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Comparative study of process discovery
algorithms

Dries Jarijch

Abstract. Process discovery remains one of the most interesting, yet
challenging, aspects of process mining. As a result from the existence of
many different mining algorithms, it is unclear which miner should be
used under certain conditions. This paper a comparison is made between
the current state of the art process mining algorithms to determine their
strengths and weaknesses. A literature study is performed to determine
the best performing discovery algorithms. The best performing process
miners are the Split miner and the Inductive miner. In addition, the
recently developed BupaRminer is also used. Based on the results of the
experiment, the Inductive miner outperforms both other miners in regard
to fitness and precision. Split miner is able to discover much simpler
models when compared to both other algorithms. These miners perform
best on these metrics regardless of system complexity, noise in the log,
or completeness of the log. The biggest weakness of the BupaRminer is
with discovering loops when noise is introduced. For the Split miner, it
is the ability to generate unsound models and its lack of precision.

Keywords: Process Discovery · BupaRminer · Inductive Miner · Split
Miner

1 Introduction

Process discovery remains one of the most interesting, yet challenging, aspects
of process mining [4]. The aim of process discovery algorithms is the discovery
of process models based on observed data. The goal of discovered models is to
reconstruct the true underlying process that allowed for the observed data to be
recorded [4, 53]. In the past two decades, a lot of algorithms have been made [7,
8, 12, 14, 16, 17, 20, 22, 27, 31–37, 39, 43, 47, 49–52].

As a result from the existence of the many mining algorithms, a challenge
arises. It is unclear which miner should be used under certain conditions. Ad-
ditionally, in existing studies, datasets are often chosen ad hoc, which might be
optimal for some miners, which can be to the detriment of others. In other stud-
ies, the basis for comparison is real-life datasets for which the underlying system
is usually unknown [13]. Furthermore, many of these miners have parameters
which are not commonly closely examined in literature.

This paper aims to provide a comparison between current state of the art
process mining algorithms to determine their strengths and weaknesses. Based
on recent literature, the best performing process miners are the Split miner
and the Inductive miner [13]. In addition, the recently developed BupaRminer
is also used. Artificial logs are simulated from artificially generated systems.
New models are discovered from these logs and evaluated on different quality
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dimensions. From this a conclusion is drawn on which miners perform best under
which circumstance.

The paper is constructed as follows: Section 2 discusses related work. Sec-
tion 3 elaborates on the research questions posed in this paper. Section 4 de-
scribes the methodology of the research. Section 5 shows the results, which are
discussed in Section 6. Section 7 concludes the paper.

2 Related Work

In the following sections, an overview is given of existing literature regarding:
commonly used evaluation metrics in Section 2.1, existing discovery algorithms in
Section 2.2, and previously conducted comparative studies in Section 2.3. Based
on this information, a selection is made for which algorithms and evaluation
metrics will be used when performing the experiment. Evaluation metrics are
discussed first to facilitate the discussion of the mining algorithms.

2.1 Quality Dimensions

There are several dimensions to evaluate the quality of a discovered model. This
section discusses the most commonly used quality dimensions used in literature.

Fitness Fitness as a quality dimension is first proposed in [44], where it is
defined as “how much behavior in a log is correctly captured (or can be re-
produced) by a model”. There are several different metrics associated with the
fitness quality dimension:

– Completeness or Parsing Measure (CP): “which percentage of the traces in
a log can also be generated by a model” [44]

– Continuous Parsing Measure (CPM): “the total number of correctly replayed
traces and the total number of correctly replayed tasks.” [44]

– Token-based fitness: “considers which problems (missing and remaining to-
kens) happened during the log replay.” [45]

– PFcomplete: Similar to Token-based replay, but it also takes into account
trace frequencies when weighing the problems that occurred during the log
replay.[38]

– Behavioral fitness: checks how much behavior is allowed by the original model
that is not by the mined model [39]

– Negative event fitness (Behavioral recall): the proportion of the behaviour in
the event log which can be replayed without forcing transitions to fire. While
this is the same as the base fitness metric, the precision and generalisation
version of negative event metrics are impacted [18].

– Structural fitness: structural fitness assess how many causality relations the
original model has that are not in the mined model [39]

– Alignment-based fitness (Fa): “measures the degree to which every trace in
the log can be aligned (with a small number of errors) with a trace produced
by the model.” [9]
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Precision Precision and generalisation are defined in [44] as “how much more
behavior is captured in the discovered model than was observed in the log”.
More specifically, Precision refers to the amount of behavior that is allowed by
a discovered model, but is not present in the log. Precision metrics include:

– a′B : “derives “sometimes” follows and precedes relations (reflecting alterna-
tive or parallel behavior) for tasks in a log and for tasks in a model, and
compares these relations. The less relations derived from the model can also
be derived from the log, the less precise is the model.” [44]

– Behavioral precision (BP ): “checks how much behavior is allowed by the
mined model that is not by the original model” [39]

– Negative event precision (Behavioral precision): Negative events are artifi-
cially introduced. These are events that should not be allowed by the model.
Behavioral precision measures the ratio of positive events (all non-negative
events) allowed by the model to all events allowed by the model [18].

– Structural precision: “structural precision assess how many causality rela-
tions the mined model has that are not in the original model” [39]

– Token-based precision: “different prefixes of the log are replayed (where pos-
sible) on the model. At the reached marking, the set of transitions that are
enabled in the process model is compared with the set of activities that fol-
low the prefix. The more the sets are different, the more the precision value
is low.” [41]

– Alignment-based precision (Pa): calculated by confronting model and log
behaviors. Imprecision between the model and the log (i.e., situations where
the model allows more behavior than the one reflected in the log) are detected
and analyzed [10, 11].

Harmonic mean (F1-score): a way of combining precision and fitness into one
metric [13]. It takes a precision and fitness metric and combines them in the
following equation:

F1 =
2 ∗ f ∗ p
f + p

(1)

Generalisation Generalization is also first mentioned in [44]. It serves as an
indicator of how much a discovered model might be over-fitting to the log. The
following metrics belong to this quality dimensions:

– Negative event generalisation (Behavioral generalisation): this is the ratio
of allowed generalised events to all generalised events. Generalised events
are events which were not observed but at the same time not considered as
negative [18].

– Alignment generalisation: starts from an aligned log. for each event, calcu-
lates the probability that the next time this state is visited, a new path will
be observed. If the average probability over the log is low, then generalization
is assumed to be high [5].
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– K-fold cross-validation: Sections of a model are held out, then fitness is
generated for the part held out against the discovered model. The mean
value of the fitness values serves as an indicator of generalisation [13]

– Causal Footprint: “measures behavioral similarity based on two models’
structures. It works by (i) mapping these models to their causal closure
graphs, (ii) transforming these graphs to vectors in a multidimensional space,
and (iii) measuring the cosine distance between these two vectors.” [44]

Simplicity Simplicity was first referred to as complexity in [30]. More recent
literature has adapted the name simplicity for this quality dimension [19]. It is
defined as “how simple the process model is to understand for a human”. Several
commonly used metrics include:

– Coefficient of Connectivity (CNC): “The number of arcs divided by the num-
ber of nodes. In the context of a business process model, the number of arcs
has to be divided by the number of activities, joins, and splits” [29]

– Control Flow Complexity (CFC): “the sum over all connectors weighted by
their potential combinations of states after the split.” [23]

– Size: “The number of nodes of the process model” [30]
– Diameter: “The diameter gives the length of the longest path from a start

node to an end node in the process model” [40]
– Structuredness: “how far a process model can be built by nesting blocks of

matching join and split connectors” [30]
– Average Degree: “ratio of the number of outgoing and incoming flows over

the size of a model” [46]
– Average Connector Degree: “The number of nodes a connector is on average

connected to.” [30]

Soundness Measures whether a model violates one of the three soundness cri-
teria defined in [3]. These criteria can be assessed by playing the token game on
a petrinet:

– Option to complete: For every state M reachable from state i, there exists a
firing sequence leading from state M to state o. From initiation to completion,
every reachable state has a way of reaching completion.

– Proper completion: State o is the only state reachable from state i with at
least one token in place o. Meaning that if a petrinet reaches completion,
there are no lingering tokens in the net left over.

– No dead transitions: There are no transitions that can never fire.

Quality dimensions can be subdivided based on two characteristics. The first
is their point of comparison. For the fitness, precision and generalisation di-
mension, this point of comparison is between a log (often a system log) and a
discovered model. For simplicity and soundness, only the discovered model is
used to determine the quality. The second characteristic is way of measuring.
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Fitness, precision, and generalisation are often expressed as values between 0
and 1. Simplicity metrics often not bound between these values but are still nu-
meric. Soundness is a metric that is either pass or fail. A model can be sound or
not sound.

2.2 Discovery Algorithms

Table 1: Comparison of existing discovery algorithms.

