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within the context of supply chain management.

The process of exploring machine learning techniques to streamline this aspect of the industry
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innovate, and think critically about real-world applications. The insights gained through this
endeavor have not only shaped my academic perspective but also my aspirations for my future
career.
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Abstract

In the automotive industry, it is imperative for suppliers to swiftly respond to a Request for
Quotation (RfQ) from an Original Equipment Manufacturer (OEM) with accurate pricing to
sustain a competitive advantage. However, the current approaches for the RfQ process are
considerably time-consuming. This master’s thesis explores the application of machine learning
techniques to identify the most similar connectors within wire harnesses, thereby optimizing the
RfQ procedure.

The proposed approach included four stages. The initial stage was data preprocessing, which
involved data cleaning, transformation, and reduction to prepare the feature vectors for the
clustering techniques' inputs. Subsequently, the connectors were grouped into 17 clusters using
K-means clustering and the Gaussian Mixture Model (GMM). In the third stage, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) was performed to categorize similar
connectors within the same group. The final step then included an iterative execution of the
DBSCAN to find the most similar connectors depending on the number of connectors needed.

A dataset consisting of connectors with verified labels validates the proposed approach. The
results indicate an overall 62% accuracy rate among 1,000 connectors. Consequently, the
effectiveness of the approach has been demonstrated. The thesis also includes an analysis of the
performance of different techniques and discussions on future improvements.






Abstract in Dutch

In de auto-industrie is het noodzakelijk voor leveranciers om snel te reageren op een Request for
Quotation (RfQ) van een Original Equipment Manufacturer (OEM) met accurate prijzen om een
concurrentievoordeel te behouden. De huidige benaderingen voor het RfQ-proces zijn echter
tijdrovend. Deze masterproef onderzoekt de toepassing van machine-learningtechnieken om de
meest vergelijkbare connectoren binnen kabelbomen te identificeren en zo de RfQ-procedure te
optimaliseren.

De voorgestelde aanpak bestond uit vier fasen. In de eerste fase werden de gegevens
voorbewerkt, waarbij de gegevens werden opgeschoond, getransformeerd en verkleind om de
feature vectors voor te bereiden op de inputs van de clusteringstechnieken. Vervolgens werden
de connectoren gegroepeerd in 17 clusters met behulp van K-means clustering en het Gaussian
Mixture Model (GMM). In de derde fase werd Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) uitgevoerd om vergelijkbare connectoren binnen dezelfde groep te
categoriseren. De laatste stap omvatte vervolgens een iteratieve uitvoering van DBSCAN om de
meest vergelijkbare connectoren te vinden, afhankelijk van het aantal benodigde connectoren.

Een dataset bestaande uit connectoren met geverifieerde labels valideert de voorgestelde aanpak.
De resultaten wijzen op een nauwkeurigheid van 62% onder 1000 connectoren. De effectiviteit
van de aanpak is dus aangetoond. De thesis bevat ook een analyse van de prestaties van
verschillende technieken en discussies over toekomstige verbeteringen.






Chapter 1
Introduction

1.1 Context
1.1.1 Yazaki business overview

Yazaki is a global automotive supplier of wire harnesses. An automotive requirement of an
Original Equipment Manufacturer (OEM) like Toyota or BMW dictates the entire production
process in the automotive supplier sector. An OEM can require particular parts, like wire
harnesses. A wire harness in the automotive industry assembles different components, such as
cables, terminals, connectors, etc., which are distributed in the vehicle, and each has a function
[1], [2]. A wire harness is shown in Figure 1.1.

Figure 1.1: Wire harness in a motor vehicle [2]

When a supplier company like Yazaki receives such a requirement, the supplier’s corporate

management develops a plan to meet the request while including costs, technology, market
dynamics, etc [1].

Corporate management will adjust the business process by using the feedback from different

departments within the company. The feedback includes performance, progress, and potential
risks [1].
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Ultimately, the supplier aims to deliver products that meet the OEM’s requirements. After
completing the project, the components have been mass-produced and sent to the OEM to be
assembled into the vehicle [1]. Figure 1.2 shows the Yazaki business overview.
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Figure 1.2: Yazaki business overview [1]

The wire harnesses and, thus, electrical connections make it possible for the vehicle to work. As
time progresses, the wires that connect sensors, actuators, indicators, etc. become more complex.
The wire harnesses in a car are the third most expensive components after the engine and
chassis. Recent studies estimated that by 2030, about half the cost of the car will come from the
electric system, whereas in 2010, it was 30%. The manufacturing and design of the harnesses are
complex processes that need specialized software, a significant amount of human labor, and
some automation [3].

1.1.2 Global Process Management System (GPMS)

To increase company efficiency, promote the achievement of Yazaki policy, and meet the
demands of society and customers, the GPMS was established.

The values of GPMS are based on the demands of society and customers, such as high quality,
low cost, proper delivery time, and being environmentally friendly. GPMS was introduced
because there were a few problems with previous processes, namely confusing and conflicting
rules of multiple processes, so improvement was needed.

This system establishes a global Performance Management Process (PMS) structure aligned with
customer-specific requirements. Secondly, it comprises seven phases (phases 0-6), from
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planning to mass production. Also, individual work processes are executed, and performance is
assessed in each phase. It can be concluded that GPMS ensures project results and processes that
determine the performance [4].

1.1.3 Request for Quotation (RfQ)

One of the most important phases of the GPMS is the RfQ process. In the automotive industry,
this process serves as the foundation for establishing a business relationship between an OEM
and a supplier. Creating a new part or component made by an automotive supplier begins with
an RfQ, published by the OEM. The supplier then has to react to it with a response. This response
consists of a technical and commercial offer. The technical part consists of the product
requirements, and the commercial part consists of the price, annual volumes, cost breakdown,

ete [5].

In addition to the objective of an RfQQ to create a business relationship, it has a substantial
financial influence on suppliers, determining their profitability and operational dynamics for
years. Recent studies uncovered that certain areas within the RfQ processes have some
difficulties, and better RfQ processes are needed because automotive components are evolving
quickly, and supplier networks are becoming more complex. For example, extensive
specifications and performance orders are necessary for important components in wire harness
manufacture to achieve accurate pricing and component selections. An example of such an
important component is a connector [6].

Furthermore, time restrictions are complicating the RfQ response process. It is possible that
suppliers have to handle multiple RfQs at once. This burdens their resources and could affect the
quality of their reaction to each request [6].

Because of this high-pressure setting, it is necessary to manage data functionally and make smart
use of available information for the supplier to speed up the response. Recent studies indicate
that there is hope thanks to the development of software solutions like data science, Al, and
machine learning for handling the RfQ response process [6].

Figure 1.3 shows an overview of the RfQ process in the automotive industry and displays the
different steps that need to be taken in various departments to complete the RfQ process. It also
presents the average time needed to go from data preparation to export generation.
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Figure 1.3: Overview of the RfQ process in the automotive industry [7]
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1.1.4 Wire harness connector

A connector is an important component in the wire harness business, and clear specifications are
necessary for accurate pricing and component selection for the response to the RfQ.

Definition and role

Automotive electrical connectors have the task of connecting various parts of a vehicle’s wire
harness. Besides facilitating electrical connections, they also control data transmission and signal
integrity. In addition, these connectors are essential to the efficient operation of vehicle systems,
which improves the car’s overall security, performance, and reliability [8].

The connectors must meet the conditions imposed to cope with the conditions in the vehicles.
The automotive environment demands connector performance, and in some cases, the
connectors must be able to withstand changes in temperature, humidity, corrosion, etc [9].
Figure 1.4 illustrates a drawing of a standard connector.

Figure 1.4: Drawing of a standard wire harness connector

Importance in the wire harness business

Regarding reliability, connectors are regularly a weak point in electrical and electronic systems
located in vehicles. An example of a common failure is high or intermittent contact resistance
faults. A major cause of these failures is degradation [9].

On a technical level, connectors are important within the RfQ process. When an OEM sends an
RfQ to an automotive supplier, the supplier must look at the connectors that the OEM needs. The
suppliers then see if they have or make the components themselves or if they should purchase
them. This process for connectors is not easy because of the many important attributes that must
be met to ensure the proper operation of a connector within the wire harness. Since response
time plays an important role for the RfQ in the automotive business, it could be profitable to
automate this [10].

