
Faculty of Sciences
School for Information Technology

Master of Statistics and Data Science
Master's thesis

Effect of parameter choices of bioinformatic pipelines on abundance tables using TDA
(Topological Data Analysis)

Mohammad Sazegar
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics and Data Science,

specialization Data Science

2023
2024

SUPERVISOR :

Prof. dr. ir. Jan AERTS

Transnational University Limburg is a unique collaboration of two universities in two
countries: the University of Hasselt and Maastricht University.



Faculty of Sciences
School for Information Technology

Master of Statistics and Data Science
Master's thesis

Effect of parameter choices of bioinformatic pipelines on abundance tables using TDA
(Topological Data Analysis)

Mohammad Sazegar
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics and Data Science,

specialization Data Science

SUPERVISOR :

Prof. dr. ir. Jan AERTS





 
 

 

 

 

 

 

Faculty of Sciences 

School for Information Technology 

Master of Statistics and Data Science 

 

Master’s thesis 

Effect of parameter choices of bioinformatic pipelines on abundance tables 

using TDA (Topological Data Analysis) 

 

Mohammad Sazegar 
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics and Data Science, 

specialization Data Science 

 

 

 

SUPERVISOR : 

Prof. dr. ir. Jan AERTS 

 



 
 

 

Abstract 

 

The development of advanced sequencing technologies has transformed the field 

of microbial ecology, enabling researchers to explore microbial communities with 

incredible depth and precision. accuracy and reliability of the resulting amplicon 

sequence variant (ASV) tables are influenced by various settings in the 

bioinformatics pipelines, however, not all studies in the field give due 

consideration to the importance and potential effect of the parameters in the 

workflow. Understanding the settings is crucial because these settings can 

significantly affect the outcomes of microbial community analysis. 

This study aims to answer this question using data visualization technique 

focusing on topological relations between pipelines and their corresponding set 

of parameters. A network graph was developed using ASV tables of dataset 

Mothur for the analysis. Parameters related to truncation are the most important 

one among the others. 

Network is constructed out of smaller regions, namely three clusters (A,B, and C) 

and a tail are present in the network and two paths. A smooth transition of ASV 

values is present from the tail towards the main body. Also several patterns for 

different parameters pf the pipelines were observed. 

In conclusion noticeable similar patterns were observed in both parameters and 

microbiome graphs and consequently ASV tables are sensitive to different 

processing pipeline parameters. Abundance of microbiomes not only varies from 

low to high values by choosing different set of parameters, but also could affect 

the presence of an ASV table as an outcome. Parameters related to truncation 

(“trunclen_f”, “trunclen_r” and “truncq”) were the significant ones resulting in lower 

ASV values in the tail for higher values of parameters. 

 

Keywords: ASV tables, Biological pipeline, Data visualization, TDA (Topological 

Data Analysis), Abundance tables, DADA2 
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1 Introduction 
The development of advanced sequencing technologies has transformed the field 

of microbial ecology, enabling researchers to explore microbial communities with 

incredible depth and precision. Amplicon sequencing, particularly targeting the 

16S rRNA gene, has become a standard approach for identifying microbial variety. 

The configuration of microbial community structure offers valuable insights into 

structure of natural ecosystems and also detailed relationship between the host 

and its bacterial inhabitants However, the accuracy and reliability of the resulting 

amplicon sequence variant (ASV) tables, which detail the presence and abundance 

of microbial species, are influenced by various settings in the bioinformatics 

pipelines used to process sequencing data. Not all studies in the field give due 

consideration to the importance and potential effect of these parameters in the 

workflow.  

Understanding the settings within biological pipelines is crucial because these 

settings can significantly affect the outcomes of microbial community analysis. 

Misinterpretation of microbial variety and composition can arise from 

inappropriate settings, leading to incorrect ecological and clinical conclusions. Key 

settings that require careful consideration include quality filtering thresholds, 

chimera detection methods, sequence clustering algorithms, and taxonomic 

classification techniques. For instance, Edgar (2016) demonstrated that variations 

in chimera detection approaches could lead to substantial differences in the 

inferred microbial community structure. Similarly, Callahan et al. (2017) 

highlighted the impact of sequence denoising methods on the generation of ASVs, 

showing that different methods could produce varying levels of resolution in 

microbial variety analysis. 

Several techniques have been used to investigate the effects of bioinformatics 

pipeline settings on ASV tables. These techniques can be broadly categorized into 

simulation studies, comparative analyses, and empirical evaluations. Simulation 

studies often use artificially created datasets to evaluate the performance of 

different pipeline configurations. Simulated data provide a controlled 

environment where the true composition of the microbial community is known, 

allowing for precise assessment of how different settings influence the accuracy 

of ASV tables. For instance, Prodan et al. (2020) used simulated data to compare 

the performance of various quality filtering and denoising methods, 

demonstrating that some methods were more robust to sequencing errors than 

others. Comparative analyses involve processing the same set of biological 

samples through different pipelines or settings to assess variability in the 
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resulting ASV tables. Bokulich et al. (2018) conducted a comprehensive 

comparison of commonly used pipelines such as QIIME 2, DADA2, and mothur, 

revealing significant discrepancies in the diversity metrics and taxonomic 

assignments produced by each pipeline. Empirical evaluations use real-world 

datasets to assess the performance of pipeline settings. These studies often focus 

on specific aspects of the pipelines, such as the impact of different sequence 

clustering thresholds or the effectiveness of various taxonomic classifiers. Schloss 

(2021) conducted an empirical study using environmental samples to evaluate the 

performance of different clustering algorithms, showing that more stringent 

clustering thresholds could reduce the number of spurious ASVs but might also 

overlook rare species. 

Recent studies have provided valuable insights into the optimal configurations of 

bioinformatics pipelines for generating accurate ASV tables. Key findings include: 

Quality filtering is a critical step that can significantly affect downstream analyses. 

Nguyen et al. (2021) found that stringent quality filtering parameters improved 

the accuracy of ASV tables by removing low-quality reads that could introduce 

noise into the dataset. However, overly stringent filtering could also lead to the 

loss of genuine biological sequences. Effective chimera detection is essential for 

accurate microbial profiling. Edgar (2016) showed that different chimera detection 

algorithms, such as UCHIME and DADA2's built-in method, varied in their 

sensitivity and specificity, with some methods being more prone to false positives 

or negatives. Sequence denoising methods, which aim to correct sequencing 

errors and distinguish true biological sequences from artifacts, are crucial for 

generating high-resolution ASV tables. Callahan et al. (2017) demonstrated that 

DADA2's denoising approach outperformed traditional clustering methods by 

providing finer resolution and reducing the incidence of spurious ASVs. The choice 

of taxonomic classifier can impact the accuracy of taxonomic assignments. 

Bokulich et al. (2018) found that classifiers based on naive Bayesian approaches, 

such as the RDP classifier, generally performed well across various datasets, but 

their accuracy depended on the quality and completeness of the reference 

database used. Comprehensive comparisons of different bioinformatics pipelines 

revealed that no single pipeline consistently outperformed others across all 

metrics. Prodan et al. (2020) emphasized the importance of selecting pipeline 

settings tailored to the specific characteristics of the dataset and the research 

questions being addressed. 

Prior work has offered important information on bioinformatics pipeline settings 

on ASV tables, including quality filtering, chimera detection, sequence denoising, 

and taxonomic classification. However, these investigations have not paid much 
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attention to the effects of parameter values in the various analysis packages 

including DADA2. In this study, our goal is to fill this gap by presenting a systematic 

analysis of the impact of different parameter settings in the DADA2 pipeline. Thus, 

by dissecting how various contexts affect the precision and the scope of the ASV 

tables produced by DADA2, we hope to advance the understanding of the 

microbial community analysis and offer practical recommendations that would 

improve the reliability of the subsequent investigations in microbial ecology. 

Data visualization techniques play a pivotal role in elucidating patterns within 

high-dimensional data, particularly in fields such as microbiology where complex 

datasets are commonplace. By employing advanced visualization methods like 

network graphs, researchers can effectively depict intricate relationships and 

structures within microbial communities. For example, Smith et al. (2020) utilized 

network graphs to explore the co-occurrence patterns of microbial taxa across 

different environmental samples, revealing distinct ecological niches and 

potential symbiotic relationships among species. Such visual representations not 

only aid in understanding microbial community structures but also facilitate 

hypothesis generation and the formulation of testable predictions regarding 

ecological interactions. 

