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Abstract

Background
People living with HIV demonstrate relevant heterogeneity at the time of diagnosis. One major soure of
this heterogeneity is imposed by (often hughly) different times between infection with HIV and diagnosis
or referral to a specialized center. Since this time is, in turn, related to the risk of a compromised immune
system, disease progression, and AIDS-defining condition. Classification into distinct groups might facilitate
risk assessment for PWH at first presentation but currently available classification systems (including the
definitions of late diagnosis and advanced HIV disease) are partly based on convenience classifications and/or
have been derived in times where the course of HIV was markedly different from today, given the availability
of hihgly effective antiretroviral treatment options.

Purpose
The purpose of this study was to account for baseline heterogeneity with regard to the CD4 cell concentration
at first presentation of people with HIV to a specialised HIV care center and to explore their relevance and
meaning in terms of clinical outcomes.

Methods
Retsopective, observational analysis of people living with HIV presenting with documented, viremic (HIV-1
RNA ≥ 200 copies/mL) HIV-1 infection at a single outpatient HIV clinic in Munich, Germany, between
2010 throuth 2020. Finite mixture models with component specific variances with both, two and three
components, were fitted to the distribution of the first available CD4 cell concentrations. Models were
compared using information criteria. Based on the posterior probabilities for each of the sub-populations,
each person included into the study was assigned to one of the groups for each of the two models and sub-
populations were compared through different models in order to explore potential meaningful differences.
Participants were followed up longitudinally and a linear mixed-effects model was used to describe and
compare the immune recovery for each of the subgroups.

Results
Overall, 1,452 PWH were included, resulting in a total of 31,334 observations for the longitudinal data
analysis. Median age was 38 years (IQR: 30; 46), 300 (20.7 %) were female. 647 (44.6 %) and 305 (21.0
%) of the PWH included in this study had CD3+/CD4+ 350 cells/µl and 200 cells/µl, respectively. In 454
(31.3 %) of PWH an HIV-1 RNA concentration 100,000 copies/mL was found. A finite mixture models
of normals with three components seemed to be best supported by the data, with the distributions being
N(43, 27), N(352, 159), and N(644, 241), with component probabilities of p=0.07, p=0.68, and p=0.25.
Characteristics of people being assigned to the three groups based on the posterior probabilities of the
mixture model differed significantly with regard to age, HIV-RNA, CD4/CD8 ratio, prevalence of AIDS-
defining conditions at first presentation, and the number of deaths until the end of the observation, where
lower CD3+/CD4+ cells were associated with less favourable characteristics. Longitudinally, people in the
groups of lower CD3+/CD4+ cells demonstrated a more pronounced, initial increase in CD3+/CD4+ cell
concentratin after ART initiation, but nevertheless plateaued at a lower level when compared to people with
higher CD3+/CD4+ cell concentrations at baseline.

Conclusion
A finite mixture model with three components and component specific-variances seems to identify distinct
sub-populations of PWH at different ’stages’ of the disease as a source of heterogeneity.
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1 Introduction

1.1 Overview

HIV is an acronym for ‘human immunodeficiency virus’, a human pathogenic virus of the family of retro-
viruses. While often forgotten, there are two species, namely HIV-1 and HIV-2, with HIV-1 being markedly
more prevalent throughout the world1. In the remainder of the manuscript, HIV will therefore refer to
HIV-1.

Figure 1: Schematic illustration of an HI-virus.

A schematic illustration of an HI-virus can be seen
in figure 1. Specific proteins are expressed on the
surface of the virus’ lipoprotein coating. These pro-
teins play an important role in the replicative cy-
cle of HIV by promoting attachment to and interac-
tion with target cells, that are characterized by the
presence of the cluster of differentiation 4 (CD4) on
their surface1. The so-called capsid inside the virus
contains two copies of single-strand ribonucleic acid
(RNA), representing the virus’ genome, as well as
viral proteins, including reverse transcriptase (RT)
and integrase (IN); together with the protease (PR)
these are key enzymes in the viral replication cycle
as they allow for the reverse transcription of the viral
RNA into desoxy-ribonucleic acid (DNA), the inte-
gration of the proviral DNA into the human DNA,
as well as the processing of protein precursors following transcription of viral genes1.

1.1.1 History of HIV

The beginning of the world-wide HIV pandemic dates back to the early 1980ies, when a clustering of ‘unusual’
diseases was found in (young) men who have sex with men (MSM), as well as people with hemophilia. These
diseases included Pneumocystis jerovecii pneumonia (PCP), Kaposi sarcoma (KS), and chronic ulcerative
herpes simplex virus (HSV) infections1, and their occurrence in seemingly otherwise healthy people was
poorly understood at first and virtually all diseased people died, making this ‘new disease’ a general death
sentence. The possibility of a viral genesis was suspected early, but it was only several years later, that a
virus which was later to be named HIV-1, was isolated from the blood of diseased people. But even after
this important discovery, it took some time to develop effective antiretroviral treatment (ART) strategies.
Most importantly, the high rates of errors during viral replication with a consecutive high frequency of
mutations relevant to the efficacy of antiretroviral drugs (ARV) made is difficult to have treatments with
long-lasting suppressive effects. Only with the combined use of several drugs, targeting several mechanisms
in the replication cycle of HIV-1, sustained viral suppression was made possible, making HIV-1 a chronic
and non-curable, yet well treatable disease1.
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1.1.2 Epidemiology

Since the beginning of the worldwide HIV epidemic, more than 80 million people have been infected with
HIV and more than 40 million have died of HIV-related conditions or AIDS2. It was estimated for 2022, that
more than 38 million people worldwide were living with HIV with more than 1 million new HIV diagnoses
per year2. Still today, more than 500,000 people are dying per year from HIV-related causes2. While in
some areas of the word, including many countries in Western Europe, the number of new HIV diagnoses is
declining, globally there is no clear trend; in some parts of the world numbers of new HIV infections are
raising. Globally, more women than men are living with HIV2.

1.1.3 Pathogenesis

After entering the human body, HIV establishes a chronic infection by integrating proviral DNA into the
human genome and using the human body’s cells mechanisms for its own replication1. The virus can be
contracted via HIV-containing blood or body fluids of humans. However, it needs an ‘intrusion’ of HIV-
containing fluids with a sufficient number of viruses to serve as a potential source of infection. Everyday
body contact, shared use of utensils, or glasses, for example, do not pose a risk even in people with detectable
viral load1. Condom-less sexual contacts are still one of the most frequent routes of HIV-transmission, in the
northern hemisphere particularly in MSM. Shared injection needles, for example among people using intra-
venous drug, are another potential source of transmission from one person to another. Vertical transmission
(e.g. transmission from mother to child during or around birth) has become rare in many countries that have
implemented HIV-testing as a routine in care of pregnant women, as early initiation of antiretroviral treat-
ment with viral suppression at the time of delivery or cesarean section for mothers with insufficient or only
short-time viral suppression at the time of delivery decrease the risk of transmission massively, being zero
for mothers that have been undetectable for a sufficient time prior to delivery. Also, the rigorous testing of
donated blood has led to a negligible risk of transmission via blood products1. The affinity of HIV to CD4+

explains the particular effect on cells expressing this marker of differentiation on their surfaces. While this is
the case for cells including macrophages, dendritic cells, and mikroglia, the characteristic effect of HIV on the
immune system is mediated through interaction with a subset of the CD3+ lymphocytes, so called TH cells
(helper cells, CD3+/CD4+ cells). Binding to these cells in the presence of a suitable co-receptor enables the
virus to intrude into these cells and via various mechanisms, lead to their diminution over time. Therefore,
except for the rare person who can control viral replication on their own (so called “elite controllers”), the
peripheral concentration of CD3+/CD4+ cells is a function of a person’s baseline cell count (before infection
with HIV), but also of the time living with the uncontrolled infection1.

1.1.4 Symptoms and clinical presentation

HIV infection typically follows a certain sequence of different ‘phases’. At the beginning, short time after
contracting the HI-virus, the body’s reaction is usually unspecific, including symptoms that can be found
in many other acute (viral) infections. These include fever, chills, night sweats, headaches, rashes, and
lymphadenopathy. If during this early phase of the disease HIV is not considered as a potential differential
diagnosis, the disease often remains undiagnosed for a long time. This is problematic as the phase to follow,
which can be several years in duration, most people are a- or only slightly symptomatic which means that
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they will not be tested for HIV unless it happens for ‘routine’ checks, for example in groups of people who
know they are or consider themselves to be at increased risk of HIV. As the immune system decreases over
time, people might start to develop symptoms of ‘opportunistic’ diseases, e.g. diseases that develop more
easily and/or more frequently in the presence of an altered immune system until in the last ‘phase’ of this
sequence, life threatening opportunistic infections (OI) or malign hematologic or solid neoplasia develop1;
more a more comprehensive overview will be given in the section on “Late diagnosis and AIDS” (Section
1.2).