Financially, connectors are also an essential component of the wire harness industry due to the
high margin that can be made. Additionally, wire harness manufacturers need price and costing
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specifications to make precise cost estimations. An automated costing tool would remove any
misquotes or mistakes, helping manufacturers to increase profitability [10].

Characteristics of connectors

Connectors have a large number of attributes, and because time is an important factor during the
RfQ process in the wire harness business, only the characteristics needed to know if a particular
connector can be used that the OEM requested.

Some of the key connector attributes in the RfQ process are cavity family, total poles, weight, and
gender.

Firstly, each cavity family has a specific type of terminal pins or contacts that can be matched
with the cavities. It should be a match so the connector is compatible with the specific wire and

pin type [11].

Another critical attribute is the poles of a connector. The number of poles refers to the amount of
electrical connections, or in other words, each wire belongs to one pole. The number can vary
depending on the location or functionality of the specific connector. To ensure the stable
operation of a wire harness, it is necessary to have a good insertion of the wires into the poles so
that a good electrical connection is maintained in difficult situations [12].

Today, car manufacturers and consumers want vehicles that consume less fuel and thus emit
less. So, by reducing the vehicle's weight, emissions can be reduced. Because of this, the weight of
connectors plays an important role. This characteristic depends on other attributes, such as
cavity family and the number of poles, which will be essential for classifying connectors based on
their attributes [13].

A final essential characteristic discussed here is the gender of a wire harness connector. This
attribute refers to the type of electrical interface it provides. They can be divided into male and
female types. For example, male connectors, which are equipped with pins, are matched to fit
into female types. The female types contain sockets. This way, connecting correctly ensures
connections and prevents electrical failures [14].

Complexity and variability

The wire harnesses are one of the bulkiest parts of the car. One of the main reasons why they are
so complex is the need for reliable connections within a vehicle that must not lose their function
even in extreme situations such as strong vibrations, high-temperature changes, and humidity.
Connectors also provide indirect safety by connecting various sensors and actuators that provide
vehicle safety [14].

Because of physical constraints, connectors need to accommodate different functional demands.
Research suggests a transformation is necessary within the functionality of connectors so that
they can handle multiple functions in limited space. An example of a connector with
multifunctionality is a hybrid connector interface. This connector proves both a signal and a
power connection [14].
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1.1.5 Data science in the industry

Data-driven decision-making

Research shows that process optimization and innovation are possible within the automotive
industry through the use of data science and data-driven decision-making. These optimizations
and innovations can increase productivity and profit by making better decisions with fewer
mistakes [15].

For example, data-driven decision-making can be used in the logistics department within the
automotive industry. This technique helps to improve procurement tactics and supply chain
logistics, which results in time and cost savings [15].

Another example is in the sales and marketing departments, where automotive firms can
improve their sales and marketing strategy by getting a better view of market trends and what
customers prefer through data-driven insights [15].

Challenges and considerations

The automotive industry's obstacles in data science must be overcome to integrate them into the
company’s operations [16].

One potential difficulty is data-driven culture. Creating a culture is an obstacle, and a lot of
training is needed to change traditional business paradigms towards data-centric decision-
making models [32].

Another obstacle is data governance. Effective data governance and a good data strategy are
necessary to utilize data science fully. To apply this, there is a need for procedures and guidelines
for managing the data and integrating it into the corporate strategy vision [16].

1.2 Problem statement

As mentioned earlier, the RfQ processes must be improved because of rapidly evolving
components and increasingly complex supplier networks. The wire harness components must be
accurately priced and selected. Furthermore, time restrictions are becoming more important
during the RfQ response process. During this process, a lot of data is processed manually. In
addition, there exist inaccuracies because of assumptions about parts and data processes and the
high complexity of interfaces. Moreover, the preparation of the RfQs faces long lead times, and
the process disrupts the day-to-day schedule and, therefore, causes delays in current business

[6].

The connector is one of the most important parts of a wire harness regarding the RfQ process.
Clear specifications are necessary for accurate pricing and component selection for the response
to the RfQ. Connectors are most important because of their reliability and the high margin that
can be made. Additionally, connectors contain a total of 123 different characteristics. Because of
this, it takes a long time for the engineers to find interchangeable connectors as fast as possible
for the RfQ response.
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1.3 Objectives

The main objective of this thesis is to find similar connectors based on their characteristics to
tackle the problems regarding the RfQ process for connectors using machine learning-based
clustering methods.

However, before using clustering techniques, this thesis aims to create preprocessed datasets
ready to be processed using clustering methods. Different clustering techniques will be applied to
the preprocessed dataset and compared to investigate which ones are best for grouping the
connectors based on their characteristics without knowing the type of connectors in the dataset.

Another objective is to suggest a clustering approach using the K-means method specifically to
group wire harness connectors while having additional information about the connector types to
validate and compare various approaches.

Finally, this study aims to find the advantages and limitations of the suggested approaches and
discusses feature work to improve these suggestions.

1.4 Structure

Chapter 2 explains the methodology used to achieve the objectives of this master’s thesis to find
solutions to the different stated problems. The methodology chapter is separated into data
preprocessing steps, machine learning clustering methods, and validation and testing.

Chapter 3 aims to guide the reader in understanding the results and discussion of this study. It
contains three main parts. First, it performs three different clustering methods to group the wire
harness connectors on a dataset containing approximately 6,500 without any true labels. Second,
five comparisons were made to find the best possible approach for grouping the connectors using
the K-means algorithm on a dataset containing 1,020 connectors, including true labels. Third,
the results contained findings on the most similar connectors based on their characteristics.

The conclusion and feature work follow, including the objective, the key findings, implications,
limitations, and suggestions for future research. The last pages contain the references used in
this thesis.

18



19



Chapter 2

Methodology

2.1 Data preprocessing

Data preprocessing is a step needed before using machine learning models on the data if the raw
data contains quality issues such as missing values, outliers, features with varying scales, etc. If
these issues are not resolved, the results of the clustering algorithms will be suboptimal because
of inefficient clustering, increased computation time, and misleading results. Data preprocessing
involves cleaning, reducing, and transforming the data so the quality is enhanced and the
clustering models performed on the data will be more meaningful and accurate. For this thesis,
this process can be subdivided into three groups: data cleaning, reduction, and transformation
[18].

2.1.1 Data cleaning

Data cleaning consists of handling outliers and missing values. Outliers and missing values are
unwanted in the dataset for this project because they can lead to inaccurate analysis [18].

Handling outliers

An outlier in the dataset is considered a data point that lies an abnormal distance from other data
points. The occurrence of outliers can skew the results [19].

An example of outliers in a dataset in this thesis is high-voltage connectors, a connector group
with a significantly higher weight. Figure 2.1 below shows a graph of connectors after using k-
means on the dataset. The data points in yellow are clustered as one group: high-voltage
connectors. To protect these connectors from being deleted as outliers, they can be filtered before
handling the outliers.
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K-Means Clustering of Connectors by Total Poles and Weight
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Figure 2.1: K-means clustering of connectors based on the total poles and weight

To avoid misleading conclusions, the method used for handling outliers was calculating the mean
of all the numerical values per connector. Next, the mean of those mean values was determined
to serve as a reference point. Finally, the relative position of each connector from the reference
was determined by calculating the difference between the mean per connector and the reference
point. The choice was made to remove the top 20% of connectors regarding the highest
difference. The other 80% of the dataset was retained.

Handling missing values

Handling missing values in the dataset is necessary for this project because, for example, K-
means clustering requires complete data to form clusters. The mean, mode, and median
imputation methods have been used in this project to handle the missing values.

When to use missing value imputation techniques depends on the dataset size and the amount of
missing data. For this project, a dataset is considered small if it contains less than 1,000 data
points and large if it comprehends more than 10,000 data points. A small percentage of missing
values is typically less than 10%. Although these numbers can vary depending on the application
and different factors like dimensionality and the available computational power.

When the dataset is large, the impact of imputed values will be minimal. On the other hand, for
small datasets, imputation can distort the data more noticeably. Additionally, if a small amount
of data is missing, mean, mode and median imputation can be an effective solution. Conversely,
using imputation methods when a large proportion of the data is missing can introduce
inaccurate representation. In this project, the rows with one or more missing values were deleted
when working with a large proportion of missing values or a small dataset.

