIMP = Edwards training impulse; Pro@Heart = Prospective Athlete
Heart study; Master@Heart =Master Athlete’s Heart study.
*p < .05.
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Measured training hours (7.9 ± 2.4 hr per week) were ∼30% lower
than training hours reported via the questionnaires (12.3 ± 3.8 hr
per week, p = .0004). The number of registered weekly training
sessions was lower than the reported values (4.0 ± 1.0 vs. 4.8 ± 1.4;

p = .019). There was no significant correlation between the reported
and measured number of training sessions per week (r = .20,
p = .37; Figure 4), nor between the reported and measured number
of training hours per week (r = −.12, p = .59; Figure 4).

Figure 2 — (a) Correlation between Lab MaxHR and Tangent MaxHR (Master@Heart in square red and Pro@Heart in round black). (b) Comparison
of Lab MaxHR and Tangent MaxHR. Data are mean ± SD. (c) Subanalyses comparing Lab MaxHR and Tangent MaxHR in Pro@Heart. In red triangle,
two participants with much lower Lab MaxHR compared to Tangent MaxHR. Data are mean ± SD. (d) Subanalyses comparing Lab MaxHR and Tangent
MaxHR in Master@Heart participants. In red, two participants with much lower Lab MaxHR compared with Tangent MaxHR. Data are mean ± SD.
(e) Bland–Altman analyses with mean bias (black full line) and boundaries of 95% limits of agreement (dotted lines). MaxHR =maximal heart rate; Lab
MaxHR =MaxHR determined in the lab; Tangent MaxHR =MaxHR determined using training files; Pro@Heart = Prospective Athlete Heart study;
Master@Heart =Master Athlete’s Heart study.
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Discussion

We demonstrate that it is feasible to semiautomatically characterize
and track TL over time. Our data demonstrate that a TL quantifi-
cation only relying on HR monitoring is equally valid compared
with a method that integrates individual lactate thresholds and

training data. Finally, we show that self-reported TL assessed by
questionnaires does not accurately reflect objective metrics as
documented by wearables. This methodology can easily be im-
plemented in a larger number of individuals. Future studies should
incorporate more objective TL metrics to improve our understand-
ing of the interaction between sports and the cardiovascular system.

Figure 3 — Correlation between LuTRIMP and eTRIMP average per week for a year of training. LuTRIMP = Lucia training impulse score;
eTRIMP = Edwards training impulse.

Figure 4 — (a) Correlation and Bland–Altman analysis of reported versus measured number of training sessions per week with bias (black full line) and
95%LOA (gray dotted line). (b) Correlation and Bland–Altman analysis of reported versus measured average training hours per week with bias (black full
line) and 95% LOA (gray dotted line).
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In the majority of sports cardiology studies, TL is reported as
the number of sports hours per week or as total training volume
(i.e., TRIMP scores). The most recent sports cardiology guidelines
advice to describe sports participation in its four different compo-
nents using the FITT principle (i.e., frequency, intensity, time, and
type of sports). This distinction is clinically important as exercise
intensity is a stronger predictor of adverse outcomes than exercise
duration in patients at risk of arrhythmias (Lie et al., 2018).
Accurate quantification of these variables over time is challenging
using questionnaires because individuals cannot accurately recall
the amount, type, and intensity of physical activity, particularly
over long periods (Helmerhorst et al., 2012; Tran et al., 2020; van
Poppel et al., 2010). We provide a semiautomatic approach that
allows quantifying these different aspects of training characteristics
in a large population. Frequency, duration (time), and type of each
training activity are easily obtained from wearables. The most
challenging aspect relates to the appraisal of exercise intensity,
which is required to calculate the overall training volume.

