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1 Abstract

Epidemiological data often involves both location and time and frequently requires the si-
multaneous display of multiple indicators—such as the number of cases and deaths, incidence
rates and population, or various disease-carrying species—to understand co-occurrence pat-
terns. This thesis focuses on the design, creation, and evaluation of a web-based application
that allows users to explore and visualize this type of data interactively. The application
places particular focus on aggregation techniques to prevent clutter in the visual space while
preserving the ability to visualize patterns, comparing different techniques to reach that goal.
It also emphasizes cross-filtering interactions between spatial and temporal components to
allow dynamic exploration across these dimensions at different resolutions. While the appli-
cation is designed for broad public use, its implications for enhancing engagement in citizen
science initiatives are an important consideration in this research.

2 Introduction

Epidemiological data often includes both geographical and temporal components, providing
public health officials, researchers, and the media with tools to communicate the spread
and impact of diseases through precise cartographic and temporal visualizations. These
visualizations help inform the public about potential risks, increase awareness of disease
dynamics, and promote effective countermeasures. When clear and accurate, these visual
representations guide public behavior and support disease prevention and control.

The availability of recent libraries, such as DuckDB, D3, and DeckGL, which allow querying
and visualizing large datasets directly in the browser on relatively low-end computers, offers
new opportunities to bring the essence of epidemiological datasets closer to a broad audi-
ence. These advancements enable the creation of dynamic, user-friendly interfaces that allow
users to explore data in real-time, providing insights that static visualizations cannot. By
incorporating interactive features like zooming, panning, and filtering, modern visualization
techniques enhance user engagement and deepen understanding of the data.

This research outlines the design, development, and evaluation of a novel application created
to compare various visualization techniques for moderately large epidemiological datasets.
The application initially focused exclusively on the user reports dataset from MosquitoAlert,
a key stakeholder in this research and a citizen science project that tracks invasive mosquitoes
through public participation via a mobile application. To demonstrate the generalizability
of the techniques used, a second section was added to visualize a dataset containing COVID-
19 indicators in France during the pandemic. The common objective of both sections is
to enhance the communication of epidemiological data to the general public, making the
information more accessible and comprehensible.

The development of the application adhered to several key principles, most notably the
Visual Information-Seeking Mantra articulated by Shneiderman [39]: "overview first, zoom
and filter, then details on demand." This approach begins by presenting a broad overview
to identify patterns and trends, followed by more detailed exploration through zooming,
filtering, and accessing specific details as needed. To create a system for exploring datasets
in both space and time, a custom-made interactive visualization system incorporating a
zoomable timeline and a zoomable map was designed and implemented. The system was
then evaluated for its ability to allow users to intuitively browse the datasets.
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As datasets grow larger, the gap between the vast data space and the limited visual space
becomes more challenging to manage. This difference makes it harder to visualize and analyze
the data effectively, requiring data aggregation techniques that are both fast and accurate.
These techniques help ensure that visual representations stay clear and understandable at
different levels of detail while allowing for smooth exploration. Because of this, extra attention
has been given to data clustering and visualization by aggregation.

The application’s aggregation techniques were evaluated and compared with existing meth-
ods, considering both algorithmic efficiency and visual effectiveness. The evaluation process
included benchmark comparison for algorithmic speed and feedback from a panel of users,
collected through structured questionnaires and in-depth interviews.

3 Societal Relevance and Ethics

The COVID-19 crisis highlighted how health emergencies can generate vast amounts of infor-
mation, leading to an "infodemic" [48], where misinformation spreads, particularly on social
media. Griffin notes that "anyone with access to the Internet and a basic computer can now
make maps to serve their own interests" [18]. This emphasizes the need for data visualization
creators to follow guidelines to avoid misleading the public.

When done properly, data visualization of epidemiological data can restore trust by provid-
ing clear and reliable information, raising public awareness, guiding policy decisions, and
improving disease control measures. Accurate and clear visuals help the public make in-
formed decisions, supporting public health. However, misleading visuals can cause confusion,
fear, or a false sense of security. Privacy concerns also arise when handling sensitive health
data, requiring proper anonymization and aggregation to maintain trust.

Data visualization may also enhance public participation in citizen science initiatives like
MosquitoAlert, allowing participants to explore the datasets they help create and supporting
epidemiological research.

This research addresses these ethical considerations by providing useful visualizations while
protecting privacy and avoiding misleading interpretations. By following best practices in
data visualization and ethics, this work aims to contribute positively to public health while
ensuring accuracy and privacy.

4 Historical Background

The origins of data visualization in epidemiology can be traced back to the late 18th century
when Valentine Seaman, a physicist, plotted cases of Yellow fever in his Inquiry into the cause
of the prevalence of yellow fever in New York, in which he plotted fatal cases of Yellow fever,
already noting the problem of overplotting and the problem of the inaccuracy of data: “The
cases that have occurred being too numerous to attempt to get an accurate history of them
all, and the want for proper marks would, at best, leave but an objectionable result.”

While the method was innovative, Seaman was mistaken in his conclusions, attributing Yellow
Fever to a tertium quid, a combination of emanations from a sick person and putrid miasmata.
The debate over the cause of diseases—miasma versus germs—continued until another famous
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map brought decisive progress. In 1854, a severe cholera outbreak struck Soho in London,
killing 616 people. John Snow, a British physician, mapped the cholera cases, identifying a
cluster around a contaminated water pump on Broad Street. This visualization was decisive in
demonstrating the waterborne nature of cholera, supporting the germ theory, and disproving
the miasma theory.

Figure 1: John Snow’s map of the Soho’s 1854 cholera outbreak, which was key in demon-
strating the waterborne nature of Cholera

While cartographic tools were used for visualization, the plotting along the time-axis of
disease indicators and potential co-factors also knew its early development at about the same
period with a famous example by another physicist during the same cholera outbreak in
London in an attempt to strengthen the miasma theory, where he plotted cases along time,
along with meteorological condition at the same time points 2.

A few years later, in 1858, Florence Nightingale, a nurse who served during the Crimean War
where she witnessed numerous deaths caused by avoidable diseases due to the lack of hygiene,
created one of the most famous visualization in history. She made a polar area chart, also
known as "Coxcomb" chart, using a radial time axis. This chart showed the causes of death,
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Figure 2: Acland’s chart in his attempt to attribute cholera to miasma during Soho’s 1854
cholera outbreak, plotting case numbers along with meteorological conditions
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with stacked areas of each section representing the number of deaths per month, for each
category of cause of death. It demonstrated that many deaths in the Crimean War were due
to preventable diseases rather than battle wounds, highlighting the need for better hygiene
and sanitation 3.

Figure 3: Nightingale’s "Diagram of the causes of mortality in the army in the East" showing
the causes of deaths on a radial time axis, highlighting preventable ones in blue

More recently, the COVID-19 crisis has probably been a defining moment for the visualization
of epidemiological data [24]. Dynamic mapping methods, access to multi-scale digital maps,
big data processing, and online dissemination have allowed real-time tracking of the disease’s
spread. The COVID-19 dashboard from Johns Hopkins University (JHU) is a prime example
4, providing an easy-to-use tool for researchers, public health authorities, and the public to
monitor the outbreak. This dashboard has become a global reference for situational awareness
and has been widely imitated.