Algorithm name Year Output
life-cycle

components
Sound
output

α-miner 2004 Petrinet No No
genetic miner 2005 Petrinet No No

heuristics miner 2006 BPMN-model No No
fuzzy miner 2007 MR-Object No No

genetic miner 2 2007 Petrinet No No
α++-miner 2007 Petrinet No No

β-miner 2009 Petrinet Yes No
heuristics++ miner 2010 BPMN-model Yes No

flexible heuristics miner 2011 Petrinet No No
Evolutionary tree miner 2012 Process tree No Yes

Inductive miner 2013 Process tree No Yes
Inductive - infrequent 2014 Process tree No Yes

Inductive - incompleteness 2014 Process tree No Yes
αII -miner 2016 Petrinet No No

Inductive - life cycle 2016 Process tree Yes Yes
Fodina 2017 BPMN-model No No

Split miner 2019 BPMN-model No No
eST-miner 2019 Petrinet No ?

Inductive - Probabilistic 2021 Process tree No Yes
Split miner 2.0 2021 BPMN-model Yes No

Improved eST-miner 2023 Petrinet No ?
BupaRminer 2023 BPMN-model Yes Yes

eST-miner variant 2024 Petrinet No ?

Alpha Miner There are many existing process miners that have been developed
in the past two decades. The first notable one is the α-miner proposed in [8]. As
the first miner, it still had some major shortcomings. The main one was not being
able to handle short-loops, but also not being able to discover non-free-choice
processes and unsound models [8].

A significant improvement was made upon the α-miner in [51] where the
α++-miner is proposed. This version of the α-miner allows for the rediscovery of
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most, though not all, sound models that include short-loops. The main advantage
of this miner is being able to discover non-free-choice models [51].

An extention of the original α-miner was also developed in [52] called the
β-miner. This version allows for discovering models based on logs with life-cycle
components [52]. This is something the base α-miner is not capable of doing.

The most recent adaption of the α-miner is the αII -miner developed in [35].
It looks at eventually-follows relations between events when discovering models.
This change to the α-miner targets parallel business processes. [35].

Most versions of the α-miner have a strong focus on simplicity, but perform
poorly for both fitness and precision metrics [20].

Heuristics Miner The heuristics miner was first proposed in [49] as a business
oriented approach to process discovery. This is achieved by giving the option to
express only the main behavior of a process rather than all behavior. This proves
itself to be a particularly flexible and noise resistant process miner [49]. Finally,
it has a unique focus on ease of interpretation [17].

Like the α-miner, the heuristics miner also does not inherently work with life-
cycle components in logs. The heuristics++ miner proposed in [22] is capable of
discovering models with these life-cycle components [22].

An improvement was made on the original heuristics miner, called the flexi-
ble heuristics miner. The basic ideas of the previous versions were not exploited
to their full potential, which this version accounts for. In addition to being more
noise resistant, the flexible heuristics miner is now also adept at mining pro-
cesses from less structured environments [50]. In [17] several shortcomings were
still identified for the (flexible) heuristics miner for particularly complex logs:
tasks can be unconnected, duplicate tasks cannot be mined, and long distance
dependencies are sometimes overly sensitive [17].

Fodina is the most recent variant of the heuristics miner, developed in [17].
This miner has proven itself more robust than all previous versions. Further-
more, it shows the capability to mine duplicate tasks, which no other variant is
currently able to do [17].

Genetic Miners Currently, three major genetic mining algorithms exist. The
first was proposed in [7]. It discovers models over several iterations, using the best
fitting models as input for the next iteration. Its main benefit is its resistance
noise and incompleteness [7].

Another genetic miner was developed in [39]. The focus for this genetic miner
is to account for: non-free-choice constructs, invisible tasks and duplicate tasks
[39].

The Evolutionary Tree miner (EVT), proposed in [20], uses a genetic algo-
rithm at its core. Rather than focusing on one to two performance metrics at a
time, it attempts to strike a balance between the main four: fitness, precision,
simplicity, and generalisation. This is an atypical approach to process discovery.
A significant importance is given to user guidance. This allows for certain met-
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rics to be prioritised over others, but also requires more user input as a result
[20].

The biggest drawback of most genetic models are their long run-times [33].

Fuzzy miner As of yet, the fuzzy miner has only seen one version, described in
[27]. The paper critiques the genetic mining algorithm proposed in [7]. Genetic
algorithms are particularly adept at handling noise and incompleteness, but are
limited by their focus on discovering a true underlying process. The fuzzy miner
has a focus on optimizing process discovery for processes from real-life logs and
unveiling hidden knowledge by avoiding spaghetti processes. It assumes real-life
logs are not entirely reliable and there is not one true model. The fuzzy miner
preserves highly significant behavior, and abstracts less significant behavior, this
makes it ideal for discovering real-life processes [27].

Inductive Miner The base version of the Inductive miner is proposed in [31].
It points out that most other, older discovery techniques (α-miner, heuristics
miner, fuzzy miner, and genetic miner) have little guarantee regarding fitness
and soundness. The Inductive miner was among the first algorithms to have this
focus on fitness and soundness [31]. As a result, it is currently among the top
performing miners in process discovery [13].

The Inductive miner - infrequent (IMi) was developed in [33]. The main focus
is on speed and being able to filter out infrequent behavior. Following the Pareto
principle, it is used to discover 80% of the most frequent behavior seen in logs.
Some of the high fitness inherent to the base version of the Inductive miner is
sacrificed in favor of precision and some simplicity [33]. Infrequent behavior is
considered to be one of the two biggest problems for process discovery algorithms
[32].

Inductive miner - incomplete (IMin) addresses the other big problem discov-
ery algorithms face: rediscovering processes from incomplete logs. This is done by
introducing new relations between activities, which were not observed in the log.
Then the probabilities of these new relations are estimated, and kept if deemed
likely enough. Sufficiently large logs are still required to discover adequate mod-
els while maintaining simplicity [32].

All other implementations of the Inductive mining algorithm that have been
discussed so far, assume that events in logs are atomic. The Inductive miner - life-
cycle (IMlc) is able to use life-cycle components when discovering models from
logs. Some limitations are still identified: this version has difficulty detecting
hidden relations between events and with expressing multiple instances of the
same activity. Hidden relations are the result of a non-free-choice construct where
the the execution of one activity is only possible if another activity was performed
previously in the process. [34].

The probabilistic Inductive miner (PIM) presented in [16] is intended to
strike a balance between IMi and IMin [33, 32]. Both miners individually only
tackle one of the big problems that discovery algorithms tend to face. While
outperforming most other algorithms it was compared to (see Section 2.3), the
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probabilistic Inductive miner sacrifices on time by taking hundreds of times
longer to complete [16].

Split miner In [12], two issues are identified with regards to existing mining
algorithms: 1) Some algorithms often produce spaghetti-like models which are
hard to interpret or 2) they discovery models with poor fitness or precision. In-
stead a proposal for the Split miner is made. The Split miner algorithm balances
precision, fitness, and generalisation. The discovered models are comparable in
simplicity to the Inductive miner and evolutionary tree miner [31, 20]. Models are
also always sound and deadlock-free. It claims to be the first algorithm capable
of doing this [12].

Split miner 2.0, discussed in [14], is the most recent version of Split miner
with two main additional features: 1) it is able to use life-cycle components when
discovering models and 2) it has the ability to differentiate between inclusive and
exclusive choices (OR and XOR) [14].

eST miner The eST-miner, proposed in [36], takes a unique approach to process
discovery. By using language based regions [15], much more detailed and complex
processes can be discovered. As a result, discovered processes are much more
complex. This algorithm performs particularly well in ways of computation times
and when discovering non-free choice constructs [36].

The eST miner in criticised in [43] for often discovering imprecise substruc-
tures, such as one-loops. The improved eST miner proposed in [43] maintains the
high efficiency of the original eST miner, while reducing the number of these im-
precise substructures. Additionally, it improves simplicity by removing implicit
connections. These are connections which do not impact behavior when removed
[43].

In [37] another issue is identified: deadlocks. The base eST-miner is likely to
generate a deadlock where the end of a process cannot be reached. This problem
is addressed by the variant of the eST miner proposed in this paper. It greatly
improves the handling of places connected to rarely occurring activities. In doing
so, it reliably prevents deadlocks from appearing [37].

BupaRminer BupaRminer is proposed in [47]. The focus is on discovering
sound process models. There is no requirement for fine-tuning hyperparameters,
which increases the ease of use for novice users. It is inherently noise resistant
and inherently incorporates working with life-cycle components. It operates in a
two-staged approach. First, the algorithm estimates likely relationships between
pairs of activities. The result can be seen as a declarative model. Second, these
relationships are aggregated into a sound BPMN model. [47].

2.3 Other comparative studies
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Table 2: Overview of other comparative studies.