1.1.5 Diagnosis

Diagnosis of HIV is straight forward in most cases. Most frequently, antibody tests are used, that can detect
the human immune response to an HIV infection by demonstrating the existence of specific antibody in an
index person’s blood sample. More advanced antibody tests also directly test for HIV’s p24 antigen. This
approach allows an earlier diagnosis, as it does not require the formation of antibodies, which only occurs
some weeks after contraction. Nevertheless, a diagnostic window remains. HIV antibody-tests are highly
sensitive. Therefore, particularly when used in people with a low a priori probability of contracting HIV,
false-positive results occur. As a consequence, a diagnosis can only be made in the presence of a positive
‘confirmation’ test. Traditionally, Western blots are used, testing a second blood sample (in order to also
exclude a patient mix-up). Today, often direct measurement of viral RNA after polymerase chain reaction
(PCR) techniques for amplification are used, which allow not only for rapid testing, but also for a further
shortening of the diagnostic window as well as a quantitative determination of the RNA content of a blood
sample. However, since primers for HIV RNA measurements are highly specific, an HIV-2 infection will not
be detected by running the routine HIV-1 RNA analyses, while antibody tests can not only detect, but also
distinguish between both groups of HI viruses. Therefore, as well as for financial reasons, HIV PCR has not
become the routine screening test for HIV, except for some distinct situations1.

1.2 Late diagnosis and AIDS

As the decrease in cellular immunity in PWH is in general a function of time, later diagnosis is usually associ-
ated with a more compromised immune system, which is relevant both, clinically, but also epidemiologically,
having implications for case detection.

1.2.1 Late diagnosis

Late diagnosis (which was formerly called ‘late presentation’) is a term used to describe PWH being diagnosed
in a stage of an already markedly altered immune system. The definition of late diagnosis was a matter of
scientific debate for quite a long time, until a consensus statement defined late diagnosis as the diagnosis of
HIV at a CD3+/CD4+ cell concentration < 350 /µL and/or in the presence of an AIDS-defining disease3,4.
The motivation for the threshold of 350 CD3+/CD4+ cells/µL remains, however, poorly understood and
might represent a compromise of different observations, and the consensus statement has been criticized
with regard to its biomedical significance and relevance5. Yet, several studies indicate that persons being
diagnosed with HIV ‘late’ or in whom treatment is initiated late, are at higher risk of adverse events and
death and late diagnosis is considered a major problem in care of PWH6,7. Clinically and epidemiologically,
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distinguishing a group with late compared to early diagnosis therefore seems justified, as they might present
with different baseline risk for disease progression and comorbidity, but also represent distinct populations
of people.

1.2.2 AIDS

AIDS is an acronym for ‘acquired immunodeficiency syndrome’ and marks the most advanced stage of an
HIV-infection. This stage is defined by the occurrence of certain, so called ‘AIDS-defining’ diseases, that
are mostly opportunistic infections, malign tumors, or hematologic neoplasia1. A non-exhaustive overview
is given in table 1. The occurrence of AIDS-defining diseases indicates the presence of a severe immune
deficiency. While for some of these diseases specific treatments are available, in others only HIV therapy itself
is effective; as usual, prevention is in general the best option. With the availability of effective antiretroviral
therapies, the progression of HIV to AIDS can be avoided. This implies, that nowadays, most PWH will not
experience AIDS, where access to ART is granted, and that HIV and AIDS cannot be used interchangeably.

Table 1: Non-exhaustive list of AIDS-defining diseases (adapted from Hoffmann and Rockstroh).

Candida infection lower airways, lung, esophagus
CMV infection with exception of liver, spleen, lymph nodes
CMV retinitis with loss of visus
Encepaholopathy HIV-associated
Kaposi Sarkoma
Lymphoma Burkitt, immunoblastic, primary cerebral
Mycobacteria infection M. tuberculosis, M. avium complex, M. kansasii
Pneumocystis jeroveci pneumonia
Progressive multifocal leukencepaholopathy
Toxoplasmosis cerebral
Wasting Syndrome

1.3 Antiretroviral therapy

The identification of HIV was the basis for the development of antiretroviral therapies. These were and are
drugs that interfere with the virus’ replication cycle at different stages. Until today, more than one drug
with at least two targets to suppress replication is necessary to avoid the development of resistance under
the selection pressure and the high rate of mutations occurring during HIV replication. Some of the major
targets of modern antiretroviral drugs in the replicative cycle of HIV are depicted in Figure 2.

With the development of effective antiretroviral therapies within years and decades after HIV’s discovery, it
also became clear, that adequate treatment with sustained virologic suppression can prevent the development
of severe comorbidities caused by HIV. Today, life expectancy has improved markedly and is approaching the
life expectancy found in a general population8–11. HIV has become a chronic but in general well-treatable
infectious disease. The paradigm of antiretroviral treatment has undergone considerable change over time:
when first available, antiretroviral drugs were often badly tolerated, they had to be taken several times per
day, and they did not work for very long: the development of resistance was a major problem. Therefore,
PWH were often not treated before their CD4+/CD3+ cell concentration fell under a certain threshold.
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Figure 2: Schematic illustration of the replicative cycle of HIV.
5



It was only with the publication of the so-called START study12, that major guidelines changed their
recommendation. The START study demonstrated, that later treatment initiation at lower CD3+/CD4+

cell concentrations was associated with adverse outcomes, including a higher probability of developing AIDS-
defining disease12. Consequently, in today’s guidelines on antiretroviral therapy in PWH do not see a role
in deferred treatment initiation anymore, and treatment should be started in every person that wishes to
receive ART regardless of CD3+/CD4+ concentrations13.

1.4 Purpose of the study

As described before, PWH presenting to HCPs after first diagnosis comprise a heterogeneous group of
people, in particular with regard to their immune status at that time. Time from infection to diagnosis or
first presentation in a specialized clinic is assumed to highly contribute to this heterogeneity. Given current
literature, it seems to be justified to classify PWH into distinct groups according to their CD4+/CD3+ cells
at this time, as lower CD3+/CD4+ cells, assumedly following longer time of living with HIV, are associated
with worse HIV-related and overall outcomes. While both, general classification systems (such as CDC) as
well as specific classification criteria for late diagnosis exist, they are sometimes based on convenience cut-offs
and developed more than a decade ago, in which marked changes in prevention, diagnosis and treatment of
HIV have taken place.
The purpose of this study is to investigate the distribution of CD3+/CD4+ cell concentrations at the time
of first presentation of PWH with viremia (≥ 200 copies/mL) at a specialized HIV clinical care center in
Munich, Germany, by means of finite mixture models (FMM) of normal distributions, assuming at least
two components. Components will be considered to represent a latent class of time living with HIV. The
classification derived from the FMM will be used to assign each PWH in the study to one of the groups and
groups will be compared with regard to the presence of AIDS-defining disease at first presentation, but also
followed up longitudinally in order to explore differences in immune reconstitution over time between the
groups. This second part of the study will therefore explore, whether the latent group classification derived
from the FMM is clinically plausible and relevant.
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2 Data

2.1 Data collection

Data was collected from electronic patient files of PWH in a single, large outpatient HIV research and
clinical care center in Munich, Germany (MVZ München am Goetheplatz). All PWH first presenting to the
clinic between January 1st 2010 and December 31st 2020 were considered for inclusion into the analysis; all
observations within this time interval were used for longitudinal analyses. Data were extracted from medical
records applying a software solution (cvSentinel, Clinovate NET, Munich, Germany) with interfaces adapted
to the site-specific electronic patient management system, creating a .csv output file. Presence of AIDS-
defining conditions at first presentation and the country of origin were identified by individual electronic
patient file review.

2.1.1 Inclusion criteria

• Documented HIV-1 infection
• Age ≥ 16 years
• HIV-1 RNA ≥ 200 copies/mL at first presentation

2.1.2 Exclusion criteria

• Documented HIV-2 infection
• Age < 16 years
• HIV-1 RNA < 200 copies/mL at first presentation
• No measurement of CD3+/CD4+ cells available

2.2 Data dictionary

A list of variables that were used for analysis in this study can be found in table 2.

Table 2: Data dictionary for all relevant variables used in this study.

Name Type Description Values
Age integer Age of participant at first presentation 16-82

AIDS integer Presence of AIDS-defining conditions at first presentation
0=not present; 1=present 0, 1

CD4 cells integer Concentration of CD3+/CD4+ cells [in cells/µL and %] 0-3,031 and 0-65
CD8 cells integer Concentration of CD3+/CD8+ cells [in cells/µL and %] 5-10,379 and 5-92
Country of origin string Country of origin / birth Details in Appendix A.1

Risk of transmission integer Suspected risk of HIV transmission
1=MSM, 2-9=others 1-9

Sex integer Sex (as per legal status)
0=male; 1=female 0, 1

* MSM: Men who have sex with men
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Missing values are represented by blank cell-content in the original data-frame and by NA after data impor-
tation.

2.2.1 Exploratory data analysis

Visual data exploration was performed for the distribution of CD3+/CD4+ cells at baseline as well as the
longitudinal follow up using scatter plots. For the longitudinal data, lowess-smoothing was added to the
plots in order to explore the marginal average evolution over time. Individual longitudinal profiles were used
as an additional component of exploratory data analysis in a small, random subset of PWH.

The distribution of CD3+/CD4+ cells is depicted in figure 3.

