
Faculty of Business Economics
Master of Management
Master's thesis

Enhancing Data Quality Assessment in Process Mining: Extending DaQAPOs
Functionalities

Hale Yurttutan
Thesis presented in fulfillment of the requirements for the degree of Master of Management, specialization Data

Science

2023
2024

SUPERVISOR :

Prof. dr. Niels MARTIN

Faculty of Business Economics
Master of Management
Master's thesis

Enhancing Data Quality Assessment in Process Mining: Extending DaQAPOs
Functionalities

Hale Yurttutan
Thesis presented in fulfillment of the requirements for the degree of Master of Management, specialization Data

Science

SUPERVISOR :

Prof. dr. Niels MARTIN

Enhancing Data Quality Assessment in Process Mining:
Extending DaQAPO’s Functionalities

Hale Yurttutan

Hasselt University

hale.yurttutan@student.uhasselt.be

Process mining focuses on identifying, tracking, and enhancing processes using infor-

mation from event logs derived from process execution data captured by information

systems. The effectiveness of process mining heavily depends on the quality of these

event logs. Recognizing the critical need for high-quality data, this thesis proposes a

systematic approach by following the design science research methodology to extend

the functionalities of DaQAPO, a prominent tool in data quality assessment. By in-

tegrating comparative analysis of various data quality assessment tools with a com-

bined data quality issue framework, this study presents detection strategies and devel-

ops functionalities that specifically address event log quality issues not yet covered by

DaQAPO. These functionalities are designed to provide a more comprehensive tool for

data quality assessment, ultimately facilitating more reliable process mining insights.

This work contributes to the field of process mining by bridging the gap between the-

oretical data quality frameworks and their practical application in enhancing data

quality assessment in process mining.

Keywords - Process Mining; Event log quality issues; Event log quality assessment; Exten-

sion of DaQAPO Functionalities; R

Acknowledgements: I would like to express my deepest gratitude to my supervisor, Prof. dr. Niels Martin, for his valuable

guidance and support throughout this study. His expertise and insights were indispensable to my research. I am also grateful

to my family for their consistent encouragement and support. Finally, a special thanks to my husband, Uygar, for his endless

patience and love.

1

1 Introduction

Process mining focuses on identifying, tracking, and enhancing processes using information from event

logs. These logs are derived from process execution data captured by information systems, serving

as the foundational data for process mining (Bose et al., 2013). An event log comprises records of past

occurrences within process executions, with each instance typically denoting a case, an activity, a specific

time, and sometimes an associated resource. This type of data is distinct due to its clear semantics, such

as the relationship between cases and events, and its inherent temporal sequence facilitated by timestamps

(ter Hofstede et al., 2023).

By delving into operational workflows, process mining proves to be integral across various sectors,

including production, logistics, finance, sales, education, consulting, healthcare, maintenance, and gov-

ernment (van der Aalst, 2022b). To illustrate the diverse purposes of process mining briefly, different

types of it can be investigated. Process discovery involves automatically extracting process models from

event logs, capturing the typical flow of a process. Conformance checking, another type of process

mining, compares these models with actual event logs to identify deviations and similarities, providing

diagnostic insights. Lastly, model enhancement utilizes event logs and existing models to improve or

extend process representations, resulting in refined process models. These types of process mining col-

lectively enable organizations to understand, monitor, and optimize their processes effectively (van der

Aalst et al., 2012).

Obtaining accurate insights into business processes with the help of process mining can be chal-

lenging because of the data quality of event logs. In practical settings, it is observed that real-life event

logs often fall short of data quality expectations, such as inconsistencies in labeling, missing details,

and incorrect entries (Martin, 2021). In this context, the principle of "garbage in, garbage out" signifies

the importance of input data quality in process mining (Suriadi et al., 2017). This principle means that

if the input data is flawed, the resulting analysis will also be flawed. This dependence on data quality

emphasizes the need to ensure the data to be used is of sufficient quality. To illustrate in a practical

setting, consider a manufacturing process where the timestamps for the "Start Production" activity are

inaccurately recorded. It may lead to an incorrect representation of the process duration. As a result,

analyses that depend on these durations, such as calculating average process times or identifying devia-

tions from standard operations, may be flawed. Another issue might occur in a hospital setting, where

2

the logs fail to record which staff member administered each treatment to patients, making it difficult to

track accountability and assess performance. These types of data inaccuracies can significantly impact

the effectiveness of process mining efforts and the accuracy of the insights derived (van der Aalst, 2012).

Given these challenges, assessing data quality in the context of process mining becomes a crucial

practice. This assessment focuses on the identification of data quality issues in event logs (van der Aalst,

2022a). Motivated by these mentioned challenges, research in event log quality assessment has begun to

concentrate on developing tools for this purpose. Notable examples of such tools include ProM plugins

(Verhulst, 2016; Kherbouche et al., 2016; Dixit et al., 2018; Fischer et al., 2020), QUELI (Andrews et

al., 2018), and DaQAPO (Martin et al., 2022), each offering various functionalities for the event log

quality assessment. Among these tools, the focus of this study will be to provide improved support for

the existing functionalities of DaQAPO. DaQAPO, an R-package, is equipped with an extensive array of

tests designed to identify various event log quality issues while also providing the adaptability to identify

quality issues specific to a particular application context (Martin et al., 2022). However, there exists a

research gap as DaQAPO only covers a subset of data quality issues. This gap limits the effectiveness

of the tool in detecting a broader range of issues that can occur in event logs. This research aims to

contribute by developing extensions to the current functionality of DaQAPO. These enhancements will

be grounded within the combined framework of data quality issues outlined in the literature and will be

informed by a comparative analysis of the functionalities of existing data quality assessment tools such

as ProM and QUELI. The study categorizes extended functionalities into three areas: resource-related,

timestamp-related, and activity-related.

The structure of this thesis is outlined as follows: Section 2 provides an overview of the background

and related work. Section 3 outlines the research questions and describes the methodology employed.

Section 4 reviews the functionalities of DaQAPO, explores areas for improvement, and examines selected

data quality issues, detection strategies, and function outputs. Section 5 presents a demonstration of

the developed functionalities on a publicly available event log. Section 6 provides a discussion of the

findings. Then, the paper concludes with a summary of key findings and future research directions in

Section 7.

3

2 Background and Related Work

This section introduces the fundamental concept of an event log and explores the various data quality

issues that can arise within these logs. Then, it examines the tools developed to assess data quality

in event logs, including ProM plugins, QUELI, and DaQAPO. Additionally, a comparative analysis of

the functionalities of these tools is conducted, focusing on their ability to identify different data quality

issues.

2.1 Event Log

The starting point for process mining is an event log. An event log contains data regarding the execution

of a process, which includes multiple process instances or cases (Mans et al., 2015). Each event record

captures a specific action within a process and includes attributes such as the process instance (case ID),

the specific process action (activity), the execution time (timestamp), and the transaction type (e.g., start

or complete). It may also contain other additional information, such as the resource responsible for the

activity (Andrews et al., 2020). For a more concrete example, imagine an event log from a hospital

where each entry records the steps of a patient’s hospital visit, as seen in Table 1. Initially, patient 520

was registered at the hospital, which was handled by Clerk 12 on November 21, 2017. It captures the start

of the registration at 11:59:41 and its completion at 12:05:52. Subsequent steps might include various

examinations and treatments by different healthcare professionals, each logged with corresponding times

and resources.

Table 1: Illustration of an event log structure.

Patient_visit_nr Activity Timestamp Transaction type Resource

520 Registration 21/11/2017 11:59:41 Start Clerk 12

520 Registration 21/11/2017 12:05:52 Complete Clerk 12

520 Triage 21/11/2017 11:59:41 Start Nurse 17

520 Triage 21/11/2017 13:32:18 Complete Nurse 17

520 Clinical exam 21/11/2017 11:59:41 Start Doctor 4

520 Clinical exam 21/11/2017 14:02:34 Complete Doctor 4

520 Treatment 21/11/2017 14:38:52 Start Nurse 17

520 Treatment 21/11/2017 14:49:21 Complete Nurse 17

521 Registration 21/11/2017 18:02:10 Start Clerk 6

521 Registration 21/11/2017 18:04:07 Complete Clerk 6

.

4

2.2 Data Quality Issues in Event Logs

An event log data quality issue refers to any problem or deficiency in the recorded data that could com-

promise the correctness, completeness, or relevance of information in an event log (Bose et al., 2013). To

illustrate, in a healthcare setting event log, the timestamps for patient treatments might only record the

hour and minute, omitting the exact second when the treatment began and ended. This lack of precision

can lead to challenges in accurately measuring the duration of treatments, impacting analyses related to

treatment efficiency or the identification of bottlenecks in patient flow. A wide range of quality issues

can arise in event logs. This section investigates the studies by Bose et al. (2013), Suriadi et al. (2017),

and Vanbrabant et al. (2019), which provide an overview of potential data quality issues within event

logs.

2.2.1 Bose et al. (2013)

Bose et al. (2013) identify four main categories of problems related to the quality of event logs: missing

data, incorrect data, imprecise data, and irrelevant data. The study further explains how these identified

categories of problems occur across different log entities, in total defining 27 distinct data quality issues.

Missing Data: Essential information may be missing from the log, such as events, their specific

attributes, or their relationships. This typically indicates problems with the logging system or procedure,

where required elements fail to be recorded. For instance, a patient undergoes a series of diagnostic

tests, but the event log fails to record the timestamp of a test due to a system malfunction. This missing

timestamp could lead to inaccuracies in calculating the total duration of diagnostic procedures for the

patient.

Incorrect Data: Although data is routinely recorded, there are instances where it may be incorrect.

Imagine an event where a patient’s medication administration is logged with the wrong drug name due

to a clerical error. This might lead to incorrect data analysis regarding drug usage patterns.

