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Abstract

BACKGROUND: Laplacian-P-splines (LPS) has been recently shown to deliver a fast and accu-

rate Bayesian inference in (generalized) additive models, epidemic models, additive proportional

odds models, and proportional survival models.

OBJECTIVES: This project aims at extending the LPS toolbox in survival models to build a

method that makes explicit use of the gradient and the Hessian information resulting from Laplace

approximations. In particular, it is applied to Gamma Shared Frailty survival model.

METHODS: Two algorithms were developed: a sampling-free LPS algorithm, and Metropolis-

Adjusted Langevin Algorithm (MALA) within Gibbs Sampler. The two methods were derived

algebraically, implemented in R, tested on 300 simulated datasets with different right-censoring

ratios, compared to available frequentist function (emfrail), and applied on a real-life dataset

from a randomized clinical trial of Interferon Gamma (IG) in Chronic Granulomatous Disease

(CGD) in children.

RESULTS: The estimated B-spline coefficients and the regression parameters turned out to be

reasonably precise and to have negligible bias on the simulated datasets. Also the estimates of the

frailty variance were virtually identical to those of the frequentist method, though some discrepan-

cies were observed in datasets with clusters of small sizes. In the CGD study, the two algorithms

developed in this project and the emfrail function resulted in very similar point estimates and

the 95% confidence/credible intervals of the treatment effect: −1.163 [−1.867; −0.460], −1.190

[−1.879; −0.484], and −1.052 [−1.660; −0.444], respectively, leading to the same conclusion of

substantial effect of IG treatment on reducing hazard of recurrent serious infections. Similarly,

very close point estimates and the intervals were obtained for female sex (−0.250 [−1.142; 0.642],

−0.249 [−1.185; 0.623], and −0.227 [−1.003; 0.548], respectively), with no hazard-altering effect.

CONCLUSIONS: The two algorithms developed in this project reliably extend LPS methodology

to Gamma Shared Frailty survival models.

Key words: Bayesian statistics; Laplacian P-splines; Metropolis-adjusted Langevin algorithm;

Gamma shared frailty model; Chronic granulomatous disease.

� Piotr.Lewczuk@uk-erlangen.de

1 Introduction

Laplacian-P-splines (LPS) have recently been shown to be a powerful tool for inference in differ-

ent model classes. The flexibility of P-spline smoothers, combined with Laplace approximations to

selected posterior target distributions has opened up a modelling path that delivers a fast and accu-

rate methodology for Bayesian inference in (generalized) additive models [22], epidemic models [23],

additive proportional odds models [28], and survival models [21]. Key quantities associated to the

Laplace approximation of a target distribution are the gradient and the Hessian as they are used in

iterative algorithms to compute the mode of the posterior target. The gradient and Hessian infor-

mation can also be used in Markov chain Monte Carlo (MCMC) algorithms to build powerful and

enhanced sampling techniques such as Metropolis-Adjusted Langevin Algorithm (MALA).

This master thesis aims at extending the LPS and the MALA toolbox in survival models. It will

combine three classes of statistical methodologies: (i) P-splines smoothers, (ii) Laplacian approxima-

tions to target posterior distributions, and (iii) shared frailty modelling, to depart from the Bayesian

Cox Proportional Hazards (CPH) model developed recently [19]. LPS and MALA will be derived

analytically, tested for plausibility in a set of simulations, and applied to analyze data from a study

on chronic granulomatous disease (CGD) in children [24]. In the remaining part of this section, the

three classes of statistical methods will be briefly introduced.

In its physical sense, a spline is a device made of flexible material which, when properly bent, can

be used to draft an arbitrary curve on paper, wood or any kind of flat surface. Before onset of

mailto:Piotr.Lewczuk@uk-erlangen.de
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computers, splines were used for creating designs by hand. To draw curves, draftsmen used long,

thin, flexible strips of wood, plastic, or metal, held in place with lead weights. The elasticity of the

spline material combined with the constraint of the control points, or knots, would cause the strip to

take the shape that minimized the energy required for bending it between the fixed points, leading

to the smoothest possible shape [2].

Mathematicians took over this idea and created a class of piecewise polynomial functions capable

to reflect curves of complicated shapes. Many different types of splines arose, as reviewed in [38], with

B-splines, introduced by Schoenberg, being one of the most widely used [37]. For a d-degree B-spline,

d+1 polynomial segments are linked together at d inner knots, resulting in a basis function, b, which

is positive on the domain made of d + 2 knots and zero elsewhere. To approximate an unknown

function f , a B-spline of degree d = 3, i.e. consisting of cubic basis functions, can be used, such that

f is modelled as a linear combination of K basis functions:

f(x) =
K∑
k=1

θkbk(x),

where θk are the spline parameters, referred to as amplitudes, and bk(x) is the k-th spline basis

function (for more details, see [19]). Assembling K basis functions, b1(x), ..., bK(x), for n observations

into a n×K matrix, B, the amplitude vector, θ, can be found by regressing the outcome variable,

Y , onto the matrix B. By applying least squares, this gives:

θ̂ = (BTB)−1BTy.

B-splines characterize with one serious limitation, namely the shape of the resulting curve, and

hence the degree how exact the model fits the data, strongly depend on the number of the basis

functions, K. The more basis functions used, the more exactly the curve follows the data, which

can quickly lead to overfitting. To overcome this problem, the idea of penalized splines (P-splines)

was proposed [15]. P-splines allow (or even force) an arbitrarily large number of basis functions,

counterbalancing potential overfitting by penalization based on finite differences between adjacent

B-spline coefficients. Briefly, an r-th order (K − r) × K difference matrix, Dr, is used along with

a positive penalty parameter, λ, to control smoothness of the fit. Assuming first order difference,

penalty matrix is:

D1 =


−1 1 0 . . . 0

0 −1 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . −1 1

 .

Taking penalty into account, the solution of the least squares becomes:

θ̂ = (BTB + λDT
r Dr)

−1BTy.

In the frequentist framework, the optimal smoothing parameter can be found, for example, by cross-

validation. Penalized splines characterize with several advantages, as summarized in [14, 16], where

Eilers and Marx also stated ”P-splines are the ultimate smoothing tool.”.

To illustrate the concept of smoothing splines and the role of penalty, let us reconsider a dataset

modelled in one of the courses of the biostatistics program at Hasselt University1. Briefly, a publicly

available dataset [1] contained - among others - the number of new daily deaths due to COVID-19

infection per one million European Union citizens in 2021 as a function of the percentage of fully

1Advanced Modelling Techniques, 2022. In the course, this dataset was analyzed with non-linear regression.
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Figure 1: The number of new daily deaths due to COVID-19 infection per one million EU citizens in

2021 as a function of the percentage of fully vaccinated Europeans (dots), and two smoothing spline

models with K = 50 cubic basis functions: a non-penalized model (blue curve) and a model with the

penalty parameter λ = 20 (red curve).

vaccinated Europeans on the same day. Figure 1 presents the data along with two spline models,

each with K = 50 cubic basis functions: the blue curve, resulting from a non-penalized approach,

is wiggly and follows the data too close leading to potential overfitting. In contrast, the red curve,

representing a penalized model with an arbitrarily chosen penalty parameter, λ = 20, still captures

the data well but is much smoother.

P-splines can be integrated into the Bayesian framework by introducing a stochastic version of

the difference penalty [29]. A diffuse prior on the initial amplitude is imposed, p(θ1) ∝ c, followed

by a random walk (of the first order) imposed on the following amplitudes: p(θk) = θk−1 + ε, with

ε ∼ N (0, λ−1). Further, the penalty matrix can be defined, P = DT
1 D1+ϵIK , where a small ϵ added

to the diagonal elements ensures that P is full rank. Then it follows that the proper prior for the

vector of amplitudes, conditional on the penalty, λ, becomes p(θ|λ) ∝ λ
K
2 exp(−0.5λθTPθ) [10,19].

Very often functions we are dealing with, for example posterior distributions in a Bayesian context,

become very complex and analytically untraceable, which calls for approximation strategies. In such

scenarios, Laplace approximation is a very powerful tool (see [30] for English translation of the original

paper published in 1774). Briefly, keeping in mind that the first derivative of a function equals zero

at its mode, we observe (or, better to say, Laplace observed) that the second-order Taylor series

expansion of a logarithmized function, ln p(θ), around its mode, θ̂, becomes:

ln p(θ) ≈ ln p(θ̂)︸ ︷︷ ︸
constant

+
1

2

d2 ln p(θ)

dθ2

∣∣∣∣
θ=θ̂

(θ − θ̂)2.

We also notice that the logarithm of the kernel of a Normal distribution for θ with mean µ and

variance σ2 is:

− 1

2σ2
(θ − µ)2,

from hence we conclude that the function in question, p(θ), can be approximated by a Normal

distribution with mean µ = θ̂ and variance σ2 = −[d
2 ln p(θ)
dθ2

]−1 evaluated at θ̂.
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To illustrate it, let us assume that the scalar parameter of interest, θ, follows a Gamma distri-

bution, θ ∼ G(α, β). Then the first and the second derivative of the log-density function become,

respectively:

d ln p(θ)

dθ
=

α− 1

θ
− β

d2 ln p(θ)

dθ2
= −α− 1

θ2
.

By setting the first derivative equal to zero and solving for θ we obtain the well-known expression

for the mode of a Gamma distribution, θ̂ = (α− 1)/β, and – by evaluating the second derivative at

the mode – the negative inverse of the approximation variance, provided that α ≥ 1 and β > 0. The

Laplace approximation becomes then:

p(θ) ≈ pG(θ) = N
(α− 1

β
,
α− 1

β2

)
,

which is presented in Figure 2 for arbitrarily chosen α = 100 and β = 5. Note that the above

illustration has limitations, as the Gamma distribution has not the same support as the Normal

distribution. As such, there will be nonzero probability mass on the negative real line with the

Laplace approximation.

Figure 2: Illustration of a Gamma distribution (G(100, 5), black curve) and its Laplace approximation

(N (19.8, 3.96), red curve).