0

50
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0 500 1000 1500

CD3+/CD4+ cells [cells/µL]

n

Figure 3: Distribution of CD3+/CD4+ cells at first presentation

The distribution is right skewed and non-symmetric. It is left-bound by 0 and the maximum observed value
was 1478 cells/µL. The mean of the distribution is 400.9 cells/µL with a standard deviation of 241.8 cells/µL.

A scatter plot of CD3+/CD4+ cell concentration versus the time after baseline for the entire study sample
is displayed in figure 4.
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Figure 4: Scatter plots for the pairs of observation of CD3+/CD4+ and time t together with loess smothing
for the entire study sample (a), as well as for the subgroups from the two-(b) and three(c)-component mixture
models.
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3 Ethics

The use of pseudonymized, monocentric clinical routine data does not require the approval of an ethical
committee according to German law. Pseudonymization ensures that patients’ identities are protected by
replacing direct identifiers with codes, making it difficult to trace back to the original identity. In this
study, the identifiers generated by the clinic patient management system were used, so that only people with
access to this system were able to potentially trace back identities to indivdual patients. This significantly
contributes to the protection of patients’ privacy and personal data. Furthermore, all data processing was
performed “on site”, meaning that no data transfer outside of the clinic was made necessary. The study was
conducted in accordance with the Declaration of Helsinki.
In addition to the Declaration of Helsinki, the General Data Protection Regulation (GDPR) of the European
Union was adhered to, which imposes strict requirements on the processing of personal data. Compliance
with the GDPR ensures that all data protection requirements were met, particularly regarding the rights of
the data subjects and the security of the processed data. Adherence to these ethical and legal frameworks
ensured that the study was conducted ethically and scientifically sound.
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4 Methodology

4.1 Descriptive data analysis

For cross-sectional descriptive data analysis, medians together with the 25th and 75th quantile (IQR) were
used to indicated central tendency and spread of the data. For categorical variables, absolute and relative
frequencies (%) were calculated. Where applicable, comparison of sub-groups will be performed using Mann-
Whitney or Kruskal-Wallis-tests for for continuous variable with two and three groups, respectively. For the
comparison of categorical variables between different groups, χ2 tests were used.

4.2 Finite mixture models

Based on current knowledge, finite mixture models (FMM) with k ∈ {2,3} components will be fit, allowing
for component-specific variances (σ2):

Y |(µ, σ2) ∼ N(µ, σ2)

(µ, σ2) ∼

(
µ1, σ

2
1 ... µ1, σ

2
k

π1 ... πk

)

where πi is the probability of component ki.

Assuming that ψ is a vector that contains the parameters of the finite mixture model,

ψ⃗ = (π⃗, θ⃗),

where θ is the vector of parameters describing the densities for the mixture components, in the case of a
normal distribution the parameters µ and σ2.

The expectation-maximization (EM) algorithm will be used to estimate the finite mixture model parameters
by maximizing the expectation of the complete data log-likelihood

E[ℓ(ψ|y, Z)|y]

The EM algorithm iteratively estimates a series of ψ(t) in two steps, leading to the convergence to the
maximum likelihood estimate of ψ. Starting from a value t, first

Q(ψ|ψ(t)) = E[ℓ(ψ|y, Z)|y, ψ(t)]

is calculated (E-step), which is afterwards maximized with respect to ψ (M-step), leading to an updated
estimate ψ(t+1). The procedure is repeated until the difference between ℓt and ℓt+1 falls bellow a pre-defined
threshold ε (with ε>0).

In order to get an initial impression about whether or not this assumption is compatible with the data,
an approach suggested by Schlattman will be used14: Non-parametric bootstrap samples will be obtained
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from the cross-sectional data set by sampling with replacement. The number of support-points for each of
these samples (k̂) will be estimated using the vertex exchange method (VEM). The VEM algorithm aims to
identify the mixing distribution G that fits the data best by finding Ĝ for which

ℓ(Ĝ) = max(ℓ(G))

for G ∈ Γ, where Γ stands for the class of the distributions. While in general, the estimate for Ĝ derived
from the VEM needs further scrutiny in order to make sure the obtained estimated is a true non-parametric
maximum-likelihood estimate (NPMLE) and unique, this was not done for each of the bootstrap replicates
for Ĝ due to the exploratory character of this approach. Instead, the estimated number of components k
was registered for each VEM replicate and the distribution of k̂ through the replicates was be explored with
regard to the frequency of k̂=2 and k̂=3.

For a direct model comparison for the cases of k ∈ 2, 3, the fit to the data will be determined using the log
likelihood obtained under k components, and the two models will be compared using log likelihood but also
Akaike Information Criteria (AIC)

AIC = 2 · k − 2 · ln(L̂)

and Bayesian Information Criteria (BIC)

BIC = k · ln(n) − 2 · ln(L̂)

4.3 Longitudinal data analysis

The model for the marginal average evolution was based on the visual exploration of the longitudinal data
(overall as well as component-specific) in conjunction with the exploration of a random subset of individual
longitudinal profiles. A linear mixed-model fo the following form was be fitted:

Yi = Xiβ⃗ + Zib⃗i + ϵi

bi ∼ N(0, D) ϵi ∼ N(0,Σi)

where β⃗ and b⃗i describe the fixed- and random-effects, respectively, with D and Σ containing the variance
components.
Furthermore, b1, ...bN , ϵ1, ..., ϵN are assumed to be independent.

Maximum likelihood (ML) will be used for parameter estimation, allowing for likelihood-ratio test inference
on model selection. A backward selection will be used to fit the model to the data. The parameter to
be excluded will be chosen based on the largest p-value. Models will be compared after each step, using
likelihood ratio tests (LRT) of the form

λ = −2 · (ℓp−1 − ℓp),
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where ℓ represents the log-likelihood of the models with p and p-1 parameters, respectively. For fixed effects,
hypotheses will be tested assuming

λ ∼ χ2
1

for the reduction of one fixed effect at a time, while for random effects a mixture of χ2
p−1 and χ2

p

λ ∼ χ2
(p−1):p

will be assumed.

Given the unbalanced data set with highly variable times between observations, an unstructured variance-
covariance matrix will be assumed without further modification.

Assessment of the model fit will be based on visual exploration of the residuals and, if necessary, be re-
fit after Box-Cox transformation of the dependent variable. Box-Cox transformation was performed using
transformations

Y
(λ)

t =
{

Y λ
t −1
λ λ ̸= 0

loge(Yt) λ = 0

with

λ = −2 + 0.5 · k

for k ∈ Z and 0 ≤ k ≤ 8.

4.4 Conventions

Where needed, seeds were set using ‘20232024’.
A level of significance of α=0.05 was used.
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5 Results

Overall, 1452 PWH were included, resulting in a total of 31334 observations for the longitudinal data analysis.
Characteristics of the study sample can be found in table 3.

Table 3: Characteristics of the study sample at initial presentation at the study site.

Variable Results missing
Age [years], median (IQR) 38.0 (30.0; 46.0) 0 (0.0%)
Sex [female], n (%) 300 (20.7) 0 (0.0)
Route of transmission [MSM], n (%) 537 (44.9) 255 (17.6)
CD3+/CD4+ [cells/µL], median (IQR) 382.0 (229.0; 536.0) 0 (0.0%)
CD3+/CD4+ [%], median (IQR) 21.0 (14.0; 28.0) 0 (0.0%)
CD3+/CD8+ [cells/µL], median (IQR) 382.0 (229.0; 536.0) 0 (0.0%)
CD3+/CD8+ [%], median (IQR) 21.0 (14.0; 28.0) 0 (0.0%)
CD4/CD8 [ratio], median (IQR) 0.4 (0.2; 0.6) 0 (0.0%)
HIV RNA [copies/mL], median (IQR) 38736.5 (8917.2; 150808.2) 0 (0.0%)
AIDS defining condition [present], n (%) 127 (9.0) 36 (2.5)
Status at data cut [dead], n (%) 44 (3.0) 0 (0.0)

At the time of first presentation, 647 (44.6 %) and 305 (21.0 %) of the PWH included in this study had
CD3+/CD4+ cells <350 cells/µL and <200 cells/µL, respectively. In 454 (31.3 %) of PWH an HIV-1 RNA
concentration > 100,000 copies/mL was found.

5.1 Distribution of CD3+/CD4+ cells at baseline

The distribution of the concentration of CD3+/CD4+ cells at first presentation of PWH in the study sample
is displayed in figure 3.

Repeatedly applying the VEM algorithm in order to explore the distribution of the numbers of components
identified in non-parametric bootstrap samples as suggested by Schlattmann14 identified a mode for k̂=3
(49%), followed by k̂=4 (13%).

Fitting a two-component finite mixture model of normal distributions to the data results in the following
mixing distribution:

Y ∼

(
µ1 µ2

π1 π2

)
=
(

328 628
0.76 0.24

)

with σ1 = 182 and σ2 = 264.

For a three-component finite mixture model of normal distributions, the following mixing distribution is
obtained:

Y ∼

(
µ1 µ2 µ3

π1 π2 pi3

)
=
(

43 352 644
0.07 0.68 0.25

)
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with with σ1 = 27, σ2 = 159, and σ3 = 241. Information criteria for both finite mixture models can be found
in table 4.

