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Abstract

COVID-19 and influenza are two respiratory infectious diseases that cause a significant burden on the

health care system. Their co-circulation is a realistic scenario for the foreseeable future and while their

co-dynamics are not yet clear, a better understanding on possible interactions is important to be able

to characterize their spread. Immunization plays a key role in the spread of any virus and in the specific

case of COVID-19 and Influenza, cross-reactive immunity has been documented. Comprehending the

role of different aspects of immunity in the spread of the diseases is crucial. Mathematical modeling

provides a useful framework to identify the drivers of transmission, to investigate the impact of immune

responses and to predict possible pressures on the health care system.

A compartmental model is developed that allows for the simulation of the transmission of COVID-19

and influenza simultaneously. Immunization and cross-reactive immunity by infection and by vaccination

is incorporated. To take into account the heterogeneity in transmission, the model is formulated as a

stochastic chain binomial model. It is fitted to incidence data from Belgium and the Netherlands

using a likelihood free Monte Carlo Markov Chain approach. The next generation approach is applied

to theoretically derive the basic reproduction numbers. Simulation based studies are performed for

different scenarios in which the effect of (cross-)immunity as well as a less aggressive variant of COVID-

19 are investigated.

This work highlights the importance of modeling the interaction between both diseases by showing

that the number of infections (in total and at peak) and the probability of a major outbreak is decreased

for influenza. It also shows that the magnitude of the decrease is dependent on the transmission rate

of COVID-19. The simulations demonstrate that a heterologous immune response does have an impact

on the spread of the disease with lower transmission rate when only naturally-induced. The importance

of vaccination is illustrated as it is shown to effectively decrease disease burden on public health. The

work suggests that cross-immunity reactions should be taken into account when designing effective

vaccination strategies.

1 Introduction

COVID-19, a disease caused by the the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2),

has led to a global pandemic ([8]) with extraordinary health, social, and economic repercussions ([23],

[17]). Although the end of the global pandemic has been declared May 5, 2023, ([25]) the virus keeps

circulating and the possible emergence of new variants in the future in combination with the imperfect

vaccine protection and waning immunity increase the likelihood that COVID-19 will remain a concern.

Influenza at the same time remains a persistent seasonal threat, causing numerous infections and deaths

annually. The co-circulation of two pathogens with similar symptoms presents a public health challenge

due to difficulties in disease surveillance and potential testing and treatment delays. Understanding the

spread and dynamics of the diseases is an important step in developing effective strategies to manage

their impact. Mathematical models present a suitable framework to examine, analyze and predict the

behavior of infectious diseases and a lot of effort has been put into developing such models for COVID-19

as well as influenza. The creation of co-circulation models is crucial since the simultaneous presence of

both pathogens possibly impacts their transmission dynamics.

Vaccines play a vital role in reducing transmission, severity of disease and consequently overall health-

care burden and are therefore a primary prevention measure to limit the spread of an infectious disease,

in some cases even leading to the elimination of the pathogen. The inclusion of vaccination in mathemat-

ical models allows for the evaluation of its impact on the co-dynamics. Additionally, understanding this

homologous immunity1 is essential for predicting long-term trends and potential future outbreaks. Several

studies suggest a positive heterologous immunity2 effect between the two pathogens. ([35], [19], [11], [16]).

1Homologous immunity refers to the protection against the same virus (e.g., immunity to COVID-19 after infection or
vaccination against SARS-CoV-2)

2Heterologous immunity refers to the cross-protection between different viruses (e.g., partial immunity to influenza in
individuals previously infected with or vaccinated against COVID-19, and vice versa)
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Incorporating homologous as well as heterologous immunity in a model helps to create a more accurate

representation of disease spread.

While co-circulation models have been developed that account for the protective effect of recovery

from the same disease or vaccination targeting the same pathogen, they do not incorporate heterologous

immunity effects. However, these effects could lead to very different transmission dynamics, especially

when caused by vaccination. This thesis aims to explore the impact of homologous as well as heterologous

immunity on the spread of COVID-19 and influenza and their combined load on the health care system

accounting for the interaction between both pathogens. The results potentially form a basis for designing

effective vaccination strategies for both diseases combined.

To simulate the co-circulation of COVID-19 and influenza in a closed population, a chain binomial

compartmental model is developed that keeps track of the numbers of susceptible, infected, recovered

and deceased individuals in function of calendar time and describes the flow between these states. To

account for heterogeneity in transmission, the transfer from one compartment to another is dependent

on a stochastic process. The model includes a pre-infectious state and accounts for symptomatic as well

as asymptomatic infection. This model is fitted to incidence data from Belgium (for COVID-19) and

the Netherlands (for influenza) using a likelihood-free Monte Carlo Markov Chain approach to inform the

transmission parameters. The fitting procedure is described in Section ??. The basic reproduction number

is derived theoretically using the next generation approach and is described in Section 2.3.

The model is used in a simulation based study. First, the impact of co-circulation compared to the

circulation of both diseases separately is quantified, without taking into account any form of immunity.