Having briefly introduced P-splines smoothers and Laplacian approximations, we turn now to the

concept of shared frailty. Assuming independent observations of a non-negative random variable time-

to-event, T , the dependence between the survival time, S(t), and the cumulative hazard function,

H(t), is given by S(t) = exp(−H(t)). For n independent, right-censored observations, the likelihood

function is given by (see, for example, p. 180 in [12]):

L =

n∏
j=1

h(tj)
δ̃jS(tj),
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where δ̃j is an event indicator (δ̃j = 1 if the event of interest is observed in the j-th case or 0

otherwise). Under CPH model [13], the baseline hazard function, h0(t), can be specified as exponent

of a linear combination of cubic B-splines:

h0(t) = exp(θTb(t)), (1)

with b(·) a cubic B-spline basis defined on [0, tmax], where tmax is the maximal follow-up time (to

event or censoring) observed in the dataset. From there, the following approximation becomes

straightforward, and is necessary due to the fact that the integration in the cumulative hazard

function, H0(t), has no analytic solution and needs to be approximated numerically on a grid, here

assumed equidistant (for more details, see [19]):

H0(t) =

∫ t

0
h0(s)ds =

∫ t

0
exp(θTb(s))ds ≈

m(t)∑
m=1

exp(θTb(sm))∆, (2)

where m(t) is the grid segment containing the value of time t, sm is the time corresponding to the

mid-point of that segment, and ∆ is the length of the grid segments. With zj vector of covariates

for the j-th observation, and β vector of regression coefficients, likelihood in the CPH model can be

written, utilizing B-splines specification for the hazard function, as:

L(β,θ, D) ≈
n∏

j=1

(
exp(θTb(tj) + βTzj)

)δ̃j
× exp

{
−
(m(tj)∑
m=1

exp(θTb(sm) + βTzj)∆
)}

. (3)

All considerations so far have been developed under assumption that observation units are in-

dependent. As a matter of fact, very often this is not the case, for example when there exist some

(latent) characteristics shared by groups of individuals or when events of interest occur repeatedly

in the same individual. To accommodate for within-cluster homogeneity, a class of survival models,

called shared frailty models, was developed (for an extended discussion see, for example pp. 345-380

in [12]). Consider, for illustrative example, a multicenter study of time to adverse effect after a new

surgical procedure. Then it is plausible to assume that patients from one center will share a common

characteristics due to being operated in this particular center in contrast to patients being operated

in another center. Or we may be interested in time between placement of dental fillings and devel-

opment of secondary caries. Then, again, it is plausible to assume that the observed time-to-events

are not independent due to existence of patient-specific predispositions. A special scenario regards

studies with recurrent appearance of the event of interest (say, time elapsing between episodes of

migraine or seasonal flue) in a given subject. Although models dedicated to such datasets exist [4],

they also may be analyzed by shared frailty model, under consideration that all time-to-events in a

given subject share the same frailty.

CGD is a serious immunodeficiency condition of humans caused by a phagocytic malfunction due to

mutations in genes encoding nicotinamide adenine dinucleotide phosphatase (NADPH) oxidase. In-

ability to generate reactive oxygen species brings about formation of systemic granuloma, considered

pathognomonic. CGD manifests, primarily in children, with recurrent life-threatening infections [27].

It was first described in late 1950’s in four children, of whom all eventually died, with syndrome

consisting of chronic suppurative lymphadenitis, hepatosplenomegaly, pulmonary infiltrations, and

eczematoid dermatitis [11]. Since then, several approaches have been more or less successfully un-

dertaken to prevent recurrent infections, including antibacterial and antifungal prophylaxis. In early

1990’s, a placebo-controlled, multicenter, randomized trial reported effectiveness and safety of Inter-

feron Gamma (IG) treatment, which drastically reduced the hazard of recurrent infections [24].
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2 Materials and Methods

2.1 From the conditional to the marginal log-likelihood, the gradient, and the

Hessian

Consider n observations subgrouped into I mutually exclusive clusters such that an i-th cluster

consists of ni observations sharing the same frailty. Let us define a latent vector of the amplitudes

and the regression coefficients, ξ := (θT ,βT )T . Then, Eq. (3) can be rewritten for the contribution

of the i -th cluster to the likelihood, conditional on the cluster-specific frailty, ui:

Li(ξ | ui;D) ≈
ni∏
j=1

(
exp(θTb(tij)) ui exp(βTzij)

)δ̃ij
× exp

{
−
(m(tij)∑

m=1

exp(θTb(sm))∆
)
ui exp(βTzij)

}
, (4)

where approximation comes from Eq. (2). Note that the baseline hazard, h0(t), is already written in

terms of B-splines, resulting from Eq. (1). From there, marginal likelihood is obtained by integrating

the frailty variable out:

Li(ξ;D) =

∫ ∞

0

ni∏
j=1

(
exp(θTb(tij)) u exp(βTzij)

)δ̃ij
× exp

{
−
(m(tij)∑

m=1

exp(θTb(sm))∆
)
u exp(βTzij)

}
fU (u) du, (5)

which, after slight rearrangement, gives:

Li(ξ;D) =

∫ ∞

0

ni∏
j=1

(
exp(θTb(tij) + βTzij)

)δ̃ij
× uδ̃ij exp

{
−
(m(tij)∑

m=1

exp(θTb(sm) + βTzij)∆
)
u

}
fU (u) du

=

∫ ∞

0
exp
( ni∑
j=1

δ̃ij(θ
Tb(tij) + βTzij)

)
︸ ︷︷ ︸

not depending on u

× u
∑ni

j=1 δ̃ij exp

{
−
( ni∑
j=1

m(tij)∑
m=1

exp(θTb(sm) + βTzij)∆
)
u

}
︸ ︷︷ ︸

kernel of a Gamma distribution

fU (u) du. (6)

Now, in order to compactly write the (log-)likelihood, the gradient, and the Hessian, we define a

quantity:

ωijm := exp(θTb(sm) + βTzij)∆, (7)

which is specific for the j-th observation in the i-th cluster and the m-th segment on the time grid.

Gamma frailty model assumes that the frailty, U , is a random variable that follows a Gamma

distribution with mean 1, fU (u) = Gu(γ, γ). This means that the γ parameter represents inverse of
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the variance of the frailty, γ = 1/V ar(U), and implies that the integrand in Eq. (6) is proportional

to the product of ni + 1 Gamma distributions, which is kernel of a Gamma distribution G(α̃i, β̃i),

with the parameters:

α̃i = γ +

ni∑
j=1

δ̃ij (8)

β̃i = γ +

ni∑
j=1

m(tij)∑
m=1

ωijm, (9)

and the constant, independent of the integration variable u:

exp
[ ni∑
j=1

δ̃ij(θ
Tb(tij) + βTzij)

] γγ

Γ(γ)
. (10)

This means that the contribution of the i -th cluster to the marginal likelihood is equal to the product

of the above constant of the integration (Eq. (10)) and the inverse of the constant term of the G(α̃i, β̃i)

distribution:

Li(ξ, γ;D) = Γ(γ +

ni∑
j=1

δ̃ij)

× exp
[ ni∑
j=1

δ̃ij(θ
Tb(tij) + βTzij)

]

×
(
γ +

ni∑
j=1

m(tij)∑
m=1

exp(θTb(sm) + βTzij)∆
)−(γ+

∑ni
j=1 δ̃ij)

× γγ Γ(γ)−1, (11)

which, taking Eqs. (7) - (9) into account, we can express compactly:

Li(ξ, γ;D) = exp
[ ni∑
j=1

δ̃ij(θ
Tb(tij) + βTzij)

] γγ

Γ(γ)
× β̃−α̃i

i Γ(α̃i). (12)

From there, the i -th subgroup contribution to the marginal log-likelihood becomes:

ℓi(ξ, γ;D) =

ni∑
j=1

δ̃ij

(
θTb(tij) + βTzij

)
− α̃i ln(β̃i) + γ ln(γ) − ln

(
Γ(γ)

)
+ ln

(
Γ(α̃i)

)
︸ ︷︷ ︸
terms depending on neither θ nor β

. (13)

For the derivation of the gradient and the Hessian with respect to (wrt) the amplitudes and the

regression coefficients in this section, this expression could be written omitting the terms depending

only on γ; however, since we will also need the derivative wrt the γ parameter in the following

sections, when it comes to the Metropolis Algorithm, we rather write Eq. (13) in full.

Now let us develop the gradient and the Hessian wrt the amplitudes and the regression coeffi-

cients, which we will need for the gradient and the Hessian of the posterior distribution of the latent

vector. The element of the gradient, ∇ℓi(ξ, γ;D), wrt the k -th amplitude, θk, becomes:
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∂ℓi(ξ, γ;D)

∂θk
=

ni∑
j=1

δ̃ijbk(tij) −
α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm, (14)

and the element of the gradient wrt the p-th regression coefficient, βp, becomes:

∂ℓi(ξ, γ;D)

∂βp
=

ni∑
j=1

δ̃ijzijp −
α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

zijpωijm. (15)

The Hessian, ∇2ℓi(ξ, γ;D), is a symmetric block matrix with the elements in the top-left block:

∂2ℓi(ξ, γ;D)

∂θk∂θk′
= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

bk(sm)bk′(sm)ωijm

)
β̃i−

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)( ni∑
j=1

m(tij)∑
m=1

bk′(sm)ωijm

)]
,

(16)

the elements in the bottom-right block:

∂2ℓi(ξ, γ;D)

∂βp∂βp′
= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

zijpzijp′ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

zijpωijm

)( ni∑
j=1

m(tij)∑
m=1

zijp′ωijm

)]
, (17)

and the elements in the off-diagonal top-right block (the bottom-left block being its transpose):

∂2ℓi(ξ, γ;D)

∂θk∂βp
= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

bk(sm)zijpωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)( ni∑
j=1

m(tij)∑
m=1

zijpωijm

)]
.

(18)

A detailed derivation of the elements of the gradient and the Hessian is given in Appendix 1.

2.2 The priors

Second, after the likelihood, component of the Bayesian model are the priors. For our model, taking

available literature into consideration [10,21,26], the following priors will be used:

(ξ | λ) ∼ Ndim(ξ)(0,Q
−1) (19)

(λ | δ) ∼ Gλ(ν/2, (νδ)/2) (20)

γ ∼ Gγ(αγ , βγ) (21)

δ ∼ Gδ(αδ, βδ). (22)

As the covariance matrix of the conditional prior distribution of the latent vector in Eq. (19), we

will consider inverse of the following precision matrix:

Q(λ) =

[
λP 0

0 τIP

]
, (23)
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with τ = 10−5. Top-left block is a K × K penalty matrix modified by a smoothing parameter, λ,

which explains why the prior in Eq. (19) is dependent on λ; bottom-right block is a diagonal P × P

precision matrix of the vector of regression coefficients β. If not stated otherwise, the following

constants will be used in the priors: αγ = βγ = αδ = βδ = 10−4, and ν = 2.