Moreover, data visualization allows researchers to navigate and interpret complex 

datasets more intuitively, enabling the identification of outliers, clusters, and 

trends that might signify biological significance. In microbial ecology, where 

understanding community dynamics is crucial for ecosystem health and function, 

visualization techniques like principal component analysis (PCA,  Jolliffe 2002) and 

multidimensional scaling (MDS, Borg et al., 2005), provide graphical 

representations that summarize variation across samples or experimental 

conditions. These techniques enable researchers to detect patterns of microbial 

diversity or community composition that are influenced by experimental variables 

or bioinformatics pipeline parameters (Jones et al., 2019). By integrating data 

visualization into their analyses, researchers can uncover hidden patterns and 

relationships within high-dimensional data, advancing our understanding of 

microbial ecosystems and their responses to environmental changes. 

The main question of this study is to investigate how different choices in 

bioinformatic pipeline parameters influence the composition and structure of ASV 

tables using data visualization techniques, such as network graphs. Using network 

graphs to visualize interactions and associations among microbial groups based 

on their abundance patterns, researchers aim to understand how varying pipeline 

parameters impact community changes. This approach allows for identifying 

clusters, outliers, and connectivity patterns that may be affected by specific 
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parameter configurations. The study aims to uncover which settings lead to more 

accurate and informative ASV tables, thereby optimizing bioinformatics pipelines 

for robust microbial ecology research. Ultimately, by leveraging data visualization 

to explore these relationships, the research aims to enhance our understanding 

of microbial community responses to environmental changes and improve the 

reliability of microbial diversity assessments in various scientific applications. 
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2 Relevance, Stakeholders & Ethics 
By assessing proper set of values for parameters involved in a pipeline, 

researchers can more precisely look into presence of different microbiomes and 

their abundance in the samples. In addition to that, rare microbiomes could be 

find with higher chances. This is crucial for identifying accurate and informative 

ASV tables and its potential to enhance public health outcomes and 

environmental management. Understanding how bioinformatics pipeline choices 

influence the accuracy of microbial diversity assessments is crucial for 

stakeholders such as healthcare professionals, biologists, statisticians, and 

environmental scientists. Accurate ASV tables facilitate early detection and 

monitoring of microbial communities in diverse ecosystems, aiding in the 

prediction and prevention of disease outbreaks and environmental disturbances. 
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3 Methodology 
3.1 Dataset 
The dataset is coming from Kozich JJ et al.(2013), Mothur MiSeq SOP project which 

aimed to demonstrate a standard operating procedure (SOP) for processing 16S 

rRNA gene sequences.  

Dataset used is in this thesis is part of a bigger dataset representing microbiomes 

in fresh feces collected from mice for 365 days post weaning on a daily basis 

consisting of data belongs to  a single mice (Female number 3) for nine time points 

at the early stage of the study (days 0 to 3 and 5 to 9) and ten time points at the 

middle of the study (days 141 to 150). Table 1 shows the name of the samples, ID 

and a brief explanation of it. 

Table 1 List of samples in the dataset 

ID Sample Name Explanation  ID Sample Name Explanation 

1 F3D0_S188_L001 Female 3 on Day 0  11 F3D149_S215_L001 Female 3 on Day 149 

2 F3D1_S189_L001 Female 3 on Day 1  12 F3D150_S216_L001 Female 3 on Day 150 

3 F3D141_S207_L001 Female 3 on Day 141  13 F3D2_S190_L001 Female 3 on Day 2 

4 F3D142_S208_L001 Female 3 on Day 142  14 F3D3_S191_L001 Female 3 on Day 3 

5 F3D143_S209_L001 Female 3 on Day 143  15 F3D5_S193_L001 Female 3 on Day 5 

6 F3D144_S210_L001 Female 3 on Day 144  16 F3D6_S194_L001 Female 3 on Day 6 

7 F3D145_S211_L001 Female 3 on Day 145  17 F3D7_S195_L001 Female 3 on Day 7 

8 F3D146_S212_L001 Female 3 on Day 146  18 F3D8_S196_L001 Female 3 on Day 8 

9 F3D147_S213_L001 Female 3 on Day 147  19 F3D9_S197_L001 Female 3 on Day 9 

10 F3D148_S214_L001 Female 3 on Day 148     

To answer the main question ASV tables and the parameters used for generating 

them are needed. An ASV table is consisting of rRNA sequences as columns, 

different samples as rows, and abundance of each sequence in specific sample as 

the cell values. An example of the primary ASV tables is shown in Figure 1Figure 

2. These ASV tables are provided to us by “Jannes Peeters” for which he used 

DADA2 package to transform the raw data of “MiSeq SOP” into ASV tables. This 

package uses several functions for filtering and correcting the errors in read and 

then identifying unique biological sequences and compiling them into ASV tables, 

providing a snapshot of microbial community composition in the sample.   

 

Figure 1 Example of an ASV table (raw rRNA as columns) 
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F3D0_S188_L001 603 355 479 483 167 502 197 296 176 22 232 55 112 100 86 75 70 46 345 47
F3D1_S189_L001 424 367 252 79 146 44 206 107 113 142 43 137 0 353 0 34 114 63 74 14
F3D141_S207_L001 475 383 361 548 200 350 345 266 151 220 158 12 71 37 110 46 6 52 58 93
F3D142_S208_L001 314 315 172 183 193 210 94 171 84 59 106 112 69 11 52 31 7 0 14 39
F3D143_S209_L001 244 188 228 253 138 264 89 166 76 98 118 45 64 11 41 20 0 17 14 66
F3D144_S210_L001 447 300 331 390 120 401 50 262 169 330 167 18 80 13 116 52 6 52 18 14
F3D145_S211_L001 666 522 570 622 333 503 138 422 258 425 269 25 141 15 129 114 5 44 15 15
F3D146_S212_L001 334 242 278 430 193 291 76 231 106 244 154 5 0 27 37 35 4 19 23 83
F3D147_S213_L001 1571 1265 967 1153 485 1238 81 905 278 631 592 153 291 80 316 155 42 173 69 86
F3D148_S214_L001 906 762 655 929 472 913 560 603 212 542 454 18 203 56 279 129 57 122 29 100
F3D149_S215_L001 939 814 791 958 444 678 565 603 315 632 324 95 176 46 181 126 4 167 56 283
F3D150_S216_L001 333 240 429 518 184 231 139 259 160 72 108 69 82 22 30 51 5 20 17 148
F3D2_S190_L001 3638 1670 1255 504 362 126 1319 343 657 76 46 343 112 388 19 202 422 31 181 19
F3D3_S191_L001 1031 629 504 224 420 31 410 174 318 219 0 98 65 47 25 110 360 137 41 0
F3D5_S193_L001 346 286 311 169 163 27 225 137 224 89 0 50 0 92 42 42 20 11 50 0
F3D6_S194_L001 1076 721 615 437 516 17 285 294 261 57 0 440 106 60 0 41 76 34 67 6
F3D7_S195_L001 681 526 468 322 497 11 235 195 294 19 0 125 71 42 0 24 40 45 19 0
F3D8_S196_L001 287 370 373 156 632 0 309 144 217 24 0 155 67 45 7 23 21 128 54 5
F3D9_S197_L001 541 446 523 226 626 0 486 222 237 37 0 191 73 104 0 39 44 31 47 0
Mock_S280_L001 0 0 0 0 0 0 0 0 0 143 0 0 0 0 0 0 0 0 0 0
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In each function several parameters used for fine-tuning and optimization to 

increase accuracy and reliability of downstream analysis in microbiome research. 

A pipeline in this context refers to a set of  values for different parameters involved 

in the process of generating ASV tables using DADA2 package. In this study, 700 

pipelines with 24 parameters were used to create ASV tables. List of parameters 

used in this process with a brief explanation of them is presented in Table 2. 

Values for these pipelines are generated randomly from predefined ranges after 

discussion with expertise in the field. These values explained in detail in section 

4.1.1. 

Table 2 List of the pipeline parameters 

Parameter Explanation 

truncQ 
 This parameter specifies the minimum quality score required to retain a base during 

truncation (removal of low-quality bases from the end of reads). 

truncLen_f  Length to which forward reads should be truncated. 

truncLen_r  Length to which reverse reads should be truncated. 

trimLeft_f  Number of bases to trim from the 5' end of forward reads. 

trimLeft_r  Number of bases to trim from the 5' end of reverse reads. 

trimRight_f  Number of bases to trim from the 3' end of forward reads. 

trimRight_r  Number of bases to trim from the 3' end of reverse reads. 

minLen  Minimum length a read must have after truncation and trimming to be retained. 

minQ  Minimum acceptable quality score for a base. 

maxEE_f  Maximum expected errors allowed in forward reads. 

maxEE_r  Maximum expected errors allowed in reverse reads. 

rm.phix  Whether to remove PhiX spike-in sequences from the data. 

rm.lowcomplex  Whether to remove low-complexity sequences. 

nbases  Number of Ns allowed in a read. 

randomize  Whether to shuffle input sequences prior to processing. 

max_consist  Maximum number of allowable erroneous base calls in a consistent region. 

omega_c  Threshold for the fraction of errors to be expected in a consistent region. 

selfConsist  Whether to use self-consistency algorithm for error modeling. 

pool  Whether to pool samples for error rate estimation. 

minOverlap  Minimum required overlap between forward and reverse reads for merging. 

maxMismatch  Maximum number of mismatches allowed in the overlap region during merging. 

chim.method  Method to use for chimera removal. 

minBoot  Minimum bootstrap support required to retain a sequence as non-chimeric. 

tryRC  Whether to try reverse complement when searching for chimeras. 