Table 4: Information criteria for the two- and three-component finite mixture model

k=2 k=3 d
Likelihood -9,981 -9,935 -46
Deviance 19,962 19,870 92
AIC 19,965 19,877 88
BIC 19,976 19,893 83

The distribution of the components in the two- and three-component mixtures can be found in figure 5.
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Figure 5: Mixing distribution for the two- and three-component final mixture models.

5.2 Longitudinal data analysis

Exploration of the marginal average evolution over time seems to justify a linear regression with different
slopes for the time before and after about 100 weeks; for the sake of practicality, the cut-off for the different
slopes will be assumed to be at 104 weeks, corresponding to two years of follow up.
Exploration of the individual profiles of a subset of randomly chosen participants with an observation time
of at least 104 weeks (2 years) demonstrates high intra- and inter-individual variability (figure 7), justifying
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Table 5: Comparison of characteristics between PWH assigned to each of the components of the two-
component finite mixture model.

k=1 k=2 p-value
Age [years], median (IQR) 38.0 35.0 0.012

(31.0; 46.0) (29.0; 45.0)
missing, n (%) 0 (0.0%) 0 (0.0%)
Sex [female], n (%) 979 173 0.349

(78.9) (82.0)
missing, n (%) 0 (0.0) 0 (0.0)
MSM [yes], n (%) 449 88 0.102

(43.8) (50.9)
missing, n (%) 217 (17.5) 38 (18.0)
Region of origin [Subsahran Africa], n (%) 203 25 0.191

(19.0) (13.6)
missing, n (%) 171 (13.8) 27 (12.8)
CD3+/CD4+ [cells/µL], median (IQR) 340.0 776.0 <0.001

(204.0; 465.0) (699.0; 894.0)
missing, n (%) 0 (0.0%) 0 (0.0%)
CD3+/CD4+ [%], median (IQR) 19.0 32.0 <0.001

(13.0; 26.0) (26.0; 38.0)
missing, n (%) 0 (0.0%) 0 (0.0%)
CD4/CD8 [ratio], median (IQR) 0.3 0.7 <0.001

(0.2; 0.5) (0.5; 1.0)
missing, n (%) 0 (0.0%) 0 (0.0%)
HIV RNA [copies/mL], median (IQR) 47324.0 11227.0 <0.001

(11277.0; 173375.0) (2110.0; 42277.5)
missing, n (%) 0 (0.0%) 0 (0.0%)
AIDS defining condition [yes], n (%) 123 4 0.008

(10.1) (2.0)
missing, n (%) 29 (2.3) 7 (3.3)
Status at data cut [death], n (%) 42 2 0.091

(3.4) (0.9)
missing, n (%) 0 (0.0) 0 (0.0)

random intercepts as well as random time effects. Furthermore, addition of a quadratic time effect might be
reasonable.

Based on the results of the exploratory data analysis, the most complex model considered for the description
of the development of CD3+/CD4+ cells over time will be:

Yit = (β0 + I2 · β02 + I3 · β03 + b0i)+
(β1 + β1q · t1 + I2 · (β12 + β12q · t1) + I3 · (β13 + β13q · t1) + b1i) · t1+
(β2 + β2q · t2 + I2 · (β22 + β22q · t2) + I3 · (β23 + β23q · t2) + b2i) · t2 + εit

where β0,β1,β2 indicate common time effects throughout groups, while β02,β03 are group specific intercepts,
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(a) Original scale

(b) Transformed scale

Figure 6: Plots for the model diagnostic on the original (a) as well as the Box-Cox transformed scale (b) of
CD3+/CD4+ cell concentration for the two-component finite mixture model.
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Table 6: (#tab:tab:Comparisonk3Model)Comparison of characteristics between PWH assigned to each of
the components of the three-component finite mixture model.

k=1 k=2 k=3 p-value
Age [years], median (IQR) 41.0 38.0 35.5 <0.001

(34.0; 48.0) (30.0; 46.0) (29.0; 45.0)
missing, n (%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Sex [female], n (%) 108 854 190 0.387

(81.8) (78.5) (81.9)
missing, n (%) 0 (0.0) 0 (0.0) 0 (0.0)
MSM [yes], n (%) 45 395 97 0.154

(40.5) (44.1) (50.8)
missing, n (%) 21 (15.9) 193 (17.7) 41 (17.7)
Region of origin [Subsahran Africa], n (%) 13 186 29 0.105

(11.1) (20.0) (14.1)
missing, n (%) 15 (11.4) 156 (14.3) 27 (11.6)
CD3+/CD4+ [cells/µL], median (IQR) 37.0 361.0 757.5 <0.001

(16.0; 60.2) (250.0; 477.2) (682.0; 878.2)
missing, n (%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
CD3+/CD4+ [%], median (IQR) 4.0 20.0 32.0 <0.001

(2.0; 6.0) (15.0; 26.0) (26.0; 38.0)
missing, n (%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
CD4/CD8 [ratio], median (IQR) 0.1 0.4 0.7 <0.001

(0.0; 0.1) (0.2; 0.6) (0.5; 1.0)
missing, n (%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
HIV RNA [copies/mL], median (IQR) 271442.5 40235.5 11766.0 <0.001

(85336.8; 705077.5) (10516.8; 124615.0) (2224.2; 45394.5)
missing, n (%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
AIDS defining condition [yes], n (%) 56 67 4 <0.001

(42.4) (6.3) (1.8)
missing, n (%) 0 (0.0) 27 (2.5) 9 (3.9)
Status at data cut [death], n (%) 9 33 2 0.006

(6.8) (3.0) (0.9)
missing, n (%) 0 (0.0) 0 (0.0) 0 (0.0)

and β12,β13,β22,β23 are group specific slopes with I2,I3 being the indicator for the groups k2,k3, respectively.
For the error term the assumption is

εi ∼ N (0, σ2
εi

)

Index q indicated the coefficients for the quadratic time effects. b0i, b1i, and b2i represent, subject specific
random effects, for which we assume:

bxi ∼ N (0, σ2
bx

)

For t1, t2 the following definitions hold:

t1 =
{

t t < 104
104 t ≥ 104
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Figure 7: Individual, longitudinal profiles of five randomly chosen study participants (A), and one participant
per group for the two-(B) and three-component model (C), respectively, with a minimum observation time
of 104 weeks.

t2 =
{

0 t < 104
t− 104 t ≥ 104

5.2.1 Model-fitting for k=2 components

First, the possibility of reducing the random effects structure of the model was tested by removing one
random effect at a time and using likelihood ratio tests for variance components to compare the reduced
models against the full random effects model. As for each of the random effects the removal resulted in a
significant change of the model fit (p < 0.001 for all), the random effects structure remained unchanged.
The steps of reduction of the fixed effect structure using a backward selection departing from the initial
model can be found in table 7.

5.2.1.1 Model diagnostics and remedial measures Plots for the diagnostic of the model derived in
the previous section can be found in figure 8a.

In the lowest and particularly in the highest ranges of the standardized residuals, a relevant deviation from the
standard normal distribution can be found. Also, some heteroscedacicity might be assumed when exploring
the standardized residuals over the range of fitted values. Among the series of Box-Cox transformations, a
transformation using λ=0.5 seemed to reduce the deviation of the residuals from the normal assumptions
best (figure 8).

A comparison between the observed against the predicted mean average evolution of the CD3+/CD4+ over
time is given in figure 9. For both models, before and after transformation, the agreement between the
observed and predicted concentrations of CD3+/CD4+ seem to be comparable.
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(a) Original scale

(b) Transformed scale

Figure 8: Plots for the model diagnostic on the original (a) as well as the Box-Cox transformed scale (b) of
CD3+/CD4+ cell concentration for the two-component finite mixture model.
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(a) Original scale

(b) Transformed scale

Figure 9: Comparison of observed (loess smoothing with 95% conficdence interval) versus predicted for the
two-component model.
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Table 7: Backward selection steps for the two-component mixture model.

Selection step
1 2 3

estimate p-value estimate p-value estimate p-value
β0 369.4 (p<0.001) 369.4 (p<0.001) 369.6 (p<0.001)
β02 454.0 (p<0.001) 453.4 (p<0.001) 452.4 (p<0.001)
β1 3.9 (p<0.001) 3.9 (p<0.001) 3.9 (p<0.001)
β12 -2.7 (p<0.001) -2.6 (p<0.001) -2.7 (p<0.001)
β1q 0.02 (p<0.001) 0.02 (p<0.001) 0.02 (p<0.001)
β12q -0.02 (p<0.001) -0.02 (p<0.001) -0.02 (p<0.001)
β2 0.65 (p<0.001) 0.64 (p<0.001) 0.65 (p<0.001)
β22 -0.04 (p=0.701) — — — —
β2q 0.0007 (p<0.001) 0.0007 (p<0.001) 0.0007 (p<0.001)
β22q 0.0001 (p=0.572) 0.0002 (p=0.263) — —
Likelihood and likelihood ratio test
ℓ - 199,444.5 -199,444.6 0.701 -199,445.2 0.263

5.2.2 Model-fitting for k=3 components

Again, the possibility of reducing the random effects structure of the model was tested by removing one
random effect at a time and using likelihood ratio tests for variance components for model comparision. As
for each of the random effects, the removal resulted in a significant change of the model fit (p < 0.001 for
all), the random effects structure remained unchanged. The steps of reduction of the fixed effect structure
using a backward selection departing from the initial model can be found in table 8.