Imprecise Data: The detail in logged entries may be insufficient, leading to a loss of necessary de-

tail. This can affect the reliability of analyses, especially where precise values are critical. For instance,

in a hospital setting, recording the timestamp of medication administration only to the nearest hour may

lead to challenges in precisely determining when patients receive their medications. This lack of preci-

sion could potentially make it more difficult to monitor the effectiveness of treatments.

5

Irrelevant Data: Some data in the logs may not directly serve the analysis but might need to be

transformed or filtered to become useful. In a hospital setting, an event log might capture every single

interaction between patients and non-medical staff, such as billing inquiries. While technically accurate,

this data may not be relevant to clinical outcome analyses and could clutter the event log, requiring

filtering out for studies focused solely on medical treatments (Bose et al., 2013).

2.2.2 Suriadi et al. (2017)

Suriadi et al. (2017) introduce a systematic approach to assess data quality in event logs through the

identification of event log imperfection patterns. The article identifies 11 event log imperfection patterns,

including form-based event capture and homonymous label, as detailed in Table 12 in Appendix A.

For example, form-based event capture imperfection pattern highlights a problem in event log capture

from electronic forms, such as medical test forms. When users like nurses and doctors click "Save",

all form data records at that moment, losing precise activity times. Another imperfection pattern is the

homonymous label, which occurs when a recurring activity is labeled identically for a case. For example,

in a hospital setting, if "Treatment evaluation" is recorded three times for a case in the log, this repetition

might be understood differently. It could indicate that "Treatment evaluation" is actually repeated, or it

might indicate a review of the information in "Treatment evaluation", which actually refers to another

activity, making the analysis more complex (Suriadi et al., 2017).

2.2.3 Vanbrabant et al. (2019)

Vanbrabant et al. (2019) discuss the significance of high-quality input data in creating realistic simula-

tion models. The provided framework categorizes potential data quality problems in EHRs (Electronic

Hospital Records) and describes techniques for identifying these issues. It distinguishes between missing

and non-missing data. The non-missing data can be further categorized as wrong data and not wrong but

not directly usable data. The latter refers to data that is accurate but requires preprocessing to be fit for

the intended use. Each category is further subdivided into specific types of data quality problems, such as

missing values, incorrect attribute values, violated attribute dependencies, and inconsistent formatting,

as explained in Table 2.

6

Table 2: Data quality framework by Vanbrabant et al. (2019)

Category Description

Missing Data

Missing Values Mandatory values that are absent for certain records.
Missing Attributes Required attributes for the analysis are not present in the data set.
Missing Entities Entire records (e.g., patients) that are absent.

Wrong Data

Violated Attribute Dependencies Data values are incorrect due to their relationship with other attributes.
• Logical Order Sequential activities that are not in the correct order.
• Mutual Dependency Mutually dependent attributes with contradicting values.

Incorrect Attribute Values Data values that are inherently wrong.
• Inexact Timestamps Timestamps recorded inaccurately.
• Typing Mistakes Errors in text fields due to typing errors.
• Outside Domain Ranges Data values outside the expected range.
• Other Implausible Values Incorrect values that do not fit other categories.

Not Wrong but Not Directly Usable Data

Inconsistent Formatting Data is correct but formatted inconsistently.
Implicit Value Needed Required input is implied in the data but not explicitly recorded.
Embedded Values More than one value embedded within a single data field.
Abbreviations Use of unclear or useless abbreviations.
Imprecise Data Data is correct but not detailed enough for the specific use case.

2.3 Data Quality Assessment of Process Data

This section focuses on exploring data quality assessment tools such as ProM plugins, QUELI, and

DaQAPO. Table 3 presents a comparison of the data quality assessment functionalities provided by

these tools. These functionalities represent a comprehensive list derived from the related studies. This

functionality comparison highlights each tool’s functionalities in the identification of specific data quality

issues.

Table 3: Functionality comparison of data quality assessment tools.

ProM QUELI DaQAPO

Verhulst et al. (2016) Kherbouche et al. (2016) Dixit et al. (2018) Fischer et al. (2020) Andrews et al. (2018) Vanbrabant et al. (2018)

Missing values + + + + +

Threshold/Expected value range + + + + + +

Event order check + + + + + +

Attribute dependency + +

Predecessor check + + + + +

Frequency check + + + + + +

Timestamp format + +

Correct label + +

Synonymous labels +

Homonymous labels + +

Timestamp granularity + + + +

Overlapping events + +

Form-based event +

Duplicates + + + + +

7

The literature presents various ProM plugins designed to identify different data quality issues. These

plugins commonly include functionalities such as checking for missing values, threshold checks, event

order checks, frequency analyses, and timestamp granularity assessments.

The study by Verhulst (2016) describes the implementation of a ProM plugin for assessing data quality

issues such as consistency, correctness, uniqueness, and format checks, using an event log as the input.

Unlike other ProM plugins in this literature review, Verhulst (2016) introduces a detection mechanism for

event attribute dependency, identifying situations where certain attributes consistently appear together,

such as a set of events that always share the same attributes. Furthermore, as a distinct functionality, the

study analyzes the length of attribute values and examines the types of data they contain. Moreover, for

timestamp format check, the study introduces functionality to identify anomalous timestamps, particu-

larly those dated in the future, ensuring that event timestamps fall within a user-defined timeframe. The

output is a scorecard providing an overall quality score for the event log, along with individual scores

for each quality aspect. This output may have limitations in addressing context-specific needs because

of uniform weighting across all quality dimensions.

Another ProM plugin studied by Kherbouche et al. (2016) assess complexity, accuracy, consistency,

and completeness using an event log as the input. This plugin checks global completeness by comparing

the occurrence frequencies of activity sets across different cases with their expected probabilities. The

study also addresses local completeness, which assesses whether an event log accurately records the

predecessor and successor tasks for each case to detect potential sequencing errors. Moreover, the study

by Kherbouche et al. (2016) explores the complexity of event logs through two main aspects: structural

and behavioral. The structural aspect focuses on the organization and interconnection of events in the log,

identifying elements such as loops and duplicate tasks and analyzing the number of events and traces.

The behavioral aspect examines the number and types of events per case, variations between activity sets

across different cases, and the presence of recurring or unique behavioral patterns. The output of the

plugin offers a generalized summary of event log quality by employing standardized metrics. Similar to

Verhulst (2016), this approach restricts its effectiveness in assessing context-specific event logs.

The ProM plugin discussed by Dixit et al. (2018) identifies three main indicators of event order

imperfections such as timestamp granularity issues, order anomalies, and statistical anomalies using

event logs. Similar to Kherbouche et al. (2016), for ordering-based detection, the study examines the

frequency of follows and precedes relations between activities to identify activities that may not follow

8

the anticipated sequence. Additionally, unlike Verhulst (2016), this plugin uses a different strategy to

detect timestamp format issues. For example, if all activities within an event log have "day" values

that range only between 1-12, with no values from 13–31, this could indicate a misinterpretation of

the date format (e.g., confusing dd/mm with mm/dd), leading to problems with event ordering. The

output identifies which activities are affected by these issues and includes quantitative details such as the

frequency of each issue and examples of specific instances within the log.

Building on these insights, Fischer et al. (2020) introduces an approach for detecting and quantifying

timestamp-related issues in event logs. The study defines 15 metrics related to timestamp quality across

four abstraction levels (event, activity, trace, log) and four quality dimensions (accuracy, completeness,

consistency, uniqueness). The plugin checks these quality dimensions on timestamp data, including the

identification of missing timestamps, the granularity of timestamps, and any anomalously dated times-

tamps, similar to Verhulst (2016), while ensuring each timestamp is uniquely recorded. Additionally,

unlike other ProM plugins, this plugin provides a unique functionality by examining overlapping activi-

ties per resource to detect instances of resource sharing across different events. Similar to the plugins by

Kherbouche et al. (2016) and Dixit et al. (2018), the plugin investigates predecessor checks to identify de-

viations in activity sequencing. The output provides a quantified assessment of timestamp quality issues

in the event log. The approach maintains its relevance and utility across various domains by adjusting

the importance of metrics used in this assessment.

Besides ProM plugins, the article by Andrews et al. (2018) introduces QUELI, a query language

designed to currently identify five event log imperfection patterns defined by Suriadi et al. (2017) such

as form-based event capture, collateral events, inadvertent time travel, synonymous labels, and homony-

mous label. These detection strategies include identifying form-based event capture and collateral events

by recognizing groups of events with nearly identical timestamps and analyzing the frequency of these

groups. Another imperfection pattern, inadvertent time travel, involves identifying pairs of activities

with unusual temporal ordering and using statistical summaries to determine if the deviations indicate

data quality issues, functioning essentially as a predecessor check. Additionally, the synonymous label

imperfection pattern addresses multiple distinct labels in the log that refer to the same activity but vary in

syntax by finding labels that never appear together in the same case, suggesting they might be synonyms,

confirmed through content analysis. Moreover, the homonymous label pattern arises when the same

activity label is used for different activities within a case, identified by analyzing the context of each

9

occurrence to determine if the label represents different activities. Each detection algorithm generates

outputs such as statistical summaries of specific features in an event log or the creation of sub-logs that

fulfill particular criteria. The output of the QUELI allows users to configure event patterns, threshold

values, algorithm parameters, and contextual variables.

Finally, DaQAPO provides a wide range of specific functionalities for data quality assessment. For

instance, it can identify frequency violations of activities and detect event order violations, time anoma-

lies, and overlapping activities. DaQAPO’s functionalities are characterized by their dynamic nature,

offering context-specific assessments of event log quality, such as setting thresholds for identifying du-

ration outliers, specifying conditions for detecting related activities, or performing event order check

(Martin et al., 2022). Similar to QUELI, DaQAPO offers a homonymous label check in which the same

activity label is used for different activities within a case. The comparison of functionalities presented in

Table 3 indicates that DaQAPO lacks functionalities related to timestamp format, timestamp granularity,

synonymous labels, and form-based event capture.