The mean imputation method is used for numerical values. It calculates the mean of a column in
the dataset and replaces the missing values with the calculated average value in that column. The
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advantage is that it is easy to implement. Still, the resulting variance estimate for this feature can
be underestimated when the number of missing values is significant for that variable [20].

The median imputation is similar to the mean method but calculates the median value instead of
the average value. In the case of a column where the values are similar, this method is preferred
over the mean values as it is more robust to outliers [20].

In the instance of categorical data, such as the color of a connector, mode imputation is most
appropriate to apply. This method will substitute missing values with the most frequent value in
that column.

2.1.2 Data reduction

Data reduction involves reducing the form of the dataset while maintaining its essential features.
This step is vital since clustering algorithms such as k-means can be computationally intensive,
and reducing the dataset size can improve resource-intensiveness [18]. Furthermore, plotting
results after using a clustering method with more than three dimensions is impossible, which can
be solved by dimensionality reduction techniques. The most suitable features were selected
because not all connector characteristics are relevant for grouping the parts.

Feature selection

The choice of a connector influences the overall performance of an automotive wire harness and,
thus, the security and performance of the vehicle [21].

A wire harness connector has 123 unique characteristics, and 15 of the most necessary connector
attributes for grouping those wire harness components were selected. These 15 features were
chosen based on their importance in finding the best matching connectors.

The 15 necessary connector attributes to replace a connector are the catalog type, cavity family,
color, gender, hybrid poles, locking, material, layout, number of open poles, sealed, minimum
and maximum temperature, terminal size, total poles, and weight.

They were selected based on the standard guide engineers in Yazaki use in choosing the ideal
connector for an application when designing a wire harness, where one is the first and most
important step and seven is the least important step in the guide:

the requirements for electrical parameters,
safety parameters,

mechanical parameters,

connection modes,

installation modes and appearance,
environmental parameters,

termination methods

Noo s

Dimensionality reduction

Reducing the dimensionality of a dataset has the advantage of decreasing the number of
variables, which makes it less time to compute the models and adds storage space. On top of that,
redundant data will be removed, which will help the clustering algorithms to work more
efficiently, and it will contribute to removing the noise from the dataset because it focuses on the

most informative features [22].
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Two dimensionality reduction techniques were implemented: Principal Component Analysis
(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). These two methods were
utilized as visualization techniques to plot the clustering results. The disadvantage of these
techniques for plotting the results is the complexity of interpretation because the transformed
features are not as interpretable as the original features.

PCA

PCA is a statistical dimensionality reduction method that will map the data in a higher
dimensional space into a lower dimensional space. At the same time, the variance after the
transformation should be maximum. After reducing the dimensions, the goal is to maintain the
most significant patterns or correlations between the variables [23].

The variables of the original dataset are linearly combined to create the orthogonal axes or
principal components. They are arranged in decreasing order of importance, and their variance
equals the original dataset's. The assumption is made that the information of the dataset is
encoded in the variance of the features, which means the higher the feature's variance, the higher
the information it holds [23]. Figure 2.2 illustrates the usage of PCA on the original data,
represented in a 2D space.

Area
component Transformation
PC, ‘ 2D-1D

PC, > PC,
[ J

Variance

Radius

variance N

Figure 2.2: Visual representation of the PCA method [23]

The figure has a 2D space with two axes, showing the data points. PC, (Principal Component 1) is
the direction where the variance is the majority. PC. is the second component and represents the
direction of the second most variance in the data. The objective is to transform the 2D data into
1D, which will be transformed along PC; to preserve the variance as much as possible. The
amount of variance in the figure is visualized by the red lines and brackets, which is at most for
PC, [23]

The main disadvantage of utilizing PCA to reduce the number of dimensions is that it is limited
to linear transformations and thus may not apprehend non-linear relationships in the data [24].
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T-SNE

t-SNE is a nonlinear dimensionality reduction technique, unlike PCA, which is a linear
technique. While PCA focuses on maximizing the variance after reducing the dimension, t-SNE
preserves the relationships between the data points after the transformation to a lower-
dimensional space. This makes t-SNE an effective approach for visualizing high-dimensional
data, but it is more computationally expensive than PCA [24].

The similarity measures between pairs of data points are determined by t-SNE. Consequently, it
optimizes two similarity measures.

Firstly, in the original state of the dataset, the pairwise similarity between all data points is
determined using a Gaussian kernel. The more data points are close together, the higher the
probability they will be put together. Thereafter, the t-SNE algorithm will map the high-
dimensional data points of the original dataset onto a lower-dimensional space while keeping the
pairwise similarities. It minimizes the sum of the differences in similarities using gradient
descent until the lower-dimensional space is in a stable state [24].

2.1.3 Data transformation

Even after data cleaning and reduction, the adapted dataset may not be ready for further
analysis. Data transformation will change the format or structure of the dataset so it becomes
appropriate for clustering methods. In this thesis, data transformation involves possibly
normalization, standardization, and encoding of categorical values [18].

Normalization

The numerical values were transformed to a fixed range between zero and 1 in this project using
Min-Max scaling. This ensures that no single feature with a larger range of values dominates the
results of the clustering methods. This ensures the same scale for each feature.

The formula for normalization using Min-Max scaling is shown below, where x’ is the normalized
value, x is the original value, min is the lowest value of that feature, and max is the highest
numerical value of that feature [25].

x' = _x-—min_ (2.1)

max — min

Standardization

Standardization or Z-score normalization will transform the numerical data so that the feature
has a mean of zero and a standard deviation of one. This method was not always used as a data
transformation method because it is particularly useful when the data has a Gaussian
distribution.

The formula for standardization is indicated below, where y’ is the standardized value, y is the
original value, pu represents the mean value, and o is the standard deviation [25].

yl — y—u (22)
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Encoding categorical values

In this thesis, before using clustering methods on the dataset, the categorical features were
converted to binary vectors using the one-hot encoding method.

Figure 2.3 below illustrates an example of the one-hot encoding method [26].

Color Red Yellow Green
Red
Red :> 1 0 0
Yellow 1 0 0
Green 0 1 0
Yellow 0 0 1

Figure 2.3: Example of one-hot encoding of colors [26]

The feature color, for example, is a categorical variable, and a separate column per possible value
for this feature is added. The presence of a value is then indicated by putting a one in the
corresponding column and a zero in all the others, which generates a binary vector.

2.2 Machine learning clustering

Machine learning clustering methods will be used to group the connectors based on their
characteristics in this project. There are multiple algorithms, each with its own advantages and
disadvantages. It is a technique that aims to identify groups or clusters in which observations are
more similar to each other than observations aligned to different clusters [27].

Clustering is useful in several situations, including data mining, document retrieval, image
segmentation, and pattern classification. Nevertheless, there may be little prior information (e.g.,
statistical models) available about the data, and the decision-maker must make as few
assumptions about the data as possible. Under these restrictions, clustering methodology is
particularly appropriate for exploring interrelationships among the data points to assess their
structure [28].

The clustering methods used in this thesis are K-means, balanced K-means, Gaussian Mixture
Model (GMM), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and
decision trees.

2.2.1 Unsupervised clustering

Unsupervised cluster analysis involves automatically discovering natural grouping in the data
without knowing the groups of the data points in the dataset. This means the data used is

25



unlabeled and unclassified. In this study, the dataset contained around 10,000 connectors
without prior knowledge of their type.

K-means clustering

K-means clustering, one of the most widely used clustering algorithms, will assign data points to
one of the K clusters. The assignment is done based on the distance of a data point from the
center of the clusters.

The K-means algorithm performs iterative calculations to optimize the positions of the centroids
or centers of the clusters. These calculations are stopped when the values stop changing or the
predefined number of iterations has been achieved. It works as follows:

1. Beforehand, the number of clusters or centroids K must be decided. After, it will randomly
initialize those points. There are different methods for initializing these initial positions,
and several will be discussed in this thesis.

2. Every data point will be categorized to its closest centroid using a distance measure

method, such as the Euclidean distance.

After, the centroids' coordinates are updated.

4. The first three steps are repeated for the number of iterations or until the centroids no
longer change significantly [29].

@

The limitation of this K-means method is that it is sensitive to the initialization of the clusters;
because of this, the results of performing the same K-means algorithm on the same dataset can
vary. Also, this clustering method requires a predefined number of clusters, which can be
difficult to determine for unlabeled data.