 

Not all the pipelines resulted in an ASV table after using DADA2 package. In total, 

only 308 out of 700 pipelines used in this study resulted in a valid ASV table, while 

the remaining 392 pipelines failed to produce an output. The potential reasons 

for this are not part of the study, however, a small exploratory analysis was 

conducted to gain some insights into the possibilities. In addition to this 

information, an annotation table is also available in .csv format for each pipeline 
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providing information about the taxonomic system of rRNA sequences founded 

in each ASV table. Here is a list of files in the dataset: 

• 700 ASV tables in .csv format, each for a single pipeline 

• 700 annotation tables in .csv format, each for a single pipeline 

• 1 parameters table in .csv format, set of parameter values for each pipeline  

 

3.2 Procedure 
To answer the main question, a network graph of pipelines needs to be generated. 

By overlaying information about microbes and parameters over this network 

graph, potential patterns and insights could be revealed. The network graph 

consists of 308 nodes, each representing one of the pipelines with an ASV table 

as outcome. An edge, connects a pair of nodes represents the similarity between 

ASV tables produced by those nodes (pipelines). For finding these edges, the 

distance between each pair of pipelines must be calculated using proper metric, 

this requires the presence of a common axis in the dataset space; in other words, 

similar columns must be present in different ASV tables. 

After checking for common rRNA sequences among all ASV tables, it became clear 

that all of the sequences are unique. Therefore, it was not possible to calculate 

distances using the primary ASV tables because there wasn’t any common axis 

among them. To overcome this issue, a preprocessing step was performed on the 

dataset to create appropriate ASV tables with similar columns across different 

pipelines. Section 3.4 explains this process in detail. 

 

Figure 2 Procedure of the study 
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After calculating the distance between pairs of pipelines, a distance matrix is 

generated for construction of the network graph. In this study, Minimum 

Spanning Trees (MST) are used for representation of the network graphs. For each 

sample a tree was generated and combination of all of these MSTs resulted in the 

main network graph. Section 3.5.3 explains how different types of network graphs 

were developed for analyzing the dataset. 

At this point, a network graph is available for visual analytics. By overlaying 

information about the parameters (values of a single parameter for different 

pipelines) and also information of the abundances from different samples, 

potential patterns and insights can be identified.  

By comparing patterns founded using pipeline parameters with patterns reveled 

in using abundance information, effect of parameters and their values will 

become clear. This entire process is illustrated in Figure 2. 

 

3.3 Software 
For preprocessing of the data, conducting exploratory data analysis, and 

calculating the network graph matrix (distance matrix), Python programming 

language and several libraries were used. Visualization of the graphs and graph 

statistics were performed using Gephi (Bastian 2019). 

• Python 3.10.2  

o Matplotlib 3.5.0 

o Scipy 1.9.0  

o Pandas 1.5.5  

o Numpy 1.22.3  

o Seaborn 0.12.4  

o  

• Gephi 0.10.1 202301172018 

 

3.4 Preprocessing of ASV tables 
Before beginning with topological data analysis (TDA), preprocessing of the 

existing ASV tables is necessary to transform them into suitable inputs for TDA. 

An initial issue, briefly mentioned in Section 3.2, was the lack of a common axis 

for calculating distance between different ASV tables. One proposed solution was 

to use BLAST to find nearly identical sequences and group them accordingly, 

however, each pipeline has an annotation table containing taxonomic system 
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information for the sequences found within it. By utilizing this annotation table, 

each rRNA sequence can be replaced with its corresponding taxonomic system. 

It's important to note that not all rRNA sequences have a recognized 

corresponding category in taxonomic system in the annotation table for in 

Kingdom level and deeper, as some are still unknown in existing biological 

databases. Across different pipelines, this lack of information varies from 3% to 

60%, with a median loss of approximately 21%. In this study, all unknown 

sequences are excluded from the analysis process. Figure 3 illustrates the 

distribution of available data among different pipelines. 

 

  
Figure 3 Boxplot for loss of information (left) Biological hierarchy (right) 

 

Each annotation table provides information at 7 hierarchical levels: Kingdom, 

Phylum, Class, Order, Family, Genus, and Species, as shown in Figure 3. Exploring 

deeper into this hierarchy increases the number of instances, but at the same 

time increases loss of the  information because not all sequences are labeled at 

deeper levels. Therefore, it is crucial to decide at which hierarchical level the rRNA 

sequences are going to be replaced with equivalent biological information. This 

decision requires balancing the trade-off between increasing instances (more 

axes in the data space for distance calculation) and minimizing the loss of 

information. To facilitate this decision, boxplots of available information were 

developed across different levels, as illustrated in Figure 4. 

The top row of Figure 4 shows the amount of available data in the taxonomic 

system for each level among all pipelines, and the bottom row shows the number 

of available instances in each ASV table at that specific level. It is clear that all 

sequences have information at the Kingdom, Phylum, and Class levels. The loss of 

information starts at the Order level but is very minor (median almost 100%). The 

available information has a median of 91% at the Family level, 55% at the Genus 
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level, and a bit more than 6% at the Species level. Following this explanation, 

Species level is not a good choice for replacing rRNA sequences. Considering the 

number of instances at each level, boxplots show a median of 1 instance for 

Kingdom, 9 instances for Phylum, 12 instances for Class, 28 instances for Order, 

36 instances for Family, and 52 instances for Genus. Considering these values, the 

Family level was chosen for creating the final ASV tables due to a good average 

number of instances (38) and a lower average loss of the information equal to 9%. 

 

Figure 4  Loss of information (top) Number of instances in hierarchy (bottom) 

The next step in the process is to change the shape of ASV tables from table per 

pipeline into table per sample for two reasons. First, study is querying for the 

effect of the parameters over ASV tables, so by checking this effect over different 

samples we can look for consistent patterns among them as the output of the 

similar samples should be close to each other. Secondly, to calculate the distance 

matrix, we need a table of abundance values of different pipelines for each axis 

in dataset space and in this case each access will be a Family. So the appropriate 

form of ASV table includes pipelines as rows, families as columns and abundance 

of each family in specified pipeline as cell value. It is possible that multi rRNA 

sequences belong to a similar Family, in this case, sum of the abundance of 

sequences belonging to that family is used. 

The output of the preprocessing step includes 19 ASV tables, each corresponding 

to one of the samples in the dataset. In total, 35 unique families were identified, 

some of which are found only in certain subsets of samples. This count is lower 

than the median observed in Figure 4, primarily because it considers all 19 

samples plus one Mock sample. Certain families appear exclusively in the Mock 

sample and not in the mouse samples. Removing the Mock sample leaves us with 

these 35 families, which represent columns of the final ASV tables. Each row in 

these tables corresponds to a pipeline, and the cell value is sum of the 

abundances for that family. These tables serve as input for the Topological Data 

Analysis (TDA) process.  
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To clarify how pipelines are identified, each pipeline is assigned a unique ID. This 

ID is sourced from the parameters .csv file and ranges from 1 to 700. As previously 

mentioned, only 308 pipelines result in ASV tables. Therefore, there will be 308 

IDs within this range, but not necessarily spanning from 1 to 308. 

3.5 Data visualization and Topological Data Analysis (TDA) 
Data visualization plays a crucial role in biology by transforming abstract data into 

visual representations that are easier to interpret and analyze. Techniques such 

as heatmaps, scatter plots, and network diagrams allow researchers to explore 

relationships between genes, proteins, and metabolites across different 

experimental conditions. For instance, tools like Cytoscape enable the 

visualization of molecular networks, revealing interactions between biomolecules 

and their roles in cellular processes (Shannon et al., 2003). Moreover, 

advancements in interactive and three-dimensional visualization techniques 

enhance the exploration of spatial relationships in biological structures, such as 

protein folding and cellular localization, offering insights that aid in drug design 

and molecular engineering (Meyer et al., 2021). 