Author Date Most prominent miners Datasets Quality measures

De Weerdt
[24]

2012

α-miner [8]
Heuristics miner [49]
Genetic miner [39]
Fuzzy miner [27]
α++-miner [51]

β-miner [52]

20 artificial logs also used in [38]
8 real-life event logs from information systems in:
a university, a manufacturing company, a telecom

company, and an insurance company

Fitness
Completeness

Parsing measure
Successfully executed traces

Behavioral recall
Behavioral appropriateness

Advanced behavioral appropriateness
Soundness

Behavioral specificity
Behavioral precision

ETC precision
The harmonic mean (F-score)

Esmita [25] 2014
Heuristics miner [49]
Fuzzy miner [27]
Genetic miner [7]

No datasets used
No measures

used

Augusto [13] 2019

Inductive miner [33]
Split miner [12]

Heuristics miner [49]
Fodina [17]
EVT [20]

Twelve logs from 4TU
Centre for Research Data [1]
Twelve proprietary logs from

several international companies

Alignment based fitness
Alignment based precision

The harmonic mean (F-score)
K-fold cross-validation

Size
Control-flow complexity

Structuredness
Soundness

Peng [42] 2021
α-miner [8]

Heuristics miner [49]
Inductive miner [33]

Twelve logs from 4TU
Centre for Research Data [1]

Behavioral Fitness
Structural Fitness

Behavioral Precision
Structural Precision

The F1 score
Running time

Augusto [14] 2021
IM - life-cycle [34]
Split miner [12]

Split miner 2.0 [14]

Eleven proprietary logs from
several international companies

Alignment-based Fitness
Alignment-based Precision

Size
Control-flow Complexity (CFC)

Structuredness
Soundness

Brons [16] 2021

Inductive miner [33]
Split miner [12]

EVT [20]
PIM [16]

Fourteen logs from 4TU
Centre for Research Data [1]

Two proprietary logs

Fitness
Precision

The F1 score
Size

Control-flow Complexity
Structuredness

Soundness
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The first notable comparative study is the one conducted in [24]. For all
algorithms, the standard settings was chosen. While choosing more optimal pa-
rameters could improve results, it would also require prior knowledge, which is
seldom available. For artificial event logs, the genetic miner Genetic miner [39]
performed outstandingly compared to other miners, while both the heuristics
miner and the α-miner (including its variants) [8, 49, 51, 52] underperform with
regards to their fitness metrics. For real-life event logs, the heuristics miner out-
performs the other algorithms on the different precision metrics used. It is also
reported to have the fastest running times. The base α-miner and its veriants
were once again among the worst performing miners.

A later comparison performed in [25] compares the heuristics miner [49], the
fuzzy miner [27], and the genetic miner [7]. It does not appear to use any basis
for evaluating each of the different miners. It does provide guidelines for the
context in which each miner should be used, but provides no further proof [25].

A later benchmark study performed in [13] compares 35 different miners, the
most prominent of which include: the Inductive miner [33], the Split miner [12],
the heuristics miner [49], fodina [17], and the evolutionary tree miner [20].

In the benchmark study, two forms of evaluation are used: 1) with default
hyperparameters, and 2) with hyperparameter optimalisation. Notably, for the
second evaluation, EVT was left out due to time constraints. in both scenarios
all miners were consistenly outperformed by [13]: 1) Inductive miner on the
basis of fitness, 2) Evolutionary tree miner on the basis of precision, and 3) Split
miner on the basis of the harmonic mean. This paper was criticized in [16] for
having three shortcomings: Logs are prefiltered to reduce complexity, logs were
too small, and certain common process types are missing.

A comparative study in [42] compares the performance of the α-miner [8],
heuristic miner [49], and Inductive miner [31]. In addition to the base version
of the algorithms, several of its derivatives are also used, although only two of
these derivatives were cited (IMi [33] and IMin [32]). In addition, several types of
noise are introduced to the datasets: 1) Missing head noise, 2) Missing tail noise,
3) Missing episode noise, 4) Perturbed order noise, 5) Double activity noise, 6)
Alien activity noise, and 7) Change name noise.

The heuristics miner performs best on the F1 score. The Inductive miner
outperforms the rest on all fitness metrics. The α-miner performs best on running
time. This remains consistent when the miners are exposed to noise.

[14] compares Split miner 2.0 (where it is first introduced) with the Inductive
miner-life-cycle, and the base Split miner. The base Split miner was the only
miner to discover unsound models. The Inductive miner scores the highest on
fitness. Split miner 2.0 usually performs best on precision, but is sometimes
matched by the base Split miner. Split miner 2.0 consistently performs best on
all simplicity metrics.

The paper in which the Probabistic Inductive miner [16] is proposed, it is
also compared to EVT [20], Inductive miner [33], and Split miner [13]. For the
comparison of the PIM, a more simplictic version of PIM was also implemented
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for the comparison (PIM30) to have lower run-times. This is done on the basis
of the following metrics:

PIM consistently sacrifices fitness for increased precision, even out-performing
EVT. PIM also scores best on average for all simplicity metrics. Split miner
achieves the highest fitness, while the hightest F1-score is achieved by the In-
ductive miner [16].

3 Problem Statement

The purpose of this paper will be to compare the current state of the art pro-
cess mining algorithms. In order to achieve this, two focal points are defined.
First, a focus on noise resistance. This will measure how well the process miners
can handle the presence of noise and incompleteness in logs. Second, a focus
on system variation. This will compare how the different process miners per-
form under varying conditions such as noise, completeness, and complexity. To
evaluate these problems, two research questions are defined:

1. RQ1: Which miners perform best when exposed to different levels of noise
and completeness.

2. RQ2: Which miners perform best when exposed to data from systems with
differing levels of complexity.

4 Methodology

The methodology in this paper is based on the framework presented in Weber
(2011) [48]. For comparing process mining algorithms, the following six steps are
given by this framework:

1. Generate a ground truth system
2. Calculate number of paths
3. Simulate logs, including a very large, complete log
4. Discover models using different process mining algorithms
5. Measure the quality of the discovered models
6. Statistical analysis using measurements from different simulations

4.1 Generating ground truth models

For the generation of ground truth systems, the Purpose-Guided Log Generation
framework proposed in [21] is used. This framework provides a tool (PLG2) that
allows for the generation of systems based on different parameters:

Within the context of this paper, three levels of complexity for system gen-
eration are defined, as can be seen in Table 4. For each of these systems, four
different configurations of inputs are used in PLG2: without loops or skips, a
configuration containing loops, a configuration containing skips, and a configu-
ration containing both loops and skips. The percentages of each of these patterns
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Fig. 1: Diagram representing the methodology.
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Table 3: Levels of complexity.

Parameter Explanation

Maximal Depth The maximal number of generated nested patterns

Maximal number of
AND branches

When an AND-pattern is generated, this is the
maximal number of outgoing branches

Maximal number of
XOR branches

When an XOR-pattern is generated, this is the
maximal number of outgoing branches

Single activity weight The weight of a single activity pattern being generated

Sequences weight The weight of a sequence pattern being generated

AND split weight The weight of an AND split pattern being generated

XOR split weight The weight of an XOR split pattern being generated

Skip weight The weight of a pattern generation being skipped

Loop weight The weight of a loop pattern being generated

Table 4: Levels of complexity.
Complexity Maximal

depth
Maximal number of

AND branches
Maximal number of

XOR branches

Low complexity 2 3 4
Medium complexity 4 3 4
High complexity 5 3 4
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for the configurations are described in Table 5. PLG2 uses a system of weights
for each pattern to determine the likelihoods of that pattern being generated,
proportionate to other patterns. These weights are values between 0 and 1. For
example: if a loop pattern has a weight of 0.5, while an AND pattern has a
weight of 1, the AND pattern will be twice as likely to be generated. To achieve
the percentages shown in Table 5, all weights are summed for a total weight,
then each individual weight is divided by the total weight.

Table 5: Weights of PLG2 Parameters.

Configurations
Single

Activities
Sequence

AND
Splits

XOR
Splits

Skips Loops

standard 8.33% 58.33% 8.33% 25.00% 0.00% 0.00%
with loops 6.67% 46.67% 6.67% 20.00% 0.00% 20.00%
with skips 6.67% 46.67% 6.67% 20.00% 20.00% 0.00%

with loops and skips 5.56% 38.89% 5.56% 16.67% 16.67% 16.67%

In order to answer RQ1, two systems are generated for each configuration.
This will provide a sufficiently large number of systems to examine the effects
of noise and incompleteness. For answering RQ2, 15 systems are generated for
each configuration. Generating this many systems allows for sufficient variety in
systems. This leads to 24 (3 complexity levels x 4 configurations x 2 systems)
systems for RQ1 and 180 (3 complexity levels x 4 configurations x 15 systems)
systems for RQ2 in total.