2.3 Laplace-approximated conditional posterior of the latent vector; the Newton-

Raphson Algorithm

With the building blocks developed in the two previous sections, we are ready to follow to the

conditional posterior distribution of the latent vector. By Bayes’ theorem, the conditional posterior

distribution of the latent vector ξ is given by:

p(ξ | λ, γ,D) ∝ L(ξ, γ;D) × p(ξ | λ)

∝ exp
( I∑
i=1

ℓi(ξ, γ;D) − 1

2
ξTQξ

)
. (24)

Next, we define the gradient and the Hessian of the log-likelihood as the respective sums of the

contributions across all I subgroups:

∇ℓ(ξ) :=
I∑

i=1

∇ℓi(ξ, γ;D) (25)

∇2ℓ(ξ) :=

I∑
i=1

∇2ℓi(ξ, γ;D), (26)

where the contributions of an i -th subgroup to the gradient and the Hessian were developed previously

(Eqs. (14) - (18)). Taking Eqs. (24) - (26) together, the gradient and the Hessian of the conditional

log-posterior become, respectively:

∇ ln p(ξ | λ, γ,D) = ∇ℓ(ξ) −Qξ (27)

∇2 ln p(ξ | λ, γ,D) = ∇2ℓ(ξ) −Q. (28)

With those terms, the mode of conditional posterior distribution of the latent vector can be approx-

imated, following the idea of Laplace, with the Newton-Raphson Algorithm (NRA):

ξ(c+1) = ξ(c) −
(
∇2ℓ(ξ)

∣∣∣
ξ(c)

−Q
)−1 (

∇ℓ(ξ)
∣∣∣
ξ(c)

−Qξ(c)
)
. (29)

Briefly, to approximate the mode at the (c + 1)-th iteration, the algorithm uses the c-th iteration

approximation, and the first and the second derivative of the log-posterior distribution evaluated at

this approximation. Upon convergence, which might be assessed by the Euclidean distance of the

gradient from the origin, the NRA returns the mode, ξ∗(λ, γ), and the covariance matrix, Σ∗(λ, γ) =

−
(

[∇2 ln p(ξ | λ, γ,D)]∗
)−1

, of the Laplace-approximated posterior distribution of the latent vector,

both conditional on the penalty parameter and the parameter controlling the distribution of the
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frailty variable. Taken together, Laplace approximation of the conditional posterior distribution of

the latent vector becomes:

pG(ξ | λ, γ,D) = Ndim(ξ)

(
ξ∗(λ, γ), Σ∗(λ, γ)

)
. (30)

2.4 Joint marginal posterior distribution of the hyperparameters; sampling-free

LPS algorithm

In the next step, we optimize the hyperparameters λ and γ, which finalizes setting a sampling-free

algorithm. Following Gressani et al. [23], we define the hyperparameter vector, (ηT , δ)T , where

η := (λ, γ)T . Then the joint marginal posterior becomes:

p(η, δ | D) ∝ L(ξ, γ;D)p(ξ|λ)p(λ|δ)p(δ)p(γ)

pG(ξ|λ, γ,D)
, (31)

where the approximated posterior distribution in the denominator is given by Eq. (30). From there,

since p(λ|δ), p(δ), and p(γ) are Gamma distributions, δ can be integrated out, leaving:

p(η | D) =

∫ ∞

0
p(η, δ | D) dδ

∝ λ
K+ν

2
−1
(νλ

2
+ βδ

)−( ν
2
+αδ)

γαγ−1

× det(Σ∗(η))
1
2 exp

(
ℓ(ξ∗(η), γ;D) − λ

2
ξ∗

T
(η)Qξ∗(η) − βγγ

)
. (32)

To improve numerical stability, it is better to work with transformed variables: λ̃ = ln(λ), and

γ̃ = ln(γ), which defines vector η̃ := (λ̃, γ̃)T . Then, considering Jacobian of this transformation,

given by exp(λ̃ + γ̃), approximated log-posterior becomes:

ln p(η̃ | D)
.
=

1

2
ln det(Σ∗(η̃)) +

λ̃

2
(K + ν) + αγ γ̃

− (
ν

2
+ αδ) ln(

ν

2
exp(λ̃) + βδ)

+ ℓ(ξ∗(η̃), exp(γ̃);D) − exp(λ̃)

2
ξ∗

T
(η̃)Qξ∗(η̃) − βγ exp(γ̃). (33)

Numerical optimization, for example with the Nelder-Mead Algorithm (NMA) [33], yields η̃∗ =

(λ̃∗, γ̃∗)T . Note that every iteration in the NMA includes full NRA in order to obtain mode of ξ

conditional on η̃ at the given NMA iteration, which makes the whole procedure computationally

involved. After convergence of the NMA, η̃∗ is plugged into Eq. (30) to run the final NRA leading to

the Maximum a Posteriori (MAP) estimate of the latent vector, ξ̂ = ξ∗(η̃∗), which gives the approxi-

mated posterior distribution in Eq. (30) conditional on the optimized η̃∗. This finalizes development

of the sampling-free LPS algorithm, combining P-splines smoother and Laplace approximation:

pG(ξ | η̃∗, D) = Ndim(ξ)

(
ξ∗(η̃∗), Σ∗(η̃∗)

)
. (34)
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2.5 Conditional posterior distributions and the Metropolis-Adjusted Langevin

Algorithm within the Gibbs Sampler

As an alternative approach, the Gibbs Sampler (GS) with a MALA step will be now developed,

relying on the conditional posterior distributions of all parameters in the model. To set it up, the

conditional posteriors for λ and δ are straightforward, since they belong to the Gamma family and

can de derived analytically:

p(λ | ξ, δ,D) ∝ p(ξ | λ) p(λ | δ)

∝ [det(Σ∗(λ, γ))]−1/2︸ ︷︷ ︸
∝ λ

K
2

exp
(
− 1

2
ξT (Σ∗(λ, γ))−1ξ

)
×λ

ν
2
−1 exp(−λνδ

2
)

∝ λ
ν+K

2
−1 exp

(
− 1

2
λ(ξT P̃ξ + νδ)

)
∝ G(

ν + K

2
,
ξT P̃ξ + νδ

2
) (35)

p(δ | λ,D) ∝ p(λ | δ) p(δ)

∝ G(
ν

2
+ αδ,

λν

2
+ βδ), (36)

where P̃ in Eq. (35) is a square matrix of the dimension dim(ξ) with the K ×K penalty matrix, P
(used also in Eq. (23)), as the top-left block and zeroes elsewhere. On the other hand, however, the

conditional posterior for γ cannot be assigned to any known parametric family:

p(γ | ξ, D) ∝ L(ξ, γ;D) p(γ)

∝
I∏

i=1

( γγ

Γ(γ)
× β̃−α̃i

i Γ(α̃i)
)
γαγ−1 exp(−γβγ)

∝
I∏

i=1

(
β̃−α̃i
i Γ(α̃i)

)
γIγ+αγ−1Γ(γ)−I exp(−γβγ). (37)

Therefore, we propose Metropolis-within-Gibbs strategy [39], and following Gressani et al. [20] we

will be sampling γ together with the elements of the latent vector, ξ, in the MALA step. We define

a vector ζ := (ξT , γ)T = (θT ,βT , γ)T containing the amplitudes, the regression coefficients, and the

parameter controlling the frailty variable. Then the conditional posterior for ζ becomes:

p(ζ | λ,D) ∝ L(ζ;D) × p(ξ | λ) × p(γ)

∝ exp
(
ℓ(ζ;D) − 1

2
ξTQξ

)
× γαγ−1 exp(−βγγ)

∝ exp
(
ℓ(ζ;D) − 1

2
ξTQξ − βγγ

)
γαγ−1. (38)

Since this sampling is performed from (multivariate) Normal distribution, it is convenient to trans-

form γ parameter (which is strictly positive) to a new parameter, γ̃ = ln(γ), which lives on the entire

real line. Correspondingly, we define ζ̃ := (θT ,βT , γ̃)T and, taking into account the Jacobian of this

transformation, |dγ/dγ̃| = exp(γ̃), we obtain the conditional posterior:

p(ζ̃ | λ,D) ∝ exp
(
ℓ(ζ̃;D) − 1

2
ξTQξ − βγ exp(γ̃) + αγ γ̃

)
. (39)
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Then ℓ(ζ̃;D) =
∑I

i=1 ℓi(ζ̃;D), and hence:

ℓ(ζ̃;D)
.
=

I∑
i=1

{
ni∑
j=1

δ̃ij

(
θTb(tij)+βTzij

)
+ γ̃ exp(γ̃)− ln

(
Γ(exp(γ̃))

)
+ln

(
Γ(ᾰi)

)
− ᾰi ln(β̆i)

}
. (40)

For the implementation of this expression, we observe that the two ”breved” terms, ᾰi and β̆i, are

algebraically identical to those in Eqs. (8) and (9), respectively (keeping in mind that γ = exp(γ̃)),

though expressed in terms of the transformed variable, γ̃:

ᾰi = exp(γ̃) +

ni∑
j=1

δ̃ij = α̃i (41)

β̆i = exp(γ̃) +

ni∑
j=1

m(tij)∑
m=1

ωijm = β̃i. (42)

Assuming that the chain is currently in the c-th position, the candidate for the ζ̃ vector for the

(c + 1)-th position is sampled from:

ζ̃
(prop)

∼ N(K+P+1)

(
ζ̃
(c)

+ 0.5ϱΣL∇ζ̃
ln p(ζ̃ | λ,D)

∣∣∣
ζ̃
(c) , ϱΣL

)
, (43)

where ϱ is a tuning parameter, developed in [23], helping to yield the optimal acceptance ratio of

0.57 [36], and the covariance matrix is given by

ΣL =

[
Σ∗(η̃∗) 0

0 1

]
, (44)

with (K + P )-dimensional covariance matrix Σ∗(η̃∗) as used in Eq. (34).

The gradient, ∇
ζ̃

ln p(ζ̃ | λ,D), can be decomposed as:

∇
ζ̃

ln p(ζ̃ | λ,D) =
(
∇T

θ ln p(ζ̃ | λ,D),∇T
β ln p(ζ̃ | λ,D),

∂ ln p(ζ̃ | λ,D)

∂γ̃

)T
, (45)

where the partial derivatives wrt the elements of θ and β can be obtained from Eqs. (14), (15), (25)

and (27), substituting exp(γ̃) for γ. The last element of the gradient, wrt γ̃, becomes:

∂ ln p(ζ̃ | λ,D)

∂γ̃
= exp(γ̃)

(
I
(
γ̃ + 1 −𭟋(exp(γ̃))

)
+

I∑
i=1

(
𭟋(ᾰi) − ln(β̆i) −

ᾰi

β̆i

)
− βγ

)
+ αγ , (46)

where 𭟋(.) is a digamma function. Detailed derivation is given in Appendix 1.

After sampling a candidate, ζ̃
(prop)

, the acceptance probability is given by:

π(ζ̃
(prop)

, ζ̃
(c)

) = min

{
1,

p(ζ̃
(prop)

|D)

p(ζ̃
(c)

|D)
× q(ζ̃

(prop)
, ζ̃

(c)
)

q(ζ̃
(c)
, ζ̃

(prop)
)

}
, (47)
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with the ratio of the proposal densities, q(ζ̃
(prop)

, ζ̃
(c)

)/q(ζ̃
(c)
, ζ̃

(prop)
), derived in details in [23].

The candidate is accepted if π(ζ̃
(prop)

, ζ̃
(c)

) > ũ, where ũ is sampled from continuous uniform

distribution, U(0, 1), and rejected otherwise. For a better numerical stability, the calculation of the

acceptance decision is performed after logarithmization. Taken together, Eqs. (35), (36), (43), and

(47) form the MALA within the Gibbs Sampler. The box summarizes the developed algorithms.