Dimensionality reduction techniques, such as principal component analysis (PCA) 

and t-distributed stochastic neighbor embedding t-SNE (Maaten, 2014), are pivotal 

in reducing the complexity of biological datasets while preserving essential 

features. PCA identifies orthogonal components that explain the variance in data, 

making it useful for clustering similar samples or identifying outliers based on 

gene expression profiles (Wold et al., 1987). On the other hand, t-SNE is effective 

in visualizing high-dimensional data in lower-dimensional space, revealing 

clusters and patterns that may correspond to distinct biological states or cell types 

(Maaten and Hinton, 2008). These techniques are widely applied in single-cell RNA 

sequencing to explore cellular heterogeneity, identify rare cell populations, and 

understand developmental trajectories in tissues (Stuart and Satija, 2019). 

Graph-based approaches have also gained prominence in biological research for 

modeling complex interactions and networks. Graph theory enables the 

representation of biological entities (nodes) and their relationships (edges) in 

various contexts, such as protein-protein interaction networks, metabolic 

pathways, and gene regulatory networks (Barabasi and Oltvai, 2004). Algorithms 

like community detection and centrality measures help identify modules of highly 

connected nodes or key regulatory elements within these networks, offering 

insights into disease mechanisms and potential therapeutic targets (Newman, 

2006). 
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3.5.1 Minimum Spanning Trees (MSTs) 

Topological data analysis (TDA) has revolutionized the study of biological systems 

by employing techniques such as minimum spanning trees (MST, Prime 1957) to 

unveil underlying structures and relationships in complex datasets. MSTs offer a 

straightforward yet powerful method to identify the most critical connections and 

hierarchies within biological networks, ranging from gene regulatory networks to 

ecological interactions (Gao et al., 2020). By emphasizing the shortest paths 

between nodes while connecting all vertices with minimal total edge weights, 

MSTs facilitate the identification of central nodes and clusters that play pivotal 

roles in biological processes and evolutionary dynamics. This approach has been 

instrumental in elucidating functional modules in protein interaction networks, 

identifying key genes in disease pathways, and understanding the resilience of 

ecosystems to environmental changes (Lee et al., 2023; Wang et al., 2022). 

Moreover, MSTs contribute significantly to data visualization techniques in 

biology, offering intuitive representations of network structures and connectivity 

patterns. Visualizing MSTs as simplified graphs helps researchers to intuitively 

grasp the hierarchical organization and spatial relationships within biological 

systems, aiding in the identification of critical nodes, bottlenecks, and potential 

targets for intervention or study (Adams et al., 2022). This visualization approach 

not only enhances exploratory data analysis but also facilitates interdisciplinary 

collaborations by making complex biological phenomena accessible and 

interpretable across different fields of study. 

Innovative applications of MSTs in conjunction with machine learning algorithms 

further extend their utility in predictive modeling and decision support in biology. 

Integrating MST-based insights with predictive analytics enables researchers to 

forecast disease trajectories, optimize drug discovery pipelines, and model 

ecological dynamics with greater accuracy and efficiency (Chen et al., 2021). As 

TDA continues to evolve, leveraging MSTs and similar techniques promises to 

unlock deeper insights into biological complexity, driving forward discoveries and 

innovations across diverse domains of biological research. 

3.5.2 Bray- Curtis metric 

The Bray-Curtis dissimilarity metric (Bray et al. 1957) is widely employed in biology 

to quantify compositional differences between samples, particularly in ecological 

and microbiological studies. This metric assesses dissimilarity based on species 

abundances or composition across multiple samples. It ranges from 0 (complete 

similarity) to 1 (complete dissimilarity), making it valuable for comparing 

community structures. To calculate Bray-Curtis dissimilarity between two 
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samples, one computes the sum of absolute differences in species abundances 

divided by the sum of total abundances in both samples. Mathematically, it is 

expressed as:  

𝐵𝑟𝑎𝑦 − 𝐶𝑢𝑟𝑡𝑖𝑠 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
∑ |𝐴𝑖 − 𝐵𝑖|

∑(𝐴𝑖 + 𝐵𝑖)
 

where Ai and Bi represent the abundances of species (i) in samples A and B, 

respectively. This metric is preferred in ecology because it is sensitive to both 

species presence and abundance changes, providing a robust measure of 

community dissimilarity. In biological research, Bray-Curtis dissimilarity finds 

application in various contexts, including studying biodiversity patterns across 

habitats, comparing microbial community structures in different environments, 

and analyzing shifts in species composition over time. Its versatility and ability to 

handle large datasets make it a cornerstone in ecological research, aiding in 

understanding community dynamics, species interactions, and ecosystem 

responses to environmental changes (Krebs, 1999; Anderson, 2001; Legendre & 

Legendre, 2012). 

3.5.3 Network graphs of pipelines 

To generate these graphs, distance matrices were calculated using the SciPy 

library with Bray-Curtis metric. Subsequently, the Minimum Spanning Tree (MST) 

function from the same package was used to find paths connecting all pipelines 

(nodes) with a single edge, ensuring each node is visited exactly once. Thus, each 

graph consists of 308 nodes and 307 edges. It's important to note that MST graphs 

are not unique; other graphs with the same path length (distances in this case) 

may exist. Small variations in the distance matrix can result in different tree 

structures. Figure 5 provides examples of these trees for samples 1, 10, and 19. 

These graphs were created using ForceAtlas2 algorithm (Jacomy 2014)  in Gephi. 

Colors used in these network graphs correspond to pipeline IDs and were only 

used for identification and comparison purposes among different MSTs. 

 
Sample 1 (Day 0) 

 
Sample 10 (Day 148) 

 
Sample 19 (Day 9) 

Figure 5 Example of MSTs for different samples 
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If we use a pipeline on similar samples, we expect to see a more or less similar 

network of graphs created by the distance matrices of those samples. By 

overlaying these individual MSTs on top of each other, a graph is created with the 

same number of nodes (308) but likely more edges, as some edges may only exist 

in the MST of one sample and not in others. Figure 6 shows a graph resulting from 

this process, visualized by ForceAtlas 2 algorithm in Gephi. The weight of each 

edge is equal to the sum of its presence in different MSTs, with a  maximum weight 

equal to 19, equivalent to the number of samples. 

 

 

Figure 6 Network graph of pipelines 

Clearly, the number of edges is greater, totaling 1698. The general form of the 

graph consists of a tail on the right side and a main body on the left. The main 

body itself comprises two clusters (cluster-A in blue rectangle and cluster-B in 

purple rectangle) and a smaller middle cluster (cluster-C), connected to the tail by 

two paths. Low weight indicates that an edge is not persistent across different 

samples, while higher weights correspond to edges consistently present in 

different MSTs. To examine the general shape and persistence of the edges, a 

filter is applied to this graph, each time filtering out all the edges with a weight 

equal to or higher than a minimum value. 

Figure 7 shows how this graph changes by increasing the minimum threshold 

from 1 to 2. The general shape of the network graph remains the same; however, 

the number of edges is reduced to 821, or almost half of the original graph. This 

indicates that half of the connections appeared only once among different MSTs. 

Cluster-A 

Cluster-B 

Cluster-C 
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This network graph was considered the main graph for visual study and overlaying 

parameter/microbe information because it retains the general shape and 

connections while focusing on more persistent connections. Results derived from 

this graph are expected to be more robust and reliable. 

 

 

Figure 7 Network graph of pipelines (edges with weight ≥2) 

 

3.5.4 Overlaying Parameters/Microbes Information 

The final step is to investigate patterns visually by overlaying information about 

parameter values and microbes (families). Adjacent nodes in the network indicate 

that those nodes have similar ASV tables, so we hope to find corresponding 

patterns in the parameters . Each parameter's values will be overlaid on this 

network graph and colorized to reflect patterns, allowing to see if any patterns 

exist over clusters of pipelines. 

Similarly, to see the effect of pipelines on abundance values, for each sample the 

abundance values of families (per family) will be overlaid to look for patterns. 

 

 

 

 

Cluster-A 

Cluster-B 

Cluster-C 
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4 Results 
4.1 Exploratory data analysis 
An statistical summary representation of ASV tables and pipeline parameters is 

necessary for the analysis of the pipeline network graph and making conclusions. 

In both cases, boxplots were used to visualize the distribution of the values across 

different families and pipelines. In addition to that, all the values were shown as 

jittered points over each box plot. 

4.1.1 Pipeline parameters 

As previously noted in section 3.1, only 308 out of 700 pipelines, each configured 

with different set of parameters, successfully generated ASV tables using DADA2. 

Figure 8 illustrates the distribution of 18 numerical parameters, colorized by the 

outcome. Red points signify the 392 pipelines that yielded no outcome, while blue 

points represent the 308 pipelines that produced an ASV table. 

 

Figure 8 Boxplots of numerical parameters 

For some parameters, most pipelines with outcomes are concentrated around a 

specific value among the other values. By controlling the ratio of pipelines without 

outcomes but with the same parameter value, the influence of the parameter on 

producing results can be examined. Table 3 shows a list of those parameters, 

value with high concentration, total number of pipelines, number of pipelines with 

outcome and number of pipelines without outcome for that value. Last column 

additionally added to consider the ratio of pipelines with other values but resulted 

in an outcome, so this column is equal to difference of 4th column and 308. 