4.2 Calculating number of paths

Using pm4py, the ground truth models generated in Section4.1 are converted
to process trees. The ground truth models are block-structured. These process
trees are then used to calculate the number of possible execution paths. For loop
operators, it is assumed they cannot be iterated over more than three times. This
ensures a finite number of possible execution paths [28]. The number of paths is
used as the input for a coupon collector problem [26]. This will be discussed in
the next section.

4.3 Simulating logs

For this Section, PLG2 is used to generate logs from systems. Various types
of completeness and noise are used for the logs. The completeness of a log is
the percentage of unique paths present in the log compared to the number of
unique paths the system allows. PLG2 is used to generate a set number of cases
from a log. To calculate the number of cases needed to achieve a certain level
of completeness, a coupon collector problem is used [26]. Consider the following
variables:
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– t = the total number of paths for a process [28]

– i = the i-th new path to be observed if i−1 unique paths have already been
seen

– E(Ci) = the expected number of cases needed in a log to achieve i number
of unique paths

– E(ci) = the expected additional number of cases needed to find the i-th
newest path. (meaning Ci = Ci−1 + ci)

If each path has an equal chance to be selected as a case for the log, the
probability of a new path i to be discovered can be seen in Equation 2. The
expected number of additional traces can be achieved by using Equation 3. To
achieve a log with i unique paths, Equation 4 can be applied.

P (i) =
t− i+ 1

t
(2)

E(ci) =
t

t− i+ 1
(3)

E(Ci) = E(c1) + E(c2) + ...+ E(ci) (4)

For a system with 100 unique paths, achieving a log with 30% completeness
requires 30 unique paths present in the log. To calculate the expected number
of cases required in the log, E(C50) is calculated using Equation 3 and Equation
4. This gives the result in Equation 5. This result is rounded up to achieve 69
required cases.

E(Ci) = E(c1) + E(c2) + ...+ E(c30)

=
100

100− 1 + 1
+

100

100− 2 + 1
+ ...+

100

100− 50 + 1

=
100

100
+

100

99
+ ...+

100

51
= 68.82

(5)

PLG2 also provides the option to introduce various types of noise to a log. The
different types of noise that are introduced are the same as the ones mentioned
in [42]: 1) Activity name noise, 2) Missing event noise, and 3) Double events
noise (See also Table 6). This noise is applied on the activity level. To calculate
noise on a trace level, Equation 6 is used, where:

– nnoise represents: trace level noise. This means that a trace has an nnoise
chance to contain any noise.

– S represents: the number of activities in a trace.

– anoise represents: the activity level noise given to PLG2. Meaning there is
an anoise chance of an activity being affected by noise.
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According to this formula, the likelihood of every activity in a trace being
noise free is calculated. This can then be rewritten to Equation 7. The required
trace level noise (nnoise = 0.1) can then be used to determine anoise. PLG2 does
not allow for the length of a trace to be taken into account when determining
noise. As a result, the number of activities a system has is taken as the S value.

nnoise = 1− (1− anoise)
S (6)

anoise = 1− S
√
1− nnoise (7)

Research Question 1 When generating logs from systems used to answer RQ1,
different combinations of noise and incompleteness are applied to the logs. For
every combination, visible in Table 6, 3 logs are generated. This is done for each
of the 24 systems. This generates a total of 864 (24 systems x 36 configurations)
logs.

Research Question 2 For the systems that are used to answer RQ2, a random
level of incompleteness and noise is designated. This can range between the values
visible in table 6 (except 100% completeness). Every system will only generate
one log, this results in 180 logs (180 systems x 1 configuration).

Table 6: RQ1: number of logs.
Completeness

Noise Type 30% 60% 90%

No noise 3 logs 3 logs 3 logs
Activity names 3 logs 3 logs 3 logs
Missing events 3 logs 3 logs 3 logs
Double events 3 logs 3 logs 3 logs

In addition, for each system in RQ1 and RQ2, one log with 100% complete-
ness (a system log) is generated. This log is used in step 5 of the methodology to
measure the alignment based metrics. This gives an additional 204 (24 systems
+ 180 systems) system logs.

4.4 Discovering models

Based on the literature presented in Section 2, a selection of 3 mining algorithms
is made. The selected algorithms selected are: bupaRminer, inductive miner, split
miner. These miners currently stand out through their performance or novelty
[13, 47]. Their respective implementations are included:

– bupaRminer implemented in R [47]
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– Inductive miner implemented in Python (using pm4py) [6]
– Split miner implemented in java [14]

The eST miner does not have a publicly available code implementation, and
the Probabilistic Inductive miner is not open source. As a result, these algorithms
are not selected despite their performance and novelty.

In order to account for differences in performance caused by parameters not
being optimised, the Inductive miner will be applied to discover two models for
every log. The parameter used by the Inductive miner is the noise threshold. The
noise threshold refers to the amount of noise filtered out of logs when discovering
a model. 0.1 and 0.2 are the values chosen for the two models the Inductive miner
discovers.

For Split miner 2.0, the concurrency threshold is 0.05. The concurrency
threshold is defined as the minimum percentage of times that the two activi-
ties’ life-cycles are required to overlap to assume the two activities concurrent.
Since the PLG2 generated logs do not have life-cycles, this variable should not be
relevant. For every generated log, four models are thus discovered. This results
in a total of 4176 discovered models.

4.5 Measuring the quality of the discovered models

As stated previously, for checking conformance the following three quality di-
mensions are used: Fitness, Precision, and Simplicity.

To measure the fitness and precision quality dimension, the alignment-based
fitness (Fa) and alignment-based precision (Pa) metrics are calculated for each
discovered model as implemented in pm4py. The harmonic mean (F1 score) is
also calculated using the precision and fitness metric. The logs used for alignment
is the system log. These metrics are seen as state-of-the-art metrics to mea-
sure their respective quality dimension. To measure simplicity, a combination
of metrics will be used, which include: Control flow complexity (CFC), Model
Size, Average Degree, Average Connector Degree, and Coefficient of Connec-
tivity (CNC). For further explanation of these metrics, refer back to Section
2.1.

4.6 Statistical analysis

The analysis is divided for each Research question. For both Research questions
the first step is to analyse the generated ground truth models. For each level
of complexity, the distribution of several characteristics are discussed. These
include the number of activities, paths and types of patterns generated. The
second step is to analyse the simulated logs. The following metrics are used to
evaluate the logs as described in [2]:

– Magnitude: the number of events
– Support: the number of cases
– Variety: the number or activities
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– Level of Detail: the mean variety of all cases
– Structure: the inverse relative amount of directly-follows relations in the log,

compared to the maximal number of directly-follows relations possible

The last step is to compare the quality dimensions of the discovered models.
For RQ1, the focus is on analysing the metrics based on the types of noise and
the levels of completeness. For RQ2, the performance of the miners is compared
based on the complexity of the systems, and the types of patterns generated
within those systems.

5 Results

5.1 Research Question 1

Ground truth models While generating ground truth models, three levels of
complexity were envisioned. PLG2 randomly generates systems based on given
parameters. Depending on the types of patterns generated, the number of possi-
ble paths for a system can still vary drastically. Any system could, for example,
only generate sequence patterns. This results in it having a single path. This
would not be considered a complex system. As a result, actual complexity of the
systems is not determined by their input parameters, but instead based on the
number of paths a system has. The eight systems with the highest number of
paths are defined as high complexity systems, the eight systems with the low-
est number of paths are considered as low complexity, and the remaining eight
are medium complexity. An overview of the different characteristics of the sys-
tems can be found in Table 7. Unsurprisingly, the low complexity systems tend
to score lower on all characteristics. Medium complexity systems have a higher
average and maximum number of activities. There is also a higher average num-
ber of XOR patterns. However, there are also less loop patterns on average.
Loop patterns increase the number of paths that a system has more than XOR
patterns.

Simulated logs For RQ1 a total of 864 normal logs and 24 system logs were
simulated. The logs are described in Table 8. All levels of complexity show a
very wide range of magnitude and support when comparing the minimum and
maximum values. There also appears to be some overlap for these values between
complexity levels. For the interquantile ranges the values are quite wide, yet there
is no overlap. Variety of the log is closely linked to the number of activities of
the original system. The slight deviation between these values is likely caused by
the noise and incompleteness that is introduced. Level of detail and Structure
both increase significantly as logs become more complex.