5 Research Questions

The research questions for this thesis are framed within the context of disseminating informa-
tion to the general public. The goal is to use widely accessible tools to reach a broad audience
inclusively, while also enabling and fostering citizen science in projects like MosquitoAlert.
These questions are organized into two main categories:

5.1 Design

• Interactive Visualization: How can we design visualizations that are effective for
interactively exploring large epidemiological datasets?
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Figure 4: Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University (JHU)

• Pattern Identification: How can we identify and highlight geospatial and temporal
patterns at different stages of epidemiological events? Specifically, how can emerging
threats and weak signals be effectively visualized alongside patterns that occur when
those threats evolve into events at a much larger scale?

5.2 Technologies

• Responsive Interaction: What technologies are most appropriate for providing fluid
interaction with epidemiological data, ensuring quick response times to user inputs?

• Scalability: How can these technologies be scaled to handle increasingly large datasets
without compromising performance or user experience?

• Integration: How can these technologies be integrated into a web-based platform to
allow fluid interaction and exploration of geospatial and temporal data related to the
field of epidemiology by a wide audience?

6 Methodology
This section provides an overview of the datasets, the visual design of the application, the key
tools and techniques employed in its development, and the methods used for its evaluation.
The following subsections place the application within the context of research on interactive
data visualization, with a particular focus on epidemiological data.

6.1 Datasets

Two main datasets were used in this study based on their availability, relevance to the stake-
holders of this study, and representativeness for the techniques proposed in the thesis. Other
datasets were used to provide additional context and are described as well.
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6.1.1 MosquitoAlert Reports Dataset

MosquitoAlert [23] is a citizen science project and mobile application designed to monitor
the progression of invasive mosquito species, particularly those that are vectors for diseases
such as dengue, Zika, and chikungunya. Launched in 2014, this initiative is a collaboration
between several research institutions: CREAF (Centre for Ecological Research and Forest Ap-
plications), the Pompeu Fabra University (UPF), ICREA (Catalan Institution for Research
and Advanced Studies), and the CEAB-CSIC (Center for Advanced Studies of Blanes) and
public health organizations. The primary goals of MosquitoAlert are to engage the public
in scientific research to enhance mosquito surveillance, and support public health efforts in
controlling mosquito-borne diseases.

The MosquitoAlert mobile application allows users to report sightings and bites of mosquitoes,
as well as breeding sites such as stagnant water sources. Users can upload photos and provide
information about the location and time of their observations. These reports are then verified
by a team of experts, and the validated data is used to create real-time maps and models of
mosquito distribution and activity [33].

6.1.2 COVID-19 France Dataset

The dataset contains daily data for several COVID-19 indicators in France gathered by Santé
publique France, the French public health agency. It contains several columns, of which the
ones used in the application are:

Contextual Data

• date: Date

• dep: Department

Data Related to Hospital Situation

• hosp: Number of patients currently hospitalized for COVID-19.

• incid_hosp: Number of new patients hospitalized in the last 24 hours.

• rea: Number of patients currently in intensive care units (ICU).

• incid_rea: Number of new patients admitted to ICU in the last 24 hours.

Data Related to COVID-19 Deaths

• dchosp: Hospital deaths.

• incid_dchosp: New hospital deaths in the last 24 hours.

• esms_dc: Deaths in ESMS (medico-social establishments).

• dc_tot: Cumulative deaths (total deaths recorded in hospitals and EMS).
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6.1.3 Kontur Population Dataset

The original Kontur Population dataset uses H3 hexagons (cf. 6.3.1) at resolution 9, each with
a radius of approximately 400 meters, to represent population counts across the globe. These
population estimates are primarily based on the Global Human Settlement Layer (GHSL) [2],
with additional input from Facebook’s High-Resolution Settlement Layer (HRSL) [1] where
available. To improve the accuracy of the distribution, the dataset incorporates additional
sources like Microsoft Building Footprint, Land Information New Zealand, and Copernicus
Global Land Service. Dasymetric techniques are used to correct known artifacts in the GHSL
and HRSL datasets by marking unpopulated areas such as quarries, major roads, lakes, and
forests using OpenStreetMap data. Extremely populated cells are adjusted by redistributing
their populations to neighboring cells, and population counts are rounded to the nearest
whole number for precision. The dataset is updated each year.

Kontur also offers separate datasets per country. The dataset used in this application is for
France, aggregated from H3 resolution 9 to 7, reducing the size by a factor of approximately
7 × 7 ≡ 49 for manageability in the front end. The processed dataset contains 111,179
rows, fully covering continental France and Corsica with hexagons and associated population
estimates.

To allow joining with COVID-19 data at the department level, the GeoJSON shapes of the
French departments were used to link the hexagons to their containing department through
the use of the geojson2h3 utility maintained by Uber [42].

6.2 Visual Design

6.2.1 General Design

The application is designed with a large map that takes up most of the screen space. This
decision is informed by research showing that users prefer large maps because they can see
more elements at once [40]. A zoomable timeline is also displayed at the bottom, allowing
the user to explore the datasets in both time and space.

The design was inspired by Timemap.js, a project by Nick Rabinowitz, who is also a key
developer of H3, a geospatial indexing system used in this research and described in further
detail in 6.3.1.

Timemap.js combined a map with a timeline from the Semantic Interoperability of Metadata
and Information in Unlike Environments (SIMILE) [21], a project initiated in 2005 by the
Massachusetts Institute of Technology. The project aimed to provide browser-based tools
for the exploration and visualization of datasets. The timeline allowed users to pan indef-
initely and click on data points represented as circle symbols to view detailed information.
Although both projects are no longer maintained, Timemap.js introduced a powerful method
of interacting with data by integrating a timeline and a map.

This combination of a timeline and a map offers a simple and effective way to explore geospa-
tial data over time, enabling users to cross-filter and view data at different levels of detail.
While literature is sparse about such a solution, one maintained project that offers simi-
lar functionality is xyzt.ai [46], a platform for visualizing large datasets in space and time
developed by a startup company coincidentally based in Hasselt.
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Figure 5: Timemap.js, a project from 2008 by Nick Rabinowitz [36], which inspired the layout
and interactive features of this application.

6.2.2 Visual Encoding

When creating a visualization, the data visualization creator faces numerous options to en-
code the data in a meaningful and expressive way. The visual variables describe the graphic
dimensions across which the symbols or glyphs of a visualization can be varied to encode
information. These visual variables were originally described by French cartographer and
professor Jacques Bertin (1918–2010) in his 1967 book Sémiologie Graphique. The English
translation, Semiology of Graphics, was released in 1983 and is now recognized as a seminal
theoretical work in both cartography and the broader field of information visualization [5].

Bertin’s work was inspired by semiotics, the study of sign systems, which seeks to understand
how one object comes to stand for another. This framework data visualization creators to
think about how a symbol (the signifier) representing a phenomenon (the signified) commu-
nicates meaning to the visualization user (the interpretant). By breaking down visualizations
into their basic graphic elements, unclear or ambiguous symbols can be identified and im-
proved, enhancing communication and comprehension.

Bertin initially identified seven visual variables, termed variables rétiniennes in French (reti-
nal variables): location, size, shape, orientation, color hue, color value, and texture. This
initial set was later expanded by Morrison in 1974 [32] to include color saturation and ar-
rangement. Finally MacEachren extended the set further to include crispness, resolution,
and transparency, as described in his work [28], to accommodate new methods of encoding
information enabled by digital displays.

Bertin defined variables that can be perceived as belonging to the same group when they
share the same variation as associative and variables that allow the eye to focus individually
upon each variation of the visual variable as selective. A summary of the visual variables and
their associative and selective qualities, along with their ability to encode different types of
variables (nominal, ordinal, and numerical) is shown in 6.