3 Research Questions and Methodology

This research aims to bridge a gap identified in the current capabilities of DaQAPO. While DaQAPO is

powerful at detecting a variety of data quality issues, it requires additions to address a larger variety of

data quality issues. The primary research question that guides this effort is: How can the functionalities

of DaQAPO be extended to provide improved support for data quality assessment of process data?

This question further subdivides into several subquestions aimed at targeting the enhancements needed

for DaQAPO. The design science research methodology, which involves identifying problems, defining

objectives, designing and developing solutions, demonstrating their applicability, and evaluating their

effectiveness (Peffers et al., 2007), was employed in this study to systematically explore and develop

these enhancements.

Subquestion 1: Which process data quality issues are currently not supported in DaQAPO?

Investigating the existing functionalities of DaQAPO is crucial as it sets the foundation for possible

extensions. By doing so, what the tool already offers can be understood, and where there may be gaps

that hinder comprehensive event log quality assessment can be identified. To achieve this objective, the

study employs a structured methodology grounded in a comprehensive review of existing literature and

an in-depth analysis of the current functionalities of DaQAPO. This subquestion aligns with the design

10

science research methodology by identifying the problem and defining the objectives for improvement.

Subquestion 2: Which assessment functions can be developed to address process data quality issues

not yet covered by DaQAPO?

In this study, the development of new functions is directly guided by the gaps identified in DaQAPO’s

current functionalities, as established through the extensive literature review and in-depth analysis ad-

dressed in subquestion 1. Exploring what further functionalities can be added to DaQAPO addresses the

need for continuous improvement and contributes to the comprehensiveness of DaQaPO as a data quality

assessment tool. This subquestion is relevant to the design science research methodology as it focuses

on designing and developing new functionalities to address the identified gaps.

Subquestion 3: Can the novel assessment functions generate insights into the data quality of a real-

life event log?

This question emphasizes the practical testing and demonstration of the developed functionalities.

By applying the new assessment functions to a different, publicly available event log, the research can

showcase the real-life applicability of the developed functionalities. This subquestion is integral to the

design science research methodology, as it involves demonstrating and evaluating the effectiveness and

utility of the designed functionalities in a real-life context.

4 Systematic Functionality Extension for DaQAPO

This section starts by examining DaQAPO’s current functionalities. A combined data quality framework

is then created to investigate a wider range of data quality issues for functionality extension. Following

this, a mapping table aligns each issue identified in the combined framework with DaQAPO’s func-

tionalities, highlighting which issues are addressed by DaQAPO and which are not. Finally, the study

delves into selected data quality issues, providing descriptions, real-life examples, detection strategies,

and details on the functions developed and their outputs.

4.1 Mapping Existing Capabilities of DaQAPO

DAQAPO provides generic data quality assessment techniques developed to address various quality is-

sues (Vanbrabant et al., 2019). Table 4 provides a comprehensive summary of DaQAPO’s current func-

tionalities, which sets the stage for identifying potential areas for functionality extension for DaQAPO.

11

Table 4: Summary of current functions of DaQAPO (Vanbrabant et al., 2019; Martin et al., 2022)

Function Description
detect_activity_freq_violations Identifies anomalies in the frequency of specified activities within each

case, ensuring that procedures are followed correctly without unneces-
sary repetition.

detect_activity_order_violations Verifies that a specified sequence of activities is followed in each case,
highlighting potential quality issues in procedures essential for patient
safety and care quality.

detect_attribute_dependencies Determines if a specific condition (antecedent) reliably leads to a par-
ticular outcome (consequent), identifying inconsistencies in process or
data recording.

detect_case_id_seq_gaps Checks for gaps or missing numbers in the sequence of case IDs, help-
ing to identify missing cases.

detect_cond_activity_presence Detects missing activities based on conditions. Checks for the consis-
tent recording of specific activities under certain conditions, ensuring
adherence to protocols based on patient conditions or specializations.

detect_duration_outliers Identifies instances where the duration of an activity is unusually long
or short, indicating potential inaccuracies or anomalies in patient care
or process efficiency.

detect_inactive_periods Identifies extended periods without arrivals or activities, which could
signal technical failures or other issues, using a user-defined threshold
for identifying long gaps.

detect_incomplete_cases Checks for cases missing a complete set of specified activities, indicat-
ing potential issues with patient care processes or data entry.

detect_incorrect_activity_names Identifies activity labels not part of the specified list of allowed activ-
ities, helping to correct typos, inconsistencies, or incorrect activity la-
beling.

detect_missing_values Detects and quantifies missing or null values in specified columns, of-
fering statistics on missing values per column and identifying records
with missing data.

detect_multiregistration Identifies instances where a single resource is associated with multiple
registrations or activities within a short timeframe, pointing out poten-
tial batch registrations that may distort event sequences and timings.

detect_overlaps Identifies instances where different activities overlap in time for the
same case, indicating potential scheduling issues, multitasking by staff,
or workflow inefficiencies.

detect_related_activities Detects missing activities related to others. Verifies expected relation-
ships between activities, ensuring that certain activities occur in con-
junction with others as required by care processes or operational proto-
cols.

detect_similar_labels Identifies labels within a specified column that are similar to each other
based on an allowed edit distance, helping to correct inconsistencies,
typos, or variations in activity recording.

detect_time_anomalies Detects unusual or impossible time-related patterns, such as negative
durations or zero durations, which could indicate issues in data record-
ing or process timing.

detect_unique_values Lists all unique entries in a specified column, identifying any inconsis-
tencies or anomalies and understanding the variety of activities recorded
and the range of staff involved.

detect_value_range_violations Checks if the values of certain attributes fall within an acceptable range,
ensuring data integrity in fields with restricted numeric ranges critical
for operational efficiency and patient care.

12

Figure 1 illustrates the combined framework, which is developed by comparing and integrating the

data quality issues and categories proposed by Bose et al. (2013) and Vanbrabant et al. (2019). This

combined framework helps to cover a wider range of data quality issues and ensures a more compre-

hensive approach for functionality extension. It provides a clear visual representation of the covered

areas by DaQAPO and highlights potential gaps. In the figure, the blue rectangles correspond to data

quality issues captured by DaQAPO, while the remaining issues represent uncovered data quality issues,

indicating potential functionality extensions.

As previously discussed in Section 2.3, the comparison of different data quality assessment tools

revealed several uncovered functionalities by DaQAPO: timestamp format, timestamp granularity, syn-

onymous labels, and form-based event capture. To effectively incorporate these functionalities into the

combined framework, the corresponding data quality issues are identified as follows: inconsistent format-

ting for the timestamp format (Vanbrabant et al., 2019), imprecise timestamps for timestamp granularity

(Bose et al., 2013), incorrect activity names for synonymous labels, and both incorrect timestamps and

irrelevant events for form-based event capture (Suriadi et al., 2017). By investigating these additional

data quality issues and their detection strategies given in the literature, the current study ensures that

interpretation differences are also included in the identification of functionality extensions. For exam-

ple, DaQAPO is capable of detecting activities logged with the same timestamp (Martin et al., 2022);

however, it does not directly provide the interpretation of form-based activity loggings.

13

Data quality problems

Missing data

Missing values

Events (I2)

Activity names (I6)

Timestamps (I7)

Resources (I8)

Relationships (I3)

Positions (I5)

Missing attributes

Case attributes (I4)

Event attributes (I9)

Missing entities Cases (I1)

Not-missing data

Wrong data

Violate attribute

Violation of logical order Incorrect events (I11)

Violation of mutual dependency

Incorrect relationship (I12)

Incorrect resources (I17)

Incorrect Attributes

Inexactness of timestamps

Incorrect timestamps (I16)

Incorrect position (I14)

Typing mistakes Incorrect activity names (I15)

Outside domain range

Incorrect event attributes (I18)

Incorrect case attributes (I13)

Other implausible values

Incorrect cases (I10)

Irrelevant cases (I26)

Irrelevant events (I27)

Not wrong but not directly usable

Inconsistent formatting

Implicit value needed

Embedded values

Abbreviations

Imprecise data

Relationships (I19)

Case attributes (I20)

Positions (I21)

Activity names (I22)

Timestamps (I23)

Resources (I24)

Event attributes (I25)

Figure 1: Combined data quality framework by Vanbrabant et al. (2019) and by Bose et al. (2013).

14

Table 5 presents a matching table for data quality issues within the combined data quality framework

and the corresponding DaQAPO functionalities for identifying these issues. The matching is achieved by

comparing the definitions of data quality issues with the functionalities of DaQAPO. This comparison

systematically differentiates the current functionalities of DaQAPO and highlights potential areas for

extension.

Table 5: Summary of quality issues in the combined data quality framework (Bose et al., 2013; Vanbra-
bant et al., 2019) and associated DaQAPO function (Martin et al., 2022)

Quality Issue Explanation DaQAPO Function

Missing Cases (I1)

Cases executed in reality are not
recorded in the event log, leading to a
discrepancy between actual events and
recorded data.

detect_case_id_seq_gaps
detect_missing_values

Missing Events (I2)

Some events that occurred in reality are
omitted from the log, potentially lead-
ing to incorrect inferences about event
relationships.

detect_incomplete_cases
detect_missing_values

Missing Relationships (I3)
The association between events and
cases is unclear, making it difficult to
track specific interactions.

detect_missing_values

Missing Case Attributes
(I4)

Important data attributes like a pa-
tient’s weight might be missing, affect-
ing analysis quality.

detect_missing_values

Missing Position (I5)
Without timestamps, the sequence of
events is unclear, complicating process
flow analysis.

detect_missing_values

Missing Activity Names
(I6)

Events recorded without specifying ac-
tivity names lead to confusion and am-
biguity.

detect_missing_values

Missing Timestamps (I7)
The absence of timestamps makes it
challenging to perform accurate timing
and sequencing analysis.

detect_missing_values

Missing Resources (I8)

Not recording who performed an activ-
ity can lead to an incomplete analysis
of organizational structure and resource
allocation.

detect_missing_values

Missing Event Attributes
(I9)

Omitting critical details like the amount
in a "register loan" event can lead to in-
accurate financial analyses.

detect_missing_values

Incorrect Cases (I10)
Cases from a different process logged in
error introduce outliers and can mislead
the analysis.