(1) Optimize Eq. (30) to obtain λ∗ and γ∗ with the NMA; each NMA optimization step

includes NRA (Eq. (29)) which, at convergence, returns ξ∗(λ, γ), i.e. the mode conditional

on λ and γ of the current NMA-step.

(2) Run NRA once more using λ∗ and γ∗ obtained at the convergence of the NMA in the Step

(1). This also gives the optimized Hessian, and hence the covariance matrix Σ∗(η̃∗) in Eq. (34).

(3) Set initial values for ξ(0), λ(0), δ(0), γ(0), and from hence γ̃(0) = ln(γ(0)) and

ζ̃
(0)

= (ξ(0)
T
, γ̃(0))T .

(4) Sample a candidate ζ̃
(prop)

with Eq. (43), making use of the gradient in Eq. (45) and the

covariance matrix in Eq. (44) [which uses Σ∗(η̃∗) from the Step (2)]. Note that the elements of

the gradient in Eq. (45) wrt θ and β are algebraically identical to those in Eqs. (14) and (15)

as γ(c) = exp(γ̃(c)); formally:
(
∇T

θ ln p(ζ̃ | λ,D),∇T
β ln p(ζ̃ | λ,D)

)T
= ∇ ln p(ξ | λ, γ,D),

compare Eqs. (45) and (27).

(5) Accept/reject the candidate using the Metropolis criterion. If accepted, ζ̃
(c+1)

= ζ̃
(prop)

,

otherwise ζ̃
(c+1)

= ζ̃
(c)

.

(6) Sample λ(c+1) with Eq. (35), making use of ξ(c+1) [which consists of the first K + P

elements of the ζ̃
(c+1)

vector obtained in the Step (5)] and δ(c). Sample δ(c+1) with Eq. (36),

making use of λ(c+1).

(7) Get back to the Step (4) until enough elements of the chain are sampled [iterate Steps (4)

- (6)].

2.6 A small simulation study

The algorithms developed in the previous sections were implemented in R programming language

(version 4.3.2 Eye Holes; R Core Team, 2023) with details of the implementation given in Appendix

1. To test the sampling-free LPS algorithm, 300 datasets were generated under three settings (S =

100 datasets per setting) with a function simfrail provided by Dr. Gressani2 [18]. Each dataset

consisted of 20 clusters, 20 observations per cluster, and contained three covariates with the true

regression coefficients set to β1 = 1.0, β2 = 0.1, and β3 = −1.0, respectively. The response variable,

2Not to be mixed with a function of the same name available in the frailtySurv package.
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time-to-event, was drawn from the Weibull distribution, f(t) = (a/ba)ta−1 exp(−(t/b)a), with a = 2.4

and b = 4. The three settings were: (A) γ = 5 and right censoring rate (CR) 10%, (B) γ = 3

CR = 10%, and (C) γ = 5 CR = 30%. In addition, a simulation was performed with 100 unbalanced

datasets of 200 clusters of size 1 and 100 clusters of size 2 and CR = 30% to mimic the unbalanced

dataset of the CGD study, which is considered in the next section.

Each dataset was analyzed with the LPS algorithm and, to confirm plausibility of the results,

with a widely-used frequentist method based on the Expectation-Maximization Algorithm (EMA),

implemented in the emfrail function of the frailtyEM package [6]. Baseline survival was estimated

with 30 cubic B-splines with second-order penalty on a grid of 300 equidistant segments covering

[0, tmax], where tmax was the largest event or censoring time for a given dataset. The NRA in Eq.

(29) was considered converged at the c-th iteration if ∥∇ ln p(ξ|λ, γ,D)|ξ(c)∥2 ≤ 10−6, where ∥·∥2 is

the Euclidean norm. If not stated otherwise, the following initial values were used: λ = 100, γ = 5,

and ξ = (0.8, ..., 0.8)T .

The frequentist properties of the Bayesian estimators of the regression coefficients, βp, were

assessed as follows. The empirical bias was defined as the average of the difference between the

estimate and its true value across S replications:

Bias
β̂p

:= S−1
S∑

s=1

(
β̂(s)
p − βp

)
. (48)

The empirical variance was defined as the sample variance across S replications:

V ar
β̂p

:= (S − 1)−1
S∑

s=1

(
β̂(s)
p − ¯̂

βp

)2
. (49)

The Mean Square Error (MSE) was calculated as the sum of the square of the bias and the variance.

Finally, the ϕ-level coverage probability (for ϕ = 90% and 95%) was calculated as the average of the

indicator I(·) that takes the value 1 if the constructed interval (CIϕ, p) includes the true parameter

and 0 otherwise:

CPϕ, p := S−1
S∑

s=1

I
(
βp ∈ CI

(s)
ϕ, p

)
. (50)

MALA sampler was applied on a 100 simulated dataset consisting of 20 clusters, 20 observations per

cluster and right-censoring of 10%. Before running MALA, in each dataset LPS step was performed

to obtain the initial values for ξ(0), λ(0), δ(0), γ(0), and the covariance matrix, ΣL. The algorithm

was iterated 10,000 times with burn-in of 1,000 iterations.

Finally, execution time of the algorithms was assessed in three scenarios, 10 simulated datasets

per scenario (all with γ set to 5 and CR = 10%): a dataset with 4 clusters of 100 observations, 20

clusters of 20 observations, and 40 clusters of 10 observations.

2.7 Recurrence of serious infections in a randomized trial of Interferon Gamma

treatment for Chronic Granulotomous Disease

Next, the sampling-free LPS algorithm and the MALA sampler developed in the previous sections

were applied to model the data from a controlled randomized clinical trial analyzed previously with

frequentist methodology by The International CGD Cooperative Study [24]. The patient-level raw

data of the trail are available in the literature [6, 17].

The trial setting is detailed elsewhere [24]. Briefly, 128 patients were randomized into an active

arm (n = 63, mean age 14.3 ± 11.1 years, 81% males), treated with IG, and a control arm (n = 65,
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mean age 15.0 ± 9.6 years, 82% males), treated with placebo. Initially, the primary endpoint was

time, measured in days, between the randomization and the incidence of a serious infection. During

the study, it turned out that several patients in both arms developed more than one incidence; in such

cases, multiple outcome variables per patient were recorded, namely the number of days between the

end of a previous infection and the beginning of the next. This leads to a hierarchical structure of

the data, with the observations nested within patients, which are treated as clusters.

The main scientific interest focuses on the question whether treatment with subcutaneous in-

jections of Interferon Gamma changes the hazard of serious infections, compared to treatment with

placebo. Formally:

H0 : βtreat = 0 vs. Ha : βtreat ̸= 0, (51)

where βtreat is the treatment effect, expressed as logarithm of the hazard ratio.

The outcome variable was modelled as a function of two covariates, the indicator of the treatment

arm (1 if IG and 0 otherwise) and sex (1 if female). Baseline survival was estimated with 30 cubic

B-splines with second-order penalty on a grid of 300 equidistant segments covering [0, tmax], where

tmax was the largest event or censoring time. The criterion for the NRA convergence and the initial

values for λ and γ were as in those in the previous section. The initial latent vector of the amplitudes

and the regression coefficients was ξ = (−3, ...,−3)T .

In the MALA part, the initial values were those obtained at the convergence of the LPS. The

algorithm was run with 25,000 iterations with burn-in of 10,000 iterations.
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3 Results

3.1 Results of the simulation study

Summary statistics of the LPS are presented in Table 1. The results clearly indicate that the averages

of the estimated regression coefficients, β̂1, β̂2, and β̂3, are very close to the target values, and that

intra- and inter-dataset standard errors for particular estimates are virtually identical. On the other

hand, there seems to exist discrepancies between the target values for the γ parameter and the

estimates obtained in the simulations. This points at a potential bias and was explored further.

Distributions of the four parameters of interest are presented also in boxplots in Figure 3, with

red horizontal bars indicating the target values; Table 2-4 show further frequentist statistics and

comparisons of the outcomes of the LPS model with those from the EMA of the emfrail function.

Also from those results it becomes obvious that the estimations of the regression parameters in both

algorithms are virtually identical, acceptably precise, and have a negligible bias, which is reflected by

very low MSE. Interestingly, however, both methods show bias of the estimates for the γ parameter,

apparently more pronounced in the setting with a larger censoring rate [compare settings (A) and

(C)]. Since this bias is similar in both methods, it may be concluded that it is not specific for the

LPS algorithm developed in this study. NA entries for the γ parameters are a consequence of the

setting with γ parameter included into the hyperparameters vector and not the latent vector, which

leads to the LPS algorithm returning the point estimate but not the variance of the estimator.

Left panels of Figure 4 present direct comparison of the variances of the frailty (1/γ) obtained

with emfrail function (horizontal axes) and the LPS algorithm (vertical axes). In all 300 datasets,

the estimated parameters are virtually identical in both methods, although very dispersed across the

datasets, which reconfirms plausibility of the LPS method and points once again that the bias of

those estimates is not specific for either of the methods. Right panels of Figure 4 presents baseline

survival curves obtained in the simulations (green curves), median curves (red), and the ”true” curves

calculated from the Weibull distribution.

Stability of the LPS algorithm for the γ parameter was tested on one dataset (CR = 10% γ = 5)

with five different initial values for γ: 2, 5, 10, 20, and 50. The results at the convergence of the LPS

algorithm were, respectively: 5.498, 5.508, 5.506, 5.509, and 5.504, suggesting acceptable stability of

the algorithm for alterations of the initial values of γ.

Table 1: Results of the simulations. Presented are averages of one hundred simulations for each

setting and their standard errors. CR, censoring rate.

Simulation setting γ̂ β̂1 (1.0) β̂2 (0.1) β̂3 (−1.0) σ(β̂1) σ(β̂2) σ(β̂3)

(A) CR = 10%, γ = 5 8.16 0.978 0.099 −0.978 0.069 0.056 0.069

(7.01) (0.061) (0.056) (0.075) (0.003) (0.003) (0.003)

(B) CR = 10%, γ = 3 4.04 0.970 0.089 −0.980 0.069 0.056 0.070

(1.70) (0.056) (0.049) (0.066) (0.003) (0.003) (0.003)

(C) CR = 30%, γ = 5 9.89 0.969 0.097 −0.975 0.076 0.063 0.077

(7.15) (0.070) (0.062) (0.079) (0.004) (0.003) (0.003)
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Figure 3: Results of the simulation of one hundred datasets per setting. Red bars indicate the target

values. Settings: (A) CR = 10%, γ = 5; (B) CR = 10%, γ = 3; (C) CR = 30%, γ = 5.
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Table 2: Frequentist statistics of the simulations in the setting (A) CR = 10%, γ = 5. MSE, Mean

Square Error, CPϕ, ϕ Coverage Probability.