Each variable plays a distinct role in how information is encoded and interpreted by the
viewer. Below is a brief overview of their usage in the application:

9



Figure 6: Visual variables, adapted from an article on visual variables by Roth [37]

Location Location indicates the visualization symbol’s position relative to a coordinate
frame. In clustered visualizations (cf. 6.3.5), the location can be defined based on a centroid
calculation based on the underlying clustered variables.
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Size Size refers to the space occupied by a visualization symbol. Larger symbols or a high
density of symbols can result in clutter and occlusion, potentially diminishing the clarity of
the visualization. When symbols are used on a map, their size may be distorted due to the
need to project the Earth’s spherical surface onto a plane. In the application described in
this thesis, a Mercator projection is used to display both the symbols and the map, which
can affect the perceived size of symbols relative to each other, especially at lower zoom levels.

Shape Shape defines the external form or outline of a symbol. It is important for qualitative
symbols that can then be combined with another visual variable (for instance color). Shapes
can be combined. In the web application, we experiment with two types of primary shapes
due to the ease of representing them at scale with the GPU-based visualization framework
used in the application (Deck.gl): rectangle shapes combined in mini square stacked bars
and packed circles using the front chain packing algorithm described by Wang et al. in [44].

Orientation Orientation describes the direction or rotation of a symbol. It is used in
multivariate glyph symbols and flow maps to indicate directionality but was not used in this
research.

Color Hue Color hue refers to the dominant wavelength of a color (e.g., blue, green, red)
and is commonly used in choropleth maps and categorical data representations. However,
color hue should be used with care to ensure inclusiveness, as a percentage of the population
is affected by color blindness and may not perceive certain colors. The color schemes used in
this application were drawn from ColorBrewer [19]. In the MosquitoAlert section, color was
employed to encode categorical variables, specifically different mosquito species.

Color Value Color value refers to the lightness or darkness of a color, and it is particu-
larly useful for representing a range of ordinal or numerical values in choropleth maps or in
combination with other visual variables. In the application, color value is used to encode
COVID-19 indicators in both choropleth and proportional symbols maps. However, using
color to represent quantitative indicators in an interactive application presents significant
challenges. The scale of these indicators, such as incidence and prevalence, can vary dramat-
ically between the peaks and troughs of an epidemic, spanning multiple orders of magnitude.
At the same time, detecting weak signals is important for identifying the early stages of an
outbreak.

Texture Texture describes the fill pattern’s coarseness within a symbol. Previously used
in halftone techniques, we show later in 6.3.5 that grid clustering can be used to produce
texture patterns similar to halftone to encode multivariate data as described by Bertin [5].

Color Saturation Color saturation indicates the intensity or purity of a color. It wasn’t
used in the application.

Arrangement Arrangement describes the layout of graphic symbols. It varies from regular
to irregular patterns. When data is clustered in the data space and displayed in the visual
space, arrangement will depend on the clustering algorithm used and may appear more
random when traditional clustering algorithms are used or more organized when the centroids
of cells in a grid are used as will be discussed in 6.3.5.
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Crispness Crispness indicates the sharpness of a symbol’s boundary, with a gradient in
opacity around the borders. Crispness can be used to highlight uncertainty about the dis-
played data. MacEachren et al. [29] show crispness to be a very effective visual variable for
representing uncertainty. It is not used in the application.

Resolution Resolution describes the spatial precision of a symbol’s display. As is detailed
in 6.3.5, the resolution of the symbols can be defined by parametrization of the clustering
algorithm.

Transparency Transparency refers to the degree of blending between a symbol and its
background. While transparency can help alleviate occlusion by allowing overlapping sym-
bols to remain partially visible, it is not a scalable solution as the number of symbols in-
creases—occlusion will still occur. Additionally, when symbols of different colors overlap,
transparency necessitates color blending. This can create challenges in interpreting cate-
gories encoded with different color hues, as the overlapping semi-transparent symbols may
blend into entirely new colors, potentially obscuring the distinctions between different cate-
gories in multicategorical data.

6.2.3 Thematic Maps

Thematic maps show how a particular subject or theme is distributed across a geographic
area. Since there are many types of thematic maps, this research doesn’t cover all of them.
Instead, this section focuses on the specific types of thematic maps used in this study for
comparison. One key feature of the maps used is that they maintain the true shapes and sizes
of the areas they represent, except for the necessary projection (Mercator) from a sphere to
the 2-D space of a user’s screen. This is different from cartograms, which are not considered
here because they distort areas to show variables, making them incompatible with popular
map services like Mapbox, which is used in this research.

Choropleth Choropleth maps are a type of thematic map where geographic regions are
colored (with uniform colors) or patterned in proportion to a statistical variable that rep-
resents an aggregate summary of a geographic characteristic within each region. The term
"choropleth" comes from the Greek words "choros" (area/region) and "plethos" (multitude).
Choropleth maps have a long history, with early examples dating back to the 19th cen-
tury, such as Charles Dupin’s 1826 map of literacy in France 7. In data science, choropleth
maps are widely used for visualizing spatial data to reveal patterns and insights related to
demographics, economics, public health, and environmental data.

Despite their widespread use and utility, choropleth maps have several limitations. As Ward
et al. state, ”A problem of choropleth maps is that the most interesting values are often
concentrated in densely populated areas with small and barely visible polygons, and less
interesting values are spread out over sparsely populated areas with large and visually domi-
nating polygons” [45]. Choropleth maps shade entire regions based on aggregate data, which
in the context of epidemiological data can obscure the actual distribution of the population
within those regions. This is known as the modifiable areal unit, as exemplified in 8

These critiques highlight the importance of careful design and complementary use of other
visualization techniques, such as dot density maps or heat maps, to provide a more compre-
hensive understanding of spatial data.
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Figure 7: Charles Dupin’s 1826 map of literacy in France, an early example of a choropleth
map.

Figure 8: Modifiable areal unit problem, image from Wikipedia.

Dot Distribution Map A dot distribution map can be used when precise locations, such
as latitude and longitude, are available in the dataset, as with the MosquitoAlert dataset.
In this type of map, dots representing individual observations are plotted as an additional
layer, visually indicating the specific locations of these observations.

13



When the number of dots increases, occlusion becomes a concern, as dots can overlap and hide
each other, obscuring the data. This issue can be mitigated by using smaller dots, applying
transparency to the dots, or introducing some jitter. Jittering involves slightly adjusting the
position of each dot to reduce overlap while maintaining the overall spatial pattern. This
technique ensures that each data point remains visible, enhancing the map’s readability and
effectiveness in conveying information.

With interactive maps, the radius of the dots can be dynamically adjusted based on the zoom
level. This can be done in several ways:

• Scaling with Zoom Level: The radius can be modified according to the zoom level, so
dots appear larger or smaller as the user zooms in or out. This helps maintain visibility
and proportional representation at different scales.

• Constant in Screen Space: The radius can be kept constant in screen space, measured
in pixels. This means the dots will appear the same size on the screen regardless of
zoom level, which is useful for maintaining consistent visual prominence.

• Constant in Physical Space: The radius can be kept constant in physical space, mea-
sured in meters. This ensures that the dots represent the same physical area on the
ground, which is useful for geographic accuracy and consistency.