-

Incorrect Events (I11)
Incorrectly logged events lead to false
inferences about the process and its
flow.

detect_activity_order_violations
detect_related_activities

Incorrect Relationships
(I12)

Incorrectly linking events to cases can
result in inaccurate process models and
a misunderstanding of the data.

detect_cond_activity_presence

Incorrect Case Attributes
(I13)

Errors in recording case attributes can
significantly affect decision-making
and analysis accuracy.

detect_value_range_violations

Incorrect Position (I14)
Events positioned wrongly because of
inaccurate timestamps can distort the
identified process sequence.

-

15

Quality Issue Explanation DaQAPO Function

Incorrect Activity Names
(I15)

Incorrectly labeled activities can mis-
lead process analysis and affect out-
come interpretation.

detect_similar_labels
detect_incorrect_activity_names

Incorrect Timestamps (I16)
Inaccurate timestamps can misconstrue
the order of events, affecting the relia-
bility of control-flow analysis.

detect_inactive_periods
detect_duration_outliers
detect_time_anomalies

detect_overlaps

Incorrect Resources (I17)
Attributing an activity to the wrong per-
son can result in incorrect understand-
ing of how an organization functions.

detect_multiregistration

Incorrect Event Attributes
(I18)

Wrong details in event attributes lead to
faulty analyses, like incorrect transition
guards.

detect_attribute_dependencies

Imprecise Relationships
(I19)

A too-broad case definition can make
unclear the detailed and accurate map-
ping of events to their respective con-
texts.

-

Imprecise Case Attributes
(I20)

Coarse values for case attributes restrict
the precision of derived statistics.

-

Imprecise Position (I21)

Imprecise ordering of events when
some events that occurred in parallel are
recorded sequentially, causing inaccu-
racies in their actual chronological or-
der.

-

Imprecise Activity Names
(I22)

Coarse activity names result in multiple
events with the same name in a trace,
which may represent the same or differ-
ent task instances.

detect_activity_freq_violations

Imprecise Timestamps
(I23)

Coarse timestamp granularity result in
multiple events having the same or in-
consistent levels of timestamp detail,
leading to unreliable event ordering.

-

Imprecise Resources (I24)

Coarse resource information, like
recording activity at the department
level instead of specifying the individ-
ual, restricting detailed organizational
relationships.

-

Imprecise Event Attributes
(I25)

Coarse or imprecise event attributes
lead to a loss of detail and potential mis-
interpretation in process analysis.

-

Irrelevant Cases (I26)
Including cases not relevant to the spe-
cific analysis adds unnecessary com-
plexity.

-

Irrelevant Events (I27)
Events irrelevant to the analysis need
filtering out to prevent inaccurate or
overly complex models.

-

Inconsistent Formatting
Variations in data format among at-
tributes (e.g. month and day portions of
the timestamp have been transposed).

-

Implicit Value Needed
Missing inherent attribute values can be
assigned later based on context, such as
duration.

detect_inactive_periods
detect_duration_outliers
detect_time_anomalies

Embedded Value
Single data field contains multiple val-
ues and requires splitting for analysis.

-

Abbreviations Abbreviated terms in event log. -

16

4.2 Selected Data Quality Issues for Data Quality Assessment Functionality Extension

In this section, the selected data quality issues for data quality assessment are explored. These issues are

categorized into three main areas: resource-related, timestamp-related, and activity-related issues.

Investigating resource-related data quality issues is essential, as numerous studies highlight their

critical impact on the reliability of process mining insights (Pika et al., 2017; ter Hofstede et al., 2023).

These issues are particularly important from the organizational perspective of process mining. Accurate

identification and classification of resources according to their roles and organizational units, as well as

effective mapping of the social network within the organization, rely on resource-related data quality

(van der Aalst et al., 2012). For instance, accurate data can reveal overburdened employees or highlight

communication gaps between departments. Addressing these data quality issues allows process mining to

uncover inefficiencies, bottlenecks, and opportunities for improvement within business processes (Song

& van der Aalst, 2008). Furthermore, it can streamline approval workflows, reduce processing times,

or enhance resource allocation. Thus, by ensuring the reliability of resource-related data, companies

can fully leverage the potential of process mining to drive significant organizational improvements and

achieve competitive advantages (Huang et al., 2012; van der Aalst, 2016).

The accuracy of timestamp data is another critical dimension of data quality that requires rigorous

attention for accurate process mining insights. Timestamps are pivotal for accurately sequencing ac-

tivities, a necessity for developing correct process discovery models that can accurately reflect activity

dependency relations (Fischer et al., 2020; Dixit et al., 2018). For instance, a process may be discovered

as parallel, while in reality, this might not be the case, especially when timestamps are inaccurate, or

events are logged out of order due to system delays or synchronization issues. Such discrepancies not

only introduce substantial challenges in accurately processing event sequences but also hinder critical

time-related performance analyses, for which an example could be evaluating process Key Performance

Indicators (KPIs) (van der Aalst et al., 2008). These KPIs are utilized when verifying that the current

process aligns with business rules that consider the timing and sequence of the process activities (Con-

forti et al., 2020). Furthermore, when events are marked with accurate and precise timestamps, it allows

for the identification of bottlenecks, the measurement of service standards, the monitoring of resource

utilization, and the prediction of throughput times (van der Aalst et al., 2012).

Finally, activity-related data quality issues have a significant impact on performance analysis and

process discovery in business processes (Sadeghianasl et al., 2019). Incorrect or inconsistent activity

17

names can lead to superfluous relationships and misrepresentation of actual process flows (Chen et al.,

2022; Sadeghianasl et al., 2020). Misunderstanding the order and dependencies of activities can lead

to inefficient workflows, as it may result in process improvement initiatives that would not address the

actual needs (van der Aalst, 2011). Additionally, performance metrics related to specific activities might

be incorrect if those activities are not consistently logged. This affects the accuracy of performance

analysis, such as determining which activities are bottlenecks (Suriadi et al., 2017). Therefore, activity-

related data quality issues also need to be addressed to ensure accurate process mining analysis.

A sample activity log in a hospital setting is used to develop these functionalities, as seen in Table 6.

This activity log is a transformed version of the event log described in Section 2.1. Each entry in the log

records an instance of an activity, including the start and completion timestamps, as well as the specific

resource (i.e., originator) and the case involved (i.e., patient visit number) (Martin et al., 2022).

Table 6: Illustration of an activity log structure.

Patient_visit_nr Activity Resource Start_ts Complete_ts

520 Registration Clerk 9 21/11/2017 16:42:08 21/11/2017 16:51:59
520 Triage Nurse 27 21/11/2017 17:26:30 21/11/2017 18:01:01
520 Clinical exam Doctor 4 21/11/2017 18:16:49 21/11/2017 18:22:08
520 Treatment Nurse 17 21/11/2017 18:26:04 21/11/2017 18:55:00
520 Treatment evaluation Doctor 4 22/11/2017 10:01:55 22/11/2017 10:10:10
521 Triage Nurse 5 21/11/2017 17:04:03 21/11/2017 17:06:05
...

4.2.1 Resource-related Data Quality Issues

This section discusses the data quality issues that arise when resource information is imprecise, violates

resource consistency rules, or does not accurately reflect resource and activity match.

• Imprecise Resource

Description and Real-life Example

The imprecise resource issue manifests when resources are recorded using generalized or vague

identifiers rather than detailed, specific ones (Bose et al., 2013). This issue is exemplified in Table

7, where the log shows broad categories, such as general roles (e.g., "Clerk" or "Doctor"), instead

of precise identifiers (e.g., "Clerk 9" or "Doctor 4"). This lack of precision in resources may hinder

process mining analysis, making it difficult to assess individual performance and identify resources

that are either overburdened or underutilized (Song & van der Aalst, 2008).

18

Table 7: Illustration of an activity log with imprecise resource.

Patient_visit_nr Activity Originator Start_ts Complete_ts

523 Registration Clerk 21/11/2017 17:26:30 21/11/2017 16:51:59
523 Triage Nurse 27 21/11/2017 17:26:30 21/11/2017 18:01:01
523 Clinical exam Doctor 21/11/2017 17:26:30 21/11/2017 18:22:08

Detection Strategy

The detection strategy involves a thorough examination of resources to determine whether they

encapsulate specific details, such as individual employee identifiers. By identifying the instances

where resource naming is not similar in structure to the sample user input, the algorithm high-

lights entries that do not match the standards for resource identification. For example, assume

that employees are identified with numbers that have 7 digits, such as "4022156". If the resource

information is given as "402215", it will be flagged because it does not match the number of digits

required for preciseness.

Developed Function and Output

To address this issue, a function imprecise_resource was developed, which detects imprecise

resource identifiers. The function checks resource format based on the sample user input. It checks

format as a word followed by a number, purely numeric entries, alphanumeric strings without

spaces, and two-word combinations. The function then filters the log to identify instances where

the resource does not conform to the user-specified format. This helps in identifying the usage of

generalized identifiers such as "Doctor" if the user expects a format like "Doctor 1". The output of

the function is given in Figure 2. The function itself can be found in Appendix B.1.

Figure 2: Output for the imprecise resource function.

19

• Resource Inconsistency

Description and Real-life Example

This data quality issue involves the violation of the expected resource-related consistency rule. For

instance, if there is a rule requiring the same doctor to handle both the clinical examination and

treatment evaluation for a case, Table 8 shows an example in which this rule is followed, while

Table 9 shows an example in which this rule is violated. The deviation in this scenario is that

different doctors are conducting the clinical exam and the treatment evaluation, contrary to the

user-defined consistency rule.

Table 8: Illustration of an activity log with consistent resource.