Balanced K-means clustering

The balanced K-means clustering method requires all clusters to be the same size. This method
was used to ensure the data points were equally distributed across all the clusters and was
compared to the normal K-means method for the connector dataset.

Gaussian Mixture Model (GMM)

The GMM is a probabilistic model that tries to model the data as a combination of multiple
Gaussian distributions [31]. This method determines the probability of each data point belonging
to a certain cluster [32].

The main difference between K-means and GMM is that K-means is a hard clustering method,
which means it groups each data point into one cluster. On the other hand, GMM is a soft
clustering method, which means it checks the probability that a data point is associated with a
specific cluster [27], [18].

The GMM algorithm works as follows:

1. First, the GMM’s parameters are initialized. An option is to use the previous results
obtained from the K-means method, which can provide an initial starting point.
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2.

Secondly, the expectation step is performed. It involves calculating the likelihood of each
data point belonging to each component of the Gaussian distribution using the current
estimates of the method parameters.

After the maximization step, the parameters, such as the means and mixture weights, are
adjusted according to the calculations in step two. This will maximize the probability of
the dataset.

The expectation and maximization steps are repeated until there is convergence in the
likelihood value [32].

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN is a clustering method that groups data based on how close data points lie together
depending on two parameters of the algorithm. The points that lie in low-density regions are
classified as outliers. This means that not all points are assigned to a cluster [33], [34], [35].

The DBSCAN algorithm contains four steps:

1.

It defines two parameters: ‘eps’ (epsilon, the maximum distance between two points to be
considered neighbors) and ‘minPts’ (the minimum number of points required to form a
dense region).

Second, the algorithm classifies the points into three kinds of points. Firstly, core points
are those with the least ‘minPts’ neighbors within ‘eps’ distance. The second kind is border
points, which are points within the ‘eps’ distance of a core point but have fewer than
‘minPts’ neighbors. Lastly, there are noise points, points that are neither core nor border
points.

After classifying the points, all the core points are assigned to clusters, and the clusters are
expanded by iteratively adding density-reachable points (points within ‘eps’ distance from
any point in the cluster).

Finally, the algorithm is terminated when no more new points are added to any cluster.
The main differences between DBSCAN and the previously mentioned clustering
techniques are that DBSCAN does not require the number of clusters because it
determines the number of clusters based on the data density and can distinguish noise

and clusters [33], [34], [35], [36].

Figure 2.4 shows a simple visual overview of the DBSCAN algorithm.
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Figure 2.4: Visual overview of the DBSCAN method [35]

The red point, the core point, has at least a minimum of data points (Min points) within a
specified radius (epsilon). The border points in blue are within the radius of the core point but do
not have enough neighboring points to be a core point itself. The outlier data points, in yellow, do
not lie within the predefined radius of the core point [35].

Initialization strategies

Because the K-means algorithm is very sensitive to the initialization of the clusters, three
methods were used in this thesis to verify which one is best for the clustering of wire harness
connectors.

The first method used for the initial placement of centroids is random initialization, which will
select k numbers of data points as the initial cluster centers. However, this can lead to
suboptimal solutions. To improve the random initialization method, the algorithm was run, for
example, ten times with different initializations, and the best result was picked based on
verification criteria such as the sum of squared distances. Although, with prior knowledge, the
seeding method can be applied to make the initial guesses. Knowing the number of groups, one
connector per group was used for the first centroid. The connector picked per group is a
connector with the average of every feature, so it is ensured that the picked connector represents
that group best [37].

2.2.2 Supervised clustering

The first phase of this master’s thesis focused on unsupervised clustering to a dataset of
approximately 6,500 connectors. This dataset didn’t involve true labels or prior knowledge of
their grouping. Multiple clustering techniques were employed to find the natural grouping of the
connectors based on their characteristics.

Another dataset of approximately 1,000 connectors with true labels was used. This means this
dataset included information on the type of connector. This data was used to compare and verify
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the clustering techniques. In total, there are 17 types of connectors in Yazaki, namely: lamp,
digital signal, infotainment, MOST, modular, joint, high power, squib, injections, door, standard,
optical, PCB/header, safety, transmission, special, and RF connectors.

Based on the results of one of the clustering methods, decision trees were employed to make it
explainable by identifying key features that differentiate clusters.

Decision trees

An effective method to interpret resulting clusters is the use of decision trees. This method
analyses the clustering results and determines which features are most influential in defining
each cluster. On top of that, it clearly represents the logic behind the clustering. It can be used to
communicate clustering results to stakeholders. This method is suitable for applications where it
is important to understand why some decisions were made in the clustering methods [38], [39].

Decision trees split the dataset into subsets based on the features that give the greatest
information gain or impurity reduction (e.g., Gini impurity) [38], [39]. The Gini impurity is the
probability of misclassifying an observation. An example decision tree that works this way is
illustrated below:

‘ Weather

— | T
Sunny Cloudy Rainy

- . | - .
‘ Humidity ‘ Yes ‘ Wind ‘

// \\\ // \\\
High Normal Strong Weak
- e

,/ \\\ // \\\
No Yes No Yes

Figure 2.5: Example of a decision tree [39]

Figure 2.5 is a decision tree and starts at the root node. In this example, the root node is
‘weather,” a feature resulting in the highest information gain. Second, the internal nodes,
‘humidity’ and ‘wind’ in this case, represent another feature based on a decision. The branches
from each node represent the possible outcomes of the decisions. Lastly, the leaf nodes represent
the final classification. Each path from the root to the leaf node represents a unique decision rule

[39].
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2.2.3 Combining clustering methods

Multiple clustering methods were combined to meet one of the objectives of this study, namely,
to identify the most similar connectors based on their characteristics to find interchangeable
connectors. The strengths per clustering technique can be leveraged this way.

For the first clustering round, the K-means technique was implemented. With prior knowledge of
the connector types, the dataset was grouped into 17 clusters. Then, the data points of one of the
groups were extracted, and a second round of clustering with DBSCAN was performed on that
group. This second round found smaller and denser clusters within that group. DBSCAN sets the
optimal number of clusters and assigns the labels the algorithm finds back to the connectors.
DBSCAN was chosen because it finds the optimal amount of clusers and because it can identify
noise points. The second round could be performed more times to find even smaller clusters.

2.2.4 Distance measurements

Distance measurements can be performed to quantify the similarity between connectors. In this
study, the Euclidean distance metric is chosen. In a multi-dimensional space, this metric is a
straight line between two points. To find the distance, it calculates the square root of the sum of
the squared spaces between the coordinates of the two points [40]. Given (x1, y1), the coordinates
of the first point, and (x2, y2), the coordinates of the second point, the Euclidean distance d is
defined as:

d= J(x2—x1)?+ (y2 — y1)? (2.3)

This distance measurement can be used in the initial group assignment. When a new connector is
added to the dataset, the Euclidean distance between the new connector and the center of each
cluster can be calculated. The new connector belongs to the cluster whose center has the smallest
distance to the connector. Also, this method can be used to assign the connector to a sub-cluster
whose centroid is closest in terms of the Euclidean distance.

2.3 Validation and testing

Validation and testing are crucial to evaluate the different clustering techniques applied to the
dataset of the wire harness connectors. This ensures the results meet the objectives and provide
meaningful insights.

2.3.1 Validation techniques

The validation techniques used in this thesis are silhouette scores and confusion matrices.
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The silhouette score is an internal validation. This type of validation is without true labels, and
the internal metrics are used to evaluate the quality of the clustering based on the structure of the
data itself. This score measures how similar an object is to its own cluster compared to other
clusters. This means that the higher this score, the better defined the clusters are. The score
ranges from -1 to 1. A score of one defines the clusters as well-separated, and the sample is far
from its neighboring cluster. A score of zero suggests overlapping clusters, or the sample is on or
very close to the decision boundary separating two neighboring clusters, and a score of -1
indicates highly overlapping clusters or incorrect clustering [41]. The calculation of the silhouette
score s can be done by using the following formula:
p-q

S = max—(p,q) (2.4)
where p is the mean distance to the points in the nearest cluster, and q is the average distance to
other points in the same cluster. The mean of all the individual scores is taken to calculate the
overall silhouette score. This overall score is a good measure of clustering quality [41].