5.2.2.1 Model diagnostics and remedial measures Plots for the model diagnostic of the model
derived in the previous section can be found in figure 10(a).

Again, in the lowest and particularly in the highest ranges of the standardized residuals, a relevant deviation
from the quantiles of the standard normal distribution can be found and some heteroscedacicity might be
assumed when exploring the standardized residuals over the range of fitted values. Among the series of
Box-Cox transformation, a transformation using λ=0.5 seemed to reduce the deviation of the residuals from
the normal assumptions best (figure 10(b)).

A comparison between the observed against the predicted mean average evolution of the CD3+/CD4+ over
time is given in figure 11.

Of note, the deviation from the predicted versus the observed CD3+/CD4+ cell concentration increases
markedly, particularly in the group with the lowest concentrations at baseline after Box-Cox transformation,
seemingly because of a bad fit in the first time interval (up to 104 weeks). This might be related to elimination
of the linear time effect for the intermediate group (k=2) from the model, which forces a common coefficient
for both groups. Re-introducing the linear time effect into the model on the Box-Cox transformed scale
leads to a significantly increased fit of the modified model (p<0.001) and increases the agreement between
observed and predicted concentrations of CD3+/CD4+ cells on the Box-Cox transformed scale (figure 12).
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(a) Original scale

(b) Transformed scale

Figure 10: Plots for the model diagnostic on the original (a) as well as the Box-Cox transformed scale (b)
of CD3+/CD4+ cell concentration for the three-component finite mixture model.
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(a) Original scale

(b) Transformed scale

Figure 11: Comparison of observed (loess smoothing with 95% conficdence interval) versus predicted for the
three-component model.
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(a) Plot for the model diagnostic for the modified model for the Box-Cox transformed dependent variable

(b) Comparison of observed versus predicted for the modified three-component model

Figure 12: Model diagnostic and observed-vs-fitted plot for the modified three-component model.
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Table 8: Backward selection steps for the three-component mixture model.

Selection step
1 2 3 4

estimate p-value estimate p-value estimate p-value estimate p-value
β0 88.5 (p<0.001) 91.0 (p<0.001) 91.0 (p<0.001) 90.9 (p<0.001)
β02 311.0 (p<0.001) 308.1 (p<0.001) 308.1 (p<0.001) 308.2 (p<0.001)
β03 718.0 (p<0.001) 715.4 (p<0.001) 715.2 (p<0.001) 715.2 (p<0.001)
β1 4.3 (p<0.001) 3.9 (p<0.001) 3.9 (p<0.001) 3.9 (p<0.001)
β12 -0.35 (p=0.398) — — — — — —
β1 -3.1 (p<0.001) -2.8 (p<0.001) -2.8 (p<0.001) -2.8 (p<0.001)
β1q 0.02 (p<0.001) 0.02 (p<0.001) 0.02 (p<0.001) 0.02 (p<0.001)
β12q 0.0003 (p=0.092) 0.003 (p<0.001) 0.004 (p=0.036) 0.004 (p=0.025)

-0.02 (p<0.001) -0.02 (p<0.001) -0.02 (p<0.001) -0.02 (p<0.001)
β2 0.95 (p<0.001) 0.94 (p<0.001) 0.83 (p<0.001) 0.81 (p<0.001)
β22 -0.31 (p=0.017) -0.30 (p=0.022) -0.19 (p=0.077) -0.16 (p=0.092)

-0.44 (p=0.003) -0.42 (p=0.004) -0.28 (p=0.010) -0.28 (p=0.009)
β2q 0.001 (p=0.001) 0.001 (p=0.001) 0.001 (p<0.001) 0.001 (p<0.001)
β22q -0.0005 (p=0.095) -0.0005 (p=0.121) -0.0001 (p=0.548) — —
β23q -0.0005 (p=0.117) -0.0005 (p=0.144) — — — —
Likelihood and likelihood ratio test
ℓ -199,248.8 -199,249.2 0.398 -199,250.2 0.144 -199,250.4 0.547

5.2.3 Final models

5.2.3.1 Final two-component model The parameter estimates for the final two-component model on
the Box-Cox transformed scale for the dependent variable using λ=0.5 is displayed in 9.

5.2.3.2 Final three-component model The parameter estimates for the final three-component model
on the Box-Cox transformed scale for the dependent variable using λ=0.5 is displayed in 10.
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Table 9: Parameter estimates for the final two-component mixture model on the Box-Cox transformed scale
of the dependent variable.

Value Std.Error DF t-value p-value
Intercepts
β0 34.8 0.3 29885 119.9 <0.001
β02 19.9 0.8 1441 26.2 <0.001

Slopes
β1 0.20 0.01 29885 38.4 <0.001
β12 -0.16 0.01 29885 -11.4 <0.001
β1q 0.001 0.000 29885 25.0 <0.001
β12q -0.0009 0.0001 29885 -8.1 <0.001
β2 0.03 0.00 29885 21.1 <0.001
β2q 0.00003 0.00000 29885 12.1 <0.001

Table 10: Parameter estimates for the final three-component mixture model on the Box-Cox transformed
scale of the dependent variable.

Value Std.Error DF t-value p-value
Intercepts
β0 16.2 0.70 29880 23.2 <0.001
β02 20.7 0.74 1440 28.1 <0.001
β03 38.3 0.89 1440 43.2 <0.001

Slopes
β1 0.28 0.009 29880 30.2 <0.001
β12 -0.08 0.009 29880 -9.9 <0.001
β13 -0.24 0.015 29880 -15.8 <0.001
β1q 0.0011 0.00004 29880 25.5 <0.001
β13q -0.0011 0.00011 29880 -9.6 <0.001
β2 0.0391 0.00452 29880 8.6 <0.001
β22 -0.0104 0.00471 29880 -2.2 0.028
β23 -0.02 0.006 29880 -4.1 <0.001
β2q 0.00004 0.000011 29880 4.2 <0.001
β22q -0.00001 0.000011 29880 -1.0 0.302
β23q -0.00002 0.000012 29880 -1.8 0.067
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6 Discussion

With more than 1,400 PWH for the cross-sectional and over 30,000 observations for the longitudinal analysis,
it was possible to identify a considerable number of people to be included into this analysis after applying
in- and exclusion criteria. Participants were predominantly male with a median age of 38 years, which is in
line with characteristics of the overall population of PWH in Germany15, which might be of interest when
considering generalization of the data presented in this study.

When exploring the distribution of CD3+/CD4+ cells at first presentation at the study site (figure 3), it
is evident that PWH with a wide variety of CD3+/CD4+ cell concentrations were included into the study
(0 - 1478 cells/µL) which seems important for its objective. Of note, 647 (44.6 %) and 305 (21.0 %)
of all participants presented with CD4 cells <350 cells/µL and <200 cells/µL, respectively, and therefore
represented groups of people with late diagnosis or advanced HIV disease.

This study aimed at accounting for heterogeneity in the distribution of CD3+/CD4+ cells at the first contact
with a specialized HIV clinic by means of finite mixture models. This is not only motivated by the fact that a
single normal distribution does not seem to describe the distribution of CD3+/CD4+ cells at first presentation
entirely (figure 3); it is clinically motivated by the knowledge that the time between contracting the virus and
the diagnosis of HIV is highly variable but will eventually determine in which ‘state’ of the disease someone
will be diagnosed, be transferred to a specialized HIV-center, or start antiretroviral treatment. Therefore,
the distribution as explored in this study can be seen as a mixing distribution for which latent groups are
presented by disease ‘stage’ as a major source of heterogeneity. These ‘stages’ are highly relevant with regard
to the further clinical course of the disease: as described previously, there is a big body of evidence linking
late diagnosis with adverse outcomes and a higher risk of disease progression and development of AIDS
defining diseases6,7,16–20. Therefore, assuming two or three sub-populations in the mixing distribution of
CD3+/CD4+ cells at first presentation might be justified.

Looking at the fit of these two finite mixture models, both seem to describe the general form of the distribution
of CD3+/CD4+ cells well (figure 5). Of interest: adding one more component to the two-component finite
mixture model identifies an additional normal distribution at the lower end of the spectrum which seems
in good line with the current clinical classification of people with late diagnosis and presentation with
advanced HIV disease. While adding a third component might therefore have a good clinical justification,
the conclusion is less straightforward from a statistical point of view, as due to the boundary issues of
restricted models, the log-likelihood test statistic does not follow a χ2-distribution and cannot be used for
inference in the usual way21–23. Information criteria are often used to compare mixture models with different
numbers of components, of which AIC and BIC are probably the most well-known ones. With both criteria,
the three-component model seemed to fit the model better, even when accounting for the higher number of
parameters, which both information criteria do by penalizing a higher number of parameters21,22. Preference
of the three-component model is also supported by the approach suggested by Schlattmann14, in which the
number of support points k is estimated from VEM replicates on bootstrap samples with replacement from
the original data, resulting in a discret distribution of the estimated ‘best’ number of support points k̂. The
mode of the distribution of k̂ is then considered as best supported by the data.