Patient_visit_nr Activity Originator Start_ts Complete_ts

536 Registration Clerk 9 22/11/2017 10:26:41 22/11/2017 10:32:56
536 Clinical exam Doctor 1 22/11/2017 15:15:40 22/11/2017 15:25:02
536 Triage Nurse 27 22/11/2017 15:15:40 22/11/2017 15:25:01
536 Treatment evaluation Doctor 1 23/11/2017 17:32:12 23/11/2017 19:01:23

Table 9: Illustration of an activity log with inconsistent resource.

Patient_visit_nr Activity Originator Start_ts Complete_ts

519 Triage Nurse 17 21/11/2017 11:59:41 21/11/2017 13:32:18
519 Clinical exam Doctor 4 21/11/2017 11:59:41 21/11/2017 14:02:34
519 Treatment Nurse 17 21/11/2017 14:38:52 21/11/2017 14:49:21
519 Treatment evaluation Doctor 1 22/11/2017 11:05:32 22/11/2017 11:13:42

Detection Strategy

The detection strategy is designed to identify specific instances where the consistency rule is vi-

olated. It aims to identify cases where different resources are associated with unique activities in

the user-defined activity set.

Developed Function and Output

The function, resource_inconsistency, filters cases where both of the specified activities are

present. It further analyses these cases to determine if multiple unique resources are associated

with these activities. The output of this function is a tibble displaying case IDs and associated

unique resources, which highlights cases of rule violation. For example, in the provided output

given in Figure 3, case ID 519 has two different resources, indicating an anomaly in resource allo-

cation according to the established consistency rule. The function itself can be found in Appendix

B.2.

20

Figure 3: Output for the resource inconsistency function.

• Resource and Activity Mismatch

Description and Real-life Example

This issue arises when an activity is mistakenly associated with a resource. Typically, if a resource

is not meant to perform a particular activity, that activity will appear infrequently in logs com-

pared to activities that are central to the resource. For instance, consider a hospital scenario where

a doctor is expected to perform surgeries daily but is unlikely ever to be involved in triage proce-

dures. Ideally, the data should show zero instances of the doctor conducting triage, with numerous

loggings of surgical procedures. If activities are recorded under a resource with low frequency, it

may indicate potential logging errors, such as triage operations being mistakenly logged as part of

a doctor’s activities.

Detection Strategy

To detect these anomalies, a frequency analysis is performed, which examines the regularity of a

resource’s involvement in tasks. The frequency count aims to highlight activities that are poten-

tially mistakenly logged in association with a resource by showing the activities with the lowest

occurrence first. The user should then be able to identify activities that potentially do not relate to

the associated resource with the aid of the necessary domain knowledge.

Developed Function and Output

Initially, the function resource_activity_mismatch filters resources based on the sample user

input, such as "Doctor 1". Following this, the data is grouped by the resource and activity type,

and the occurrences of each activity are counted to measure frequency. Finally, the function sorts

these activity counts to highlight activities that have lower occurrences. The output of the function,

showing the involvements of "Doctor 1", is given in Figure 4. The function itself can be found in

Appendix B.3.

21

Figure 4: Output for the resource-activity mismatch function.

4.2.2 Timestamp-related Data Quality Issues

This section explores various potential data quality issues related to timestamps, including imprecise

timestamps and same timestamp errors.

• Imprecise Timestamps

Description and Real-life Example

The imprecise timestamp issue refers to the lack of timestamp granularity, such as only recording

the date or the hour without detailing minutes and seconds. This imprecision could complicate

the efforts to understand the sequence of events and carry out performance analysis accurately

(Bose et al., 2013). For example, as seen in Table 10, in a hospital setting, precise timestamps

would specify the exact second activity starts and completes, such as "21/11/2017 18:30:17" for

the completion of a clinical exam. However, the issue of imprecise timestamp arises when it is

recorded as "21/11/2017 18:30" or simply "22/11/2017", which results in the loss of information

about the precise duration of the activity.

Table 10: Illustration of an activity log with imprecise timestamp.

Patient_visit_nr Activity Originator Start_ts Complete_ts

527 Registration Clerk 6 21/11/2017 18:02:10 21/11/2017 18:04:07
527 Triage Nurse 5 21/11/2017 18:02:10 21/11/2017 18:04:08
527 Clinical exam Doctor 4 21/11/2017 18:02:13 21/11/2017

Detection Strategy

The detection strategy involves checking if the timestamps accurately reflect a detailed date and

time structure. It identifies imprecise timestamps that deviate from the sample user input, which

includes the correct length and composition of day, month, year, hour, minute, and second.

Developed Function and Output

The function timestamp_granularity is designed to assess and identify imprecise timestamps.

22

The function checks each logging against a precise datetime format, such as "dd/mm/yyyy hh:mm:ss",

provided by the user as an input. If a timestamp fails to match this format, it is flagged as invalid.

The function identifies entries with invalid timestamps and lists the activities most commonly as-

sociated with this issue. Additionally, it highlights the resources frequently involved in logging

imprecise timestamps. The outputs of the function are given in Figure 5, which enables the identi-

fication of imprecise timestamps, allowing for focused improvements in data logging. The function

itself can be found in Appendix B.4.

(a)

(b) (c)

Figure 5: Outputs for the imprecise timestamp function. a) The complete data table with all activities that
have timestamp granularity issues. b) Most frequent activities logged in an invalid timestamp format. c)
Resources who are most frequently associated with an invalid timestamp format.

• Same Timestamp Issues

Description and Real-life Example

When different activity sets commonly share the same timestamp, it may indicate form-based event

logging. Form-based events often arise when events are logged through computerized forms and

display identical timestamps for events that occurred previously. Such timestamps more likely

reflect the moment the form was submitted rather than the precise times at which individual events

occurred (Andrews et al., 2018). For instance, as illustrated in Table 11, the same start timestamp

for registration, triage, and clinical examination for each patient may imply a form-based logging

for these activities.

23

Table 11: Illustration of an activity log with same timestamp issue.

Patient_visit_nr Activity Originator Start_ts

519 Registration Clerk 12 21/11/2017 11:59:41
519 Triage Nurse 17 21/11/2017 11:59:41
519 Clinical exam Doctor 4 21/11/2017 11:59:41
519 Treatment Nurse 17 21/11/2017 14:38:52
519 Treatment evaluation Doctor 1 22/11/2017 11:05:32
523 Registration Clerk 21/11/2017 17:26:30
523 Triage Nurse 27 21/11/2017 17:26:30
523 Clinical exam Doctor 4 21/11/2017 17:26:30

Detection Strategy

The detection strategy is designed to identify sets of activities that frequently share the same times-

tamp in event logs. This method aims to identify instances where activities may have been logged

through a standardized form.

Developed Function and Output

The developed function, same_timestamp, groups the log by case ID and timestamp, filtering the

log where distinct activities occur at the same time. It then groups this filtered data based on the

activity set and the case ID. Later, it aggregates these groups based on the activity sets by counting

the number of unique case IDs related to each activity set. The output, shown in Figure 6, lists

the grouped activities, the number of occurrences, and the specific cases involved. This output

provides insights into patterns that may suggest form-based logging. The function can be found in

Appendix B.5.

Figure 6: Output for the same timestamp function.

24

4.2.3 Activity-related Data Quality Issues

This section examines activity-related data quality issues caused by inconsistent or incorrect recording

of activities.

• Synonymous Labels and Abbreviations

Description and Real-life Example

The issue of synonymous labels or abbreviations arises when different terms, or abbreviations

are used to describe what are essentially the same activities within an event log (Suriadi et al.,

2017; Vanbrabant et al., 2019). For example, in a hospital setting, different departments might use

different terms, such as "Registration" and "Admission", to describe the same process of registering

a patient. This inconsistency could mislead the outcomes of process discovery and performance

analysis because two or more activities in the log that are actually the same may be mistakenly

treated as different (Suriadi et al., 2017).

Detection Strategy

The strategy focuses on identifying pairs of activity labels that do not appear together in any of

the cases (Andrews et al., 2018). The absence of co-occurrence suggests that these labels could

potentially represent the same activity but are described using different terms or abbreviations.

This is because if a synonymous label is present, it would never pair with the actually intended

activity label, and these two would be isolated from each other.

Developed Function and Output

The function synonymous_label first converts all activity labels to lowercase to ensure unifor-

mity. It then groups the data by case ID and summarizes it to list unique activities per case ID. By

iterating through all unique activities, it checks for pairs that never appear together in the log. If

a pair of activities never co-occur, it is added to a list of potentially synonymous labels. The out-

put of the function, shown in Figure 7, displays activities such as "admission", "registration", and

"reg" are identified as non-cooccurring. By flagging these instances, the algorithm guides the user,

who then assesses the output with domain-specific knowledge to determine if labels are indeed

synonymous. The function is given in Appendix B.6

25

Figure 7: Output for the synonymous label function.

• Incorrect cases

Description and Real-life Example

Incorrect case data quality issues occur when the recorded activities for a particular case violate

user-defined rules specifying activity sets that should not co-occur. This type of issue could in-

dicate errors in activity logging and may affect process discovery algorithms (Bose et al., 2013).

An illustrative example within a healthcare setting might be that certain treatments cannot be com-

bined with specific other treatments due to potential adverse interactions. Consequently, if a pa-

tient’s log shows the administration of one such treatment and the logging of another incompatible

treatment for the same case, the system should flag this as a potential incorrect case issue.

Detection Strategy

The detection strategy focuses on identifying activities that are mutually exclusive within the same

case. Users input a rule specifying activities that should not occur together, and the functionality

identifies if any of these activities occurred together within the same case.

Developed Function and Output

The function, incorrect_case, operates by taking a list of activities that are not expected to

co-occur within the same case as a user-defined input, such as "Drug A treatment" and "Drug B

treatment". It begins by filtering for cases where either specified activity is present. The log is then

grouped by case ID to examine sequences of activities within individual cases. The function then

checks if both activities are recorded under a single case ID. If such a condition is met, the case

number is noted, and a list of cases is displayed in the output of the function as shown in Figure 8.