The second validation technique performed in this thesis is confusion matrices. A confusion
matrix helps visualize a clustering technique's performance compared to true labels. It illustrates
the connections between the predicted cluster assignments and the actual types. For this matrix
type, the diagonal values should be highest, as the diagonal values represent correct grouped data
points. Off-diagonal elements highlight misclassifications. Figure 2.6 below shows a confusion
matrix used in this master’s thesis.

Confusion Matrix for K-Means
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Figure 2.6: Confusion matrix of K-means results

Figure 2.6 illustrates the confusion matrix for the K-means clustering algorithm. The x-axis
shows the labels predicted by the K-means algorithm. These categories lister are the predicted
connector types. The y-axis shows the true labels of the connectors. In this case, there are no

misclassified connectors.
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The Hungarian algorithm was performed to minimize the misclassification algorithm and ensure
an optimal label assignment. The reason why this algorithm was used is shown by a problem
represented in Figure 2.7 below.

Confusion Matrix for K-Means (Adjusted) Confusion Matrix for K-Means (Manually Adjusted)
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Figure 2.7: (a) confusion matrix before adjustment and (b) confusion matrix after adjustment

Figure 2.7 (a) illustrates that the labels in the clustering results are wrong and have to be
switched. In other words, the two columns in this confusion matrix should be swapped to ensure
the predicted labels align with the true labels. Swapping the labels manually for a small matrix
like this is possible. The manually adjusted confusion matrix is shown in Figure 2.7 (b).

Still, for larger matrices, this will be too much manual work, and the Hungarian algorithm will
optimally align the predicted labels with the true labels to maximize the correct prediction
visualized on the confusion matrix’s diagonal. This algorithm consists of four steps, where the
first two steps are executed once, and steps three and four are performed iteratively until an
optimal solution is found.

o The first step is to find the lowest value for each row and subtract the lowest value from
each element in that row.

e Step two will subtract the lowest element per column and subtract that value from each
element in that column.

e The third step covers all zeros in the matrix using a minimum of lines drawn through the
rows and the columns. This step helps in identifying potential assignments.

e Step four includes creating additional zeros, which are unnecessary if the minimum
number of covering lines equals the number of clusters because then an optimal
assignment is found. If not, the smallest element not covered by a line in step three will be
subtracted from all uncovered elements and added to all elements covered twice [42].
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In the end, the optimal assignment is the same as the position of all the zeros in the adjusted
matrix. This means that the position of each zero indicates that it is optimally paired with a
predicted cluster to a true cluster [42].

To compare multiple large confusion matrices, a ratio derived from the matrices was used to
summarize the performance of a clustering technique. The ratio is calculated as the percentage of
the correct predictions relative to the incorrect predictions.

2.3.2 Testing

In the testing phase, new connectors were picked up and put in the dataset to test the
performance of the clustering models on these connectors. The clustering models were evaluated
on a new dataset to assess its generalizability. Also, the stability of the model was checked by
running it multiple times to ensure the results were consistent.
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Chapter 3

Results and discussion

3.1 Visualizing the data before using machine learning

Before using machine learning-based clustering to group the wire-harness connectors, various
2D and 3D plots were made to visualize some clusters potentially. This part of the thesis used a
dataset of approximately 1,000 connectors without any true labels. For instance, total poles and
the weight of connectors were used as the features for a 2D scatter plot. Normalization was
performed to scale the data to a fixed range, between zero and one, using Min-Max scaling. In
this case, the primary purpose is visualization; additional standardization is unnecessary.
However, experimenting with standardization might be beneficial for clustering algorithms like
K-means.

2D Plot of Connectors by Total Poles and Weight (Normalized)

0.8 1

e
o
L

Weight/UOM (g) (normalized)
I
S
|
O

0.2+

® ' 'Y L . b4
L] ¢ eo? ': .'L " o L \p. [ ]
fooe ':\. = .... |l LH : e ® s b

0.0 4 !Mﬂ.‘!h'.li * ® . °

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Total Poles (normalized)

Figure 3.1: 2D plot of connectors based on total poles and weight

Figure 3.1 illustrates that there is a general trend indicating that if the number of total poles
increases, the weight also tends to increase. Notably, there are outliers in the top left part of the

35



graph; these have a high weight but low total poles. These outliers correspond to high-voltage
connectors, which need to handle high voltage safely due to their specialized build and materials.

To add another dimension to the analysis, the terminal size of the connectors was included.
Similar to the 2D plot, normalization was performed to have the same scale for each feature.

3D Plot of Connectors by Terminal Size, Total Poles, and Weight
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Figure 3.2: 3D plot of connectors based on terminal size, total poles, and weight

Figure 3.2 shows a noticeable trend where connectors with larger terminal sizes tend to have
higher weights and more poles. Also, the plot shows a clear clustering of connectors with small
terminal sizes, fewer poles, and lighter weight. Similar to the 2D plot, there are some outliers,
especially connectors with larger terminal sizes but lower weights and total poles. They may
represent specialized connectors that, despite their terminal size, need to be lightweight for

specific applications.

3.2 Performing k-Means clustering on the 2D and 3D
plot

The K-means algorithm was performed for the 2D and 3D plots shown earlier. The K-means
algorithm requires a predefined number of clusters. The method used to find the optimal number

of clusters is plotting the relationship between the number of clusters and the corresponding

average silhouette scores [43].
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Silhouette Score to Determine Optimal Cluster Count
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Figure 3.3: Silhouette score graph

Figure 3.3 demonstrates that the silhouette score is highest when the number of clusters is two,
with a score of around 0.71. The graph indicates that the silhouette score significantly drops after
four clusters. This suggests that two to four clusters are optimal for this dataset.

After knowing the optimal number of clusters, the K-means algorithm can be performed on the
2D plot. Each point in the graph represents a connector, and the color of the voxels indicates the
cluster they belong to, determined by the K-means method.

K-Means Clustering of Connectors by Total Poles and Weight
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Figure 3.4: K-means clustering of connectors based on total poles and weight
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Figure 3.4 shows two distinct clusters. The cluster represented in purple consists of connectors
with a low amount of poles and weight, except for the outliers. In contrast, the yellow cluster
includes connectors with a higher weight and amount of poles. These results show the
importance of predicting the number of clusters and demonstrate the effectiveness of the K-
means algorithm in identifying meaningful groups within the dataset.

A similar procedure is shown in Figure 3.5, where the average silhouette score is plotted against
the number of clusters, this time for the 3D plot, including total poles, weight, and the terminal
size of connectors.
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Figure 3.5: Silhouette score graph

Figure 3.5 illustrates that three clusters are the optimal number in this case, with a silhouette
score of around 0.637.

The 3D plot shown in Figure 3.6 visualizes the connectors based on the three features, where the
three colors, yellow, blue, and purple, represent the cluster to which each connector belongs,
according to the K-Means clustering algorithm.
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3D Plot of Connectors by Total Poles, Weight, and Terminal Size 500

Terminal Size (normalized)

Figure 3.6: 3D plot of connectors after using K-means

From the plot, it is evident that most connectors are concentrated in the lower ranges of the axes.
There are a few outliers with higher values, which are separated into different clusters. This

distribution highlights the diversity within the dataset.

3.3 Unsupervised connector clustering

The results of different clustering methods performed on preprocessed data will be shown in this
part of the results and discussion chapter. Before preprocessing, the dataset contained 17,776
connectors. However, after handling missing values, encoding categorical variables, feature
scaling, handling outliers, dimensionality reduction, etc., the dataset decreased to approximately
6,500 connectors. This dataset did not contain any true labels, and the main objective of this part
of the results is to explore the grouping of the connectors using different clustering methods,
visualize the results, and find the differences between multiple clustering methods for this

dataset.
3.3.1 K-means
For this dataset, before using the K-means and GMM methods, the first step is to do the

silhouette analysis score again to check the best amount of predefined clusters. Figure 3.7 shows
the graph, including the silhouette score per number of clusters.
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Silhouette Score for Determining Optimal k

Average Silhouette Score
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Figure 3.7: Silhouette score graph

The graph shows that the silhouette score increases to k=3, peaking at approximately 0.56. After
three, the score decreases with minor fluctuations until k=10. After reaching the lowest point at
k=8, the score increases again until a maximal score at k=17. This means this number of clusters
will better represent homogeneous subgroups within the data. The number of 17 clusters is very
interesting because later in the thesis, it will be discussed that this is indeed the correct amount
of clusters, as with knowledge about the wire-harness connectors in Yazaki, it is known that there
are 17 types of connectors.