The sub-populations identified by the finite mixture models should be clincially meaningful in order to have
a practical relevance. Having a closer look at the three-component model, it can be seen that the normal
distributions in the mixing distribution are centered at about 50, 350, and 650 cells/µL; intersections are
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found at approximately 100 and 600 cells/µL. The three subgroups might therefore be seen as representa-
tions from populations of PWH with a ‘normal’ immune status or at an early stage (>600 cells/µL), an
intermediate stage at the time of diagnosis (100 – 600 cells/µL), as well as a group with advanced HIV
disease or a ‘late’ stage (< 100 cells/µL). It is noteworthy that in this model the sub-population with the
lowest CD3+/CD4+ cell count is characterized by a much lower threshold than any other routinely used
cut-off, of which <200 cells/µL is the lowest. Interestingly, for most opportunistic infections, the median
CD3+/CD4+ cell concentration is considerably lower than 200 at the time of diagnosis, and often around
or lower than <100 cells/µL24. While the group with the highest CD3+/CD4+ cell count does not need
a lot of explanation, it might be worth giving the intermediate group another though. First of all, this
groups contains PWH that are considered ‘late diagnosed’, and even presenting with advanced HIV disease
as per usual classification, harboring both, PWH with < 350 but also < 200 cells/µL, but also people with
CD3+/CD4+ cell counts within the range of people without HIV (> 450 cells/µL). It should be considered
that while still demonstrating a concentration of CD3+/CD4+ cells in the lower-normal range at the time
of diagnosis, people in this groups might nevertheless have experienced a decrease in their CD3+/CD4+

cells, as their ‘set-point’ prior to being infected with HIV is usually not known. While the meaning of the
subgroups in terms of longitudinal evolution will be elaborated on in more detail in a further paragraph of
this section, it can already be seen now, that the characteristic of the people assigned to different groups by
the posterior probabilities from the finite mixture models, are markedly different (tables 5 and ??). Regard-
less of the number of components used for the finite mixture model, higher age seems to be associated with
lower CD3+/CD4+ cell concentrations, most likely as an indicator of later presentation, which is in good
line with previous publications25. Also, lower CD3+/CD4+ cell concentrations are associated with higher
concentrations of HIV-1 RNA, lower CD4+/CD8+ ratios, as well as a higher probability to present with
AIDS-defining diseases. The difference in the proportion of PWH presenting with AIDS-defining disease
between neighbouring sub-populations was most remarkable between the components with low and inter-
mediate CD3+/CD4+ cell concentrations in the three component model, with 42.4% vs. 6.3%, respectively.
This can be seen as an indicator that it does make sense to further distinguish PWH that are summarized in
the first component of the two-component mixture model. This is further supported by the fact, that in the
three component model, there was a higher proportion of PWH that had died at the time of data collection
in the groups of lowest CD3+/CD4+ cells at baseline.

Having a closer look at the meaning of the overall study sample, but also the different sub-populations in
terms of longitudinal development of CD3+/CD4+ cells over time, there seems to be a different evolution
in the first two years when compared to the time thereafter. This result of the exploratory data analysis
motivated a regression model with different parameters for this initial time, corresponding to the most
significant immune reconstitution on average, compared to the time interval afterwards, while the cut-off
at 104 weeks was a data-driven choice and therefore a source of over-fitting, other studies have reported
similar time spans of most relevant immune recovery following ART initiation26–28. It might therefore be
justified to assume biologically different situations for the two different time intervals: In the first two years
after first presentation, ART initiation might be the dominant factor to determine changes in immune cell
concentrations, while in the further course the evolution might be more strongly influenced by other factors,
including age, comorbidities, and comedication. While a more ‘unique’ modelling approach for the entire
period of observation might be achieved using a non-linear model, the split regression approach used in the
study seems biologically justified, particularly as interest circled mostly around the early phase of the immune
reconstitution, which is the main driver of the overall immune recovery. It is worth noting some similarities
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for the two- and three-component models: First, the ‘plateau’ of the CD3+/CD4+ concentration after the
phase of immune reconstitution is different for different subgroups. In particular, lower concentrations
at initiation of ART are associated with a lower plateau after restoration of the HIV-caused depletion of
CD3+/CD4+ cells, which is highly supportive of the current recommendation of an early start of ART, as
later initiation at lower CD3+/CD4+ cell concentrations might result in a less complete quantitative immune
reconstitution. This is therefore in good line with other results29–32. While the magnitude of the plateau
is different for different subgroups, all of them are achieved at around two years after first presentation and
therefore (in most PWH) ART initiation. This is particularly interesting as it indicated that after two years,
a good estimate of the overall immune reconstitution might be obtained, in line with the immune recovery
after two years being a good surrogate of long term outcomes in PWH presenting late33. Second, both
models lost comparably in model fit, when trying to remove random effects from the model. This seems
understandable when having a look at the individual profiles of study participants (figure 7), where high
inter-individual variability in terms of baseline CD3+/CD4+ and evolution over time is found. This seems
to justify the inclusion of random intercepts and slopes. Third, and more technically, for both models the
sub-population belonging to the distribution with the lowest CD3+/CD4+ mean, was taken as the reference.
For the interpretation of the parameters, this parameterization has to be kept in mind for correct inference.
Yet, in both models, PWH belonging to the sub-population with the lowest average concentration at baseline
are attributed the highest increase of CD3+/CD4+ cells per time unit.

6.1 Limitations

This study has several limitations. First of all, despite having a considerable sample size, it must be
kept in mind that all PWH included in this study were taken care of in a single HIV clinical care center.
Therefore, there might be some homogeneity in terms of choice of initial antiretroviral treatment, time to
initiation, but also a selection of people attending the clinic in general, which might be relevant in terms
of patient characteristics. This is, of course, noteworthy, when thinking about generalizing the results
presented to PWH outside this clinic. In particular, the model developed might be very tightly fitted to
PWH attending the study site, which highly impairs generalizability. Several factors, that might influence
immune recovery after ART initiation, were not taken into account in the model in order to focus. Yet,
factors such as sex30, body-mass index32,34, and the choice of antiretroviral regimen itself33,35 might be of
interest and contribute to a better fit of the model. However, it must be kept in mind that the primary aim
of the study was to explore general differences in immune recovery between different sub-populations in the
mixing distribution for CD3+/CD4+ cells to support the plausibility of the FMM, rather than the optimal
modelling of the longitudinal development itself. Another limitation is, that the date of actual initiation of
antiretroviral therapy could not be extracted from the data. Therefore, particularly in the sub-groups with
higher CD3+/CD4+ cell concentrations at baseline, antiretroviral therapy might not have been initiated right
away. While a higher number of deaths was found in the groups of lower CD3+/CD4+ cell concentrations,
the number of these events was overall low and not adjusted for the possibility of different observation
times and age, which does not allow for a robust conclusion. The presence of AIDS-defining conditions first
presentation was identified by individual electronic patient file review, which is prone to mistakes.
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6.2 Ethics, societal relevance and stakeholder awareness

The results presented in this study imply, that PWH might already be diagnoses ‘late’ when still having
CD3+/CD4+ cells within the reference range. This is of clinical relevance as this group of people in whom
watchful waiting is sometimes advocated even today, might already be at a significantly higher risk of rel-
evant HIV-related comorbidities including AIDS-defining conditions and probably even higher mortality.
Interestingly, the classification derived from the finite mixture model differs from the conventionally used
classification such as the one from the Centers for Disease Control and Prevention (CDC) or consensus
definitions of late diagnosis or diagnosis with advanced HIV disease and might therefore be seen as a comple-
mentary measure for individual risk assessment in PWH, particularly in the sub-group of the intermediate
group in the three-component model.
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7 Conclusion

The distribution of CD3+/CD4+ cells at the first presentation as analysed in this study seems to be well
described by a finite mixture model with three components with component-specific variances. The three
groups seem to be relevant with regard to the probability of having AIDS-defining conditions and probably
also mortality. Immune recovery seems, on average, to be different for people belonging to different sub-
populations of the mixing distribution, where for all groups the most relevant increase in CD3+/CD4+ cells
occurs within the first two years after initial presentation at a specialized center, where most PWH might
have received quick ART initiation.

7.1 Further research

First and foremost, further research should try to veri- or falsify what has been described in this study.
Before any other steps, it must be made clear if alternative thresholds for classification of PWH according
to baseline CD3+/CD4+ count also seem to be plausibly in independent study samples and if they are
comparable to cut-offs identified here (external validation). It seems worth investigating if more elaborate
mixture models, including Bayesian mixture models, might contribute to better discrimination of PWH
into the different subgroups by taking other factors into account and not only relying on CD3+/CD4+ cell
concentrations.
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A Supplementary Material
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A.1 Countries and Regions

Table 11: Overview over the possible countries of origin and their assigment to a geographic region for the
purpose of this study.