The function is given in Appendix B.7.

Figure 8: Output for the incorrect case function.

26

5 Demonstration

The functionality extensions to DaQAPO are observed to be effective with the synthetic activity log used

in a hospital setting. However, to check the generalizability of the functionalities, it is essential to test

with publicly available data. For this purpose, the academic Dutch hospital event log is chosen (van

Dongen, 2011). This event log pertains to tests or procedures performed on patients in a gynecology

department and contains 150,291 events across various cases. The event log also contains attributes

such as timestamps and transaction types (start, complete). Additionally, each activity is associated

with a producer code, which identifies the resource involved. For the purpose of this demonstration, the

function is slightly modified to match the column names in the event log.

Resource-related: resource_inconsistency

The resource_inconsistency function checks if different producer codes have applied the given ac-

tivities within a single case. The input to the function includes a set of activities ("aanname laboratori-

umonderzoek" and "ordertarief"). The function filters the event log to include only the cases where the

activities defined by the user are present. It then checks whether the specified activities were performed

by different producer codes within the same case. The output of the function is given in Figure 9. The

output remains capable of verifying resource inconsistency. It is important to note that adequate domain

knowledge is essential for providing appropriate inputs that yield relevant outputs.

Figure 9: Output for resource inconsistency function on academic Dutch hospital event log.

27

Resource-related: resource_activity_mismatch

The resource activity mismatch function requires a resource as sample user input. In the case of the

public event log, this resource is chosen as the one with "CHE2" as the producer code. The function

output given in Figure 10 reveals that it is applicable to this public event log. The output remains relevant,

and it guides the user to assess whether an activity is associated with the resource or not. For example,

based on the current output, it could be argued that activities in rows 1 to 6 occurred only once and may

not be relevant to the specified resource "CHE2".

Figure 10: Some parts of the output for resource-activity mismatch function on academic Dutch hospital
event log.

28

Resource-related: imprecise_resource

The imprecise_resource function checks the granularity of the resource to determine if the input data

is specific enough based on a sample input provided by the user. In this event log, producer codes are

strings like "CRLA" or "CHE2." The function uses the sample input to check the expected format and

verifies whether the producer code matches this format. The output is shown in Figure 11, where the

function checks the event log and finds no errors. Using the sample input to determine the expected

format ensures that the function is fully generalizable and applicable to any event log.

Figure 11: Output for imprecise resource function on academic Dutch hospital event log.

Time-related: same_timestamp

The same_timestamp function detects which activities commonly share the same timestamp, helping

users identify potential form-based logging practices as shown in Figure 12. The same_timestamp

function is fully applicable to the Dutch academic hospital event log. The most frequently occurring set

of activities in the output suggests the possibility of form-based logging.

Figure 12: Some parts of the output for same timestamp function on academic Dutch hospital event log.

Time-related: imprecise_timestamp

The imprecise_timestamp function evaluates the granularity of timestamps to ensure it meets the

required level of precision. The function filters the given public event log to identify entries where the

timestamp granularity does not match the expected format, which is determined based on a sample input

provided by the user. This expected format includes a standard such as "YYYY-MM-DD HH:MM:SS".

The output of the function, shown in Figure 13, shows that the imprecise_timestamp function remains

fully generalizable and applicable independently of the event log.

29

(a)

(b) (c)

Figure 13: Some parts of the output for the function that detects issues with timestamp granularity.
a) Activities that have timestamp granularity issues. b) Most frequent activities logged in an invalid
timestamp format. c) Resources who are most frequently associated with an invalid timestamp format.

Activity related: incorrect_case

The incorrect_case function detects activities that should not co-occur within the same case. In the

case of Dutch academic hospital event log, ’bovenbeen’ and ’onderbeen’ are chosen. These are then

given as input to the incorrect_case function, which identifies the rows where these two activities co-

occur as given in Figure 14. Similar to resource_inconsistency, this function also requires domain

knowledge to provide relevant input.

Figure 14: Output for incorrect case function on academic Dutch hospital event log.

30

Activity related: synonymous_labels

The synonymous_labels function identifies pairs of activities that do not appear together within a case.

The output of the function, as shown in Figure 15, reveals numerous entries in the event log that are

potentially synonymous. This aligns with existing literature, which suggests that the Dutch hospital data

does not follow a strict format in the naming of treatments, resulting in a large number of different names

for identical tasks (Lopes & Ferreira, 2019). The function highlights these inconsistencies, providing a

list of potential synonyms for user evaluation. The final determination of synonymity relies on the user’s

domain knowledge, which is necessary to confirm whether the detected labels are truly synonymous.

Despite this requirement, the synonymous_labels function remains fully generalizable and applicable

to this public event log. It effectively provides the necessary output for the user to review and standardize

activity names.

Figure 15: Some part of the synonymous labels function in academic Dutch hospital event log.

31

6 Discussion

This study aims to enhance data quality assessments by addressing uncovered data quality issues by

DaQAPO’s current functionalities, specifically focusing on data quality issues related to resources, times-

tamps, and activities. The development of these new functionalities provides broader insights into data

quality assessment in process mining. These functionalities address imprecisions in resource data, incon-

sistencies in resource allocation, resource-activity mismatches, precision issues in timestamps, potential

form-based event logging issues, and inconsistent activity naming and activity rule violations within

cases.

The developed resource-related functionalities build upon the works of (Pika et al., 2017; ter Hof-

stede et al., 2023; van der Aalst, 2012; Song & van der Aalst, 2008), who emphasized the importance

of accurate and precise resource-related data prior to process mining. Additionally, considering the im-

portance of identification of timestamp-related data quality issues prior to process mining (Fischer et al.,

2020; Dixit et al., 2018; van der Aalst et al., 2008), and its application to all ProM plugins discussed

in this study, imprecise timestamp has been considered as an extension functionality. Furthermore, the

functionalities for the same timestamp and synonymous labels are developed with the influence of ad-

ditional functionalities covered by Andrews et al. (2018). Moreover, the functionality for identification

of incorrect cases is influenced by the study by Bose et al. (2013), highlighting that incorrect cases are

outliers and may mislead process mining analysis.

The implications of these enhancements could be significant for both academia and industry. For re-

searchers, the improved functionalities may offer more comprehensive tools for studying and improving

event log quality. For practitioners, particularly in sectors like healthcare, manufacturing, and finance,

these tools could provide practical solutions for ensuring high data quality. The application of the ex-

tended DaQAPO functionalities to the Dutch hospital event log demonstrated their potential generaliz-

ability and robustness, suggesting utility beyond synthetic data. This demonstration not only validates

the extended functionalities but also highlights the practical applications of these enhanced data quality

assessments.

The study acknowledges several limitations, including the dependency of the new functionalities on

the quality of the sample input formats. Incorrectly formatted input can significantly limit the utility of

these functionalities. Furthermore, certain functionalities require domain-specific knowledge to config-

32

ure inputs and interpret outputs appropriately, which necessitates a good level of understanding of the

specific process being assessed to maximize the benefits of the functionalities. Additionally, although

the study enhances support for DaQAPO in assessing event log quality, it still does not address all possi-

ble data quality issues. These issues include inconsistent timestamp formats, day and month values that

have been mistakenly interchanged, and imprecise case and event attributes, which are recorded with low

precision, making the data less useful for detailed analysis.

7 Conclusion

This thesis presents a systematic approach that follows the design science research methodology to ex-

tend the functionalities of DaQAPO. The research identifies several critical data quality issues not cur-

rently addressed by DaQAPO, particularly those related to resources, timestamps, and activities. The

development of new functionalities in these areas broadens DaQAPO’s ability to identify a wider range

of data quality issues. These functionalities were applied on a publicly available event log, demonstrat-

ing their effectiveness and practical applicability. From a broader perspective, this study is not merely an

extension of DaQAPO’s functionalities but also a contribution to the understanding of data quality issues

and their assessment in process mining.

Future research in data quality assessment for process mining could explore several promising di-

rections. One area is the integration of machine learning techniques to automatically generate domain

knowledge required inputs and to help with the interpretation of the outputs. Additionally, designing a

new user-friendly interface could make DaQAPO more attractive to organizational users and facilitate its

adoption in the industry. This would allow users to provide relevant feedback, guiding the development

of a more robust tool.

33

References

Andrews, R., Dun, C., Wynn, M., Kratsch, W., Roeglinger, M., & Ter, A. (2020, 02). Quality-informed

semi-automated event log generation for process mining. Decision Support Systems, 132, 113265.

Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018). Towards event log querying for data quality:

Let’s start with detecting log imperfections. In Proceedings of on the move to meaningful internet

systems. otm 2018 conferences: Confederated international conference (pp. 116–134).

Bose, R. J. C., Mans, R. S., & Van Der Aalst, W. M. (2013). Wanna improve process mining results?

In Proceedings of 2013 IEEE Symposium on Computational Intelligence and Data Mining (pp. 127–

134).

Chen, Q., Lu, Y., Tam, C. S., & Poon, S. K. (2022). A multi-view framework to detect redundant activity

labels for more representative event logs in process mining. Future Internet, 14(6).

Conforti, R., La Rosa, M., ter Hofstede, A. H. M., & Augusto, A. (2020). Automatic repair of same-

timestamp errors in business process event logs. Business Process Management, 327–345.

Dixit, P. M., Suriadi, S., Andrews, R., Wynn, M. T., ter Hofstede, A. H., Buijs, J. C., & van der Aalst,

W. M. (2018). Detection and interactive repair of event ordering imperfection in process logs. Lecture

Notes in Computer Science, 10816, 274–290.

Fischer, D. A., Goel, K., Andrews, R., van Dun, C. G. J., Wynn, M. T., & Röglinger, M. (2020).

Enhancing event log quality: Detecting and quantifying timestamp imperfections. Lecture Notes in

Computer Science, 12168, 309–326.