A critical first step in the determination of exercise intensity is
the need for accurate and automatic estimation of MaxHR
(Fletcher, 1997). Automatic determination of MaxHR requires
verification for possible outliers in data collection to prevent
overestimation due to artifacts (Pasadyn et al., 2019). To facilitate
this process, we developed an automatic correction step, the so-
called “tangent method,” to accurately determine the MaxHR. In
keeping with previous studies (Abad et al., 2016; Semin et al.,
2008), we demonstrate that MaxHR in the field, determined by this
tangent method, slightly exceeds MaxHR in the lab, both in junior
and senior athletes. The higher MaxHR in the field has been
described and can be explained by motivational factors
(e.g., increased state of arousal during exciting and competitive
training sessions), differences in exercise duration, and environ-
mental conditions (Semin et al., 2008).

Accurate determination of MaxHR enabled subsequent char-
acterization of each training session into training zones which, in
combination with exercise duration and frequency, yields TL.
Depending on differences in weighting factors, several methods
are available to calculate total TL, for example, LuTRIMP and
eTRIMP (Sanders et al., 2017; van Erp et al., 2020). In large-scale
clinical studies, the use of LuTRIMP introduces both economical
and practical limitations because of the need to incorporate data
from a maximal cardiopulmonary exercise test. By contrast, the
eTRIMP has some significant advantages because it can be calcu-
lated based on HR derived by HR monitors. We showed an
excellent correlation, which indicates the interchangeable use of
these methods to determine TL.

Our data, using this novel method to automatically calculate
eTRIMP from wearable data, seem to demonstrate that the use of
sports questionnaires lacked validity and reliability to evaluate
long-term training schedules. Reported training hours were con-
sistently higher than the measured training hours without any
correlation between both. Similarly, no significant relationship
was observed between the number of training sessions reported
by questionnaire and that measured by wearable data. It should
however be kept in mind that a gold standard is lacking.

We believe that the method described in this study holds great
promise for the characterization of TL in sports cardiology studies
and its association with exercise-induced cardiac remodeling. The
importance of this aspect cannot be overestimated as the distinction
between physiological adaptation to regular exercise, and the
presence of subtle structural heart disease can be challenging in
some cases (Pelliccia et al., 2002). Within the athlete population,

substantial variability exists in the extent of cardiac remodeling,
even among elite athletes (Abergel et al., 2004). The potential
mechanisms explaining these interindividual differences in exer-
cise-induced cardiac adaptations may include differences in under-
lying genetics, differences in training behavior, and the interaction
between both (de Bosscher, Heidbuchel, et al., 2022).

From our data, we would advise to collect at least 3 months and
optimally 6 months of training history to have an accurate estima-
tion of TL in athletes with low variability. Due to different training
periodization, injuries, and competition seasons, shorter intervals
are prone to excessive variability. A monitoring period of 3–
6 months provides an accurate indication of the actual average
TL and may help to unravel the relationship with exercise-induced
cardiac adaptation.

Limitations

Although we know that competitive athletes typically wear HR
monitors for use in their daily training periodization, we cannot
exclude that a number of sessions were not recorded (Sanders et al.,
2019; Solli et al., 2017; van Erp et al., 2020). The lack of gold
standard to compare our results with is a limitation of our paper.
When the wearable is worn in every training session, this should
give an excellent idea of the TL, but ensuring this would require
continuous supervision of the athlete and would be feasible only in
small studies. We did not ask our participants to self-evaluate the
use of their wearable in time. We also only measured training
sessions and not activity during daily living. Hence, we cannot
exclude that TLmay have been underestimated in some individuals.
Similarly, strength sessions are less often registered, thereby induc-
ing the risk of underestimating the amount of strength training.

At this moment, we did not incorporate the session rating of
perceived exertion method. The session rating of perceived exer-
tion has been shown to be a valid and reliable method of measuring
TL (Foster et al., 2001; Haddad et al., 2017). However, its
measurement requires daily discipline of the athlete to manually
record this measure.

Conclusions

Semiautomatic quantification of TL from big data sets of training
files is feasible in a time-efficient manner. LuTRIMP and eTRIMP
can be used interchangeably for the purpose of TL quantification.
Questionnaires to self-report training activity lack the necessary
granularity to accurately identify an athletes’ TL in these prospec-
tive studies.
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