Asia Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh, Bhutan, Brunei,
Cambodia, China, Cyprus, Georgia, India, Indonesia, Japan, Kazakhstan,
Kuwait, Kyrgyzstan, Laos, Malaysia, Maldives, Mongolia, Myanmar, Nepal,
North Korea, Oman, Pakistan, Palestine, Philippines, Qatar, Saudi Arabia,
Singapore, South Korea, Sri Lanka, Syria, Taiwan, Tajikistan, Thailand,
Timor-Leste, Turkmenistan, United Arab Emirates, Uzbekistan, Vietnam

Carribean Anguilla, Antigua and Barbuda, Antigua, Aruba, Bahamas, Barbados,
Barbuda, Bermuda, British Virgin Islands, Bonaire, Cayman Islands, Cuba,
Curacao, Dominica, Dominican Republic, Grenada, Guadeloupe, Haiti,
Jamaica, Martinique, Montserrat, Netherlands Antilles, Puerto Rico, St.
Kitts and Nevis, Saint Kitts, Saint Lucia, St. Lucia, St. Vincent and
Grenadines, Saint Martin, Sint Maarten, Trinidad and Tobago, Turks and
Caicos Islands, US Virgin Islands

Eastern Europe Ukraine, Belarus, Russia
Europe Albania, Andorra, Austria, Azores, Belgium, Bosnia and Herzegovina,

Bulgaria, Canary Islands, Czech Republic, Croatia, Cyprus, Denmark,
Estonia, Faroe Islands, Finland, France, Georgia, Germany, Greece, Hungary,
Iceland, Ireland, Isle of Man, Italy, Latvia, Liechtenstein, Lithuania,
Luxembourg, Madeira Islands, Malta, Moldova, Monaco, Montenegro,
Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, San
Marino, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, United
Kingdom, Vatican

Latinamerica Argentina, Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecuador,
Falkland Islands, French Guiana, Guatemala, Guyana, Honduras, Mexico,
Nicaragua, Panama, Paraguay, Peru, South Georgia, Suriname, Uruguay,
Venezuela

Middle East Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates, Iraq,
Iran, Israel, Jordan, Lebanon, Palestine, Syria, Turkey, Yemen

North Africa Algeria, Egypt, Libya, Mauritania, Morocco, Tunisia
North America Canada, El Salvador, Greenland, USA
Oceania American Samoa, Australia, Cook Islands, Fiji, French Polynesia, Guam,

Kiribati, Marshall Islands, Micronesia, Nauru, New Caledonia, New Zealand,
Niue, Norfolk Island, Northern Mariana Islands, Palau, Papua New Guinea,
Pitcairn Islands, Samoa, Solomon Islands, Tokelau, Tonga, Tuvalu, Vanuatu,
Wallis and Futuna

Subsaharan Africa Angola, Benin, Botswana, Burkina Faso, Burundi, Cabo Verde, Cameroon,
Central African Republic, Chad, Comoros, Congo - Brazzaville, Congo -
Kinshasa, Democratic Republic of the Congo, Djibouti, Equatorial Guinea,
Eritrea, Eswatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau,
Ivory Coast, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania,
Mauritius, Mozambique, Namibia, Niger, Nigeria, Republic of Congo,
Rwanda, São Tomé and Príncipe, Senegal, Seychelles, Sierra Leone, Somalia,
South Africa, South Sudan, Sudan, Tanzania, Togo, Uganda, Western Sahara,
Zambia, Zimbabwe
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A.2 Boostrap approach to estimation of destribution of k̂

Following a suggestion by Schlattmann14, bootstrap sampling from the original observations of CD3+/CD4+

cell concentrations at first presentation was performed with replacement. For each of the B = 100 bootstrap
samples, the number of components (k̂) in the distribution of CD3+/CD4+ cell concentrations was estimated
using the VEM algorithm and the distribution of k̂ obtained from the bootstrap replicates was explored
visually (figure 13) as well as using a frequency table (table 12).
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Figure 13: Distribution of the bootstrap replicates for the optimal numbers of components.

Table 12: Number of observation (n) among 100 estimations of the optimal number of components k.

3 4 5 6 7 8 9 10 12 15 16 23
n 49 13 10 8 6 4 2 3 1 2 1 1
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B R Code
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B.1 Data preparation

## Preparation of demographic data

demographics <- read_excel("Daten/demographics.xlsx")

## Preparation of main data

raw <- read_delim("Daten/Rohdaten.csv", delim = ";", escape_double = FALSE, trim_ws = TRUE)

n_initial = unique(raw$CenterPatId) |> length()

data = subset(raw, is.na(Date_sampletaken) == F)
data = subset(data, is.na(CD4ABS) == F)

data$Date_sampletaken = as.Date(data$Date_sampletaken, format="%Y.%m.%d",
origin = "1970-01-01")

data$Date_1st_CD4ABS = as.Date(data$Date_1st_CD4ABS, format="%Y.%m.%d",
origin = "1970-01-01")

data = subset(data, is.na(CenterPatId) == F)

Variablen = c("PID", "YoB", "Alter", "Geschlecht", "InfRisiko", "Erstvorstellung",
"CD4abs", "CD4rel", "CD8abs", "CD8rel", "Ratio", "HIV_RNA",
"Letztvorstellung", "Erstvorstellungsjahr", "Land")

n = unique(data$CenterPatId) |> length()

patienten = matrix(NA, nrow = n, ncol = length(Variablen))

patienten[,1] = unique(data$CenterPatId)

for(i in 1:n){
temp = subset(data, CenterPatId == patienten[i,1])
temp = temp |> arrange(SampleTakenCD4ABS)
patienten[i,2] = temp$YearOfBirth[1]
patienten[i,3] = as.numeric(substr(min(temp$SampleTakenCD4ABS, na.rm=T), 1, 4)) -

temp$YearOfBirth[1]
patienten[i,4] = temp$Gender[1]
patienten[i,5] = temp$InfRisiko[1]
patienten[i,6] = min(temp$SampleTakenCD4ABS, na.rm=T)
patienten[i,7] = temp$CD4ABS[1]
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patienten[i,8] = temp$CD4REL[1]
patienten[i,9] = temp$CD8ABS[1]
patienten[i,10] = temp$CD8REL[1]
patienten[i,11] = patienten[i,7] / patienten[i,9]
patienten[i,12] = temp$HIV_1RNA[1]
patienten[i,13] = max(temp$SampleTakenCD4ABS, na.rm=T)

}
patienten = patienten |> as.data.frame() |> "colnames<-"(Variablen)

patienten <- patienten[complete.cases(patienten[ , 'CD4abs']), ]
patienten$Erstvorstellung = as.Date(as.POSIXct(patienten$Erstvorstellung,

origin = "1970-01-01", tz = "UTC"), format = "Y-m-d")
patienten$Letztvorstellung = as.Date(as.POSIXct(patienten$Letztvorstellung,

origin = "1970-01-01", tz = "UTC"), format = "Y-m-d")
patienten$Erstvorstellungsjahr = substr(patienten$Erstvorstellung, 1, 4)
patienten$MSM = NA
patienten$MSM[patienten$InfRisiko == 1] = 1
patienten$MSM[patienten$InfRisiko != 1] = 0

patienten = mutate(patienten, FUZeit = difftime(patienten$Letztvorstellung,
patienten$Erstvorstellung, units = "weeks"))

patienten$FUZeit = as.numeric(patienten$FUZeit)

data = mutate(data, Date_1st_sampletaken = NA)

for(i in 1:nrow(patienten)){
if(sum(demographics$Nummer == patienten[i,1], na.rm=T) == 0) {patienten[i,15] = NA}
else {patienten[i,15] = demographics$Land[demographics$Nummer == patienten[i,1]][[1]]}

}

for(i in 1:nrow(data)){
data[i, 'Date_1st_sampletaken'] <- as.Date(patienten$Erstvorstellung[patienten$PID ==

data[i, 'CenterPatId'][[1]]])
}
data$Date_1st_sampletaken <- as.Date(data$Date_1st_sampletaken)
str(data$Date_1st_sampletaken)

data = mutate(data, followUp = as.numeric(difftime(data$Date_sampletaken,
data$Date_1st_sampletaken, units = "weeks")))

## Selection of viremic patients
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viremic = subset(patienten, HIV_RNA >= 200)
viremic_with_FU = subset(viremic, FUZeit > 0)
viremic_long = subset(data, CenterPatId %in% viremic$PID)

viremic = merge(viremic, demographics, by.x="PID", by.y="Nummer", all.x=T)
viremic$verstorben[is.na(viremic$verstorben) == T] = 0

B.2 Finite mixture models

nm_v_2 = normalmixEM(viremic$CD4abs, k = 2)
nm_v_3 = normalmixEM(viremic$CD4abs, k = 3)