Huang, Z., Lu, X., & Duan, H. (2012). Resource behavior measure and application in business process

management. Expert Systems with Applications, 39(7), 6458-6468.

Kherbouche, M. O., Laga, N., & Masse, P.-A. (2016). Towards a better assessment of event logs quality.

In Proceedings of 2016 IEEE Symposium Series on Computational Intelligence (pp. 1–8).

34

Lopes, I. F., & Ferreira, D. R. (2019). A survey of process mining competitions: the bpi challenges

2011–2018. In Proceedings of Business Process Management Workshops: BPM 2019 International

Workshops, Vienna, Austria (pp. 263–274).

Mans, R. S., van der Aalst, W. M., & Vanwersch, R. J. (2015). Data quality issues. Process mining in

healthcare: evaluating and exploiting operational healthcare processes, 79–88.

Martin, N. (2021). Data quality in process mining. In C. Fernandez-Llatas (Ed.), Interactive process

mining in healthcare (pp. 53–79). Heidelberg: Springer.

Martin, N., Van Houdt, G., & Janssenswillen, G. (2022). Daqapo: supporting flexible and fine-grained

event log quality assessment. Expert Systems with Applications, 191, 116274.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research

methodology for information systems research. Journal of Management Information Systems, 24(3),

45–77.

Pika, A., Leyer, M., Wynn, M. T., Fidge, C. J., ter Hofstede, A. H., & van der Aalst, W. M. (2017).

Mining resource profiles from event logs. ACM Transactions on Management Information Systems

(TMIS), 8(1), 1–30.

Sadeghianasl, S., ter Hofstede, A. H., Suriadi, S., & Turkay, S. (2020). Collaborative and interactive

detection and repair of activity labels in process event logs. In Proceedings of 2020 2nd international

conference on process mining (icpm) (pp. 41–48).

Sadeghianasl, S., ter Hofstede, A. H. M., Wynn, M. T., & Suriadi, S. (2019). A contextual approach to

detecting synonymous and polluted activity labels in process event logs. In H. Panetto, C. Debruyne,

M. Hepp, D. Lewis, C. A. Ardagna, & R. Meersman (Eds.), Proceedings of On the Move to Meaningful

Internet Systems: OTM 2019 Conferences (pp. 76–94). Cham: Springer International Publishing.

Song, M., & van der Aalst, W. (2008). Towards comprehensive support for organizational mining.

Decision Support Systems, 46(1), 300-317.

35

Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns

for process mining: Towards a systematic approach to cleaning event logs. Information systems, 64,

132–150.

ter Hofstede, A. H., Koschmider, A., Marrella, A., Andrews, R., Fischer, D. A., Sadeghianasl, S., . . .

Goel, K. (2023). Process-data quality: The true frontier of process mining. ACM Journal of Data and

Information Quality, 15(3), 1–21.

Vanbrabant, L., Martin, N., Ramaekers, K., & Braekers, K. (2019). Quality of input data in emergency

department simulations: Framework and assessment techniques. Simulation Modelling Practice and

Theory, 91, 83–101.

van der Aalst, W. M. (2011). Introduction. In Process mining: Discovery, conformance and enhancement

of business processes (pp. 1–25). Springer Berlin Heidelberg.

van der Aalst, W. M. (2012). Process mining: Overview and opportunities. ACM Transactions on

Management Information Systems, 3, 1-17.

van der Aalst, W. M. (2016). Process mining: The missing link. In Process mining: data science in

action (pp. 25–52). Springer.

van der Aalst, W. M. (2022a). Foundations of process discovery. In Process mining handbook (pp.

37–75). Springer.

van der Aalst, W. M. (2022b). Process mining: a 360 degree overview. In Process mining handbook

(pp. 3–34). Springer.

van der Aalst, W. M., Adriansyah, A., De Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle, T., . . . Buijs,

J. (2012). Process mining manifesto. In Proceedings of Business Process Management Workshops:

BPM 2011 International Workshops (pp. 169–194).

van der Aalst, W. M., Dumas, M., Ouyang, C., Rozinat, A., & Verbeek, E. (2008, 05). Conformance

checking of service behavior. ACM Trans. Internet Techn., 8.

36

van Dongen, B. (2011). Real-life event logs - hospital log. Eindhoven University of Technology.

Retrieved from https://data.4tu.nl/articles//12716513/1

Verhulst, R. (2016). Evaluating quality of event data within event logs: an extensible framework.

Eindhoven University of Technology: Eindhoven, The Netherlands.

37

Appendices

A Event log imperfection patterns

Table 12: Summary of event log imperfection patterns (Suriadi et al., 2017)

Event log imperfection patterns Explanation

Form-based Event Capture

Occurs when multiple events are captured from electronic-based forms at the
same time (when a user clicks a ’Save’ button), resulting in them having the
same timestamp. This can flatten the temporal ordering of events and may also
lead to redundant information if the form is later updated.

Inadvertent Time Travel

Refers to events recorded with erroneous timestamps, often due to human error
or system misinterpretations. Common examples include mixing up day and
month in dates or incorrect data entry close to midnight, leading to unreasonable
event sequences.

Unanchored Event

Happens when the timestamps in logs are not formatted or interpreted correctly,
leading to incorrect event orderings. This often arises from discrepancies be-
tween the expected and actual formats of timestamps, causing misinterpretation
by tools.

Scattered Event
Involves events in a log that contain additional information within their attributes,
which can be used to derive new events. This pattern indicates that more detailed
activities are embedded within broader event records.

Elusive Case

Occurs when events in a log cannot be explicitly linked to their respective case
identifiers. It is common in logs derived from systems not originally designed
to support process-aware activities, making it challenging to define a case for
process mining.

Scattered Case
Describes situations where key process steps are recorded across different
sources and need to be merged to construct a complete picture. This often in-
volves linking records from various systems to form a consolidated event log.

Collateral Events

Refers to multiple events referring to a single process step but recorded indepen-
dently due to multiple system interactions or system programming that triggers
auxiliary events. This can create noise and unnecessary complexity in the event
log.

Polluted Label
Occurs when an attribute value consists of a mix of fixed and variable text. While
part of the value is consistent across events, other parts vary, creating seemingly
distinct entries that actually refer to the same thing.

Distorted Label
Involves minor syntactical differences between attribute values that should be
identical, often due to typos or inconsistent data entry. These small differences
can lead to treating similar activities as distinct in analysis.

Synonymous Labels
Similar to Distorted Label but focuses on semantic rather than syntactic differ-
ences. It refers to different attribute values that mean the same thing but are
expressed differently due to data entry variations or system discrepancies.

Homonymous Label

Deals with the repetition of an activity within the same case where each occur-
rence has a different meaning based on the context. This can lead to an incom-
plete understanding of the process if not addressed, as the log treats all occur-
rences as the same activity.

38

B Codes

B.1 Imprecise resource

1 imprecise_resource <- function(data_path , sample_resource) {

2 df <- read_excel(data_path)

3

4 cat("Sample resource:", sample_resource , "\n")

5

6 # Determine the expected format based on the sample resource

7 if (grepl("^[A-Za-z]+\\ u00A0 +\\d+$", sample_resource)) {

8 chosen_format <- "Word followed by a number"

9 cat("Detected format:", chosen_format , "\n")

10 check_format <- function(x) {

11 grepl("^[A-Za-z]+\\ u00A0 +\\d+$", x)

12 }

13 } else if (grepl("^\\d+$", sample_resource)) {

14 chosen_format <- "Purely numeric"

15 cat("Detected format:", chosen_format , "\n")

16 expected_length <- nchar(sample_resource)

17 check_format <- function(x) {

18 nchar(x) == expected_length && grepl("^\\d+$", x)

19 }

20 } else if (grepl("^[A-Za-z0-9]+$", sample_resource)) {

21 chosen_format <- "Alphanumeric without spaces"

22 cat("Detected format:", chosen_format , "\n")

23 expected_length <- nchar(sample_resource)

39

24 check_format <- function(x) {

25 nchar(x) == expected_length && grepl("^[A-Za-z0-9]+$", x)

26 }

27 } else if (grepl("^[A-Za-z]+\\s[A-Za-z]+$", sample_resource)) {

28 chosen_format <- "Two words"

29 cat("Detected format:", chosen_format , "\n")

30 check_format <- function(x) {

31 grepl("^[A-Za-z]+\\s[A-Za-z]+$", x)

32 }

33 } else {

34 cat("Failed to detect format for sample resource:", sample_

resource , "\n")

35 stop("The sample resource format is not supported.")