Proportional Symbol Map A proportional symbol map is a map that uses symbols,
often circles or simple regular shapes, to represent a specific variable. The size of each symbol
changes according to the value it represents; for example, larger circles might indicate cities
with bigger populations. Typically, the symbol size is calculated to match the data accurately,
often using a square transformation to determine the side length or radius of the shape.

One challenge with proportional symbol maps is managing the range of scales as noted by
Mocnick et al. [31]. When some areas have very large values, their symbols can overlap
or dwarf those in areas with smaller values. However, representing weak signals is also
important.

Multi-categorical data can be visualized by using different colors for the symbols, allowing
multiple variables to be shown at the same location. This approach is most effective when
the variables are of similar magnitudes, as using different scales for different indicators can
cause confusion, as highlighted by Mocnik et al. in their COVID-19 visualizations [31].

In the MosquitoAlert section of the application, the issue of scale was addressed by adjusting
the symbol sizes based on the context, with the largest value within the visible map area
determining the maximum symbol size to prevent overlap. This allows to reveal patterns in
areas with low numbers through zoom interaction. Additionally, the mere presence of data
with very low values was indicated by semi-transparent shapes, allowing weaker signals to be
highlighted.

Supplementation of Chloropleth with Proportional Symbol Map In this subsec-
tion, we present a visual experiment where the traditional choropleth map is replaced or
supplemented by a proportional symbol map layer to represent the French population distri-
bution along with COVID-19 indicators. This approach is intended to mitigate the limitations
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of choropleth maps in accurately representing population densities.

We use proportional circles within the H3 grid system described in section ?? to highlight
population density. This method visualizes population distribution by varying the size of the
circles in proportion to the population within each H3 cell. Color hue can then be used to
encode an epidemiological indicator.

To create the proportional symbol map, we first obtained detailed population data for France,
from the open dataset from Kontur.

Choosing an appropriate resolution for the grid is important. Higher resolutions provide more
detail but may increase visual complexity, and add an additional cost in terms of performance
when joining multiple datasets.

We calculate the radius of the circles based on the population data, ensuring that the circles
are proportional to the population size in each H3 cell. The proportional symbols must be
scaled appropriately to be visually distinct while avoiding excessive overlap.

Due to the significant diversity in the French population, with vast rural areas of low pop-
ulation density and a few urban centers of very high population density, a zoomed-out view
of the map displays very small circles for rural areas, while circles in urban centers tend to
overlap and obscure each other. To mitigate this issue, a variable radius is applied to the
circles: as the user zooms in, the circles are rescaled, reducing overlap and revealing detailed
population distribution patterns. This dynamic adjustment ensures that population densities
in both rural and urban areas are accurately and clearly represented at different zoom levels.
This approach was evaluated and compared to the traditional choropleth visualization.

6.2.4 Representation of Time

Time is presented at different resolutions in the two main datasets used in this research. In
the MosquitoAlert dataset, time is recorded with high precision as a timestamp, whereas in
the COVID-19 dataset, time is grouped into 24-hour periods (dates). To facilitate navigation
through these datasets at varying time resolutions and allow for easy adjustment of the
time range, a zoomable timeline was created in D3. This timeline dynamically aggregates
time-based on standard divisions (year, month, week, day, hour), adjusting the time buckets
according to the zoom level.

In an interactive application, time adds another layer of complexity when visually encoding
variables on a map. This is especially true for the COVID-19 indicators datasets for France,
where disease indicators span multiple orders of magnitude through peaks and troughs. A
uniform color scheme across the entire dataset would fail to provide sufficient contrast during
the wave’s low points and early stages, making it difficult to identify where a wave begins.

6.2.5 Interactivity and Animation

In the early days of the personal computer revolution, Bertin emphasized the importance of
interaction in graphics: “This is a fundamental point, because it is the internal mobility of
the image which characterizes modern graphics. A graphic is no longer ‘drawn’ once and for
all; it is ‘constructed’ and reconstructed (manipulated) until all the relationships which lie
within it have been perceived” [6, p. 5].
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In the application described here, zooming plays an important role in the visual exploration
of the datasets both spatially and temporally. Google Maps has popularized the zoom inter-
action with scrolling, centering the zoom at the position of the cursor. It has since become a
very intuitive way of navigating online maps as studied by You et al. [47], later imitated by
other Web Map Services (WMS). To propose a similar experience in the temporal dimension,
a zoomable timeline was built with D3 and synchronized with the map allowing the user to
cross-filter the dataset in space and time in the MosquitoAlert section. In the COVID-19
section, clicking on specific periods on a temporal x-axis bar chart on the timeline displays
the geographical distribution of the indicator on the map for the given period.

Checkboxes are also present in both sections, to allow filtering by species in the MosquitoAlert
section, and to select an indicator in the COVID-19 France section

Speed is another important consideration in interactive applications. As Heer noted, “To be
most effective, visual analytics tools must support the fluent and flexible use of visualizations
at rates resonant with the pace of human thought” [20]. This research addressed perfor-
mance concerns by selecting optimal libraries and clustering algorithms to ensure responsive
interactions.

An experiment was also conducted, enabling the visualization of the distribution of COVID-
19 epidemiological indicators over time on a map of France, with each day or week displayed
in sequence, producing a movie-like effect that reveals temporal and geographical patterns.

Both interaction and animation aspects of the application were evaluated with a panel of
users.

6.3 Tools and Techniques

6.3.1 H3 Geospatial Indexing System

The H3 geospatial indexing system is a discrete global grid system that features a multi-
resolution hexagonal tiling of the Earth sphere with hierarchical indexes. The H3 grid is
created by mapping a regular hexagon grid onto the faces of an icosahedron and then using
inverse gnomonic projection to project these faces onto the Earth’s spherical surface [38]. It
is impossible to grid the icosahedron only with hexagons, so 12 pentagons are also present,
centered on the vertices of the icosahedron. At each resolution except the finest, the 12
pentagons are subdivided into 5 hexagons around a smaller pentagon at the center and the
hexagons are subdivided into 7 smaller hexagons to achieve the next resolution level (aperture
7). Due to the effect of the inverse gnomonic projection and the presence of pentagons, the
size of the cells slightly differ across the grid, the 12 pentagons are smaller than the hexagons
and the hexagons increase in size as a function of the distance from the pentagons [26].

There are only three regular tessellations of the Euclidean plane 10, which are ways of tiling
the plane with regular convex shapes of the same size. The shapes are the triangle, the square,
and the hexagon. Among these three shapes, the hexagon possesses unique advantages when
compared to the two alternatives:

1. The distance is uniform between a hexagon’s center and the centers of its six neighboring
hexagons.
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Figure 9: H3, developed by Uber, divides the Earth into hexagons and 12 pentagons. Image:
Uber.

Figure 10: The three regular tessellations of the Euclidean plane and their properties, image
from [4].

2. The ratio between a hexagon and its circumscribed circle is the largest among the three
shapes.

The hexagonal grid is also the densest packing of circles in Euclidean space, a property which
can be exploited by the use of circles as map symbols to represent the values of data points
or clustered data points in a way similar to halftone patterns 11.

The H3 hexagonal hierarchical grid system does not cleanly divide cells into seven smaller
hexagons between levels of the hierarchy and containment of children hexagons is not perfect
but provides a good approximation 12. This enables truncation of precision within a fixed
margin of error through bitwise operation for an H3 index and allows the determination of
all child indexes from a parent index.