Figure 3.8 depicts the result of applying the PCA method for visualizing the K-means clustering
into 17 groups. The axes represent the first two principal components, which capture the largest
variance in the data.
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2D PCA Plot of K-Means Clusters
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Figure 3.8: 2D PCA plot of K-means clustering

Figure 3.8 validates that the results of the K-means algorithm produce clusters of the same shape
and size due to how the algorithm works. Because K-means doesn’t handle noise by labeling it, it
forces data points to clusters it may not belong to, which can misinterpret the results.

Figure 3.9 illustrates the clustering results using t-SNE, showing the 17 clusters, each with its
unique color.

2D t-SNE Plot of K-Means Clusters
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Figure 3.9: 2D t-SNE plot of K-means clustering
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Using the PCA dimensionality reduction technique, the clusters are spread linearly along the
principal components. Because this technique focuses on maximizing the amount of variance, the
difference between the clusters is not as clear as with the t-SNE reduction technique. t-SNE is
better suited for visualizing high-dimensional data by mapping similar points to nearby locations
in 2D space. This visualizes groups that were not visible using the PCA technique.

Besides performing the K-means algorithm for 17 groups, it was also employed for three groups
because of the high silhouette score of k=3 as well. Figure 3.10 shows the results for three groups
using the t-SNE dimensionality reduction technique for visualization.

2D t-SNE Plot of K-Means Clusters
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Figure 3.10: t-SNE plot for three groups

These clustering results were mapped back to the original feature space to draw a meaningful
conclusion. To understand what each cluster represents, the average values of the original
features were calculated. Using this procedure for the results of the K-means method when k=3,
it can be generally stated that clusters zero and one focus more on simpler and standard
connectors. In contrast, cluster two includes more complex connectors capable of handling more

connections.

3.3.2 DBSCAN

Optimizing the parameters of the DBSCAN clustering method is a crucial step. These parameters
determine the number of groups the dataset will be divided into. In this thesis, the epsilon and
minimal sample features were manually adjusted. Another approach employed in this study
involves finding optimal parameter values by calculating the average distances to the nearest
points for the core point, plotting these distances, and identifying the point of maximum
curvature. This method ensures the algorithm is finely tuned for the dataset.
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When the epsilon is set at 0.95 and the minimal values are set at 5, the dataset is grouped into
nine clusters using DBSCAN, as shown in Figure 3.11.

2D PCA Plot of DBSCAN Clusters

Principal Component 1

Figure 3.11: PCA plot of the DBSCAN results of 9 clusters

Figure 3.11 demonstrates that DBSCAN has identified nine clusters (cluster o to cluster 8) and a
group called ‘noise.” The noise points in light purple are spread across the plot, which means that
they do not fit into the other clusters based on the parameters of this algorithm. Contrary to the
K-means method, this does not force some data points to be grouped in a certain cluster. It is
illustrated that most clusters appear elongated along the first Principal Component axis, which
might indicate that the clusters would be more complex in the original feature space. The
difference between the plots of the K-means and DBSCAN results is the clusters' shape and size.
Contrary to the similar size and shape in the results of K-means, it identifies clusters of different
shapes and densities, which can be seen in how the data points are spread in Figure 3.11. This
gives more insights into datasets with more complex structures and high dimensions.

After tuning the parameters and setting epsilon at 0.65 and the minimal samples parameter at
17, the dataset of around 6,500 connectors was grouped into 17 clusters using DBSCAN.

3.3.3 GMM

The third method for grouping the connector dataset is the GMM clustering method. Figure 3.12
demonstrates the results of that method, visualized by a 2D PCA plot.
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2D PCA Plot of GMM Clusters 16
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Figure 3.12: PCA plot of GMM results of 17 clusters

It can be seen that most of the data points lie in the center of the plot. The clusters are more
compact compared to the results of K-means and DBSCAN.

The same clustering method was also performed to group the dataset into three groups, as shown

in Figure 3.13.
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Figure 3.13: t-SNE plot of GMM results of three clusters

The t-SNE plot gives more visual clarity for the results than the PCA plot. Once more, Figure 3.13
illustrates that GMM groups the data more compactly. This method does not handle the outliers.

The GMM method works by assigning a probability to a data point belonging to a cluster; this
offers a more nuanced understanding of the grouping than K-means and DBSCAN. The
disadvantage of assigning a probability to each data point is that the computational requirements

are more intense than the K-means method.

3.3.4 Decision tree

The K-means method does not provide additional insights into why certain data points are
grouped together. Decision trees can be used to make it explainable by identifying the key
features that differentiate clusters. It tries to capture the logic, and by visualizing the tree, it can
be seen. To keep the decision tree clear, the K-means algorithm was chosen to be performed on a
3D plot containing the minimum and maximum temperature and the total poles, which is shown

in Figure 3.14.

3D Plot of K-Means Clusters

Clusters

Total Poles

Figure 3.14: 3D plot of K-means clusters

It can be determined that the dataset is grouped into three clusters, represented by different
colors: cluster zero in purple, cluster one in blue, and cluster two in yellow. It can be stated that
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cluster one has a high density of points for higher values of the maximal temperature, indicating
that these connectors are probably made for high-temperature applications. On the other hand,
cluster two is more spread in all three dimensions and could represent connectors used for
diverse applications. Finally, cluster zero has a high density of points for lower values
temperature values.

Based on these results, a decision tree is made for explainability, as shown in Figure 3.15.

Decision Tree for Cluster Interpretation

Temperature Max (°C) <= 0.651
gini = 0.616
samples = 5188
value = [2413.0, 1962.0, 813.0]
class = Cluster 0

Total Poles <= 0.212
gini = 0.39
samples = 2667
value = [2, 1961, 704]
class = Cluster 1

Total Poles <= 0.324
gini = 0.083
samples = 2521
value = [2411, 1, 109]

class = Cluster 0

Total Poles <= 0.308 Temperature Min (°C) <= 0.769
gini = 0.019 gini = 0.002
samples = 2434 samples = 1963
value = [2411, 1, 22] value = [2, 1961, 0]
class = Cluster 0 class = Cluster 1

gini = 0.0

gini = 0.011
samples = 2410
value = [2397, 1, 12]
class = Cluster 0

samples = 2
value = [2, 0, 0]
class = Cluster 0

Figure 3.15: Decision tree based on the K-means results

Each node or rectangle in this decision tree represents a decision and includes one of the three
features. The leaf nodes, the rectangles at the bottom of the three, and no more arrows from
depart are the eventual clusters in which the connector will be grouped.

An example interpretation of the decision tree will be made to explain the working. For example,
looking at the first node or root node, the data points will be moved to the left subtree if the
maximal temperature is less or equal to the normalized value of 0.651. If the connector has an
amount of normalized total poles lower or equal to 0.324, it will be checked if the normalized
total poles are lower or equal to 0.308, and if that is true, the data points belong to cluster zero.

There are also other values in the nodes that give extra information about decision-making. Gini
is the value that represents the impurity of the node; if this value is zero, then that means that
this node is homogeneous. The number of samples or data points inside the nodes is also given,
and the value represents the distribution of the data points over the different clusters. Finally,
the class indicates the cluster to which most of the data points belong.

It can be concluded that the decision tree offers a clear visual interpretation of the decisions
made in the clustering process. Next, compared to the K-means method, the decision tree is less
computationally hard because of its simplicity.
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3.4 Clustering with true labels and comparative analysis

This section of the thesis represents using different machine-learning clustering methods to
group the wire-harness connectors applied to a dataset containing 1,020 connectors enriched
with true labels. There are 17 connector types in total, and the dataset contains 60 connectors per
type. Thus, besides the characteristics per connector, the connector type is also included in the
dataset. Because clustering is normally done to find groups in a dataset without true labels, this
new dataset provides a unique opportunity to validate and refine the clustering techniques and
suggest an approach specifically for grouping Yazaki’s wire-harness connectors. The performance
of a specific method was measured using confusion matrices and silhouette scores. This thorough
analysis makes the approach robust and validated for the grouping of connectors.