Table 3 Parameters with concentrated values resulted in an outcome ( ASV table) 
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Parameter Value Total With Outcome Without Outcome 

With Other 

Values & 

Outcome 

(out of 308) 

trimLeft_f 0 316 255 (80.70%) 61 (19.30%) 53 (17.21%) 
trimLeft _r 0 311 253 (81.35%) 58 (18.65%) 55 (17.86%) 
trimRight_f 0 307 253 (82.41%) 54 (17.59%) 55 (17.86%) 
trimRight _r 0 307 253 (82.41%) 54 (17.59%) 55 (17.86%) 
nbases 10E+8 343 263 (76.68%) 80 (23.32%) 45 (14.61%) 
Max_consist 10 334 257 (76.95%) 77 (23.05%) 51 (16.56%) 
omega_c 0 394 308 (78.17%) 86 (21.83%) 0 (0.00%) 
minOverlap 12 306 255 (83.33%) 51 (16.67%) 53 (17.21%) 
maxMismatch 0 368 264 (71.74%) 104 (28.26%) 44 (14.29%) 
minBoot 50 309 253 (81.88%) 56 (18.12%) 55 (17.86%) 

 

By looking at last column, almost 83% of pipelines with outcome have a value 

equal to 2nd column, except for “omega_c” for which all the pipelines with outcome 

having a value equal to 0. Additionally, by looking at 4th and 5th column, 77% to 

83% of pipelines with specified values are resulted in ASV tables for all 

parameters, for “maxMismatch” this ratio is 71.74%.  

These parameters could be the potential parameters for answering to the 

question “What is the relation between set of parameters and presence of an ASV 

table as outcome? ”, because violation from specified values in 2nd column mostly 

resulted in a pipeline with no outcome, however, for making solid conclusions 

permutation of values for these parameters and possible correlation between 

them must be investigated.  

Interestingly, majority of the pipelines without an outcome have “truncLen_f” with 

a value more than 200 and “trunLen_r” is mostly less than 180 for these pipelines. 

For pipelines with an outcome “truncLen_r” spreads over a range from 150 to 250 

and “truncLen_r” over 140 to 200. Deeper investigation in pipelines with outcome 

for these parameters could be resulted in finding some patterns. 

Remaining parameters (“trunQ”, “truncLen_f”, “truncLen_r”, “minLen”, “minQ”, 

“maxEE_f”, “maxEE_r”, and “rm.lowcomplex”) having almost uniformly distributed 

values among different pipelines with an outcome. 

 

Figure 9 illustrates distribution of values for categorical parameters. For four 

Boolean parameters (“randomize”, “selfConsist”, “pool”, and “tryRC”), the majority 

of pipelines with outcomes have a False value (represented as 0 in boxplots). Only 
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about 10% of pipelines with these parameters set to True result in an outcome. In 

contrast, for pipelines without outcomes, the distribution is more balanced, with 

approximately half having False and half having True values. For “rm.phix” the 

behavior between piplines with and without an outcome is almost the same. 

Majority of pipelines with per-sampled and pooled values for “chim.method” don’t 

have an outcome, in contrast, for 64.37% of pipelines with “chim.methid” equal to  

consensus an outcome is available. 

Similar to what mentioned about ten parameters in Table 3, all the categorical 

parameters except for “rm.phix” could be potentially used to answering “What is 

the relation between set of parameters and presence of an ASV table as 

outcome?”.  

 

 

Figure 9 Boxplots of categorical parameters 

 

4.1.2 ASV tables 

For ASV tables, boxplots of abundances were generated across different families 

for all pipelines, in order to examine insights out of the network graph of pipelines 

easier and more precisely (all boxplots in appendix 8.1). Based on these box plots 

families were categorized in four groups, each category considers a certain 

maximum threshold for the value of abundance in ASV tables. Table 4 summarizes 

these categories and a list of families belonging to them. 

 

Table 4 List of families for different abundance threshholds 

Threshold <5 Threshold <50 Threshold <500 Threshold >500 
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Actinomycetaceae 

Anaerofustaceae 

Atopobiaceae 

Bacillaceae 

Defluviitaleaceae 

Deinococcaceae 

Erysipelatoclostridiaceae 

Listeriaceae 

Monoglobaceae 

Moraxellaceae 

Neisseriaceae 

Staphylococcaceae 

Streptococcaceae 

Akkermansiaceae 

Butyricicoccaceae 

Christensenellaceae 

Clostridiaceae* 

Eggerthellaceae 

Enterobacteriaceae 

Mitochondria 

Pseudomonadaceae 

Saccharimonadaceae 

[Eubacterium] 

 

Acholeplasmataceae 

Anaerovoracaceae 

Bifidobacteriaceae 

Erysipelotrichaceae 

Oscillospiraceae* 

Peptococcaceae 

Rikenellaceae 

Ruminococcaceae 

 

Bacteroidaceae 

Lachnospiraceae 

Lactobacillaceae 

Muribaculaceae 

 

*Families with star only have a single value more than threshold for one of the samples 

In microbial ecology, determining if  a small abundance value in an ASV table 

represents a true biological presence or just noise is a concern. Different 

thresholds have been proposed to address this issue. Callahan et al. (2016) 

suggests threshold of one, while Needham et al. (2017) propose values of two or 

three. In this study, the first category is defined with a threshold of 5 to serve as a 

reference for future analysis in case of unexpected results in the patterns found 

in network graph of pipelines. Categories with higher threshold were designated 

to provide additional insights, including considerations for longitudinal effects or 

sudden family appearances, potentially coming from factors like disease although 

pipelines expected to behave independent to these effects. 

In addition to the value of the cell in the ASV table for each family, another 

important factor is the presence of the microbe in different samples. In Table 5, 

all families are colorized based on their number of occurrences in various 

samples. Twelve families out of thirty-five exist in all samples, while nine families 

appear less than four times in different samples. Among the families with an 

occurrence threshold of less than five, “Erysipelotrichaceae,” “Monoglobaceae,” 

and “Streptococcaceae” appear frequently (more than ten times) in different 

samples. Therefore, any pattern found in the network graph of pipelines could 

potentially be used to examine the presence of these families. 

The table also shows that the number of families in different samples varies 

between 19 and 29, with an average of 22.73 (almost 23) families per sample. A 

family like “Akkermansiaceae” only shows up in the beginning of the study (days 

0 to 9), and another family like “Neisseriaceae” only shoes up at the middle of the 

study (days 141 to 150).  

Table 5 Presence of the families among different samples (during time) 
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Families colored in green are consistent across all samples over time, being 

present in at least seventeen out of nineteen samples. Figure 10 shows a boxplot 

of these families belonging to categories with thresholds of 500 and 5000 (3rd and 

4th  columns in Table 4) spread over different pipelines. For seven families, a peak 

value is present on day 2 in these plots (D002-S12). Similarly, some peaks exist on 

the right side for families “Bacteroidaceae,” “Lactobacillaceae,” “Muribaculaceae,” 

and “Peptococcaceae” on days 148, 149, and 150. Although this should not be due 

to related to values of parameters in pipelines, in the next section we will check 

by looking for a similar color gradient in these samples compare with other 

samples. 

 

Sample 1 2 13 14 15 16 17 18 19 3 4 5 6 7 8 9 10 11 12
Day 0 1 2 3 5 6 7 8 9 141 142 143 144 145 146 147 148 149 150 Total

[Eubacterium 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 7
Acholeplasmataceae 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 15

Actinomycetaceae 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 3
Akkermansiaceae 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3
Anaerofustaceae 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 3

Anaerovoracaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19
Atopobiaceae 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 4

Bacillaceae 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 3
Bacteroidaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Bifidobacteriaceae 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 13
Butyricicoccaceae 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 17

Christensenellaceae 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 14
Clostridiaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Defluviitaleaceae 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 7
Deinococcaceae 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 4
Eggerthellaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Enterobacteriaceae 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 17
Erysipelatoclostridiaceae 1 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 10

Erysipelotrichaceae 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18
Lachnospiraceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19
Lactobacillaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Listeriaceae 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 3
Mitochondria 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 10

Monoglobaceae 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 12
Moraxellaceae 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2

Muribaculaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19
Neisseriaceae 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 3

Oscillospiraceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19
Peptococcaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Pseudomonadaceae 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 16
Rikenellaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Ruminococcaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19
Saccharimonadaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Staphylococcaceae 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 6
Streptococcaceae 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 14