Approximate containment occurs only when truncating the precision of an index, but exact
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Figure 11: Hexagonal packing of circle symbols encoding values (population) with H3, pro-
ducing an arrangement reminiscent of haltone patterns

Figure 12: H3 cell non-containment. At > 2 resolutions finer than the parent, a few entire
cells lie outside the parent’s boundary.

containment can also be obtained by re-indexing data points from their longitude and latitude
at a given resolution.

Functions for changing precision (h3ToParent, h3ToChildren) are quick due to simple bitwise
operations (masking of least significant bits), and geographically close locations typically have
numerically close indexes.

In the application described in this thesis, H3 was used to index the geolocated datasets at
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the lowest resolution, with about one-meter precision, replacing the traditional longitude and
latitude coordinates. This approach enabled the aggregation and joining of multiple datasets
using a unified indexing system for geospatial data, thereby allowing the visualization of these
datasets simultaneously through various layers.

One particular use case of H3 investigated in this research is its use for aggregation, taking
advantage of the hierarchical structure of the index as will be detailed in 6.3.5.

6.3.2 DuckDB-Wasm

DuckDB-Wasm is an in-process analytical SQL database running in the browser, a port to
WebAssembly of the original implementation in C++. WebAssembly (Wasm) is a binary instruc-
tion format for a stack-based virtual machine, designed as a portable target for compilation
of high-level languages like C, C++, and Rust. It is intended to execute code at near-native
speed within the browser.

Powered by WebAssembly, DuckDB-Wasm efficiently handles SQL queries within the browser
environment, offering compatibility with various data formats such as Parquet, CSV, and
JSON through Filesystem APIs or HTTP requests. This can eliminate or supplement the use
of a server-based API, enabling direct interaction with data files from the client side, thus
reducing latency and enhancing performance for data-intensive applications relying on the
client for computations. A special extension of DuckDB for the manipulation of H3 indexes [8]
is used in the application, allowing aggregation and conversion of H3 indexes to latitude and
longitude coordinates as a preparation step for the visualization of H3 indexed data points
on a map.

At the time of this writing, an official build of DuckDB-Wasm allowing the loading of unsigned
extensions was not available from the maintainer’s repository. A custom build was made as
part of this thesis research, allowing loading of the DuckDB-H3 extension [14].

6.3.3 D3.js

D3.js or simply D3 (Data-Driven Documents) is a JavaScript library developed by Mike
Bostock [7] for producing dynamic, interactive data visualizations in web browsers. It lever-
ages modern web standards such as SVG or Canvas, allowing developers to bind data to a
Document Object Model (DOM) and apply data-driven transformations to the document.
D3’s powerful data manipulation and visualization capabilities make it a popular choice for
creating custom visualization in the browser. D3 also incorporate functionalities to introduce
interactivity such as zoom and pan operations.

In the context of the application described here, D3 was used to develop a zoomable timeline,
also using Observable Plot, an abstraction layer over D3 facilitating the creation of plots.

6.3.4 Deck.gl

Deck.gl is an advanced WebGL-powered framework for visualizing large-scale datasets di-
rectly in the browser, especially useful for thematic map layers. Developed by Uber, Deck.gl
is designed to work with modern map rendering libraries like Mapbox GL and Google Maps,
providing a rich set of layers for geographic data visualization. In the app, Mapbox was chosen
as map base rendering library.
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When working with H3 indexes, Deck.gl’s H3Layer can be used to render hexagonal grids
efficiently, enabling the visualization of large-scale geospatial data in an interactive man-
ner. Deck.gl’s performance optimizations and integration with WebGL make it particularly
suited for applications that require smooth rendering of complex datasets, even on lower-end
hardware.

6.3.5 Clustering

As previously discussed, overplotting becomes a significant problem in visualizations as
dataset size increases, due to the limited visual space available for display. To mitigate
this, the generation of proportional symbol maps can be automated using clustering algo-
rithms that group observations and prevent overlap. The clustering approaches proposed in
this thesis are guided by the principle that "perceptual and interactive scalability should be
constrained by the chosen resolution of the visualized data, rather than by the number of
records" [27], and they adhere to most of the guidelines established by Elmqvist et al. [15]:

Entity Budget Maintain a limit on the number of entities.

Visual Summary Aggregates should effectively convey underlying data information.

Visual Simplicity Aggregates should remain clear and straightforward.

Discriminability Aggregates should be distinguishable from individual data items.

Fidelity Be cautious that abstractions do not mislead.

Interpretability Aggregation should only go as far as ensuring the result remains correctly
interpretable within the visual mapping.

The guideline on discriminability was not followed, as clusters were treated as a means to
represent observation density rather than individual observations.

Two different algorithms are discussed and compared.

Hierarchical Greedy Clustering Hierarchical greedy clustering is an algorithm designed
to group points into clusters at a specified zoom level. The process involves the creation of a
k-d tree. A k-d tree (k-dimensional tree) 13 is a binary search tree used for organizing points
in a k-dimensional space. It recursively partitions the space into two halves at each node,
alternating between dimensions, making it efficient for range searches and nearest neighbor
queries in multidimensional data.

The hierarchical greedy clustering algorithm then proceeds with the following steps:

1. Initialize with a Point: Start with any point from the dataset.

2. Search for Nearby Points: Identify all points within a specified radius using the k-d
tree.

3. Form a Cluster: Create a new cluster with these nearby points.
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Figure 13: First three levels of a k-d tree.

4. Repeat for Remaining Points: Continue selecting new, unclustered points, repeat-
ing the process until all points are clustered.

Figure 14: Structure of clusters produced by the hierarchical greedy algorithm, organized in
a tree as a function of the zoom level.

At each zoom level, from the highest to the lowest, this process is repeated iteratively, starting
with the weighted centroids from the previous level (bottom-up), forming a hierarchical tree
structure. The number of elements decreases exponentially with each level.

For dynamic datasets, clusters must be recalculated after each dataset filtering, which is
computationally expensive. The k-d tree must be rebuilt with a time complexity of O(n log n),
and clusters are then found greedily based on radius lookups at the lowest zoom level, also in
O(n log n). This process is repeated for all zoom levels, leading to an overall time complexity
of O(n log2 n). Once the tree is built, fetching the clusters for a given zoom level is almost
instantaneous, in O(1).

The library implementing this algorithm used in the application for clustering the dataset is
called Supercluster [3], developed by Volodymyr Agafonkin, the creator of Leaflet. The
lookup radius can be adjusted through parametrization of the clustering function to offer
clusters of variable resolution.

Hexagonal Grid Clustering Grid clustering proceeds by binning the data into regular
shapes in the dimensions of the data to calculate aggregated values in each bin. The aggre-
gated values in the data space can then be represented in visual space. Using a hierarchical
grid, different levels of aggregation can be obtained depending on the zoom level.

Other grid systems are available such as the square grid system S2 from Google [17] but
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hexagonal grids, such as H3 offer a significant advantage due to the uniform distance between
a hexagon and its six neighbors, leading to consistent and balanced clustering across the grid.
The H3 system can create aesthetically arranged clusters. With small clusters, this approach
enables proportional symbol maps that closely resemble exhaustive maps, as proposed by
Bertin (see Figure 15) in [5].

Figure 15: Bertin exhaustive map. The map shows the number of French workers per geo-
graphic department in 1954, per economic sectors: the primary (agriculture), the secondary
(industry), and the tertiary (commerce, transports, services).

An important constraint when using H3 for clustering is that its 16 hierarchical levels with
aperture 7 do not perfectly align with the zoom levels used in popular Web Map Services,
where tiles are divided by four at each level. As a result, a mapping must be made using
logarithmic transforms to reconcile these differences.