Discovered models The Inductive miner was able to discover sound models
for every log and every level of complexity. BupaRminer discovered no unsound
models, but was unable to discover any model for 4 of the low complexity logs.
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Table 7: RQ1: System characteristics.
Complexity Characteristic Minimum Average Maximum sd

Low
Complexity

Paths 3 6 13 3.02
Activities 6 9 13 2.27

XOR patterns 0 1.38 3 0.916
AND patterns 0 0.25 1 0.463
Loop patterns 0 0.25 1 0.463

Medium
Complexity

Paths 28 186 540 198
Activities 11 40.4 111 30.3

XOR patterns 0 5.75 19 5.65
AND patterns 0 1.38 6 2.07
Loop patterns 0 0.625 3 1.19

High
Complexity

Paths 702 1660 3312 858
Activities 30 46 62 13.1

XOR patterns 0 5.12 11 3.56
AND patterns 1 1.38 4 1.06
Loop patterns 0 2.75 6 2.25

Table 8: RQ1: Log characteristics.
Complexity Characteristic Minimum Q1 Average Median Q3 Maximum sd

Low
Complexity

Magnitude 5.0 16.0 45.9 30.0 52.2 273 48.2
Support 1.0 3.0 7.62 5.5 12.0 29.0 6.21
Variety 3.0 6.0 7.79 8.0 9.0 13.0 1.86

Level of Detail 3.0 4.49 5.62 5.0 6.4 15.4 1.64
Structure 0.667 0.917 0.941 0.953 0.963 0.982 0.036

Medium
Complexity

Magnitude 143 636.0 4351.0 1727.0 5520.0 27288.0 6277
Support 11.0 45.2 222.0 104.0 223.0 1239.0 308.0
Variety 11.0 27.8 40.3 31.0 39.8 112.0 28.3

Level of Detail 11.0 13.2 18.1 15.2 20.9 35.4 7.37
Structure 0.975 0.996 0.995 0.997 0.998 1.000 0.007

High
Complexity

Magnitude 5455 18166.0 55138.0 35304.0 69461.0 225147.0 54045.0
Support 251.0 670.0 1978.0 1424.0 2792.0 7624.0 1789.0
Variety 30.0 36.5 46.2 48.0 58.0 65.0 12.3

Level of Detail 15.5 22.8 27.7 28.2 29.7 46.6 8.50
Structure 0.997 0.998 0.998 0.999 0.999 0.999 0.001
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The cause was the inability to detect a loop block. Split miner was able to
discover models for all logs, 7 of which were unsound. Those models were not
taken into account when calculating the fitness and precision metrics.

Table 9 shows the distribution of the metrics used to measure fitness, preci-
sion and simplicity for the different miners. The fitness, precision, and F1 scores
are also visualised per miner in Figure 2, 3, and 4 respectively. Table 10 de-
scribes the average effect of different types of noise on fitness, precision, and the
F1 score. Figure 5, 6, and 7 show boxplot distributions of the fitness, precision,
and F1 score per noise type. Table 11 shows the effect of completeness on the
averge precision, fitness, and F1 score metrics. Figures 8, 9, and 10 show box-
plot distributions of the fitness, precision, and F1 score respectively per level of
completeness.

The Inductive miner on average performed best on both precision and fitness
metrics for all incompleteness levels and all noise types. The boxplots show great
consistency in this regard also. The Split miner greatly outperforms all other
algorithms on the basis of simplicity metrics. The BupaRminer usually sits in
between the other miners, only performing the worst on CNC and CFC metrics.
The difference between the performances of the two Inductive miners is extremely
minor. For all miners, there was a great significant impact of completeness on
fitness. The distribution of fitness becomes tighter as completeness increases.
The only significant impact of noise was the effect of Activity name noise on
precision. Figure 6 shows a wider distribution for the precision metric when
Activity name noise is introduced except when Split miner is used.

5.2 Research Question 2

Ground truth models Three levels of complexity are once again defined ac-
cording to the number of paths each system has. For RQ2, 180 systems were
generated. As a result, each complexity level contains 60 systems instead of
eight. An overview of the characteristics per complexity level can be seen in Ta-
ble 12. The value of all characteristics increase as the level of complexity rises.
The only remarkable aspect is the maximum number of activities for medium
complexity is higher than high complexity. This was also the case for RQ1.

Simulated logs Each system was used to generate one log with a random level
of completeness and a random type of noise. This selection was done randomly
and resulted in the distributions seen in Table 13 and 14. The level of complete-
ness is slightly skewed towards 30% completeness. Activity name noise is also
less present when compared to other types of noise within the logs.

The same log metrics from [2] are once again examined in Table 15. Mag-
nitude and Support increase significantly as the level of complexity increases.
Similarly, Variety also increases with complexity although for the lower two
complexity levels never reaches the same number of activities as seen in their
respective systems (See also Table 12). The level of detail also still increases as
with the other logs, but the difference is not as large as before the same can
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Table 9: RQ1: Results.
Metric Miner Q1 Average Median Q3 sd

Fa

BM 0.952 0.963 1.000 1.000 0.068
IM0.2 1.000 0.978 1.000 1.000 0.063
IM0.1 1.000 0.978 1.000 1.000 0.063
SM 0.921 0.943 0.981 1.000 0.077

Pa

BM 0.881 0.925 0.947 0.998 0.091
IM0.2 0.978 0.977 0.990 1.000 0.046
IM0.1 0.978 0.977 0.990 1.000 0.046
SM 0.701 0.727 0.725 0.757 0.043

F1 score

BM 0.932 0.940 0.956 0.975 0.066
IM0.2 0.978 0.975 0.991 0.996 0.044
IM0.1 0.978 0.975 0.991 0.996 0.044
SM 0.813 0.818 0.824 0.837 0.034

CFC

BM 5.00 55.6 17.0 26.0 272
IM0.2 4.00 14.5 13.0 18.0 13.3
IM0.1 4.00 14.6 13.0 18.0 13.4
SM 4.00 13.1 12.0 18.0 12.5

Size

BM 16.0 49.8 49.0 68.0 37.5
IM0.2 16.0 47.3 44.0 62.0 37.3
IM0.1 16.0 47.3 44.0 62.0 37.4
SM 14.0 44.9 43.0 62.0 34.9

Average
Degree

BM 2.27 2.32 2.35 2.41 0.160
IM0.2 2.24 2.27 2.30 2.36 0.142
IM0.1 2.24 2.27 2.30 2.36 0.142
SM 2.14 2.22 2.29 2.33 0.181

Average
Connector
Degree

BM 3.00 3.31 3.29 3.50 0.283
IM0.2 3.00 3.30 3.33 3.43 0.259
IM0.1 3.00 3.30 3.33 3.43 0.259
SM 2.60 2.88 3.05 3.31 0.658

CNC

BM 1.13 1.16 1.18 1.20 0.080
IM0.2 1.12 1.14 1.15 1.18 0.071
IM0.1 1.12 1.14 1.15 1.18 0.071
SM 1.07 1.11 1.15 1.17 0.091
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Fig. 2: Boxplots of Alignment Fitness for each miner.

Fig. 3: Boxplots of Alignment Precision for each miner.
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Fig. 4: Boxplots of Fscore for each miner.

Table 10: RQ1: impact of noise.
Metric Miner No noise Activity

name noise
Missing

activity noise
Double

activity noise

Fa

BM 0.965 0.960 0.960 0.969
IM0.2 0.979 0.976 0.973 0.982
IM0.1 0.979 0.976 0.973 0.982
SM 0.940 0.944 0.942 0.946

Pa

BM 0.934 0.903 0.934 0.930
IM0.2 0.983 0.962 0.983 0.981
IM0.1 0.983 0.961 0.983 0.981
SM 0.727 0.725 0.727 0.730

F1 score

BM 0.946 0.924 0.943 0.946
IM0.2 0.980 0.966 0.976 0.981
IM0.1 0.980 0.965 0.976 0.981
SM 0.817 0.817 0.817 0.821
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Fig. 5: Boxplots of the effect of noise on fitness.

Fig. 6: Boxplots of the effect of noise on precision.
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Fig. 7: Boxplots of the effect of noise on the F1 score.

Table 11: RQ1: impact of incompleteness.
Metric Miner 30% 60% 90%

Fa

BM 0.943 0.963 0.984
IM0.2 0.957 0.979 0.997
IM0.1 0.957 0.979 0.997
SM 0.934 0.938 0.957

Pa

BM 0.932 0.927 0.916
IM0.2 0.982 0.978 0.971
IM0.1 0.982 0.978 0.971
SM 0.733 0.726 0.723

F1 score

BM 0.933 0.941 0.946
IM0.2 0.967 0.977 0.982
IM0.1 0.967 0.977 0.982
SM 0.818 0.815 0.822
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Fig. 8: Boxplots of the effect of completeness on fitness.

Fig. 9: Boxplots of the effect of completeness on precision.
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Fig. 10: Boxplots of the effect of completeness on the F1 score.