Parameter Bias2 V ar MSE CP90% CP95%

LPS

β1 0.0005 0.0038 0.0042 93% 96%

β2 0.0000 0.0032 0.0032 90% 94%

β3 0.0005 0.0057 0.0061 86% 91%

γ 9.956 49.17 59.12 NA NA

emfrail

β1 0.0000 0.0040 0.0040 93% 98%

β2 0.0000 0.0034 0.0034 89% 95%

β3 0.0000 0.0060 0.0060 88% 93%

γ 12.02 58.15 70.17 NA NA

Table 3: Frequentist statistics of the simulations in the setting (B) CR = 10%, γ = 3. MSE, Mean

Square Error, CPϕ, ϕ Coverage Probability.

Parameter Bias2 V ar MSE CP90% CP95%

LPS

β1 0.0009 0.0031 0.0040 94% 96%

β2 0.0001 0.0024 0.0025 90% 99%

β3 0.0004 0.0044 0.0048 89% 95%

γ 0.917 2.905 3.822 NA NA

emfrail

β1 0.0000 0.0034 0.0034 94% 97%

β2 0.0000 0.0025 0.0026 90% 99%

β3 0.0000 0.0046 0.0046 89% 95%

γ 0.798 3.330 4.128 NA NA

Table 4: Frequentist statistics of the simulations in the setting (C) CR = 30%, γ = 5. MSE, Mean

Square Error, CPϕ, ϕ Coverage Probability.

Parameter Bias2 V ar MSE CP90% CP95%

LPS

β1 0.0010 0.0048 0.0058 91% 95%

β2 0.0000 0.0039 0.0039 88% 93%

β3 0.0006 0.0063 0.0069 90% 95%

γ 23.95 51.11 75.06 NA NA

emfrail

β1 0.0000 0.0052 0.0053 92% 96%

β2 0.0000 0.0042 0.0042 86% 93%

β3 0.0000 0.0068 0.0068 88% 91%

γ 27.58 62.65 90.23 NA NA
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Figure 4: Left panels: Comparison of the frailty variance (1/γ) in one hundred simulations per setting,

with identity lines, y = x. Right panels: Baseline survival curves in the corresponding settings. Black

curve represents the ”true” survival from the Weibull distribution, S0(t) = exp[−(t/b)a]; red curve

represents the median survival curve. Panels: A & B, CR = 10%, γ = 5; C & D, CR = 10%, γ = 3;

E & F, CR = 30%, γ = 5.

Summary statistics of the posterior distributions from the MALA sampler are presented in Table 5.

Proportion of the accepted proposals turned out to be, on average, almost ideally as expected (target,

0.57). Its small dispersion means that also the individual acceptance proportions, across the datasets,

were close to the optimum. Similarly, averages of the regression coefficients were very close to the

true values. In two datasets, outlying γ parameters were observed, and hence for that parameter we
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report the median and the inter-quartile range instead of the average and the standard deviation. It is

worth to emphasize that the dispersions of the regression coefficients (within- and between-datasets)

are virtually the same as those in the LPS part (cf. SDs in Table 1 and Table 5).

Table 5: Posterior summary statistics of the MALA sampler (iterations 1,001:10,000). Presented are

averages and standard deviations (median and inter- quartile range for γ) of 100 simulated datasets.

Parameter Estimate SD CP90% CP95%

Accept. ratio 0.572 0.010

β̂1 0.985 0.067 93% 95%

β̂2 0.100 0.054 90% 92%

β̂3 −0.989 0.060 94% 99%

σ(β̂1) 0.071 0.003

σ(β̂2) 0.055 0.003

σ(β̂3) 0.071 0.003

γ̂ 6.111 [4.6; 9.1] 97% 100%

Table 6: Execution times of the algorithms. For the MALA sampler, 10,000 iterations were performed

for each dataset.

Scenario Aver. (± SD) execution time [sec.]

LPS MALA

4 clusters of 100 observations 4.5 (0.9) 174 (2.1)

20 clusters of 20 observations 11.3 (2.4) 212 (10.5)

40 clusters of 10 observations 39.8 (5.9) 368 (5.5)

Further, for illustrative purposes the traceplots (Figure 5) and the posterior distributions (Figure 6)

are presented for one randomly chosen dataset. Traceplots of the regression parameters show a typical

”thick-pen” shape, randomly exploring the whole domains without any particular pattern, whereas

traceplots of the remaining parameters show some properties of the autocorrelation (particularly

visible for λ on panel E) and/or occasional departures from their respective means (large peaks on

panels D, E, and F). Posterior distributions show expected bell shapes for the regression parameters

(panels A, B, and C) and characteristic skewed shapes of the Gamma distributions for the γ, λ,

and particularly δ, parameters (panels D, E, and F, respectively). The latter parameter follows a

posteriori virtually Exponential distribution, due to setting of the ν parameter equal to 2, which

leads to the shape parameter in Eq. (36) practically equal to 1 (for ν = 4, departure of the posterior

distribution of δ from an Exponential distribution to more Gamma-looking distribution was observed,

data not shown). Regarding estimations of the B-spline coefficients, Figure 7 presents the survival

curve calculated with the the coefficients estimated in the MALA sampler, along with its 95% credible

interval curves. Obviously, the ”true” curve, resulting from the Weibull distribution, lies within this

interval and, moreover, the survival curve from the LPS model of the same dataset virtually overlaps

the MALA-curve.
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Figure 5: Traceplots of the parameters in the simulated dataset: β1 (A), β2 (B), β3 (C), γ (D), λ

(E), and δ (F).

Running times of the algorithms were assessed on a computer with a 2.4 GHz processor and 8 GB

RAM, and are presented in Table 6. Assuming that 10,000 iterations of the MALA sampler are

needed to reach the chain stability, the LPA method runs 10 – 40 times faster. For a given total

size of a dataset, the execution times strongly depend on the number of the clusters and their sizes,

with smaller number of larger clusters requiring much less time. Interestingly, there is also a non-

negligible variability of the LPS run time across the datasets generated with the same scenario, which

is reflected by the standard deviations within scenarios. The kernel of the implemented algorithms is

a function computing the gradient and the Hessian; on average, execution of this kernel takes roughly

40ms, of which calculation of the gradient and the Hessian takes about 10ms and 30ms, respectively.
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Figure 6: Posterior distributions: β1 (A), β2 (B), β3 (C), γ (D), λ (E), and δ (F).
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Figure 7: Baseline survival curves obtained from the MALA sampler (green dotted curve) and the LPS

algorithm (red solid curve) in one simulated dataset (note that the two curves virtually overlap); grey

area corresponds to the 95% credible interval of the LPS curve obtained with the delta method [20,21].

Black curve is the ”true” survival curve from the Weibull distribution.

3.2 Results of the CGD study

Detailed descriptive statistics of the CGD study is given elsewhere [24]. From the perspective of

the current modelling, it needs to be emphasized that the dataset is extremely unbalanced. In

the treatment arm, for 49 subjects 1 observation was recorded, for 9 subjects 2 observations were

recorded, for 4 subjects 3 observations were recorded, and for 1 subject 4 observations were recorded.

In the placebo arm, for 35 subjects 1 observation was recorded, for 19 subjects 2 observations were

recorded, for 4 subjects 3 observations were recorded, for another 4 subjects 4 observations were

recorded, and 5, 6, and 8 observations were recorded for 1 subject each. This means that 66% of the

clusters consisted of only one observation.

Regression coefficients of the treatment effect and the effect of sex, as well as the γ parameters

and the λ parameter of the LPS and emfrail models are presented in Table 7. Both methods result

in very similar regression coefficients, with the estimates from the LPS model about 10% larger

(in absolute terms) compared to those from emfrail. Since this is also the case for the standard

errors, it leads to almost identical z-statistics, and identical inferences: both algorithms indicate that

treatment with Interferon Gamma leads to substantial decrease of the hazard of serious infections

whereas sex does not play a role. Quantitative interpretation is also straightforward: under the LPS

model, assuming it is correctly specified and holding sex covariate constant, patients on Interferon

Gamma have, on average, 1 − exp(−1.163) = 68.7% lower hazard of a serious infection compared

to those on placebo, which is equivalent to say that IG-treatment reduces the hazard of serious

infection due to CGD three times. Since the 95% Posterior Credible Interval does not contain 0, we

may further conclude that this hazard reduction is substantial.

Interestingly, the estimates of the γ parameter in emfrail and LPS differ by about factor two,

which was not the case in the simulated datasets. To get insight into potential reasons for this
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discrepancy, additional simulation was performed with 100 unbalanced datasets, each of 200 clusters

of size 1 and 100 clusters of size 2 and CR = 30% to mimic the unbalanced character of the CGD

dataset. Results of this simulation (presented in Appendix 2) show that in unbalanced datasets the

correlation between γ parameters estimated by emfrail and LPS - although linear and very similar

on average - may notably differ in individual datasets.

Regarding estimation of the amplitudes, Figure 8 presents Kaplan-Meier empirical estimates,

together with the corresponding 95% confidence intervals of the two treatment arms, which essentially

reproduce the estimates reported in the original paper (cf. Fig. 1 in [24]), as well as the survival

curves calculated from the amplitudes obtained in the LPS model (left panel). For both arms, the

estimated LPS curves lie within the 95% confidence intervals of the empirical estimators.

In the MALA sampler, the overall acceptance ratio was 0.574 (target, 0.57). It took much longer

- compared to the simulated dataset in the previous section - for the chain to approach stationarity,

which was however eventually achieved for all parameters (see Geweke’s p-values). Traceplots of the

model parameters (Figure 9) are similar to those of the previous section: the two of the regression

parameters (panels A and B) do not show any particular pattern and no particular outlying observa-

tions. Traceplots of the γ, λ, and δ parameters (panels C, D, and E, respectively) show, again, some

patterns of autocorrelation as well as outlying peaks. Posterior distributions of the regression pa-

rameters (panels A and B on Figure 10) are expectedly bell-shaped and close to symmetry. Posterior

distributions of the γ, λ, and δ parameters (panels C, D, and E) are skewed, as they are expected to

be, with the latter parameter following virtually Exponential distribution.

Table 8 reports summary statistics of the posterior parameters of the MALA sampler. The point

estimate and the standard error of the effect of treatment are slightly larger (in absolute terms)

compared to those of the LPS and emfrail models, which, however, leads to exactly the same

inference: assuming the model is correctly specified, children on the IG-treatment have substantially

lower hazard of a serious infection, whereas their sex does not play a hazard-altering role. It is also

worth noting that the estimate of the γ parameter in the MALA sampler is somehow closer to that

of the LPS model than to that of the emfrail model.

Table 7: LPS and emfrail models in the CGD study with all 128 subjects (203 observations); IG,

Interferon gamma; CI, Credible Interval (in the LPS section) or Confidence Interval (in the emfrail

section).

Parameter Estimate SE z 95% CI

LPS

IG Treatment −1.163 0.359 −3.240 [−1.867; −0.460]

Female sex −0.250 0.455 −0.550 [−1.142; 0.642]

γ 0.580

λ 1758

emfrail

IG Treatment −1.052 0.310 −3.389 [−1.660; −0.444]

Female sex −0.227 0.396 −0.575 [−1.003; 0.548]

γ 1.218
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Table 8: Posterior summary statistics of the MALA sampler in the CGD study (iterations

10,001:25,000). HPDI, Highest Posterior Density Interval.