The algorithmic complexity of clustering a dataset with H3 is O(n log n) for an unsorted
dataset, equivalent to the complexity of sorting. This is because finding the parent of a given
cell relies on bitwise manipulation (masking of the least significant bits) of the index.

Comparison of the Two Clustering Methods This thesis proposes to compare hexago-
nal grid clustering, using the H3 framework, with hierarchical greedy clustering. The compar-
ison will evaluate the efficiency of grid-based clustering implemented with H3 as compared
with Supercluster, focusing on computational performance, clustering accuracy, and the
visual arrangement of clusters.

This research complements the research by Beresnev et al. on hexagonal clustering [4] in
which aggregation is done server-side, by proposing an implementation running fully in the
browser, which makes comparison with Supercluster in terms of performance possible.
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Clustering of Multi-Categorical Data Clustering can be helpful to mitigate overplot-
ting, but the proportion of different categories within a cluster can also reveal important
patterns. There are several ways to represent these within-cluster categories, but two meth-
ods were chosen for their ease of implementation and scalability using Deck.gl. The first
method breaks down the cluster into smaller circles for each category, with the radius of each
circle scaled according to the category’s proportion. The circles are then packed together
using the front chain algorithm by Wang et al. described in [44]. Each circle is colored with
a different hue to represent its category. The second method uses stacked colored rectangles
of variable sizes to show both the proportion of each category and the total value for the
cluster 16. Both methods were evaluated based on preferences from a panel of users.

(a) Packed circle representation (b) Stacked bar representation

Figure 16: Two alternative ways used in the application to represent the within-cluster
proportion. The figures show the proportion of observations of mosquitoes from different
species.

6.4 Evaluation and Testing

Evaluating the quality and effectiveness of a visualization presents significant challenges, as
emphasized by various authors [35, 25, 43]. The literature on this subject typically focuses
on two primary aspects [9]:

• Quantitative Metrics:

• Quantitative Metrics: This includes metrics like the time taken to perform tasks
with the visualization, the computational complexity of the interaction algorithms, and
how smoothly users can interact with the system.

• Qualitative Aspects: These aspects involve assessing the usability and insight-generation
capabilities of the visualization, often through observation techniques and interviews.

Carpendale [9], drawing on similar challenges highlighted by McGrath in social science re-
search [30], notes that a key difficulty in evaluating data visualizations is achieving results
that balance generalizability (the ability to extend results beyond the experimental context),
precision (confidence in the results and control over extraneous variables), and realism (the
extent to which the evaluation setting mirrors the real-world context of use).

While data visualization creators often seek to evaluate how effectively their designs generate
insights, this proves to be an even more complex challenge than data visualization evaluation
in a broader sense [35, 9, 41]. Plaisant [35] describes data visualizations as tools that help
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in "answering questions you didn’t know you had," which ties directly to the concept of in-
sight—a quality that is notoriously difficult to measure. This challenge arises because insights
are subjective and may only surface long after the initial interaction with the visualization.

To address these evaluation challenges and integrate both quantitative and qualitative ap-
proaches, Stasko proposed a value-driven evaluation framework [41]. He argues that:

"Visualization should ideally provide broader, more holistic benefits to a person
about a data set, giving a ’bigger picture’ understanding of the data and spurring
insights beyond specific data case values."

Stasko formalized this approach through the introduction of the value equation:

V = T + I + E + C

where:

• T - The ability of a visualization to minimize the time required to answer a broad range
of questions about the data.

• I - The capability of a visualization to foster insights and provoke insightful questions
about the data.

• E - The effectiveness of a visualization in conveying an overall essence or key takeaway
from the data.

• C - The ability of a visualization to build confidence, knowledge, and trust regarding
the data, its domain, and context.

While this value-driven approach is compelling, it initially lacked detailed guidelines for
quantifying the resulting value. To enhance this framework, Wall et al. [43] introduced
a methodology involving questionnaires designed to evaluate each component of the value
equation systematically. Although the evaluation of the application discussed here drew
inspiration from this enhanced approach, it was not implemented in full. Instead, the key
concepts served as guiding principles for the evaluation process.

In a comprehensive survey of visualization literature, Lam et al. identified seven key scenarios
for visualization evaluation [25]. For the evaluation of the application, which targets a general
public audience and makes use of a new algorithm for data aggregation, three scenarios were
particularly relevant:

• Evaluating Communication Through Visualization (CTV)

• Evaluating User Experience (UE)

• Evaluating Visualization Algorithms (VA)

The paper by Lam et al. outlines typical tools suited for each scenario. Based on the
recommended methods for these scenarios, and to ensure complementary approaches, three
evaluation techniques were selected:
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• Questionnaires with a series of open-ended, multiple choice and Likert-scale questions.

• Observations of users interacting with the application while being requested to accom-
plish a series of tasks, followed by interviews.

• Comparison of algorithms used for data clustering.

7 Results

7.1 Application

The application, in the version tested during questionnaires and interviews at the following
URL https://d27werzm43zim8.cloudfront.net/.

7.2 Questionnaire Answers

Thirteen results were collected from users having watched an explanatory video about the
application. The sample is small but already shows some trends regarding preferences in
the options provided within the application. A summary of the answers for each question is
presented here, and the full answers can be consulted as supplementary digital material in
the annexes.

Do you have experience in epidemiology, public health, or medical science?

Five of the thirteen respondents reported having professional or academic experience in epi-
demiology, public health, or medical science. This experience may introduce bias, limiting
the generalizability of the results to the broader population. However, it also offers valuable
insights into aspects that may not have been considered due to the researcher’s lack of formal
training and professional experience in these fields.

Do you have experience with data visualization, as a consumer or creator?

Eight of the thirteen respondents indicated experience with data visualization, either through
professional exposure or as creators. This high proportion results from selection bias, as the
questionnaire was distributed mainly among study stakeholders, colleagues of the researcher,
and via the professional network LinkedIn, where many of the researcher’s connections work
in data science. While this bias may affect the generalizability of the results, it also provides
an advantage, as respondents’ familiarity with data visualization could lead to more informed
and relevant feedback.

What do you like in the application?

The analysis of the answers showed that users particularly enjoyed the speed at which the
dataset was loaded and browsed, with six out of the thirteen mentioning adjectives such
as "fast," "quick," or "fluid." The interactivity offered by cross-filtering between the map
and the timeline was also appreciated, with six out of the thirteen mentioning this aspect.
Some answers or parts of answers were less specific, using adjectives such as "nice" or "cool."
One respondent expressed appreciation for the autoplay feature, which allows the COVID-19
dataset to be played automatically in a movie-like fashion.
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What do you dislike in the application?

This question elicited a variety of responses, making it difficult to prioritize the feedback
by importance. Two respondents found the amount of information and options to be over-
whelming at first, citing a lack of clarity in functionality. Additionally, two respondents had
issues with the contrast of colors. Another respondent criticized the lack of contextualization
and storytelling. Overall, this section was very instructive and provided valuable insights for
iterating and refining the application.

What additional features or improvements would you suggest for the application?

Similarly to the previous question, this one also elicited a variety of responses. Two re-
spondents expressed a desire to import their own datasets, highlighting the potential of the
application as a broader online data exploration tool, possibly extending beyond epidemio-
logical data.