Total 25 19 25 21 19 22 22 22 21 26 25 21 23 29 20 23 27 22 20

17 ≤ Occurance ≤ 19 0 Family exist in the sample
10 ≤ Occurance ≤ 16 1 Family doesn't exist in the sample
5 ≤ Occurance ≤ 9
2 ≤ Occurance ≤ 4
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Figure 10 Boxplots of abundances of  persistent families 

  

4.2 Network graph analysis 
Before looking for patterns, a statistical summary of the graph were provided to 

figure out the important topological nodes and structures. Figure 11 illustrates 

histogram of node’s degree of the network graph of pipelines. Smaller degree 

refers to persistent pipelines, the reason behind this is a node with similar 

connections in MST of samples will result in a node with the same edges but with 

a high value for weight, on the other hand if a node connected differently to other 

nodes among different MSTs, this node will turn into a node with more 

connections but with lower weight for each. Histogram is close to normal 

distribution with a skewness to the right. Average degree is 11.026 and 24 nodes 

have a degree equal or less than 4 which are the consistent ones (connected to 

the same node in different MSTs of different samples) and 25 nodes have a degree 

equal or more than 19 which are unstable (connected to different nodes in 

different MSTs of different samples) 
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Figure 11 Degree histogram (top) Potential structures in the network (bottom) 

 

Red points are located in clusters A and B (Figure 11), presenting an unstable 

connection between pair of nodes. To check for the existence of these two 

clusters, a filter was applied to the graph for nodes with degrees between 13 and 

25 (inclusive). All 121 nodes filtered in this range are located in clusters A and B in 

the body of the graph. The edges connecting these nodes show sparse 

connections,  which is expected. To examine inter-clusters connectivity, edges 

were filtered for weights equal to or greater than 2. Figure 12 shows that clusters 

A and B become separated by applying this filter, indicating that the only possible 

consistent connectivity between these two clusters are through the middle 

cluster, C. 

Cluster-A 

Cluster-B 

Cluster-C 
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(a) 

 
(b) 

 

Figure 12 (a) Clusters A and B (b) Clusters A and B (edge weight ≥2) 

 

After adding cluster C to the graph and examining inter-cluster connectivity, for 

edges with weights equal to or greater than 3, cluster C is only connected to 

cluster B (see Figure 13), and for edges with weights equal to or greater than 4, all 

connections between clusters A and B disappear illustrating a stronger 

connectivity between clusters C and B in compare with clusters C and A (two edges 

with weight equal to 4 versus one edge with weight equal to 3) 

 

Figure 13 Clusters A,B and C  (a) edge weight ≥2  (b) edge weight ≥3 (c) edge weight ≥4 

 

Finally, two separate paths from the main body to the tails is present in the graph 

with edges filtered for weight equal or greater than 2 (Figure 14). In addition to 

clusters in the main body and tail, these two paths could be considered as 

potential structures in finding patterns for overlaid parameters / microbes. 

 
(a) 

 
(b) 

 
(c) 
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Figure 14 Network structures - Path 1 and Path 2 

 

4.2.1 Overlaying parameters information 

To find any effect of the pipeline parameters on abundance tables (ASV tables), 

the first step is to explore parameters overlaid on top of the network graph of the 

pipelines, focusing on the identified structures from the previous section (clusters 

A, B, and C, tail, path 1, and path 2). For this purpose, all 24 parameters are 

colorized based on their values on top of the network graph. From Table 5, we 

know that 10 numerical parameters are mainly concentrated around a certain 

value in the network graph of pipelines. For these parameters, we are only 

checking if any pattern exists for other values. Except for “omega_c,” which is 

equal to 0 for all pipelines, other parameters are illustrated in Figure 16. This 

figure clearly shows that most of the pipelines with values different from the 

mentioned value in the table are concentrated in cluster C and part of cluster B. 

The stronger connection between these two clusters found in Figure 13 is mostly 

due to the similarity in the values of these parameters. Several pipelines with 

different values are also spread over the network graph in the connecting path of 

the clusters to the tail and the tail itself. These pipelines are common across all 

parameters, meaning values other than what mentioned in Table 3, are gathered 

in these pipelines. This pattern is labeled as pattern-1.  

The color pallet which used for colorizing of the graphs (Figure 15) in this section 

and next section is considering the minimum to maximum values within each 

parameter and does not reflect a constant values everywhere. Red is always at 

the minimum side of the range and blue refers to the maximum values. For range 

of values refer to 8.18.1. 

 

Figure 15 Default color palette 
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Figure 16 Overlaid numerical parameters on the network graph – Pattern-1 

 

Categorical parameters with similar situation (mostly equal to False) are also 

following the same pattern. Figure 17 shows these parameters overlaid on the 

network graph. 

 
pool 

 
randomize 

 
selfconsist 

 
tryrc 

Figure 17 Overlaid categorical parameters on the network graph – Pattern-1 
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Among the remaining parameter, four of them distributed over the whole graph 

without notifying a considerable pattern or concentration of values (colors) in a 

specific location.“rm.phix” is categorical (Boolean) and “rm.lowercomplex”, 

“minlen” and “minq” are numerical parameters. (Figure 18) 

 
rm.phix 

 
rm.lowercomplex 

 
minlen 

 
minq 

Figure 18 Overlaid parameters on the network graph (distributed uniformly) 

 

By visualizing the last five parameters, different pattern revealed for each of them. 

For “maxee_f” lower values are concentrated in path 2, however, for maxee_r 

lower values are concentrated in path 1. In “trunclen_r “ lower values located in 

clusters C and B and also half of the tail closer to the main body, while higher 

values are in cluster A and end of the tail. 

 
maxee_f / Pattern-2 

 
maxee_r / Pattern-3 

 
trunclen_f / Pattern-4 

 
trunclen_r / Pattern-5 

 
truncq / Pattern-6 

 

Figure 19 Overlaid parameters on the network graph – patterns (2) to (6) 
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In  “truncq” higher values are completely in the tail and lower values in the main 

body and finaly for “trunclen_f” a concentration of lower values on clusters A and 

B except for the region in cluster B which discussed earlier in Figure 17. These 

patterns are important for relating effects of the parameters to ASV tables. (Figure 

19) 

 

4.2.2 Overlaying microbes (families) information 

In order to analyze all families properly, the values of ASV tables (abundance 

values) for each family are overlaid on the network graph of pipelines for each 

sample. The aim of this exploration is to find any existing patterns, check if the 

pattern remains consistent within the family across different samples, and, in case 

of inconsistencies, determine their frequency and identify any emerging patterns. 

Also to check if pipelines behave differently for different families of the microbes. 

To achieve this goal, families are sorted based on the thresholds used in the table 

and their presence over time (across samples). The idea is that ASV tables with 

higher values will create a more detailed and clearer gradient of colors when 

overlaid on the network graph of pipelines. When the values of the ASV tables are 

lower, patterns could vary significantly because the range from minimum to 

maximum is not wide enough to vary smoothly. By checking for the presence of 

patterns in these graphs, potential relationships between parameters and ASV 

tables will be identified. 

Starting by “Bacteroidaceae” ,”Lachnospiraceae”, “Lactobacillaceae”, and “Muribaculaceae”, a 

consistent pattern of the colors found for all of them. Figure 20 illustrates an 

example of this pattern using sample 8 (Day 147) for “Bacteroidaceae” family. 

Interestingly lower values of the ASV tables appears at tail of the network graph. 

End of the tail is consisting of the lowest values and it increases by going towards 

the main body. Among the labeled patterns, this pattern is very close to pattern-

5.  

Moderate values of ASV tables are located around the position in which the main 

body is connected to the tail, including path 1 and path 2 from structures found 

in section 4.2. Although different patterns were found for these two paths in 

section 4.2 (pattern-2) and pattern-3), ASV table found by the pipelines belonging 

to these two structures are showing very similar values with a slightly smaller 

values in path 2 (pattern-2).  
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Figure 20 Family abundance  on the network graph (Sample 8 Bacteroidaceae) 

 

Higher values are present in clusters A and B with a smooth transition from 

position of moderate values to these positions. Left side of the pattern-6 is very 

similar to what we see for these higher values. Maximum values are located in 

cluster C, for which pattern-1 was found in section 4.2, however, this pattern is 

similar in all fourteen parameters explained in the same section and it’s hard to 

say directly how this region is affected by different parameters. In addition to that 

pattern-4 also shows a similar behavior for the pipelines located in cluster C and 

a region of cluster B.  

The transition of colors are smoothly and no exception appears in the transition 

from tail towards the main body. In general pipelines closer to the tail generate 

ASV tables with lower values in compare with pipelines located in the main body. 