# Schlattman approach to estimation of k

B = 100
n_pop = NA

set.seed(20232024)

for(i in 1:B){
Auswahl = sample(1:nrow(viremic), nrow(viremic), replace = T)
n_pop[i] = mixalg.VEM(obs=Auswahl, family = "gaussian", startk = 100,

limit = 1)@grid$p |> length()
}

table(n_pop)
prop.table(table(n_pop))

ggplot() +
geom_histogram(aes(n_pop), binwidth = 1) +
scale_x_continuous(breaks = seq(1,23,1)) +

labs(x="Number of components", y=TeX("n$_{obs}$"))

# Assigning the posterior probabilities to the participants

post2 = matrix(NA, ncol=3, nrow=nrow(viremic))
post2[,c(1:2)] = nm_v_2$posterior
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for(i in 1:nrow(post2)){
if(post2[i,1] > post2[i,2]) {post2[i, 3] = 1}
else {post2[i,3] = 2}

}

post2 = as.data.frame(post2)
names(post2) = c("k2_1", "k2_2", "post_k2")

post3 = matrix(NA, ncol=4, nrow=nrow(viremic))
post3[,c(1:3)] = nm_v_3$posterior
for(i in 1:nrow(post3)){

if(post3[i,1] > post3[i,2]) {kat = 1; max = post3[i,1]}
else {kat = 2; max = post3[i,2]}

if(max > post3[i, 3]) {kat = kat; max = max} else {kat = 3; max = post3[i,3]}
post3[i,4] = kat

}

post3 = as.data.frame(post3)
names(post3) = c("k3_1", "k3_2", "k3_3", "post_k3")

viremic = cbind(viremic, post2, post3) |> as.data.frame()

B.3 Linear mixed-model

# Construction of a long-format data-set

breakpoint = 104

viremic_long = mutate(viremic_long, posteriorGroupCD4_k2 = NA)
viremic_long = mutate(viremic_long, posteriorGroupCD4_k3 = NA)

# Introduction of group variables for both models

viremic_long = mutate(viremic_long, g1_k2 = 0)
viremic_long = mutate(viremic_long, g2_k2 = 0)
viremic_long = mutate(viremic_long, g3_k2 = 0)
viremic_long = mutate(viremic_long, g1_k3 = 0)
viremic_long = mutate(viremic_long, g2_k3 = 0)
viremic_long = mutate(viremic_long, g3_k3 = 0)

# Calculation of t1 and t2 from t

viremic_long = mutate(viremic_long, t1 = viremic_long$followUp)
viremic_long = mutate(viremic_long, t2 = viremic_long$followUp - breakpoint)

VIII



viremic_long$t1[viremic_long$followUp >= breakpoint] = breakpoint
viremic_long$t2[viremic_long$followUp < breakpoint] = 0

# Calculation of the quadratic terms

viremic_long = mutate(viremic_long, t12 = -1*viremic_long$t1ˆ2)
viremic_long = mutate(viremic_long, t22 = -1*viremic_long$t2ˆ2)

for(i in 1:nrow(viremic_long)){
pid = viremic_long[i, 'CenterPatId'][[1]]
viremic_long[i, 'posteriorGroupCD4_k2'] = viremic$post_k2[viremic$PID == pid][1]
viremic_long[i, 'posteriorGroupCD4_k3'] = viremic$post_k3[viremic$PID == pid][1]

}

viremic_long$g1_k2[viremic_long$posteriorGroupCD4_k2 == 1] = 1
viremic_long$g2_k2[viremic_long$posteriorGroupCD4_k2 == 2] = 1

viremic_long$g1_k3[viremic_long$posteriorGroupCD4_k3 == 1] = 1
viremic_long$g2_k3[viremic_long$posteriorGroupCD4_k3 == 2] = 1
viremic_long$g3_k3[viremic_long$posteriorGroupCD4_k3 == 3] = 1

## Box-Cox transformation of CD4 cell concentrations

transformations = seq(-2,2, by=0.5)

BC = matrix(NA, nrow=nrow(viremic_long), ncol=length(transformations))

for(i in 1:nrow(BC)){
for(j in 1:ncol(BC)){

if(transformations[j] == 0){
BC[i,j] = log(viremic_long[i, 'CD4ABS'][[1]])

} else {
lambda = transformations[j]
Y = viremic_long[i, 'CD4ABS'][[1]]
BC[i,j] = (Yˆlambda - 1) /(lambda)

}
}

}

colnames(BC) = c("BC01", "BC02","BC03","BC04","BC05","BC06","BC07","BC08","BC09")

bc_viremic_long = cbind(viremic_long, BC)
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rm(i, j, transformations)

B.3.1 Model fitting for the two-component model

k2_model_1 = lme(fixed = CD4ABS ~ g2_k2 +

t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + I(g2_k2 * t2) + t22 + I(g2_k2 * t22),
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = viremic_long)

summary(k2_model_1)

k2_model_2 = lme(fixed = CD4ABS ~ g2_k2 +
t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + t22 + I(g2_k2 * t22),
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = viremic_long)

summary(k2_model_2)
anova(k2_model_1, k2_model_2)

k2_model_3 = lme(fixed = CD4ABS ~ g2_k2 +

t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +

t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = viremic_long)

summary(k2_model_3)
anova(k2_model_2, k2_model_3)
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# Fitting of different models after Box-Cox transformation

k2_BC01 = lme(fixed = BC01 ~ g2_k2 +

t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k2_BC02 = lme(fixed = BC02 ~ g2_k2 +

t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k2_BC03 = lme(fixed = BC03 ~ g2_k2 +
t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k2_BC04 = lme(fixed = BC04 ~ g2_k2 +
t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k2_BC05 = lme(fixed = BC05 ~ g2_k2 +
t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +

t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
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na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k2_BC06 = lme(fixed = BC06 ~ g2_k2 +

t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,
control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k2_BC07 = lme(fixed = BC07 ~ g2_k2 +
t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k2_BC08 = lme(fixed = BC08 ~ g2_k2 +
t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k2_BC09 = lme(fixed = BC09 ~ g2_k2 +
t1 + I(g2_k2 * t1) + t12 + I(g2_k2 * t12) +
t2 + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)
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B.3.2 Model fitting for the two-component model

k3_model_1 = lme(fixed = CD4ABS ~ g2_k3 + g3_k3 +

t1 + I(g2_k3 * t1) + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22 + I(g2_k3 * t22) + I(g3_k3 * t22),
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = viremic_long)

summary(k3_model_1)

k3_model_2 = lme(fixed = CD4ABS ~ g2_k3 + g3_k3 +
t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22 + I(g2_k3 * t22) + I(g3_k3 * t22),
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = viremic_long)

summary(k3_model_2)
anova(k3_model_2, k3_model_1)

k3_model_3 = lme(fixed = CD4ABS ~ g2_k3 + g3_k3 +
t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22 + I(g2_k3 * t22),
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = viremic_long)

summary(k3_model_3)
anova(k3_model_3, k3_model_2)

k3_model_4 = lme(fixed = CD4ABS ~ g2_k3 + g3_k3 +

t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
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random = ~ 1 +t1 +t2 | PatientId,
control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = viremic_long)

summary(k3_model_4)
anova(k3_model_4, k3_model_3)

k3_model_5 = lme(fixed = CD4ABS ~ g2_k3 + g3_k3 +
t1 + I(g3_k3 * t1) + t12 + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = viremic_long)

summary(k3_model_5)
anova(k3_model_5, k3_model_4)

# Fitting of different models after Box-Cox transformation

k3_BC01 = lme(fixed = BC01 ~ g2_k3 + g3_k3 +
t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k3_BC02 = lme(fixed = BC02 ~ g2_k3 + g3_k3 +
t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +

t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k3_BC03 = lme(fixed = BC03 ~ g2_k3 + g3_k3 +
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t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +

t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k3_BC04 = lme(fixed = BC04 ~ g2_k3 + g3_k3 +

t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k3_BC05 = lme(fixed = BC05 ~ g2_k3 + g3_k3 +
t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k3_BC06 = lme(fixed = BC06 ~ g2_k3 + g3_k3 +
t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k3_BC07 = lme(fixed = BC07 ~ g2_k3 + g3_k3 +

t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)
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k3_BC08 = lme(fixed = BC08 ~ g2_k3 + g3_k3 +

t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

k3_BC09 = lme(fixed = BC09 ~ g2_k3 + g3_k3 +
t1 + I(g3_k3 * t1) + t12 + I(g2_k3 * t12) + I(g3_k3 * t12) +

t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22,
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

# Modification of the model to improve fit

k3_BC06_mod = lme(fixed = BC06 ~ g2_k3 + g3_k3 +
t1 + I(g2_k3 * t1) + I(g3_k3 * t1) + t12 + I(g3_k3 * t12) +
t2 + I(g2_k3 * t2) + I(g3_k3 * t2) + t22 + I(g2_k3 * t22) + I(g3_k3 * t22),
random = ~ 1 +t1 +t2 | PatientId,

control=lmeControl(returnObject=TRUE),
na.action = na.omit,
method = "ML",
data = bc_viremic_long)

anova(k3_BC06_mod , k3_BC06)

B.3.3 Generic plots for model diagnostics

moi = [Model of interest]

residplot(moi)
hist(resid(moi, type="pearson"), breaks=100,

main="Histogramm for the conditional residuals",
xlab="Standardized residuals")
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