A respondent working in the field of epidemiology pointed out that in the COVID-19 sec-
tion, having the population density circles colored homogeneously for an entire department
could be misleading: while the indicators are collected at the department level, there can
be disparities within the department. This respondent also identified an issue with circles
overlapping the boundaries between two or more departments, suggesting that an average
should be calculated in such cases or proposing the use of hollow circles with only a stroke
to still highlight the population while maintaining the choropleth as a background.

Two other themes raised were the need to improve the clarity of labels and incorporate more
storytelling elements to contextualize the visualization. Additionally, other user interface
(UI) issues were mentioned, such as the suggestion to move the parameters drawer from the
right to the left side of the screen to adhere to UI best practices and conventions.

Is the application insightful?

This was a Likert-scaled question with responses on a range of 7 steps from 1 to 7, from
"Not at all" to "Very much". This resulted in an average rating of 6.31 (std. err. 0.75)
which is encouraging, but might highly suffer from courtesy bias, which is a type of bias that
occurs when the respondent tends to not fully state their opinion for fear of being perceived
as overly critical.

How would you rate the application in terms of aesthetics?

This question also provided good ratings, 6.31 out of 7 (std. err. 0.75) with an average
rating with the same caveats as with the previous question. Aesthetics was considered in the
questionnaire as aesthetics can improve the attractiveness and popularity of an application
[10], which is an important aspect to consider to increase reach and engagement.

Did you encounter performance issues? (at loading the application and when
browsing the datasets)

Most of the users didn’t encounter performance issues worth mentioning. Four respondents
mentioned occasional short delays of one second or less when adjusting zoom or changing
parameters.
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What type of hardware did you use, in particular, which screen size and CPU,
if you know?

All but one respondent was using high-end laptops, with a majority of recent MacBooks,
highlighting the need to test the application with less powerful machines. The user using a
lower-end machine considered the performance as acceptable.

In the MosquitoAlert section, is the filtering of data based on the currently visible
part of the timeline and map intuitive?

The filtering based on both the visible part of the timeline and the visible part of the map
was considered intuitive for most users, with an average score on the Likert scale of 5.53 out
of 7 (std. err. 1.33). This highlights the potential of complementing a map with a timeline
for filtering spatio-temporal datasets.

Depending on zoom levels, the scale of the symbols (circles or squares) is rescaled.
Do you find it problematic or counterintuitive?

Some users found it unintuitive that the circle scale adjusted depending on the context. With
a Likert scale where 1 meant "Not problematic at all" and 7 meant "Highly problematic", the
question received an average score of 3.07 (std. err. 2.1), this indicates that this aspect should
receive further attention. The initial intention behind this rescaling was to make observa-
tions with low values more visible when the viewport contains only low values, emphasizing
proportions rather than absolute numbers. This feedback highlights a broader challenge in
data visualization: balancing the need to represent phenomena that span multiple orders of
magnitude while also drawing attention to weaker signals.

In the MosquitoAlert section, do you think that the clustering adds value com-
pared to the no-aggregation option (all observations visible individually)?

Most users find it useful to have aggregation to group observations and prevent clutter, with
an average score of 5.53 over 7 (std. err. 1.45) on the Likert scale.

Do you see a difference, and do you have a preference between the "H3 grid"
and the "Supercluster" ways of aggregating the observations?

Overall, nine out of thirteen respondents expressed a preference for the H3 grid. One re-
spondent specifically appreciated the symmetrical arrangement provided by H3. However,
caution is advised as there may be bias in these responses: The breaks at which H3 clustering
occurs are determined by the aperture of the hierarchy, which doesn’t always align with the
cluster radii obtained using Supercluster. This often results in H3 clusters appearing larger in
the application. This was noted by two respondents: one who preferred the H3 grid for this
reason and another who favored Supercluster. This aspect could have been better controlled
in this small-scale evaluation and may require further testing on a larger scale.

Do you prefer the "Packed Circles" or the "Stacked Bar" option to visualize
clusters?

Most users (84.6%) preferred the "Packed Circles" option in this two-choice question. Al-
though the exact reasons for this preference aren’t fully clear, the result, when considered
alongside the preference for H3 grid versus Supercluster visualizations, suggests that Bertin’s
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exhaustive maps might be a strong method for showing multi-categorical data in interactive
applications.

In the COVID-19 section, do you prefer the choropleth (uniform colors) view,
the visualization highlighting population density with circles, or do you think
they complement each other?

Most users (84.6%) thought that the choropleth map and population density circles either
worked well together (61.5%) or preferred the population density circles on their own (23.1%).
Only 15.4% preferred the choropleth map by itself. This suggests that combining choropleth
maps with proportional symbol maps could be effective for better data interpretation. How-
ever, it’s important to ensure that the values displayed are clear and easily distinguishable.

In the COVID-19 section, do you think highlighting the population brings addi-
tional insight or value?

All respondents agreed that highlighting the population adds insight or value, with different
levels of certainty on a Likert scale, averaging 6.0 out of 7 (std. err. 1.08). This agreement,
combined with the responses to the previous question, shows that adding population density
circles can provide a valuable extra layer of information to choropleth maps when additional
data is available, making the data more informative.

Do you think that the animation of indicators over time adds value and insights
in the COVID-19 section?

All but one respondent agreed that animating indicators over time in the COVID-19 section
adds value and insight, with an average of 5.92 out of 7 (std. err. 1.84) on the Likert scale.
This strong agreement highlights the importance of temporal animations in making COVID-
19 data more understandable and engaging, allowing users to see trends and changes over
time in a clearer way.

7.3 User Observations and Interviews

7.3.1 Interview A

The first interviewee is an adult female with a background in biochemical science. The
interview was conducted in French, a language in which the respondent has near-native
fluency. She had watched the same explanatory video prepared for the respondents of the
questionnaire but did not complete the questionnaire herself. The interview and observation
were recorded. During the interview, she was asked similar questions to those asked in
the questionnaire, regarding her preferences between options available in the application.
Additionally, she was asked to perform simple tasks, such as zooming in on a specific date
and observing the temporal patterns of mosquito reporting on a 24-hour scale, or selecting a
date in the COVID-19 section for a given indicator. The interviewee was asked to describe
what she observed in different parts of the app and how she interpreted the information.

MosquitoAlert The interviewee completed all the requested tasks with ease. She noticed
a shift in the center of the proportional symbols representing counts at very low zoom levels
when using the H3 clustering, with some circles appearing misplaced, over the sea instead of
land. This artifact and its cause had to be explained, but as she zoomed in, she realized that
greater precision could be achieved through interaction, and the artifact at lower zoom levels

28



no longer seemed problematic. Interestingly, she preferred the absence of clustering, which
contrasts with the preferences of most questionnaire respondents.

COVID-19 France The interviewee was asked to explain her understanding of the visual-
ization after a brief introduction. The role of the visual variables wasn’t immediately clear to
her; she initially interpreted the radii as representing the number of cases when they actually
represented population density. This underscores the importance of clear legends and con-
textual explanations to ensure a proper understanding of the visualization. The interviewee
particularly appreciated the animation of the dataset over time in a movie-like fashion, which
sparked insights and hypotheses about the geographical spread of the disease.

7.3.2 Interview B

The second interviewee holds a doctorate in particle physics and has successfully transitioned
into a career in data science, where she has accumulated several years of experience. Both
the observation and the interview were conducted online, with the session being recorded
for future reference. The interviewee’s computer was relatively old, manufactured in 2017.
The interview was conducted in French, a language in which the interviewee demonstrates
near-native proficiency.