36 }

37

38

39 # Filter rows that do not match the expected format

40 rows_with_imprecise_originator <- df %>%

41 filter(!sapply(df$Originator , check_format))

42

43 return(rows_with_imprecise_originator)

44 }

40

B.2 Resource inconsistency

1 resource_inconsistency <- function(data_path , activities) {

2 data <- read_excel(data_path)

3

4 # Filter data to only include rows with specified activities

5 data_filtered <- data %>%

6 filter(Activity %in% activities)

7

8 # Check for each patient visit if the specified activities are

performed by different resources

9 resource_inconsistency <- data_filtered %>%

10 group_by(Patient_visit_nr) %>%

11 filter(n_distinct(Activity) == length(activities)) %>% #

Ensure all activities are accounted for

12 summarise(

13 Originators = paste(unique(Originator), collapse = ", "),

14 Unique_Originators = n_distinct(Originator)

15) %>%

16 filter(Unique_Originators > 1) %>% # More than one unique

resource found

17 select(-Unique_Originators) %>%

18 ungroup ()

19

20 return(resource_inconsistency)

21 }

41

B.3 Resource-activity mismatch

1 resource_activity_mismatch <- function(data_path , resource_input) {

2

3 data <- read_excel(data_path)

4

5 # Filter data for the specified resource

6 filtered_data <- data %>%

7 filter(Originator == resource_input)

8

9 # Calculate the ActivityCount directly from the filtered data

10 resource_activities_by_type <- filtered_data %>%

11 group_by(Originator , Activity) %>%

12 summarise(ActivityCount = n(), .groups = ’drop’) %>%

13 arrange(Originator , ActivityCount) # Sorting in ascending

order within each group

14

15 return(resource_activities_by_type)

16 }

42

B.4 Imprecise Timestamp

1 imprecise_timestamp <- function(data_path , sample_date) {

2

3 data <- read_excel(data_path)

4

5 # Determine the expected length of the sample date

6 expected_length <- nchar(sample_date)

7

8 # function to check for timestamp format based on sample date

length

9 check_date_format <- function(date_string) {

10 # Check if the original string matches the expected length

11 if (nchar(date_string) != expected_length) {

12 return(TRUE) # Invalid format

13 } else {

14 return(FALSE) # Valid format

15 }

16 }

17

18 # Apply the function to Start_ts and Complete_ts columns

19 data$Invalid_Start_ts <- sapply(data$Start_ts, check_date_format)

20

21 # Check for Complete_ts (or complete column) existence and

validate if it exists

22 if ("Complete_ts" %in% colnames(data)) {

23 data$Invalid_Complete_ts <- sapply(data$Complete_ts, check_date

43

_format)

24 } else {

25 data$Invalid_Complete_ts <- FALSE # If Complete_ts does not

exist , set to FALSE

26 }

27

28 # Filter invalid dates

29 invalid_dates_data <- data[data$Invalid_Start_ts | data$Invalid_

Complete_ts,]

30

31 # Analyze most frequent Activities and Originators with invalid

timestamps

32 most_freq_activities <- sort(table(invalid_dates_data$Activity),

decreasing = TRUE)

33 most_freq_originators <- sort(table(invalid_dates_data$Originator

), decreasing = TRUE)

34

35 # Transform the output for activities and originators to desired

format

36 transposed_activities <- as.data.frame(stack(most_freq_activities

), stringsAsFactors = FALSE)

37 transposed_activities <- transposed_activities[, c("ind", "values

")]

38 names(transposed_activities) <- c("Activity", "Count")

39

40 transposed_originators <- as.data.frame(stack(most_freq_

44

originators), stringsAsFactors = FALSE)

41 transposed_originators <- transposed_originators[, c("ind", "

values")]

42 names(transposed_originators) <- c("Originator", "Count")

43

44

45 # Results

46 list(

47 InvalidData = invalid_dates_data ,

48 MostFrequentActivities = transposed_activities ,

49 MostFrequentOriginators = transposed_originators

50)

51 }

45

B.5 Same Timestamp

1

2 same_timestamp <- function(data_path) {

3

4 df <- read_excel(data_path)

5

6 # Convert Start_ts and Complete_ts to datetime objects

7 df$Start_ts <- ymd_hms(df$Start_ts, quiet = TRUE)

8 df$Complete_ts <- ymd_hms(df$Complete_ts, quiet = TRUE)

9

10 # Filter for patient visits with more than one activity

11 df_multiple <- df %>%

12 group_by(Patient_visit_nr) %>%

13 filter(n() > 1) %>%

14 ungroup ()

15

16 # Create separate data frames for Start_ts and Complete_ts

17 df_start <- df_multiple %>%

18 select(Patient_visit_nr, Activity , Timestamp = Start_ts) %>%

19 filter(!is.na(Timestamp))

20

21 df_complete <- df_multiple %>%

22 select(Patient_visit_nr, Activity , Timestamp = Complete_ts) %>%

23 filter(!is.na(Timestamp))

24

25 # Find duplicates within Start_ts

46

26 df_start_grouped <- df_start %>%

27 group_by(Patient_visit_nr , Timestamp) %>%

28 filter(n() > 1) %>% # Ensure there are multiple activities

sharing the same timestamp

29 summarise(Activities = toString(unique(Activity)), .groups = ’

drop’)

30

31 # Find duplicates within Complete_ts

32 df_complete_grouped <- df_complete %>%

33 group_by(Patient_visit_nr , Timestamp) %>%

34 filter(n() > 1) %>% # Ensure there are multiple activities

sharing the same timestamp

35 summarise(Activities = toString(unique(Activity)), .groups = ’

drop’)

36

37 # Combine the results

38 df_grouped <- bind_rows(df_start_grouped , df_complete_grouped)

39

40 # Create the x variable with patient visit numbers and activity

groups

41 x <- df_grouped %>%

42 group_by(Patient_visit_nr) %>%

43 summarise(Activity_Group = toString(unique(Activities)), .

groups = ’drop’)

44

45 # Aggregate activities and count unique case numbers

47

46 result <- x %>%

47 group_by(Activity_Group) %>%

48 summarise(Occurrences = n(),

49 Cases = toString(unique(Patient_visit_nr)),

50 .groups = ’drop’) %>%

51 arrange(desc(Occurrences)) # Sorting by Occurrences in

descending order

52

53 # Display the x variable and the result

54 return(result)

55 }

48

B.6 Synonymous label

1 # Function to find non-cooccurring activity pairs

2 synonymous_label <- function(data_path) {

3

4 data <- read_excel(data_path

5)

6 data$Activity <- tolower(data$Activity)

7

8 grouped_data <- data %>%

9 group_by(Patient_visit_nr) %>%

10 summarise(Activities = list(unique(Activity))) %>%

11 ungroup ()

12

13 unique_activities <- sort(unique(unlist(grouped_data$Activities))

)

14 non_cooccurring_pairs <- vector("list", length = 0)

15

16 for (i in 1:(length(unique_activities) - 1)) {

17 for (j in (i + 1):length(unique_activities)) {

18 activity1 <- unique_activities[i]

19 activity2 <- unique_activities[j]

20 cooccur <- FALSE

21

22 for (k in 1:nrow(grouped_data)) {

23 if (all(c(activity1 , activity2) %in% grouped_data$

Activities [[k]])) {

49

24 cooccur <- TRUE

25 break

26 }

27 }

28

29 if (!cooccur) {

30 # Sort the pair to ensure unique combinations

31 pair <- sort(c(activity1 , activity2))

32 non_cooccurring_pairs <- c(non_cooccurring_pairs , list(pair

))

33 }

34 }

35 }

36

37 # Convert list to dataframe and remove duplicate rows

38 non_cooccurring_pairs_df <- do.call(rbind , non_cooccurring_pairs)

39 non_cooccurring_pairs_df <- unique(non_cooccurring_pairs_df)

40 colnames(non_cooccurring_pairs_df) <- c("Activity1", "Activity2")

41 return(non_cooccurring_pairs_df)

42 }

50

B.7 Incorrect Case

1 incorrect_case <- function(data_path , rule_activity) {

2 dataset <- read_excel(data_path)

3 # Filter cases where any of the activities in rule_activity

occurred

4 cases_with_either_activity <- subset(dataset , Activity %in% rule_

activity)

5

6 cooccurring_cases <- lapply(split(cases_with_either_activity ,

cases_with_either_activity$Patient_visit_nr), function(case_

data) {

7 if (all(rule_activity %in% case_data$Activity)) case_data$

Patient_visit_nr[1]

8 })

9 # Clean up the list to remove NULLs and duplicates

10 cooccurring_cases <- unname(na.omit(unique(unlist(cooccurring_

cases))))

11 # Print the case numbers

12 if (length(cooccurring_cases) > 0) {

13 return(cooccurring_cases)

14 } else {

15 print("No cases with co-occurring specified activities were

found.")

16 }

17 }

51

B.8 Main Function

1 library(dplyr)

2 library(readxl)

3 library(lubridate)

4 library(tidyr)

5 library(stringr)

6 library(tibble)

7 library(knitr)

8 library(anytime)

9 library(eventdataR)

10

11 source("same_timestamp.R")

12 source("synonymous_label.R")

13 source("resource_activity_mismatch.R")

14 source("resource_inconsistency.R")

15 source("imprecise_resource.R")

16 source("incorrect_case.R")

17 source("imprecise_timestamp.R")

18 options(width = 400)

19 # Set working directory to script location

20 script_directory <- dirname(sys.frame (1)$ofile)

21 setwd(script_directory)

22

23 # Path to the data file

24 data_path <- ’Hospital Event Log.xlsx’

25

52

26 # 1. Same timestamp

27 events_by_start_ts <- same_timestamp(data_path ,"dmy_hms")

28 cat("Same timestamp :\n")

29 print(events_by_start_ts, width = Inf)

30

31 # 2. Synonymous labels

32 non_cooccurring_pairs <- synonymous_label(data_path)

33 cat("Synonymous label:\n")

34 print(non_cooccurring_pairs)

35

36 # 3. Imprecise timestamp

37 sample_timestamp <- "21/11/2017 11 :22:16"

38 invalid_dates <- imprecise_timestamp(data_path , sample_timestamp)

39 cat("Invalid dates:\n")

40 print(invalid_dates)

41

42 # 4. Resource activity mismatch

43 resource_mismatch <- " D o c t o r 1 "

44 resource_activities_summary <- resource_activity_mismatch(data_path

, resource_mismatch)

45 cat("Resource activities by type:\n")

46 print(resource_activities_summary , n = 32)

47

48 # 5. Resource inconsistency

49 activities <- c(" Clin ical exam ", " Treatment evaluation ")

50 inconsistent_resource <- resource_inconsistency(data_path ,

53

activities)

51 cat("Cases with resource inconsistency :\n")

52 print(inconsistent_resource)

53

54 # 6. Imprecise resource

55 sample_resource <- " N u r s e 5 "

56 imprecise_resource_rows <- imprecise_resource(data_path , sample_

resource)

57 cat("Rows with imprecise resource identifiers :\n")

58 print(imprecise_resource_rows)

59

60 # 7. Incorrect cases

61 rule_activity <- c("Drug A treatment", "Drug B treatment")

62 incorrect_cases <- incorrect_case(data_path , rule_activity)

63 cat("Rows with incorrect cases:\n")

64 print(incorrect_cases)

54