Table 12: RQ2: System Characteristics.
Complexity Characteristic Minimum Average Maximum sd

Low
Complexity

Paths 1 3.65 11 2.35
Activities 2 7.8 32 4.79

XOR patterns 0 0.883 5 1.01
AND patterns 0 0.167 1 0.418
Loop patterns 0 0.317 2 0.537

Medium
Complexity

Paths 12 51 135 34.5
Activities 8 31.2 113 17.0

XOR patterns 0 4.43 22 3.50
AND patterns 0 1.05 3 0.946
Loop patterns 0 0.817 5 1.30

High
Complexity

Paths 144 1206 4381 1278
Activities 14 47.2 100 22.0

XOR patterns 1 6.37 17 3.61
AND patterns 0 1.63 6 1.28
Loop patterns 0 1.80 9 2.13
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be said for the standard deviation. Structure has a very low minimum for low
complexity, but this difference is not observed in higher complexity levels.

Table 13: Distribution of completeness over the different logs
Completeness Number of Logs

30% 69
60% 53
90% 58

Table 14: Distribution of noise over the different logs
Noise type Number of Logs

No noise 48
Activity names 37
Missing events 46
Double events 49

Discovered models The Inductive miner and Split miner were able to dis-
cover a sound model for each of the 180 systems. BupaRminer was not able to
discover a model for 5 systems. The issue was once again caused by not being
able to detect loop blocks. As complexity rises, fitness increases while precision
decreases. As a result, the F1 score remains consistent for the different levels of
complexity. As can be seen in the correlation graphs in Figures 11, 12, 13, and
14, There is very likely a correlation between complexity (the number of paths)
and precision. The correlation between number of paths and fitness is below 0.2
for all correlation graphs. The correlation between the two values is insignificant.

Generally the Inductive miner outperforms both other miners on fitness and
precision. It also has less variety in performance for those metrics. For all simplic-
ity metrics, the Split miner outperforms the other miners. The only competitor
is the Inductive miner at higher complexity levels on account for having a lower
standard deviation.

There is very little difference as a result of the parameter change of the
Inductive miner.

Two types of correlations were examined. The first is the Pearson method,
which examines if there are linear correlations between variables. No signifi-
cant linear correlation could be detected. The second technique is the Spear-
man method. It examines non-linear correlations bewteen variables. As can be
seen in Figures 11, 12, 13, and 14, there is still almost no significant correla-
tion between most of the metrics when compared to fitness and precision. For
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Table 15: RQ2: Log characteristics.
Complexity Characteristic Minimum Q1 Average Median Q3 Maximum sq

Low
Complexity

Magnitude 2 5 25.4 16 31.5 118 27.2
Support 1 1 4.23 3 6 19 4.24
Variety 2 4.75 6.98 6 8 19 3.62

Level of Detail 2 4 5.74 5 6 23 3.10
Structure 0.25 0.863 0.886 0.917 0.953 0.992 0.114

Medium
Complexity

Magnitude 37 204 861 500 1061 5304 981
Support 5 18 56 37.5 73.5 312 63.4
Variety 8 21 28 27 33.5 89 14.4

Level of Detail 6.17 9.60 14.2 13.7 18.3 25.7 4.95
Structure 0.953 0.994 0.991 0.996 0.997 1.000 0.013

High
Complexity

Magnitude 911 3049 30243 15138 40543 231334 43962
Support 53 161 1427 796 1519 10085 2025
Variety 14 28.8 47.2 47 61.2 100 22

Level of Detail 7.22 16.8 21.8 21.4 26.7 35.5 6.57
Structure 0.985 0.996 0.997 0.999 0.999 1.000 0.003

BupaRminer there is a negative correlation between precision and the number
of Loop-patterns in a system. Inductive miner also has a correlation between
precision and the number of Loop-patterns, but to a lesser degree.
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Table 16: RQ2: low complexity results.
Metric Miner Q1 Average Median Q3 sd

Fa

BM 0.932 0.941 0.971 1.000 0.106
IM0.2 0.939 0.943 0.980 1.000 0.107
IM0.1 0.939 0.943 0.980 1.000 0.107
SM 0.900 0.924 0.958 1.000 0.108

Pa

BM 0.923 0.943 1.000 1.000 0.140
IM0.2 0.964 0.962 1.000 1.000 0.137
IM0.1 0.964 0.962 1.000 1.000 0.137
SM 0.700 0.716 0.723 0.750 0.101

F1 score

BM 0.920 0.934 0.967 1.000 0.137
IM0.2 0.950 0.945 0.980 0.992 0.137
IM0.1 0.950 0.945 0.980 0.992 0.137
SM 0.805 0.800 0.823 0.829 0.111

CFC

BM 0 2.52 2 4 2.72
IM0.2 0 2.05 2 3.25 2.06
IM0.1 0 2.05 2 3.25 2.06
SM 0 1.62 0 3 1.94

Size

BM 7 11.5 10 16 5.48
IM0.2 7 11.0 10 14 5.17
IM0.1 7 11.0 10 14 5.17
SM 6.75 10.4 8.5 14 4.97

Average
Degree

BM 1.71 1.98 2 2.17 0.253
IM0.2 1.71 1.95 2 2.16 0.236
IM0.1 1.71 1.95 2 2.16 0.236
SM 1.70 1.89 1.78 2.12 0.228

Average
Connector
Degree

BM 3 3.22 3 3.5 0.341
IM0.2 3 3.22 3 3.5 0.349
IM0.1 3 3.22 3 3.5 0.349
SM 1 1.81 1 2.6 0.874

CNC

BM 0.857 0.988 1.000 1.08 0.127
IM0.2 0.857 0.975 1.000 1.08 0.118
IM0.1 0.857 0.975 1.000 1.08 0.118
SM 0.851 0.946 0.888 1.06 0.114
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Table 17: RQ2: medium complexity results.
Metric Miner Q1 Average Median Q3 sd

Fa

BM 0.950 0.948 1.000 1.000 0.085
IM0.2 0.999 0.971 1.000 1.000 0.070
IM0.1 0.999 0.971 1.000 1.000 0.070
SM 0.895 0.878 0.963 0.990 0.247

Pa

BM 0.826 0.885 0.939 0.977 0.132
IM0.2 0.950 0.940 0.971 0.988 0.108
IM0.1 0.950 0.940 0.971 0.988 0.108
SM 0.688 0.673 0.712 0.744 0.184

F1 score

BM 0.857 0.906 0.934 0.974 0.084
IM0.2 0.947 0.949 0.979 0.987 0.077
IM0.1 0.947 0.949 0.979 0.987 0.077
SM 0.809 0.814 0.818 0.827 0.027

CFC

BM 8 15.1 13 19 8.60
IM0.2 7 12.0 11 15 6.40
IM0.1 7 12.0 11 15.5 6.42
SM 6 11.2 10 14.2 6.30

Size

BM 33 43.9 40 51 20.8
IM0.2 32.5 42.2 39 49.5 19.2
IM0.1 32.5 42.2 39 49.5 19.2
SM 29.8 40.4 38 47.5 19.0

Average
Degree

BM 2.27 2.33 2.33 2.4 0.105
IM0.2 2.24 2.29 2.30 2.35 0.088
IM0.1 2.24 2.29 2.30 2.36 0.088
SM 2.19 2.25 2.25 2.32 0.093

Average
Connector
Degree

BM 3.17 3.33 3.29 3.5 0.253
IM0.2 3 3.26 3.29 3.4 0.226
IM0.1 3 3.26 3.27 3.4 0.226
SM 2.82 3.03 3 3.22 0.265

CNC

BM 1.14 1.17 1.17 1.20 0.052
IM0.2 1.12 1.14 1.15 1.18 0.044
IM0.1 1.12 1.14 1.15 1.18 0.044
SM 1.10 1.12 1.12 1.16 0.047
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Table 18: RQ2: high complexity results.
Metric Miner Q1 Average Median Q3 sd

Fa

BM 0.978 0.977 1.000 1.000 0.044
IM0.2 1.000 1.000 1.000 1.000 0.001
IM0.1 1.000 1.000 1.000 1.000 0.000
SM 0.960 0.934 0.986 1.000 0.185

Pa

BM 0.835 0.842 0.892 0.931 0.152
IM0.2 0.924 0.931 0.938 0.958 0.045
IM0.1 0.924 0.931 0.938 0.958 0.046
SM 0.665 0.665 0.692 0.711 0.141

F1 score

BM 0.894 0.895 0.926 0.957 0.114
IM0.2 0.960 0.964 0.968 0.978 0.026
IM0.1 0.960 0.963 0.968 0.978 0.026
SM 0.796 0.801 0.810 0.824 0.060

CFC

BM 17 30.6 24 35.8 21.6
IM0.2 14 22.4 20 28 12.1
IM0.1 14 22.5 20 28 12.2
SM 12.8 20.2 17.5 22 11.5

Size

BM 47.2 74.6 69.5 86.2 33.9
IM0.2 43.8 71.0 68 88.2 32.7
IM0.1 43.8 71.0 68 88.2 32.8
SM 43 67.1 63 83 31.4

Average
Degree

BM 2.36 2.40 2.41 2.44 0.077
IM0.2 2.31 2.35 2.36 2.39 0.065
IM0.1 2.31 2.35 2.36 2.39 0.065
SM 2.27 2.31 2.31 2.36 0.069

Average
Connector
Degree

BM 3.17 3.29 3.29 3.37 0.177
IM0.2 3.18 3.28 3.26 3.39 0.151
IM0.1 3.18 3.28 3.26 3.39 0.151
SM 3 3.18 3.18 3.31 0.197

CNC

BM 1.18 1.20 1.20 1.22 0.038
IM0.2 1.15 1.18 1.18 1.20 0.033
IM0.1 1.15 1.18 1.18 1.20 0.032
SM 1.14 1.16 1.16 1.18 0.034
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Fig. 11: Spearman correlation graph for BupaRminer.