Parameter Estimate SE 95% HPDI Geweke’s p

IG Treatment −1.190 0.365 [−1.879; −0.484] 0.96

Female sex −0.249 0.463 [−1.185; 0.623] 0.93

γ 0.744 0.528 [0.222; 1.507] 0.92

λ 1822 1602 [87.8; 4941] 0.38

δ 0.001 0.002 [0.000; 0.005] 0.97

Figure 8: Empirical Kaplan-Meier estimates (solid polygonal chains) with the corresponding 95%

confidence intervals (dashed) and the survival curves (solid curves) estimated with the amplitudes

from: LPS (A), and MALA (B). Green color indicates the treatment arm and red color indicates the

placebo arm.

As for estimation of the amplitudes, right panel of Figure 8 presents Kaplan-Meier empirical

estimates, together with the corresponding 95% confidence intervals of the two treatment arms, and

the survival curves obtained from the amplitudes estimated in the MALA sampler. Note that the

model-based survival curves in the LPS (left panel) and in the MALA (right panel) are virtually

identical.
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Figure 9: Traceplots of the parameters in the CGD study: IG treatment effect (A), female sex (B),

γ (C), λ (D), and δ (E).
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Figure 10: Posterior distributions of the parameters in the CGD study: IG treatment effect (A),

female sex (B), γ (C), λ (D), and δ (E). Red bars on panels A and B indicate the Null hypotheses,

β(·) = 0.



29

4 Discussion

In this study, we derived analytically a novel Bayesian model combining P-splines smoothers, Lapla-

cian approximation, and gamma shared frailty survival. This resulted in two algorithms: a sampling-

free Laplacian-P-Splines, and a Markov chain Monte Carlo Metropolis-Adjusted Langevin Algorithm

within Gibbs Sampler. Both algorithms were implemented in R, tested on simulated datasets against

an existing frequentist ”competitor”, and applied on a real-life randomized clinical trial.

The main motivation to extend the existing LPS toolbox [19] to shared frailty survival came

from the study on the IG treatment in CGD in children, originally published in 1991 [24]. For proper

treatment of the data as in this study, it is crucial to consider that the observed outcomes of interest

(times-to-event) are not independent. Indeed, it is plausible to assume that times elapsing between

incidences of a serious infection in a given patient are correlated, since some unobserved (latent)

patient-specific characteristics may exist governing, for example, constitutive immunity strength of

the patient, environmental factors, or perhaps quality of healthcare services given patient receives.

It follows that those characteristics vary across patients, which leads to a hierarchical structure of

the data with observations clustered within patients. In terms of survival analysis, the observations

within a cluster (patient) share the same frailty.

Such datasets can be also analyzed with models based on event history and counting processes,

with theoretical derivations based on stochasitic process known as martingale (see p. 431 in [12]).

Other models for recurrent events include Anderson and Gill model [4] and Prentice, Williams and

Peterson model [35], the former used in the original paper, under the assumption that the baseline

hazard function is common to all recurrences and unaffected by the previous events. In line with

Abrams et al. [3], we believe that this assumption might be questionable, as it might be postu-

lated that recurrently appearing life-threatening infections may steadily worsen overall condition of

a patient, leading to increased risk of infections in the future or, on contrary, infection may induce

long-term immunity protecting a patient from another infection with the same agent. Therefore,

association between recurrence times can be accounted for by adding a random frailty effect (see p.

436 in [12]). Abrams et al. postulate further extension to models taking into account the fact that

individual frailties and correlations between them evolve in time [3].

In the process of model development, several decisions had to be made. First, we assumed a

Gamma distribution for the frailty variable (with mean 1 and variance 1/γ):

hij(t) = ui exp(βTzij)h0(t)

Ui ∼ G(γ, γ). (52)

This was driven by the fact that analytical integration of the conditional likelihood in Eq. (6) is only

possible when the frailty is Gamma-distributed, although Hougaard noticed that Gamma-distributed

frailty characterizes with a restriction that the dependence is most important for late events [25].

Another option, though without the convenient property of a closed-form integration, is a Normal

distribution with mean 0 and variance σ2
u:

hij(t) = exp(βTzij + ui)h0(t)

Ui ∼ N (0, σ2
u). (53)

Further possible distributions are also described in the literature (for a recent review, see f.e. [7]).

Next, a decision needed to be taken, how to arrange the parameters of the model into a latent

and a hyperparameter vectors. This is perhaps the crucial point in the whole model development, as

it influences the strategy of the gradient and the Hessian derivations and, following from that, the

code implementation. In this project, we placed the B-splines coefficients (amplitudes, θ) and the

regression coefficients (β) into the latent vector, and the remaining three parameters, the parameter
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governing the frailty (γ), the parameter controlling the penalty (λ), and the hyperparameter for the

distribution of the latter (δ) into the hyperparameter vector. This led to simpler gradient and the

Hessian of the posterior distribution of the latent parameters since, assuming the Newton-Raphson

Algorithm is used for the optimization of the latent vector, we needed the first and the second

derivatives of the marginal likelihood in Eq. (13) only wrt θ and β. For γ, only the first-order

derivative was needed for the MALA part. As a consequence, however, our LPS algorithm provided

only the point estimate but not the credible interval for γ (cf. NA entries in Table 2-4), which was also

one of the arguments to develop MALA. It needs to be emphasized, however, that lacking precision

estimates are not intrinsic limitation of the LPS itself but the consequence of the arrangement of the

parameters into the latent and the hyperparameter vectors in this study. Additionally, decision had

to be made regarding the variance of γ, needed in the covariance matrix of the proposal in Eq. (44).

Following Gressani et al., it was taken to be one, which may seem an arbitrary choice, which was,

however, validated in multiple datasets and scenarios [23]. Further, at the stage of the optimization

of the posterior hyperparameter, even after integrating δ out, the problem remains two-dimensional.

Alternatively, the γ parameter could be included into the latent vector. This would require the

second-order derivative of the marginal likelihood also wrt γ, assuming NRA is used, but it would

provide the intervals for the γ parameter in the LPS algorithm, it would simplify the covariance

matrix for the MALA part, and – perhaps most importantly – it would reduce optimization of the

hyperparameter to a one-dimensional problem.

This is directly linked to the choice of the optimization algorithms. Having derived the gradient

and the Hessian of the posterior latent vector in a closed form, the Newton-Raphson Algorithm was

an obvious choice for its optimization. Another possibility would be, for example, the Levenberg-

Marquardt Algorithm (LMA), which does not require the second-order derivatives and is more robust

for the choice of the initial values [34]. Indeed, in our case finding appropriate starting vector took

a while and even moderate alterations led to non-convergence. Robustness of the LMA comes,

however, at the costs of slower code execution. Taken together, we believe that the setting where the

γ parameter is treated as a hyperparameter, and for the latent vector the second-order derivatives

are available in closed form (as in our study), the NRA is more appropriate, whereas including γ into

the latent vector calls for the LMA. Both algorithms have an obvious performance advantage over

the the Gradient Ascent Algorithm, which was not considered in this study.

Optimization of the hyperparameter, which was a two-dimensional problem in our case, was

performed with the Nelder-Mead Algorithm (NMA) [33]. Briefly, the method relies on a simplex,

which is a polytope with n + 1 vertices (in our case a triangle, since we optimize two parameters)

in n dimensions. The simplex takes a series of steps moving the point where the function is lowest

(for a maximization problem) through its opposite face in such a way that the volume of the simplex

is preserved. This ”movement” may resemble amoebic slither, which explains why the algorithm

is also called ”the amoeba method”. The method uses only function values but not any derivative

information, and hence is considered robust but slow (p. 164 in [9]). Another possibility is a quasi-

Newton Broyden, Fletcher, Goldfarb and Shanno (BFGS) Algorithm (pp. 136-143 in [34]), which

uses the derivative information, though does not perform matrix inverse, and hence is recommended

”whenever one can reasonably assume that the objective function is smooth or at least differentiable”

(Borchers in [9], p. 163). Both methods are available in the optim() function, which was used for

the hyperparameter optimization, and indeed, we observed somehow faster performance of the BFGS

algorithm compared to the NMA.

For the implementation stage, substantial effort was devoted to obtain a code that would be fast

and efficient (after having achieved that it was beautiful, following the code optimization principle

outlined by Armstrong [5]). The most involved part of the procedure are the calculations of the

gradient (used in the LPS algorithm and in the MALA), and the Hessian (in the LPS). This is due
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to the fact that they have to be repeated across all clusters in a dataset and in each iteration of

the optimization algorithm, and hence may lead to an inefficient nested-loop process. Since it is

known that R processes matrices and array objects [like list()] more efficiently than iterative for

loops [31], wherever possible scalars were combined into vectors and vectors into matrices. This

enabled replacement of the iterative calculations of the gradient and the Hessian across clusters

by functions applied on array items, as outlined in Appendix 1. Efficacy of the object-oriented

programming paradigm is obvious from the data in Table 6. For a given total size of a dataset (in

our case, 400 observations), the execution is much faster when the dataset consists of small number

of large clusters, compared to a dataset (of the same total size) with a large number of small clusters.

Apparently, this is related to the abilities of the the current processors to efficiently perform matrix

manipulations.

The main reason for the development of the LPS methods, and for their popularity, is because

they are much faster compared to the traditional Bayesian strategy, relying on Markov chain samplers

[19]. This is also the case in the current study, with the LPS algorithm delivering the outcome in

seconds, rather, than minutes. Of course, the execution time of a sampler depends on its size,

however, a running time of the MALA sampler in this project, when reduced to the time the LPS

needs to complete (say, 5 seconds), would be sufficient only for about 500 iterations, which is obviously

not enough. It needs to be stressed that the implementation of the LPS algorithm in this master’s

thesis is still not optimal, as the algorithm needs more time compared to the frequentist competitor.

We believe that further optimization of the running time is possible. On the other hand, there

seems to exist such real-life datasets, which the current – suboptimal – implementation of the LPS

algorithm is able to analyze but which, for some reasons, cause problems for the frequentist method

(cf. Appendix 2).

Simulation study is a very important part of a model development, as it allows critical testing

whether algebraic derivations and their code implementation are correct (or at least plausible) under

well controlled and modifiable conditions. In a way, this might be compared to a stage of laboratory

tests in a biomedical project. In this study, the datasets were simulated using a novel, very flexible

routine developed by Dr. Gressani [18], and tested simultaneously with a well-established frequentist

function, based on the Expectation-Maximization Algorithm, emfrail [6]. In balanced datasets, the

B-splines coefficients and the regression coefficients obtained with the algorithms developed here were

in an excellent agreement with the results of the emfrail as well as with the results expected from the

parameters of the simulations. Hence we may conclude that the LPS estimators are reasonably precise

and characterize with negligible bias. Interesting case were the parameters of the frailty, γ, which

differed from their ”true values” expected from the parametrization of the datasets. This bias seems

to be more pronounced in the setting with a larger censoring rate, which is explainable by the fact

that censored observations contribute less information to the posterior distribution compared to the

non-censored observations. Since this is a general phenomenon, affecting all estimation procedures,

the correlation of the results of the LPS algorithm and the emfrail, again, practically follows an

identity line. This also excludes that the observed bias is LPS-specific.