MosquitoAlert The interviewee was asked to navigate the dataset across various time
periods and geographical areas to observe patterns. She was able to identify observational
patterns with ease and did not require additional explanations, indicating that the task could
be performed intuitively. The interviewee confirmed the user-friendliness of the exploration
method, which involved navigating through space and time using the timeline and the map.
She expressed a preference for the H3 grid clustering over both Supercluster and the ab-
sence of clustering. Although some lag was noted during dataset updates in response to
user interactions, likely due to the lower performance of the computer used, the interviewee
considered the overall performance acceptable.

COVID-19 France The interviewee was introduced to the two different thematic maps:
choropleth and density circles. She expressed a preference for the density circles, while also
acknowledging the utility and complementarity of both visualizations. The animation of the
dataset through time and space, presented in a movie-like fashion, was found to be interesting.
However, the interviewee raised questions regarding the intended audience, noting that the
value of such visualization would depend on the target users. After clarifying the target
audience, the interviewee mentioned that she would use such a tool as a citizen if it were
made publicly available. When asked about potential improvements, the interviewee could
not identify any changes or enhancements she would suggest at the moment.

7.4 Computational Comparison of Clustering Algorithms

While the application allowed the selection of both the Supercluster and H3 algorithms and
the ability to test them inside the application from a user perspective in terms of the visual
arrangement of clusters, the comparison from a computational point of view would have been
difficult within the application. Both implementations provided fast results due to the small
size of the MosquitoAlert dataset, with only about 40,000 data points. The Supercluster
implementation also suffers from a handicap as it is written in pure JavaScript, whereas
the H3 implementation used in the application is written in C++, a potentially much faster
language, compiled to Wasm as a target to run in the browser.
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Therefore, to provide a fair comparison, an Observable notebook [12] was created where one
million random points were generated with latitude ranging from 85 to -85 and longitude
ranging from 180 to -180 degrees. The points were indexed with H3 at the lowest resolution
(about one-meter precision) and clustered with both methods at various resolutions. This
comparison specifically addresses the context of dynamic datasets, i.e., datasets that can
be modified based on user interactions. The speed did not seem to depend on the chosen
resolution in both Supercluster and with H3 as this step is O(1) in Supercluster once the
k-d tree has been built with Supercluster, and the H3 algorithm remains O(n log n) for
all resolutions. The random dataset was sliced and increased in size by increments of 50,000
points to observe the speed of clustering for variable dataset sizes. The results favor the H3
algorithm by a factor of 10 17.

(a) Clustering performance in ms as a func-
tion dataset size with Supercluster

(b) Clustering performance in ms as a func-
tion dataset size with H3

Figure 17: Comparison of performance Supercluster vs. H3

It should be noted that clustering with H3 comes with some caveats: the clusters will be
centered on the centroid of the parent element, not the center of mass of the children. Non-
containment can also occur, with some elements displayed in a neighboring cluster, and finally,
the radii are constrained by the grid resolution. Despite these caveats, H3 can be considered
when a faster alternative is required or when hexagonal grid arrangement is desired. Future
research could also lead to solutions where the two methods complement each other, as
discussed in 10. For speed-critical, computationally intensive algorithms, another notebook
prepared for this research shows that the use of DuckDB with the H3 extension can improve
performance further by a factor of about two [13].

8 Discussion and Conclusion
The findings from the questionnaires and observations offered valuable insights into user inter-
action with and perception of the application. Despite the small sample size, it was sufficient
to identify distinct preferences and areas needing improvement. With further refinements, the
application could be prepared for release to a wider audience. The MosquitoAlert team pro-
posed incorporating the interactive visualization into the "labs" section of their website [34],
which would enhance the visibility of this thesis’s results and potentially stimulate further
development of the application.

A key consideration in data visualization is the quality of the underlying data, as the effective-
ness of any visualization is limited by the accuracy and reliability of the data it represents.
This highlights the importance of providing context for visualizations, including warnings
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about potential issues and biases that may stem not only from the visualization itself but
also from the data collection processes and the data used.

Web-based interactive data visualization can serve as a powerful communication tool for
reaching a wide audience, especially in public health and epidemiology. However, it should be
integrated into a broader, holistic strategy and used alongside other communication methods.

9 Summary of Findings
The application demonstrates several promising techniques, but also areas for improvement:

• The integration of a zoomable timeline with a zoomable map for exploring spatiotem-
poral data is an innovative and underutilized approach that received positive feedback
from users.

• Data clustering using H3 proves to be an efficient and quick method to reduce visual
clutter. It can be effectively combined with circle packing or other techniques to display
multicategorical data.

• Choropleth maps have limitations and may introduce biased perceptions of distribu-
tional patterns for epidemiological indicators such as incidence and prevalence rates.
Complementing or replacing choropleth maps with proportional symbols indicating
population density can add value. This can be achieved by incorporating additional
datasets.

• Animation of spatiotemporal datasets over time, while displaying geographical distri-
bution, was well-received by users.

• H3 is a promising technique for indexing geographical areas, enabling the integration of
multiple datasets through a shared indexing system.

• A technical ecosystem composed of DuckDB, H3 and files in Parquet format, combined
with visualization libraries such as D3 and Deck.gl offers a powerful solution for inter-
active visualization entirely in the browser.

• Data scaling over multiple orders of magnitude poses significant challenges to be visu-
alized in a way that conveys the full picture without dwarfing weak signals.

• Data visualization should be integrated into a holistic approach, working alongside
other techniques to convey the essence of the data, especially when intended to be used
by a large audience.

10 Implications for Future Research
As was shown, hexagonal grid aggregation with H3 offers a fast method for creating visually
appealing clusters on the map in O(n log n) in general and O(n in a properly sorted dataset.
The clusters are positioned in the center of the parent cell, which can be a desirable arrange-
ment for regularly spaced symbols but could also introduce some bias if the centroid of data
points in a cluster and the centroid of the parent cell are far away. A proposal for future
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research would be to use hexagonal grid aggregation with H3 as a preprocessing step, one or
two resolutions finer than the desired cluster radius, before using a more costly algorithm.

A sketch of the algorithm would be as follows:

1. Pre-aggregate with H3 using:

h3.getHexagonEdgeLengthAvgM(resolution) < targetRadius

(with targetRadius in meters).

2. For each cluster of this pre-aggregation, calculate the centroid based on ij distance1.

3. Use a more costly algorithm, such as the greedy clustering algorithm, to merge over-
lapping clusters.

Distance lookups for the last step to merge overlapping clusters could also take advantage of
k-ring calculation (h3.gridDisk()), which offers a good approximation of Haversine distance.

Another area for further research is finding better ways to represent epidemiological data
spanning over multiple orders of magnitude, in particular in the context of interactive visu-
alizations. Some techniques were investigated to use an ordinal scale for colors by clustering
the scale in 1-D based on clustering of the data in a given dimension with techniques such
as Jenks breaks [22] or quantiles but a challenge is to provide smooth transitions when the
dataset can also be explored along time, while it was observed that those techniques intro-
duce jumps in the produced ordinal scale when the data is refiltered, and this could confuse
the user.
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A Appendices

A.1 Digital Supplementary Material

The complete set of questionnaire answers is provided as supplementary material and can be
accessed online at https://github.com/jcolot/master-thesis-materials/tree/main. The
names and contact details of the respondents have been censored.

The code of the application is available at https://github.com/jcolot/master-thesis-public/
tree/main
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