Fig. 12: Spearman correlation graph for Inductive miner (0.2 noise threshold).
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Fig. 13: Spearman correlation graph for Inductive miner (0.1 noise threshold).

Fig. 14: Spearman correlation graph for Split miner.
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6 Discussion

When observing the performance of the different miners, both versions of the
Inductive miner clearly outperform both other miners in regard to fitness and
precision. Changing the parameter of the Inductive miner only has a very minor
negative impact on its performance. BuparRminer performs slightly worse than
the Inductive miner on these measures. Split miner tends to have acceptable
fitness scores, but falls behind significantly when comparing precision.

Split miner does excel in all simplicity metrics when compared to both other
algorithms. Inductive miner and BupaRminer perform worse in this regard. As
the level of complexity rises for systems, the difference between Inductive miner
and BupaRminer becomes greater.

The results of RQ1, described in Table 9, show that the average fitness and
precision of the Inductive miner are 0.978 an 0.977 respectively. The F1 score
is on average 0.975. When considering noise, shown in Table 10, the average
rises to 0.979 for fitness and 0.983 for precision for noise free logs. Surprisingly,
the presence of Double activity noise further increases the average fitness and
precision to 0.982 and 0.981. The only form of noise that has a negative impact
on the average precision is Activity name noise, this is also applicable for Bu-
paRminer and Split miner. Completeness clearly has a positive impact on the
fitness for all miners. When considering completeness of the logs, described in
Table 11, for the Inductive miner, the fitness values are 0.957, 0.977, and 0.997
for 30%, 60%, and 90% respectively. The opposite is true for precision with the
Inductive miner having a precision of 0.982, 0.978, and 0.971 for the respective
completeness levels. Split miner is the only discovery algorithm for which the F1

score reaches its lowest average at 60% completeness, with it being 0.815. Split
miner performs best on all simplicity metrics. The Split miner only performs
worse on its standard deviation of Average degree, Average connector degree,
and CNC.

The results of RQ2 are described in Tables 16, 17, and 18. The positive effect
of complexity on fitness is clearly visible. The inductive miner is once again the
highest performing miner. It reaches an average fitness of 0.943 for low com-
plexity, but increases to an average fitness of 1.000 at highest complexity. The
opposite is true for precision. The Inductive miner still performs best, with its
highest being 0.962 at low complexity. The lowest value is 0.931 for high com-
plexity. Split miner still performs best on all simplicity metrics, but consistently
scores worse on the standard deviation of Average degree, Average connector
degree, and CNC. The correlation graphs from Figures 11, 12, 13, and 14 show
that BupaRminer has the most negative correlations with system characteristics.
The most negative correlation is -0.46 between the number of loop patterns and
precision. Do note these correlations are not linear. Split miner has the least
correlation with system characteristics. The most significant is also a negative
correlation (-0.14) between the number of loop patterns and precision. This does
suggest that as the number of loops in a system keeps increasing, Split miner
might eventually perform better on precision than the other miners.
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The biggest weakness of the BupaRminer is with discovering loop blocks
when noise is introduced. It is the only miner that was not able to discover a
model for several of the logs provided. The biggest weakness of the Split miner
is the ability to generate unsound models and its lack of precision, especially for
complex systems. The Inductive miner has only the minor weakness of discover-
ing slightly more complex models, but is otherwise resistant to noisy, incomplete
and complex systems.

7 Conclusion

This paper first gives an overview of existing quality dimensions, discovery al-
gorithms, and existing comparative studies. From this overview, a selection is
made for the types of miners and quality dimensions, with corresponding met-
rics, that are to be used. For the algorithms, the BupaRminer, Inductive miner
and Split miner are chosen. Fitness, precision, F1 score and simplicity are cho-
sen as the quality dimensions. Two research questions are defined: RQ1: which
miners perform best when exposed to different levels of noise and completeness,
and RQ2: which miners perform best when exposed to data from systems with
differing levels of complexity. An experiment with two focus points is conducted.
First, systems are generated for both focus points of the experiment. Second,
logs are simulated from the systems. Third, new models are discovered from the
logs. Lastly, models are evaluated on the basis of the previously chosen quality
dimensions.

From the analysis, it can be concluded that the Inductive miner performs best
on fitness, precision, and F1 score regardless of system complexity, noise in the
log, or completeness of the log. The Split miner performs best on all Simplicity
metrics regardless of system complexity, noise in the log, or completeness of the
log.

The experiment was limited by several factors. Due to time constraints, the
amount of systems and logs that could be generated was limited. As the number
of systems and logs grow, so does the number of models that have to be dis-
covered. Discovering more models was not a possibility withing the given time
frame. There was also no opportunity to optimise the parameter of the Inductive
miner. This was mentioned as a shortcoming for other comparative studies and
was not fixed in this paper. Computational power also placed a limit on the
complexity of systems that could be generated. Both time and availability of
code played a role in the selection of discovery algorithms. As mentioned, The
ETM has run-times which are described as excessive. The eST miner and PiM do
not have publicly available code implementations. Finally, the implementation
of noise could not be properly determined based on average trace length. As a
result, the formula given in the paper is not fully correctly implemented.

Future research could focus on using a wider selection of discovery algorithms.
This could provide more specific cases in which certain miners perform better
than others. The amount of data could be larger to verify the results found
in this paper. In this paper, only the alignment based metrics for fitness and
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precision were used. Future research could examine more metrics for each quality
dimension.



38

References

1. Business Process Intelligence (BPI) (search),

2. Process mining in flexible environments. Technische Uni-
versiteit Eindhoven (2009). https://doi.org/10.6100/IR644335,
https://research.tue.nl/en/publications/process-mining-in-flexible-
environments(dc50e490-e9ce-4c20-bcfe-5c9e992daa54).html

3. van der Aalst, W.M.P.: Verification of Workflow nets. pp. 407–426 (Jan 1997)

4. van der Aalst, W.M.P.: Foundations of Process Discovery. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook, pp. 37–75. Lecture Notes in
Business Information Processing, Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-031-08848-3 2, https://doi.org/10.1007/978-3-031-
08848-3 2

5. van der Aalst, W.M.P., Adriansyah, A., Dongen, B.: Replaying History
on Process Models for Conformance Checking and Performance Analysis.
WIREs Data Mining and Knowledge Discovery 2, 182–192 (Mar 2012).
https://doi.org/10.1002/widm.1045

6. van der Aalst, W.M.P., Berti, A.: Discovering Object-Centric Petri Nets (Oct 2020)

7. van der Aalst, W.M.P., Medeiros, A., Weijters, A.: Genetic Process Mining. vol. 14,
pp. 48–69 (Jun 2005). https://doi.org/10.1007/11494744 5

8. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Transactions on Knowledge and Data En-
gineering 16(9), 1128–1142 (Sep 2004). https://doi.org/10.1109/TKDE.2004.47,
http://ieeexplore.ieee.org/document/1316839/

9. Adriansyah, A., van Dongen, B., van der Aalst, W.: Confor-
mance Checking Using Cost-Based Fitness Analysis. In: 2011 IEEE
15th International Enterprise Distributed Object Computing Confer-
ence. pp. 55–64 (Aug 2011). https://doi.org/10.1109/EDOC.2011.12,
https://ieeexplore.ieee.org/document/6037560, iSSN: 1541-7719

10. Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B., Aalst, W.: Alignment
Based Precision Checking. vol. 132 (Sep 2012). https://doi.org/10.1007/978-3-642-
36285-9 15

11. Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B., Aalst, W.: Measuring
precision of modeled behavior. Information Systems and e-Business Management
13 (Jan 2014). https://doi.org/10.1007/s10257-014-0234-7

12. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split
miner: automated discovery of accurate and simple business process mod-
els from event logs. Knowledge and Information Systems 59 (May 2019).
https://doi.org/10.1007/s10115-018-1214-x

13. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella,
A., Mecella, M., Soo, A.: Automated Discovery of Process Models from Event
Logs: Review and Benchmark. IEEE Transactions on Knowledge and Data Engi-
neering 31(4), 686–705 (Apr 2019). https://doi.org/10.1109/TKDE.2018.2841877,
https://ieeexplore.ieee.org/document/8368306, conference Name: IEEE Transac-
tions on Knowledge and Data Engineering