A different situation arises in a setting with unbalanced clusters, i.e. when a simulated dataset

consists of many very small clusters (f.e. with 2 observations) accompanied by many single-observation

clusters. Such datasets were generated and tested to understand better the results of the CGD study,

which is of a similar nature. As presented in Appendix 2, in those datasets the correlation between

LPS and emfrail estimates of the γ parameter is still linear and the estimates from both models

are - on average - almost the same, but in individual datasets they may notably differ. We believe

that this is explainable by the fact that, apart of 30% censoring, clusters with a single observation

do not contribute posterior information on the variability of the frailty. In particular, they cannot

provide information about within-cluster correlation. It also needs to be emphasized that the point
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estimates of γ from all procedures are within the confidence interval of the emfrail as well as the

credible interval of the MALA.

Intuition that the censoring rate influences estimated variances of the model parameters can be

discussed in a more formal way. First, consider that the number of non-censored observations in an

i-th cluster enters the estimation process via α̃i defined in Eq. (8). Next, observe that the elements

of the i-th cluster’s Hessian matrix in Eqs. (16) - (18) are directly proportional to the opposite of this

quantity, and hence – holding all other variables constant – the larger the number of non-censored

observations the larger α̃i and larger (in absolute terms) the elements on the diagonals of the Hessian

matrices. This implies lower variances of the model parameters and explains lower standard errors

of the regression coefficients in the setting (A), compared to (C), in the simulation experiment.

Initial values for the latent vector were moderately hard to find, and slight fluctuations of the

initial latent vector often led to non-convergence of the underlying NRA. This is not surprising, and

might be seen as an argument in favour of a different optimization algorithm, as already discussed. On

the other hand, alterations of starting values for the hyperparameters did not influence optimization

of the hyperparameter vector, which is also in agreement with the theory, as the NMA, used in this

step, is considered robust [9].

Metropolis-Adjusted Langevin Algorithm was derived in this study as a method alternative

to the LPS algorithm, and partially utilizing its results. The main reason to setting it, apart of

confirming plausibility of the LPS algorithm, was that in our design the parameter controlling the

frailty variability, γ, is allocated to the hyperparameter vector, and hence the LPS algorithm can

provide its point estimate but not its variance. In contrast, MCMC returns approximate posterior

distributions of all parameters of the model, from hence it is possible to calculate their point estimates

as well as their variances. In contrast to the original algorithm developed by Metropolis et al. [32],

its Langevin-adjusted version makes use of the information from the gradient of the (log-)posterior

distribution [8]. Briefly, a new state of the MCMC is first proposed using Langevin dynamics,

which evaluates the gradient of the target posterior at the current state of the chain, followed by

acceptance/rejection decision with the Metropolis–Hastings algorithm (MHA). This drives the chain’s

random walk towards regions of higher posterior probability. As a matter of fact, in our algorithm

the gradient of the target posterior distribution was used twice: first to adjust expectation of the

proposal distribution (Eq. (43)) and next to optimize the acceptance probability by comparing the

gradient of the posterior at the current state of the chain and at the proposed candidate (Eq. (47)).

Further, in contrast to the ”classic” MHA, MALA applied in this study makes use of the covariance

matrix based on Laplace approximation, Σ∗(η̃∗) (cf. Eq. (44)), which sets a desirable correlation

structure of the latent variables [20]. To further improve performance of the algorithm, a tuning

parameter, ϱ, is adaptively calculated in each sampling step to yield the optimal acceptance rate of

0.57 [20,23].

In the CGD study, we restricted our LPS and MALA modelling to two explanatory variables, the

treatment and sex, to keep it close to the results reported with the frailtyEM package [6]. Needles

to say, other predictors (age, height, weight, genotype, etc.) can be included into the model, too.

The point estimates and the credible intervals for the treatment effect are in very good agreement

across all algorithms used in the current study. All of them lead to exactly the same interpretation

of IG reducing the hazard of serious infection by about 70%, as it was also reported in the original

paper [24]. Indeed, in 1991 the U.S. Food and Drug Administration approved IG for treatment in

CGD, having saved many lives since then. Insubstantial effect of sex, also consistently returned by

all models, is also important result, as it allows the same clinical treatment of females and males.

This study is not without limitations. We believe that by looking at the data from the shared

frailty perspective, we have accounted for the correlations across the multivariate outcomes for a given

patient, however, our model assumes that those correlations are time-invariant. This is a seriously
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limiting assumption; indeed, Abrams et al. postulate, in a frequentist framework and for a bivariate

time-to-event setting, a model with the subject- and event-specific hazard function, which leads to a

frailty variable Uiq (in our notation) for i-th cluster and q-th event [3]. From the perspective of their

study, our model can be seen as a special case, with Ui1 = ... = UiQ ≡ Ui. To release this restriction,

Abrams et al. propose correlated frailty model in a sense that correlations between times are allowed

to differ from 1. Certainly, extension of our model into that direction could be an interesting further

development.
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Appendix 1

From the log-likelihood (Eq. (13)), elements of the gradient wrt θk (Eq. (14)) can be derived as

follows:

∂ℓi(ξ, γ;D)

∂θk
=

∂

∂θk

( ni∑
j=1

δ̃ij

(
θTb(tij) + βTzij

)
− α̃i ln(β̃i)

)
=

∂

∂θk

( ni∑
j=1

δ̃ij

(
θTb(tij) + βTzij

))
− ∂

∂θk

(
α̃i ln(β̃i)

)
=

ni∑
j=1

∂

∂θk
δ̃ij

(
θTb(tij) + βTzij

)
− α̃i

β̃i

∂

∂θk
β̃i

=

ni∑
j=1

δ̃ijbk(tij) −
α̃i

β̃i

∂

∂θk

(
γ +

ni∑
j=1

m(tij)∑
m=1

ωijm

)
︸ ︷︷ ︸

β̃i

=

ni∑
j=1

δ̃ijbk(tij) −
α̃i

β̃i

[ ni∑
j=1

m(tij)∑
m=1

∂

∂θk

(
exp(θTb(sm) + βTzij)∆

)
︸ ︷︷ ︸

ωijm

]

=

ni∑
j=1

δ̃ijbk(tij) −
α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm.

In a very similar way, we derive elements of the gradient wrt βp (Eq. (15)):

∂ℓi(ξ, γ;D)

∂βp
=

∂

∂βp

( ni∑
j=1

δ̃ij

(
θTb(tij) + βTzij

)
− α̃i ln(β̃i)

)
=

∂

∂βp

( ni∑
j=1

δ̃ij

(
θTb(tij) + βTzij

))
− ∂

∂βp

(
α̃i ln(β̃i)

)

=

ni∑
j=1

δ̃ijzijp −
α̃i

β̃i

∂

∂βp

(
γ +

ni∑
j=1

m(tij)∑
m=1

ωijm

)

=

ni∑
j=1

δ̃ijzijp −
α̃i

β̃i

( ni∑
j=1

m(tij)∑
m=1

∂

∂βp
ωijm

)

=

ni∑
j=1

δ̃ijzijp −
α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

zijpωijm.
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Elements of the Hessian matrix wrt the vector of the amplitudes (Eq. (16)) can be derived as follows:

∂2ℓi(ξ, γ;D)

∂θk∂θk′
=

∂

∂θk′

( ni∑
j=1

δ̃ijbk(tij) −
α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)
︸ ︷︷ ︸

∂ℓi(ξ;γ,D)

∂θk

= − ∂

∂θk′

( α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)

= − α̃i

β̃2
i

{
∂

∂θk′

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

) ∂

∂θk′
β̃i

}

= − α̃i

β̃2
i

{( ni∑
j=1

m(tij)∑
m=1

bk(sm)
∂

∂θk′
ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

) ∂

∂θk′
β̃i

}

= − α̃i

β̃2
i

{( ni∑
j=1

m(tij)∑
m=1

bk(sm)
∂

∂θk′
ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

) ∂

∂θk′

(
γ +

ni∑
j=1

m(tij)∑
m=1

ωijm

)}

= − α̃i

β̃2
i

{( ni∑
j=1

m(tij)∑
m=1

bk(sm)
∂

∂θk′
ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)( ni∑
j=1

m(tij)∑
m=1

∂

∂θk′
ωijm

)}

= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

bk(sm)bk′(sm)ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)( ni∑
j=1

m(tij)∑
m=1

bk′(sm)ωijm

)]
.

Next, we derive elements of the Hessian wrt the vector of the regression coefficients (Eq. (17)):

∂2ℓi(ξ, γ;D)

∂βp∂βp′
=

∂

∂βp′

( ni∑
j=1

δ̃ijzijp −
α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

zijpωijm

)

= − α̃i

β̃2
i

{( ni∑
j=1

m(tij)∑
m=1

zijp
∂

∂βp′
ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

zijpωijm

) ∂

∂βp′
β̃i

}

= − α̃i

β̃2
i

{( ni∑
j=1

m(tij)∑
m=1

zijp
∂

∂βp′
ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

zijpωijm

)( ni∑
j=1

m(tij)∑
m=1

∂

∂βp′
ωijm

)}

= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

zijpzijp′ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

zijpωijm

)( ni∑
j=1

m(tij)∑
m=1

zijp′ωijm

)]
.
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Finally, elements in ”off-diagonal” block (Eq. (18)) can be obtained starting either from the first

derivative wrt θk (Eq. (14)) or from the first derivative wrt βp (Eq. (15)), with the first option

followed here:

∂2ℓi(ξ, γ;D)

∂θk∂βp
=

∂

∂βp

(∂ℓi(ξ; γ,D)

∂θk

)
=

∂

∂θk

(∂ℓi(ξ; γ,D)

∂βp

)
=

∂

∂βp

( ni∑
j=1

δ̃ijbk(tij) −
α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)

= − α̃i

β̃2
i

{
∂

∂βp

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

) ∂

∂βp
β̃i

}

= − α̃i

β̃2
i

{( ni∑
j=1

m(tij)∑
m=1

bk(sm)
∂

∂βp
ωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)( ni∑
j=1

m(tij)∑
m=1

∂

∂βp
ωijm

)}

= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

bk(sm)zijpωijm

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

bk(sm)ωijm

)( ni∑
j=1

m(tij)∑
m=1

zijpωijm

)]
.