Five comparisons were made to find the best possible approach for the connectors: with or
without standardization, with or without adding weights to the characteristics based on their
importance, different initialization techniques, balanced K-means compared to normal K-means,
and with or without handling outliers. Doing these five comparisons, it was chosen to work with
the K-means method. For all of the comparisons, the same preprocessed dataset is used.

3.4.1 Standardization

This part of the thesis compares using K-means on the preprocessed dataset of 1,020 connectors
with true labels and with or without standardization.

With standardization

First, using K-means clustering to group the connectors, the numerical data was standardized.
Figure 3.16 illustrates the PCA plot with the results using standardization.
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K-Means Clustering with Standardization

LY
e
LY
6
oo ]
° .
.o * .
L]
. °
TS oo
44
L]
. o « * .
.e
. L]
-5:'
~ o-.. . . oy
<] s * .
2 ] °s oe
S 24
=% L] (1)
g .0 e
o .
©
2
g e *%
£ . o ® % %ay
o
04 . .
« ®
.
.
. .
e Y * @
. (]
By .
]
—2 P,
o
.
.
—a
T T T T T
-4 -2 [ 2 4

Principal Component 1

Figure 3.16: K-means clustering with standardization

Figure 3.17 demonstrates the confusion matrix of these results to validate the K-means and

compare this method to others.

Clusters
Lamp Connector
Digital Signal Connector
Infotainment Connectors
MOST connector
Modular Connector
Joint Connector
High Power Connector
Squib Connector
Injections connectars.
Door Connectors
Standard Connector
Optical Connector
PCB/Header Assembly
Safety Connector
Transmission Connectors
Special Connector
RF Connectors
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Confusion Matrix for K-Means with Standardization
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Figure 3.17: Confusion matrix with standardization

The original dataset of 1,020 connectors consisted of 60 connectors per type; after clustering, the
grouped connectors are shown. The matrix's rows are the connectors' true labels, and the
columns represent the predicted labels assigned using the K-means algorithm. The diagonal
values in the matrix represent the correctly grouped connectors, and the values off-diagonal
represent the wrongly classified connectors. According to Figure 3.17, the optimal connectors are
grouped perfectly, and another type that was grouped well is the MOST connectors, for example,
with 40 correctly clustered instances.

The ratio of the correct predictions relative to the incorrect predictions in percentage here is
38.59%. Also, the silhouette score for K-means with standardization is 0.067.

Without standardization
The K-means algorithm was performed on the dataset of 1,020 connectors with true labels

without standardizing the numerical values. The results are illustrated in a 2D PCA plot, as
shown in Figure 3.18.
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K-Means Clustering without Standardization
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Figure 3.18: K-means clustering without standardization
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Figure 3.19 shows the confusion matrix based on the clustering results using K-means without

standardization.

Confusion Matrix for K-Means without Standardization
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Figure 3.19: Confusion matrix without standardization

The ratio of the correct predictions relative to the incorrect predictions in percentage here is
66.39%. Also, the silhouette score for K-means with standardization is 0.180.

Comparison and discussion

The clustering results with or without standardization indicate that the K-means algorithm
performed better without standardization, with a difference of 27.8% in terms of the ratio in
percentage and a difference of 0.113 in terms of the silhouette score. A higher silhouette score
means better-separated clusters.

Thus, it can be concluded that it is not necessary to standardize the numerical values because it
decreases the performance of the clustering method. The numerical values were already
normalized and, because of this, already have the same scale. Data standardization before
clustering is commonly done because clustering models are distance-based models and
standardization ensures that the high ranges will not have a bigger influence on clustering [44].
However, if the data is standardized, a big assumption is made about how it is distributed, as it is
best for normal distributions, and it is not sure if the numerical values are distributed like that

[44].

3.4.2 Adding weights to the characteristics

After knowing that performing the K-means algorithm to cluster connectors yields better results
when not standardizing the numerical values, from now on, standardization will not be used
anymore for the rest of the comparisons in this part of the thesis.

After normalizing the numerical values and one-hot encoding the categorical values of the
dataset, it is possible to add weights to those values based on their importance. Research was
done at Yazaki to understand which connector characteristics are most important in terms of the
interchangeability of the connectors. The characteristics of gender, hybrid poles, pin rows, and
terminal size were most important. Thus, their values were multiplied by five before clustering.
The characteristics of the cavity family and maximal temperature were also more important than
the not-mentioned characteristics but not as important as the ones multiplied by five, so they
were multiplied by three.

Adding weights to the most important characteristics
First, using K-means clustering to group the connectors, a weight was added to the most

important connector characteristics. Figure 3.20 illustrates the PCA plot with the results using
the weights method.
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K-Means Clustering with Weighted Characteristics (No Standardization)
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Figure 3.20: K-means clustering with weighted characteristics
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Figure 3.21 shows the confusion matrix based on the clustering results using K-means with

weights added to the most important characteristics.
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Figure 3.21: Confusion matrix with weighted characteristics

The ratio of the correct predictions relative to the incorrect predictions in percentage here is
65.58%. Also, the silhouette score is 0.153.

Without adding weights to the most important characteristics

The results of performing the K-means method without adding the weights are the same as those
of the K-means without standardization.

The percentage ratio of the correct predictions relative to the incorrect predictions is 66.39%.
Also, the silhouette score is 0.180.

Comparison and discussion

It can be stated that the method without adding weights to the most important connector
characteristics yields better results. It has a higher ratio of 0.81 percent and an increase of the
silhouette score of 0.027. Although the most important features had a higher impact on the
clustering, it didn’t yield better results.

3.4.3 Different initialization techniques

After knowing that performing the K-means algorithm to cluster connectors yields better results
when not standardizing the numerical values and not adding weights to the most important
features, from now on, standardization and adding weights will not be used anymore for the rest
of the comparisons in this part of the thesis.

The K-means algorithm is sensitive to the initialization of the first centroids. The clustering
results will be suboptimal if the first centroids are placed poorly. This is why two different
initialization techniques were compared: picking up one connector per group for the first
centroid and performing multiple random initializations while selecting the solution with the
best results.

Using one connector per group for the first centroid

Because the dataset used in this part of the thesis includes true labels, it is possible to adapt the
initialization of the K-means algorithm specifically for wire-harness clusters by selecting one
connector per group as the first centroid. This way, there is certainty that it is not random and is
selected well, based on the information available in the dataset. Figure 3.22 illustrates the PCA
plot with the results using one connector per group as the first centroid. The connector picked
per group is a connector with the average of every feature, so it is ensured that the picked
connector represents that group best.
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K-Means Clustering with Custom Initial Centroids (No Standardization, No Weights)
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Figure 3.22: K-means with custom initial centroids

Figure 3.23 shows the confusion matrix based on the K-means clustering results while using one

connector per group as the first centroid.
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Figure 3.23: Confusion matrix with custom initial centroids

The ratio of the correct predictions relative to the incorrect predictions in percentage here is
105.23%. Also, the silhouette is 0.163.

Multiple runs of random initialization

The results of performing the K-means method using multiple runs of random initialization are
the same as the clustering results without adding additional weights because, here, the standard
initialization method is used in this thesis. The K-means algorithm uses random initialization
and runs it ten times, and the one with the lowest variance inside the clusters is picked.

The percentage ratio of the correct predictions relative to the incorrect predictions is 66.39%.
Also, the silhouette score is 0.180.

Comparison and discussion

It can be stated that the method of using the average values of the connectors as the first centroid
yields better results in terms of ratio; namely, it increased the ratio by 38,84%. On the other
hand, this initialization method decreased the silhouette score, namely 0.017, compared to the
initialization method performing multiple runs with random initialization.

The significant increase in the ratio indicates that using a connector as the first centroid
improves the correctness of the predictions because this method uses domain knowledge, which
ensures that each first centroid is a valid representation of a connector type. However, this
method had a slight decrease in terms of the silhouette score, which indicates that the clusters
were less separated. A potential reason could be that the connectors as the initial centroids may
not be optimal in terms of distance from each other. Next, running the initialization multiple
times makes the method more computationally intensive.

3.4.4 Balanced K-means

After knowing that performing the K-means algorithm to cluster connectors yields better results
when not standardizing the numerical values, not adding weights to the most important features,
and using the mean values of a group of connectors as the initial centroid, from now on, these
methods will be used for the rest of the comparisons in this part of the thesis.