14. Augusto, A., Dumas, M., La Rosa, M.: Automated Discovery of Pro-
cess Models with True Concurrency and Inclusive Choices (May 2021).
https://doi.org/10.48550/arXiv.2105.06016, http://arxiv.org/abs/2105.06016,
arXiv:2105.06016 [cs]



39

15. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based
on Regions of Languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
Business Process Management, vol. 4714, pp. 375–383. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-
0 27, http://link.springer.com/10.1007/978-3-540-75183-0 27, series Title: Lecture
Notes in Computer Science

16. Brons, D., Scheepens, R., Fahland, D.: Striking a new Balance in
Accuracy and Simplicity with the Probabilistic Inductive Miner. In:
2021 3rd International Conference on Process Mining (ICPM). pp.
32–39 (Oct 2021). https://doi.org/10.1109/ICPM53251.2021.9576864,
https://ieeexplore.ieee.org/abstract/document/9576864?casa token =
1txmYQDvc2oAAAAA:DUV7PytQXep-So6r5mksJQs8MuOPLJGLd1
z0ciDq0eJ9Qx5ugOvlCY9v67Fd6sghrbwL1HveXn9Wlg

17. vanden Broucke, S.K.L.M., De Weerdt, J.: Fodina: A robust and flex-
ible heuristic process discovery technique. Decision Support Systems
100, 109–118 (Aug 2017). https://doi.org/10.1016/j.dss.2017.04.005,
https://www.sciencedirect.com/science/article/pii/S0167923617300647

18. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: De-
termining Process Model Precision and Generalization with Weighted Arti-
ficial Negative Events. IEEE Transactions on Knowledge and Data Engi-
neering 26(8), 1877–1889 (Aug 2014). https://doi.org/10.1109/TKDE.2013.130,
https://ieeexplore.ieee.org/document/6573923, conference Name: IEEE Transac-
tions on Knowledge and Data Engineering

19. Buijs, J., Dongen, B., van der Aalst, W.M.P.: Quality Dimensions in Process Dis-
covery: The Importance of Fitness, Precision, Generalization and Simplicity. In-
ternational Journal of Cooperative Information Systems 23, 1440001 (Mar 2014).
https://doi.org/10.1142/S0218843014400012

20. Buijs, J., Dongen, B., van der Aalst, W.M.P.: On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery. vol. 7565, pp. 305–322 (Sep
2012). https://doi.org/10.1007/978-3-642-33606-5 19

21. Burattin, A.: PLG2: Multiperspective Process Randomization with Online and Of-
fline Simulations. In: Online Proceedings of the BPM Demo Track. Rio de Janeiro,
Brasil (2016)

22. Burattin, A., Sperduti, A.: Heuristics Miner for Time Intervals. Computational
Intelligence (2010)

23. Cardoso, J.: Control-flow Complexity Measurement of Processes and Weyuker’s
Properties. vol. 8, pp. 213–218 (Jan 2005)

24. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A
multi-dimensional quality assessment of state-of-the-art process dis-
covery algorithms using real-life event logs. Information Systems
37(7), 654–676 (Nov 2012). https://doi.org/10.1016/j.is.2012.02.004,
https://www.sciencedirect.com/science/article/pii/S0306437912000464

25. Esmita, A., Gupta, E.: Process Mining A Comparative Study (Dec 2014).
https://doi.org/10.17148/ijarcce

26. Ferrante, M., Saltalamacchia, M.: The Coupon Collector’s Problem (2014),
27. Günther, C., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simpli-

fication Based on Multi-perspective Metrics. vol. 4714, pp. 328–343 (Sep 2007).
https://doi.org/10.1007/978-3-540-75183-0 24

28. Janssenswillen, G., Depaire, B.: Towards Confirmatory Process Discovery: Making
Assertions About the Underlying System. Business & Information Systems En-



40

gineering 61(6), 713–728 (Dec 2019). https://doi.org/10.1007/s12599-018-0567-8,
https://doi.org/10.1007/s12599-018-0567-8

29. Latva-Koivisto, A.: Finding a Complexity Measure for Business Process Models
(Mar 2001)

30. Laue, R., Gruhn, V.: Complexity Metrics for business Process Models. pp. 1–12
(Jan 2006)

31. Leemans, S., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach. pp. 311–329 (Jan
2013). https://doi.org/10.1007/978-3-642-38697-8 17

32. Leemans, S., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs Containing Infrequent Behaviour. vol. 171, pp.
66–78 (May 2014). https://doi.org/10.1007/978-3-319-06257-0 6

33. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Incomplete Event Logs. In: Ciardo, G., Kindler, E. (eds.)
Application and Theory of Petri Nets and Concurrency. pp. 91–110. Lecture
Notes in Computer Science, Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-07734-5 6

34. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using Life Cycle In-
formation in Process Discovery. In: Reichert, M., Reijers, H.A. (eds.) Busi-
ness Process Management Workshops, vol. 256, pp. 204–217. Springer In-
ternational Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-42887-
1 17, http://link.springer.com/10.1007/978-3-319-42887-1 17, series Title: Lecture
Notes in Business Information Processing

35. Lekic, J., Milicev, D.: Discovering Block-Structured Parallel Process Models from
Causally Complete Event Logs. Journal of Electrical Engineering 67(2), 111–
123 (2016). https://doi.org/10.1515/jee-2016-0016, num Pages: 111-123 Place:
Bratislava, Poland Publisher: De Gruyter Poland

36. Mannel, L., van der Aalst, W.M.P.: Finding Complex Process-Structures by Ex-
ploiting the Token-Game. pp. 258–278 (May 2019). https://doi.org/10.1007/978-
3-030-21571-2 15

37. Mannel, L.L., Van Der Aalst, W.M.P.: Discovering Process Models with
Long-Term Dependencies while Providing Guarantees and Filtering Infre-
quent Behavior Patterns. Fundamenta Informaticae 190(2-4), 109–158 (2024).
https://doi.org/10.3233/FI-242168

38. de Medeiros, A.K.A.: Genetic process mining (2006).
https://doi.org/10.6100/IR614016, https://research.tue.nl/en/publications/genetic-
process-mining(9f585688-ed7b-42b1-8446-6e80fc06c7db).html, publisher: [object
Object]

39. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic pro-
cess mining: an experimental evaluation. Data Mining and Knowledge Dis-
covery 14(2), 245–304 (Apr 2007). https://doi.org/10.1007/s10618-006-0061-7,
https://doi.org/10.1007/s10618-006-0061-7

40. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
Ph.D. thesis (Jan 2007), journal Abbreviation: Emisa Forum - EMISA Publication
Title: Emisa Forum - EMISA Volume: 27
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46. Sánchez-González, L., Garcia, F., Mendling, J., Ruiz, F., Piattini, M.: Prediction
of Business Process Model Quality Based on Structural Metrics. vol. 6412, pp.
458–463 (Nov 2010). https://doi.org/10.1007/978-3-642-16373-9 35

47. Vanhoenshoven, F., Janssenswillen, G.: bupaverse/bupaRminer: process discovery
algorithm for bupaR (2023), https://github.com/bupaverse/bupaRminer

48. Weber, P., Bordbar, B., Tino, P., Majeed, B.: A framework for comparing process
mining algorithms (Feb 2011). https://doi.org/10.1109/IEEEGCC.2011.5752616

49. Weijters, A., van der Aalst, W.M.P., Medeiros, A.: Process Mining with the Heuris-
tics Miner-algorithm, vol. 166 (Jan 2006), journal Abbreviation: Cirp Annals-
manufacturing Technology - CIRP ANN-MANUF TECHNOL Publication Title:
Cirp Annals-manufacturing Technology - CIRP ANN-MANUF TECHNOL

50. Weijters, A., Ribeiro, J.: Flexible Heuristics Miner (FHM). In: 2011 IEEE
Symposium on Computational Intelligence and Data Mining (CIDM).
pp. 310–317 (Apr 2011). https://doi.org/10.1109/CIDM.2011.5949453,
https://ieeexplore.ieee.org/document/5949453

51. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with
non-free-choice Constructs. Data Min. Knowl. Discov. 15, 145–180 (Oct 2007).
https://doi.org/10.1007/s10618-007-0065-y

52. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: A novel approach for
process mining based on Event Types. Journal of Intelligent Information Systems
32, 163–190 (Apr 2009). https://doi.org/10.1007/s10844-007-0052-1

53. Van der Werf, J.M., Polyvyanyy, A., Wensveen, B., Brinkhuis, M., Reijers, H.: All
That Glitters Is Not Gold: Towards Process Discovery Techniques with Guarantees
(Dec 2020)