Partial derivative of the log-conditional posterior of the ζ̃ vector wrt γ̃ in the MALA step (Eq. (46))

is obtained as follows:

∂ ln p(ζ̃ | λ,D)

∂γ̃
=

∂

∂γ̃

(
ℓ(ζ̃;D)︸ ︷︷ ︸

cf. Eq. (40)

− 1

2
ξTQξ︸ ︷︷ ︸

does not depend on γ̃

−βγ exp(γ̃) + αγ γ̃
)

= I exp(γ̃)(γ̃ + 1) − I exp(γ̃)𭟋(exp(γ̃)) +

I∑
i=1

exp(γ̃)𭟋(ᾰi)

− exp(γ̃)
I∑

i=1

(
ln(β̆i) +

ᾰi

β̆i

)
− βγ exp(γ̃) + αγ

= exp(γ̃)

(
I
(
γ̃ + 1 −𭟋(exp(γ̃))

)
+

I∑
i=1

(
𭟋(ᾰi) − ln(β̆i) −

ᾰi

β̆i

)
− βγ

)
+ αγ .

⋄ ⋄ ⋄

Implementation of the calculations of the log-likelihood, the gradient and the Hessian is much more

straightforward when the derivatives are expressed in vector/matrix form, rather, than element-wise

(as in the Eqs. (13) - (18)). This approach immediately translates to a code combining operations

on matrices and list() objects, which is known to be very efficient in R.

The quantities defined in Eq. (7) can be grouped into an i-th cluster specific matrix, Ωi, and those

in Eqs. (8) and (9) can be calculated in the matrix notation, respectively:
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Ωi = exp[B(sm)θ1Tni
+ 1J(Ziβ)T ] ⊙∆i

α̃i = δ̃
T

i 1ni + γ

β̃i = 1TJΩi1ni︸ ︷︷ ︸
grandsum

+γ,

where ⊙ and exp[·] denote element-wise (Hadamard) product and exponentiation, respectively, and

1(·) are unit-vectors of the dimensions denoted in the subscripts. J × ni matrix ∆i is constructed

such way that for a j-th observation in the i-th cluster, the first m(tij) elements of its j-th column

vector are equal ∆ and the remaining elements are zeroes. Thus, ∆i controls approximation of the

cumulative hazard for a given subject (cf. Eq. (2)) by setting irrelevant time points equal to zero

and, simultaneously, it incorporates multiplication by the (constant) length of the grid segment, ∆.

Further, by I(.) we denote an identity matrix of the dimension given in the subscript.

First derivative wrt the vector of amplitudes, θ, can be now written in the matrix notation:

∂ℓi(ξ, γ;D)

∂θ
= Bi

T (tij)δ̃i −
α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

ωijmb(sm)

= Bi
T (tij)δ̃i −

α̃i

β̃i
BT (sm)Ωi1ni .

First derivative wrt the vector of regression coefficients, β, becomes:

∂ℓi(ξ, γ;D)

∂β
= Zi

T δ̃i −
α̃i

β̃i

ni∑
j=1

m(tij)∑
m=1

ωijmzij

= Zi
T δ̃i −

α̃i

β̃i
(ΩiZi)

T1J .

The sumbatrix of the Hessian wrt θ (the top-left K ×K block) becomes:

∂2ℓi(ξ, γ;D)

∂θ∂θT
= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

ωijmb(sm)bT (sm)
)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

ωijmb(sm)
)( ni∑

j=1

m(tij)∑
m=1

ωijmbT (sm)
)]

=
α̃i

β̃2
i

{
BT (sm)Ωi1ni1

T
ni
Ωi

TB(sm) − β̃iB
T (sm)[Ωi1ni1J ] ⊙ IJB(sm)

}

=
α̃i

β̃2
i

BT (sm)
{
Ωi1ni(Ωi1ni)

T − β̃i[Ωi1ni1
T
J ] ⊙ IJ

}
B(sm),

where [Ωi1ni1
T
J ]⊙IJ is a J×J diagonal matrix with the sum of the column vectors of the Ωi matrix

on the diagonal. Indeed, denote by diag(Ωi(j)), j = 1, ..., ni, a J × J diagonal matrix with a j-th

column of the Ωi matrix on the diagonal; then
∑ni

j=1 diag(Ωi(j)) = [Ωi1ni1
T
J ] ⊙ IJ .
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The sumbatrix of the Hessian wrt β (the bottom-right P × P block) becomes:

∂2ℓi(ξ, γ;D)

∂β∂βT
= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

ωijmzijz
T
ij

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

ωijmzij

)( ni∑
j=1

m(tij)∑
m=1

ωijmzT
ij

)]

=
α̃i

β̃2
i

Zi
T
{
Ωi

T1J1
T
JΩi − β̃i[Ωi

T1J1
T
ni

] ⊙ Ini

}
Zi,

where [Ωi
T1J1

T
ni

] ⊙ Ini is a ni × ni diagonal matrix with the sum of the column vectors of the Ωi
T

matrix on the diagonal.

The top-right K × P block becomes:

∂2ℓi(ξ, γ;D)

∂θ∂βT
= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

ωijmb(sm)zT
ij

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

ωijmb(sm)
)( ni∑

j=1

m(tij)∑
m=1

ωijmzT
ij

)]

=
α̃i

β̃2
i

BT (sm)
{
Ωi1ni1

T
JΩi − β̃iΩi

}
Zi.

The bottom-left P ×K block (which is transpose of the top-right block) becomes:

∂2ℓi(ξ, γ;D)

∂β∂θT
= − α̃i

β̃2
i

[( ni∑
j=1

m(tij)∑
m=1

ωijmzijb
T (sm)

)
β̃i −

( ni∑
j=1

m(tij)∑
m=1

ωijmzij

)( ni∑
j=1

m(tij)∑
m=1

ωijmbT (sm)
)]

=
α̃i

β̃2
i

{
BT (sm)

{
Ωi1ni1

T
JΩi − β̃iΩi

}
Zi

}T

=
α̃i

β̃2
i

Zi
T
{
Ωi

T1J1
T
ni
Ωi

T − β̃iΩi
T
}
B(sm).

To approximate baseline hazard function, h0(t), in a Null model (a model without predictors), all

elements of Zi are simply set to 0 for all i.

The R code for the CGD part (LPS and MALA) is available at:

https://github.com/LewczukPiotr/LPS_and_MALA_in_CGD.

https://github.com/LewczukPiotr/LPS_and_MALA_in_CGD
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Appendix 2

This Appendix presents some auxiliary results for the discussion of the discrepant estimates, partic-

ularly of the γ parameter, in the LPS and the EMA models (the later implemented in the emfrail

function and treated as a ”competitor” in this thesis) in unbalanced datasets. In order to provide

more insight, the simulation study was extended to 100 datasets more, each consisting of 200 clusters

of size 1 and 100 clusters of size 2 with 30% right-censoring. This additional simulation is supposed to

mimic unbalanced dataset of the CGD study. As Figure below indicates, in such unbalanced datasets

the correlation between LPS and emfrail estimates of the γ parameter is linear and the estimates

from both models are - on average - almost the same, however, in individual datasets they may

notably differ. This does not seem to be the case in the balanced datasets, where the two algorithms

always return very similar estimates (cf. left panels of Figure 4).

Appendix Figure 1: Comparison of the estimates of the frailty variance (1/γ) in one hundred addi-

tional simulations.

Next, three models were fitted with the data of the CGD study, including only on such patients

that had at least two recorded observations (at least two incidences of a serious infection or one

infection and one censored follow-up, n = 44), i.e. after excluding all clusters of size 1. Model M1

was fitted with the treatment indicator only, model M2 with the treatment indicator and sex, and

model M3 with the treatment indicator, sex and age. Results of the LPS estimates of the three

models are presented in Table below.

M1 M2 M3

Parameter Estimate SE z Estimate SE z Estimate SE z

IG Treatment −0.306 0.281 −1.092 −0.309 0.284 −1.158 −0.316 0.289 −1.095

Female sex 0.097 0.359 0.270 0.167 0.368 0.454

Age [yrs] −0.022 0.015 −1.408

γ 10.87 9.232 7.757

λ 1771 1717 1921



44

Interestingly, the emfrail function failed to analyze this dataset (in all three models), reporting a

message ”frailty variance might be at the edge of the parameter space.” This is certainly disappoint-

ing, as a comparison of the results in a real-life study would provide further important insights into

the issue3. Without this additional information, we may at least conclude that the LPS estimates are

plausible. In all three models, the effects of the treatment are negative (although lower, in absolute

terms, compared to those in the modelling of the whole dataset). In the two models with sex (M2

and M3), this variable does not play a role, and in the model with age (M3), older children are less

endangered with recurrence of serious infection, which is also known from the literature [24].

Finally, Figure below presents Kaplan-Meier empirical estimates, together with the correspond-

ing 95% confidence intervals of the two treatment arms in the subgroup of patients with at least two

observations, as well as the estimated survival curves obtained in the current LPS model. For both

arms, the estimated LPS curves lie within the 95% confidence intervals of the Kaplan-Meier curves,

which confirms plausibility of the LPS estimates of the amplitudes.

Taken together, we believe that clusters of size 1 do not contribute posterior information about

the variation of the frailty, which leads to discrepant γ estimates between a frequentist and a Bayesian

setting. It is hard to tell, which of the two settings provide a ”correct” estimate.

Appendix Figure 2: Kaplan-Meier and LPS-estimated survival curves for the subset of the CGD

patients with at least two observations.

3On the other hand, it might be concluded that the LPS algorithm is a ”better” competitor, as it is able to analyze

such dataset.
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Diagnostics, with Christine Schödel, Ute Schulz, Angela Noureddine, Sabine Müller, Johanna Waedt,

and Laura Haßler, was incredibly patient when their boss was running through the lab trying to solve

a particularly interesting integral, instead of doing something useful. I am very thankful for that,

you probably deserve a better boss.

The two most important persons in my life, my wife Dr. Barbara Sawicka-Lewczuk and our

teenager son Pawe l deserve special treatment for everything good that I have ever experienced. This

goes much beyond my studies of biostatistics. This goes beyond everything I could express in words.

I thank you for being with me and I thank God that I have you.

My parents, Dr. Ludmi la Gruszewska-Lewczuk (1937–2023) and W lodzimierz Lewczuk (1931–

2008) are not here anymore in a physical sense. They have already gone in their longest journey, but

I still feel a gentle touch of their support. I believe they are smiling at me from wherever they are,

hopefully with proud and surely with love.




	Abstract
	Introduction
	Materials and Methods
	From the conditional to the marginal log-likelihood, the gradient, and the Hessian
	The priors
	Laplace-approximated conditional posterior of the latent vector; the Newton-Raphson Algorithm
	Joint marginal posterior distribution of the hyperparameters; sampling-free LPS algorithm
	Conditional posterior distributions and the Metropolis-Adjusted Langevin Algorithm within the Gibbs Sampler
	A small simulation study
	Recurrence of serious infections in a randomized trial of Interferon Gamma treatment for Chronic Granulotomous Disease

	Results
	Results of the simulation study
	Results of the CGD study

	Discussion
	References
	Appendices
	Acknowledgements