In this study, it was checked if performing balanced K-means would improve the clustering

performance. The balanced K-means clustering method requires all clusters to be the same size.

Performing balanced K-means
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Figure 3.24 demonstrates the PCA plot with the results after using the balanced K-means

method.
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Figure 3.24: Balanced K-means

Figure 3.25 shows the confusion matrix based on the balanced K-means clustering results.
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Figure 3.25: Confusion matrix of balanced K-means

The ratio of the correct predictions relative to the incorrect predictions in percentage here is
93.92%. Also, the silhouette score for K-means with standardization is 0.108.

Performing normal K-means
The results of the K-means method are the same as those in the results of using one connector
per group as the initial centroid.

The ratio of the correct predictions relative to the incorrect predictions in percentage here is
105.23%. Also, the silhouette score is 0.163.

Comparison and discussion

Compared to the normal K-means method, the balanced K-means performance decreased. The
ratio of the correct predictions relative to the incorrect predictions lowered by 11.31%, and the
silhouette score lowered by 0.055.

The restriction of the balanced K-means method is that it forces every cluster to have the same
amount of data points. Because of this, connectors from the correct cluster might be put in
another cluster to preserve equilibrium, which may result in abnormal cluster borders.

3.4.5 Handling outliers
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The final part of comparing different ways of performing K-means and improving the clustering
technique specifically for wire-harness connectors includes handling outliers. It was chosen to
remove 20% of the rows with the highest number of average outliers. 80% of the dataset was

kept; thus, approximately 800 connectors with true labels were kept.

Figure 3.26 demonstrates the PCA plot with the results after handling the outliers of the dataset.
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Figure 3.26: K-means clustering after handling outliers

Figure 3.27 shows the confusion matrix after handling the outliers.
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Figure 3.27: Confusion matrix after handling outliers

Figure 3.27 demonstrates that the MOST connector shows the highest level of correctly grouped
connectors, namely 55. Injection connectors have the second highest number of correctly
grouped connectors, namely 54. However, injection connectors have 14 more misclassified
connectors into other types compared to MOST connectors. Digital, door, and high-power
connectors have the lowest amount of correct predictions.

The ratio of the correct predictions relative to the incorrect predictions in percentage here is
117.29%. Also, the silhouette score is 0.203. The accuracy of this method is 62%.

Comparison and discussion

After handling the outliers, the ratio of the correct predictions relative to the incorrect
predictions increased by 12.06%, and the silhouette score increased by 40 compared to using the
K-means method without handling outliers.

This means that using the K-means method, without standardizing the data, without adding
weights, using the average values of the connectors per type as the initial center, and handling
the outliers gives the best performance of K-means in terms of the confusion matrices and the
silhouette scores specifically for grouping the wire-harness connectors.

3.5 Most similar wire-harness connector
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To find interchangeable connectors, in this thesis, it was chosen to pick up only the MOST
connector group after the clustering result because of its highest number of correctly grouped
connectors and group it again using the DBSCAN algorithm.

Because the DBSCAN algorithm requires two parameters, a k-distance graph was made to show
the sorted distances of the k-th nearest neighbor for each point in the dataset. Figure 3.28
illustrates the k-distance graph for the MOST connector group.
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Figure 3.28: K-distance graph

The rule for the k-distance graph is to look for the point where there is a significant change in the
slope of the curve. This point is called the elbow. The epsilon parameter should be chosen at the
point where the curve transitions from a gentle sloop to a steep slope. In this case, an epsilon
around ten would be the best option [45].

Using ten as the value for epsilon, the DBSCAN clustering method grouped the MOST connector
group into then clusters (cluster o to cluster 9), as shown in Figure 3.28.
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Figure 3.29: Second round of clustering using DBSCAN

It can be seen that the different data points inside the unique clusters in different colors on the
PCA plot lie closely together. The algorithm put three data points as outliers based on the chosen
parameters.

After cluster 2 was picked up and again, DBSCAN was performed on that cluster to group the
connectors once more, as shown in Figure 3.29.
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Figure 3.30: Third round of clustering using DBSCAN

Next, for example, the top three closest connectors for each connector in the MOST connector
group can be found using the Euclidean distance. This was validated for the MOST connectors
using available information from the engineering department at Yazaki. If interchangeable
connectors are found, the ones can be chosen with the lowest purchasing price for a larger
margin. Lower competitor prices were found for these connectors, saving 53.200 euros when
buying a volume of 1.865.280 connectors.
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Chapter 4
Conclusion and future work

The first goal of this thesis was to implement and validate machine learning-based clustering
techniques to group wire-harness connectors based on their characteristics. Three unsupervised
clustering algorithms were implemented on a preprocessed dataset of approximately 6,500
connectors without true labels to group the connectors: K-means, DBSCAN, and GMM. Second,
the K-means method was optimized specifically for the connectors by comparing different ways
of using that clustering method on a dataset containing 1,020 connectors, including true labels.
Finally, the most similar connectors could be found by combining the K-means and DBSCAN
clustering methods.

For the dataset of 6,500 connectors without true labels, it was shown that a number of 17 clusters
is optimal by calculating the silhouette scores for different clusters. This was confirmed later in
this thesis after receiving additional information from the engineering at Yazaki. The results of
the clustering techniques were visualized using the PCA and t-SNE dimensionality reduction
techniques. T-SNE showed clearer differences between the clusters and was better suited for
visualizing the high-dimensional data. Results showed that DBSCAN identifies clusters of
different shapes and densities better than K-means. The plots of the results after using GMM
demonstrated that the clusters are more compact compared to K-means and DBSCAN. GMM
offers a more nuanced understanding of grouping by assigning probability to every data point
belonging to a cluster. However, this makes this method computationally more intense. It can
also be concluded that performing a decision tree based on the clustering results offers a clear
visual interpretation of the decisions made in the clustering process.

The second part of the thesis used a dataset containing 1,020 connectors, including true labels.
Five comparisons were made to find the best possible approach for the connectors: with or
without standardization, with or without adding weights to the characteristics based on their
importance, different initialization techniques, balanced K-means compared to normal K-means,
and with or without handling outliers. Based on the results, it can be concluded that using the K-
means method, without standardizing the data, without adding weights, using the average
values of the connectors per type as the initial center, and handling the outliers gives the best
performance of K-means in terms of the confusion matrices and the silhouette scores specifically
for grouping the wire-harness connectors. This best approach had a ratio of the correct
predictions relative to the incorrect predictions of 117.29%. Also, the silhouette score was 0.203.
The accuracy of this method was 62%.

This study's third and last part contained findings on the most similar connectors based on their
characteristics. The suggested approach was considered successful after combining the K-means
algorithm to group the clusters into 17 groups, selecting one group and performing DBSCAN on
that group, and finally selecting one more group after the first DBSCAN grouping and
performing DBSCAN for a second time on that group. Finally, the top three closest connectors
for each connector in the MOST connector group can be found using the Euclidean distance. This
was validated for the MOST connectors using available information from the engineering
department at Yazaki.
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The most important implication of this master’s thesis is finding the most similar connectors to
find interchangeable wire harness connectors without going manually through all the databases
in Yazaki. If interchangeable connectors are found, the ones with the lowest purchasing price can
be chosen so the margin is maximal, and the RfQ response to the OEM can have a competitive
advantage in terms of price and time.

Despite this positive implication, the used approaches also have limitations. The main
disadvantage of using K-means clustering to group the connectors is that this method assumes
that the clusters are of different densities and shapes, which could lead to incorrect results.
Additionally, it was stated that removing the outliers improved the K-means method, although,
by doing this, some valuable information may be lost. Because additional knowledge of
connectors was used to optimize the suggested clustering approaches, the generalizability of the
approaches could be decreased.

Future work and research are necessary to develop the suggested approaches and overcome the
limitations. This project was performed at an automotive supplier company; thus, in the future, it
would be interesting to create a user interface and interactive visualization tools to help the
Yazaki employees utilize the clustering techniques effectively. Additionally, the approach used to
find the most similar connectors using a dataset of approximately 1,000 connectors could also be
used in the feature on the dataset without true labels with around 6,500 connectors after
preprocessing.

In conclusion, this study underscores the critical role of data-driven business and the use of
machine learning in the automotive wire harness business to automate processes like the RfQ
process.
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