For moderate values of ASV table (50 < threshold  <500)  and for all frequencies 

(from 10 to 19) such as , same behavior was observed, however, for some samples 

exceptions with a dominant pattern appears. This exceptions doesn’t change the 

logic behind what observed for the previous families. (Figure 21) 

Pattern-1 & 
Pattern-4 

Pattern-6 

Pattern-5 
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(Day 141) 
 

(Day 142) 
 

Figure 21Example of exceptions for "Christensenellaceae" 

As families with low values of ASV tables and low frequencies are appearing time 

to time, patterns for the pipelines succeed in finding these values are important 

and those parameters could be used potentially for founding microbes with low 

frequencies (“Staphylococcaceae”, “Atopobiaceae”, “Deinococcaceae”, 

“Actinomycetaceae”, “Anaerofustaceae”, “Bacillaceae”, “Listeriaceae”, 

“Neisseriaceae”, “Moraxellaceae”). Even for these families, the logic remains the 

same. The dominant pattern for these families by far is pattern-1 and pattern-4, 

specifically cluster C. In these families which instances of microbes are shows up 

rarely, cluster C is the main group of pipelines succeed in founding these 

instances. 

Pattern-1 & 
Pattern-4 

Pattern-6 
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5 Discussion 
In this study by analyzing values of parameters involved in converting raw rRNA 

sequences into ASV tables, several main patterns found yields how these 

parameters affect the values of ASV tables. Concentration of minimum values at 

the end of the tail and maximum values in cluster C is the most important finding. 

Pipelines connection the end of the tail to main body are finding more and more 

instances of microbes by moving from tail towards the main body. The location in 

which tails connect to the main body is mostly including moderate values and by 

moving towards clusters A and B, values increases. This pattern exists among all 

the families and no exception found against it.  

 

Figure 22 Main pattern in ASV tables 

The main parameters which creates this effect are “trunclen_f”, “trunclen_r” and 

“truncq”. In addition, parameters which yielding pattern-1 are important for the 

families with very small values in ASV tables as these instances are mostly found 

by cluster C. It’s hard to say which parameter out of many involved in this pattern 

(Figure 16 and Figure 17) is the important one, as all of them are concentrated on 

this region. 

Based on these findings, truncation is the most important factor in increasing the 

value of ASV tables. High values of “trunq” are located in tail and moderate and 

low values in the main body, for “trunclen_r” pattern is more interesting, high 

values are in the tail and left side of the main body, namely cluster A, finally in 

“trunclen_f” a concentration of higher values in cluster C and lower values in 

clusters B and C is present. To increase the values in ASV tables we should lower 

the values in truncation, exceptionally effect of higher values of “trunclen_f”in 

combination with parameters of pattern-1 resulting in high values in ASV tables. 
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“rm.phix”, “rm.lowercomplex”, “minlen” and “minq” could be used with different 

values without effecting the results significantly. “maxee_f” and “maxee_r” are 

making two paths potentially due algorithm behind DADA2 but resulting in very 

close results in ASV tables. 

5.1 Drawbacks of the methodology and Ideas for future studies 
This study aimed to find the effects of the pipeline parameters on transforming 

laboratory work to available form in data analysis. Insights from this study is 

coming from a solid foundation of observing noticeable patterns, however, in 

order to claim them as fact, statistical tests must be done. 

First of all, although this study provided very good insights about how parameters 

combination effect ASV table, it  didn’t answer to the question “What is the relation 

between set of parameters and presence of an ASV table as outcome? ”. Studying 

such an effect could be used in a two-step process of choosing appropriate values 

for the parameters, first step insures presence of an output and second step looks 

for values with proper level of abundance or setting up a pipeline to find rare type 

of the families.  

Secondly, using MSTs for generating the network graph of the pipelines is one of 

the simplest methods among many more. More complex methods such as 

Mapper could be used in generating the network graph. Also more advanced 

techniques such as Persistent Homology or Mapper have more potential in finding 

more precise patterns. These algorithms although are proper for datasets with 

much bigger amount of information. Bray-Curtis is also used without 

normalization as most of the values ranged under 500 in ASV tables, it worth it to 

look for the same effect  after normalization of the values in ASV tables. 

Moreover in this study missing values are excluded from the analysis. Effect of 

these values could adjust the behavior of the patterns or resulted in finding new 

ones. This loss information is coming from two sources, first unknown sequences, 

secondly lack of information in deeper level of the hierarchy. Studying the same 

effect in different levels of the taxonomic system and over other dataset could 

show if the same patterns appears again or not. Loss of information at the start 

point of this study was one of the aspects which accepted to simplify the process.  

Finally, a data visualization approach was used in this study, by defining statistical 

tests for parameters resulting in patterns, and specifically parameters related to 

truncation, significance of  the effect of these parameters could be examined. In 

this way insights will turn into conclusions with statistical support and could be 

used as guidelines by the biologists in the analysis process of the raw data. 
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6 Conclusion 
In conclusion noticeable similar patterns were observed in both parameters and 

microbiome graphs and consequently ASV table are sensitive to different 

processing pipeline parameters. Abundance of microbiomes not only varies from 

low to high values by choosing different set of parameters, but also could affect 

the presence of an ASV table as an outcome. 

Network is constructed out of smaller regions, namely three clusters (A,B, and C) 

and a tail are present in the network. Two paths exist from the tail towards the 

clusters which representing forward and reverse read of the data in DADA2 

algorithm. These paths however behave similarly in the values of the ASV tables. 

In network graph of the pipelines a smooth transition of ASV values is present 

from the tail towards the main body, with minimum values located at the end of 

tail. Parameters related to truncation are the most important one among the 

others. To get higher values in ASV tables, lower values were used in these 

parameters. Fourteen parameters are concentrated over certain values mostly 

resulted in ASV tables without an outcome, however, an outcome comes out of 

these pipelines, it’s always resulting in maximum values for ASV tables. Other 

parameters distributed over the whole graph without any significant pattern in 

the results. 
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8 Appendices 
8.1 Boxplots of ASV tables (bundance in all pipelines) 
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8.2 IDs of the pipelines in network graph 

 
(a) IDs of pipelines in the network graph 

 

 
(b) IDs of pipelines and specified pipelines with a pattern in blue 
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8.3 Network graph of pipelines by family 

8.3.1 Acholeplasmataceae 
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8.3.2 Actinomycetaceae 
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8.3.3 Akkermansiaceae 

 

  



Appendixes 

43 
 

8.3.4 Anaerofustaceae 
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8.3.5 Anaerovoracaceae 
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8.3.6 Atopobiaceae 
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8.3.7 Bacillaceae 
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8.3.8 Bacteroidaceae 
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8.3.9 Bifidobacteriaceae 
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8.3.10 Butyricicoccaceae 
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8.3.11 Christensenellaceae 
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8.3.12 Clostridiaceae 
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8.3.13 Defluviitaleaceae 
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8.3.14 Deinococcaceae 
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8.3.15 Eggerthellaceae 
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8.3.16 Enterobacteriaceae 
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8.3.17 Erysipelatoclostridiaceae 
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8.3.18 Erysipelotrichaceae 
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8.3.19 Lachnospiraceae 
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8.3.20 Lactobacillaceae 
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8.3.21 Listeriaceae 
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8.3.22 Mitochondria 
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8.3.23 Monoglobaceae 
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8.3.24 Moraxellaceae 
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8.3.25 Muribaculaceae 

  



Appendixes 

65 
 

8.3.26 Neisseriaceae 
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8.3.27 Oscillospiraceae 
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8.3.28 Peptococcaceae 
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8.3.29 Pseudomonadaceae 
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8.3.30 Rikenellaceae 
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8.3.31 Ruminococcaceae 
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8.3.32 Saccharimonadaceae 
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8.3.33 Staphylococcaceae 
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8.3.34 Streptococcaceae 
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8.3.35 [Eubacterium] coprostanoligenes group 
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8.4 Python Code 
This code was wrote using  Jupiter notebook, these are the content of cell copied one 
after each other from different notebooks. Not all the codes used for generating the 
plots is included. 

import pandas as pd 
from scipy.spatial.distance import pdist, squareform 
from scipy.sparse import csr_matrix 
from scipy.sparse.csgraph import minimum_spanning_tree 
import numpy as np 
import random 
import csv 
from returns.pipeline import flow 
import os 
from pprint import pprint 
import pandas as pd 
import plotly.express as px 
from matplotlib import pyplot as plt 
 
def find_directories(directory,file_name): 
    directories_with_test_csv = [] 
    for root, dirs, files in os.walk(directory): 
        if file_name  in files: 
            directories_with_test_csv.append(root) 
    return directories_with_test_csv 
 
MiSeq_directories= find_directories("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP","ASV_table.csv
") 
print(f"Number of available output for MiSeq 
dataset:{len(MiSeq_directories)}") 
MiSeq_directories.remove("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP\\MiSeq_SOP_run3
\\sampleID_165") 
print(f"Number of available output for MiSeq 
dataset:{len(MiSeq_directories)}") 
 
pipeline_indexes=[] 
for directory in MiSeq_directories: 
    index=-1 
    while directory[index:].isnumeric(): 
        index=index-1 
    if "run1" in directory: 
        pipeline_indexes.append(int(directory[index+1:])) 
    elif "run2" in directory: 
        pipeline_indexes.append(int(directory[index+1:])+100) 
    else: 
        pipeline_indexes.append(int(directory[index+1:])+400) 
 
def find_directories(directory,file_name): 
    directories_with_test_csv = [] 
    for root, dirs, files in os.walk(directory): 
        if file_name  in files: 
            directories_with_test_csv.append(root) 
    return directories_with_test_csv 
 
MDAW_directories = find_directories_with_test_csv(f"F:\Statistics Data 
Science\Thesis\data_Jannes\Results\MDAW", 
                                                  "ASV_table.csv") 
print(f"Number of available output for MADW 
dataset:{len(MDAW_directories)}") 
MiSeq_directories= find_directories_with_test_csv(f"F:\Statistics Data 
Science\Thesis\data_Jannes\Results\MiSeq_SOP", 
                                                  "ASV_table.csv") 
print(f"Number of available output for MiSeq 
dataset:{len(MiSeq_directories)}") 
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def make_dataframes(directories,file_name): 
    dataframes=[] 
    for directory in directories: 
        try: 
            dataframes.append(pd.read_csv(directory+"\\"+file_name)) 
        except pd.errors.EmptyDataError: 
            print(f"The file is empty in directory {directory}") 
    print(f"Number of available dataframes for 
{file_name}:{len(dataframes)}") 
    return dataframes 
 
MiSeq_ASV_dataframes=make_dataframes(MiSeq_directories,"ASV_table.csv") 
MiSeq_count_dataframes=make_dataframes(MiSeq_directories,"seq_count_table.
csv") 
 
def get_DNA_list(dataframes,category): 
    if category==1: 
        DNA_list=[] 
        for dataframe in dataframes: 
            dataframe.columns=['DNA']+dataframe.columns[1:].tolist() 
            DNA_list.extend(dataframe['DNA'].tolist()) 
    else: 
        DNA_list=[] 
        for dataframe in dataframes: 
            DNA_list.extend(dataframe.columns[1:]) 
    return DNA_list 
 
count = collections.Counter(MiSeq_DNA2) 
counter=0 
freq=[] 
total=0 
for k,v in count.items(): 
    if v>2: 
        freq.append(v) 
        counter=counter+ 
 
def make_dataframes(directories): 
    count_dataframes=[] 
    ASV_dataframes=[] 
    for directory in directories: 
        try: 
            
ASV_dataframes.append(pd.read_csv(directory+"\\ASV_table.csv")) 
            
count_dataframes.append(pd.read_csv(directory+"\\seq_count_table.csv")) 
            count_dataframes[-1].drop(count_dataframes[-
1].tail(1).index,inplace=True) 
        except pd.errors.EmptyDataError: 
            print(f"The file is empty in directory {directory}") 
    return ASV_dataframes,count_dataframes 
 
records_list=[] 
for i in range(len(count_dataframes)): 
    
ratio_list.append(round(ASV_dataframes[i].shape[0]/count_dataframes[i].sha
pe[1]*100,2)) 
     
fig,ax=plt.subplots() 
ax.boxplot(ratio_list) 
ax.set_title("Rattio of sequences with hierarch") 
fig.show() 
 
ratio_list=[] 
for i in range(len(count_dataframes)): 
    
ratio_list.append(round(ASV_dataframes[i].shape[0]/count_dataframes[i].sha
pe[1]*100,2)) 
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fig,ax=plt.subplots() 
ax.boxplot(ratio_list) 
ax.set_title("Rattio of sequences with hierarch") 
fig.show() 
 
for dataframe in ASV_dataframes: 
    for column in dataframe.columns[1:]: 
        dataframe[column][dataframe[column].notnull()]=column 
        dataframe[column][dataframe[column].isnull()]='NA' 
 
unique_values={} 
for dataframe in ASV_dataframes: 
    for column in dataframe.columns[1:]: 
        unique_values[column]=unique_values.get(column,[]) 
        
unique_values[column].append(len(set(dataframe[column][dataframe[column].n
otnull()]))) 
 
for column in unique_values.keys(): 
    fig,ax=plt.subplots() 
    ax.boxplot(unique_values[column]) 
    ax.set_title(column) 
    fig.show()   
     
ASV_dataframes_count=len(ASV_dataframes) 
summary={} 
counter=0 
for dataframe in ASV_dataframes: 
    fig = px.sunburst(dataframe, path=list(dataframe.columns)[1:]) 
    for index,_id in enumerate(fig.data[0].ids): 
        summary[_id]=summary.get(_id,[0]*ASV_dataframes_count) 
        summary[_id][counter]=fig.data[0].values[index] 
    counter=counter+1 
     
family_groups=[] 
for index,dataframe in enumerate(ASV_dataframes): 
    family_groups.append({}) 
    for category in dataframe["Family"].unique():         
        family_groups[index][category]= 
list(dataframe[dataframe["Family"]==category].iloc[:,0]) 
 
family_count=[] 
for index,dataset in enumerate(family_groups): 
    family_count.append({}) 
    family_count[index]["ID"]=list(count_dataframes[0].iloc[:,0]) 
    for category in list(dataset.keys()): 
        if type(category) is str: 
            
family_count[index][category]=list(count_dataframes[index][dataset[categor
y]].sum(axis=1)) 
            if not any(family_count[index][category]): 
                family_count[index].pop(category) 
             
all_family=set() 
for dataset in family_count: 
    for category in dataset.keys(): 
        all_family.add(category) 
 
for index,dataset in enumerate(family_count): 
    for family in all_family: 
        if not family in dataset.keys(): 
            dataset[family]=0 
    pd.DataFrame(dataset).to_csv(MiSeq_directories[index] + 
f'\Family2_ASV.csv', index=False) 
 
for index,dataset in enumerate(family_count): 
    df=pd.DataFrame(dataset) 
    df.loc[:, (df!= 0).any(axis=0)].to_csv(MiSeq_directories[index] + 
f'\Family2_ASV.csv', index=False) 
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def alter_distances(distances, max_amount = 0.01): 
    changer = lambda t: t + random.uniform(0,max_amount) 
    return np.array([changer(d)for d in distances]) 
 
def calculate_mst(distances): 
    X = csr_matrix(squareform(distances)) 
    mst = minimum_spanning_tree(X) 
    return np.nonzero(mst) 
 
def add_links_to_file(filename, links, pipeline_indexes,indicator=0): 
    with open(filename, 'a', newline='') as csvfile: 
        writer = csv.writer(csvfile,delimiter=',') 
        for i in range(0,len(links[0])): 
            
writer.writerow([pipeline_indexes[links[0][i]],pipeline_indexes[links[1][i
]],indicator]) 
 
for i in range(19): 
    df=pd.read_csv("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP\\Samples\\Famil
y_sample"+str(i+1)+".csv") 
    distances = pdist(df,'braycurtis') 
    for j in range(1): 
        flow(distances,lambda d: calculate_mst(d),lambda d: 
add_links_to_file("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP\\Family_network
_sample"+str(i+1)+".csv",d,pipeline_indexes))     
 
for i in range(19): 
    df=pd.read_csv("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP\\Samples\\Genus
_sample"+str(i+1)+".csv") 
    distances = pdist(df,'braycurtis') 
    distances 
    for j in range(1): 
        flow(distances,lambda d: calculate_mst(d),lambda d: 
add_links_to_file("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP\\Genus_network_
sample"+str(i+1)+".csv",d,pipeline_indexes))     
 
with open("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP\\Family_network
_all.csv", 'a', newline='') as csvfile: 
        writer = csv.writer(csvfile,delimiter=',') 
        writer.writerow(["Source","Target","indicator"]) 
for i in range(19): 
    df=pd.read_csv("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP\\Samples\\Famil
y_sample"+str(i+1)+".csv") 
    distances = pdist(df,'braycurtis') 
    for j in range(1): 
        flow(distances,lambda d: calculate_mst(d),lambda d: 
add_links_to_file("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP\\Family_network
_all.csv",d,pipeline_indexes,i+1))     
 
 
pipelines=pd.read_csv("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\meta\\MiSeq_SOP\\all_sampled_param
s_MiSeq_SOP.csv") 
pipelines.index = range(1, len(pipelines) + 1) 
 
pipelines.loc[pipeline_indexes].to_csv("C:\\Data 
Science\\UHasselt\\Thesis\\data_Jannes\\Results\\MiSeq_SOP\\Nodes.csv") 

 