Then, the effect of homologous immunity through vaccination is simulated. The effect of heterologous

immunity (by varying the protective effect on susceptibility) is investigated in a scenario where no vacci-

nation is considered and in a scenario where the population is vaccinated. Finally, a less aggressive variant

of COVID-19 is considered in combination with no vaccination to investigate the heterologous immunity

effect.

By simulating different scenarios with regard to the different types of immunity, this thesis has the

potential to guide policymakers in making informed decisions. Through this work, the aim is to contribute

to a better understanding of the complex interplay between COVID-19 and influenza and to provide a

flexible framework for future research.

This thesis is organized as follows. Section 2 provides a detailed description of the model, its compart-

ments and parametrization. Also, details on the fitting procedure and the derivation of the reproduction

number are provided in this section. The setup and scenarios of the simulation study as well as the results

are presented in Section 3. Section 4.2 provides an interpretation of the results as well as limitations of

the proposed approach, ideas for future research and ethical considerations. A conclusion is formulated in

Section 5.

2 Methodology

2.1 Co-circulation Model

Mathematical models are widely used in epidemiology to model the spread and dynamics of infectious

diseases. A very common type of equation-based model is the SIR compartmental model in which the

population is divided into three compartments or states related to different stages of the disease: susceptible

(S), infected (I), and recovered (R). The compartments represent the number of individuals corresponding

to each stage at a specific point in time. A common adaptation of the SIR model is the SEIRD model which

contains two additional compartments: a pre-infectious compartment exposed (E) in which an individual

is infected but latent, and a dead (D) compartment for disease-related deaths. The movement between

two compartments is defined by a mathematical expression depending on a specific rate.
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The use of this type of model implies certain simplifying assumptions. First of all, the population is

assumed to be constant which means that the total number of individuals remains constant over time. This

insinuates that there are no births, deaths (other than those directly caused by the disease in question), or

migration in or out of the population. The model is intended for relatively short-term simulations, which

makes this assumption reasonable. Secondly, the population is assumed to be homogeneous. This implies

that no differences between individuals are considered in terms of disease related parameters. Specifically,

mixing within the population is assumed homogeneous which means that a (successful) contact between

any two individuals in the population occurs at random with equal probability.

2.1.1 Epidemiological Dynamics

An adapted version of the SEIRD compartmental model is developed to investigate the co-circulation of

COVID-19 and Influenza. In this model, individuals are fully susceptible to infection with both pathogens

when in compartment S. At the beginning of the simulation, all individuals are assumed to be fully

susceptible. After (successful) contact with an infectious individual, the susceptible individual moves to an

exposed state E at transmission rate β. In this compartment, the individual is infected with the disease but

is not able to transmit the disease to others. After a latent period γ−1, the individual becomes infectious.

The infection can be asymptomatic (Ia, with probability γ̂a) or symptomatic (Is, with probability 1− γ̂a).

Note that in reality, an individual can be infectious before showing clinical signs of infection (sub-clinical

infectious, [13]). The choice of working with the latent period rather than the incubation period (which

is considered the time between infection and showing symptoms) is made because of the importance to

make the distinction between infectious and not infectious for the transmission dynamics. The distinction

between pre-symptomatic and symptomatic is not less relevant. The infectious period has a duration δ−1

after which asymptomatic individuals recover and move to compartment R while symptomatic individuals

either die with probability µ and move to compartment D or recover with probability 1− µ and move to

compartment R. Individuals that recover from one of the diseases are now susceptible to the other disease

and follow the same disease flow.

Figure 1 is a schematic representation of the model and shows the disease dynamics with all possible

transmissions among the different compartments. A full list of compartments along with their description

can be found in Table 1.

Symbol Description

S individuals fully susceptible to COVID-19 and influenza

V1 susceptible individuals vaccinated against COVID-19 but not influenza

V2 susceptible individuals vaccinated against influenza but not COVID-19

V12 susceptible individuals vaccinated against COVID-19 and influenza

E1 individuals that have been exposed to COVID-19 but are not yet infectious

E2 individuals that have been exposed to influenza but are not yet infectious

E+
1 individuals that recovered from influenza and have been exposed to COVID-19 but are not

yet infectious

E+
2 individuals that recovered from COVID-19 and have been exposed to influenza but are not

yet infectious

I1a individuals that are infected with COVID-19 and can infect other susceptible individuals

I1s individuals that are infected with influenza and can infect other susceptible individuals

I+1a individuals that recovered from influenza and are infected with COVID-19 and can infect

other susceptible individuals

I+2a individuals that recovered from COVID-19 and are infected with influenza and can infect

other susceptible individuals
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R1 individuals that have recovered from COVID-19 and that have not yet been infected with

(but are susceptible to) influenza

R2 individuals that have recovered from influenza and that have not yet been infected with (but

are susceptible to) COVID-19

R12 individuals that have recovered from COVID-19 and influenza

D1 individuals that died as a result of COVID-19 infection

D2 individuals that died as a result of influenza infection

β1 rate at which an infectious individual transfers COVID-19 to a susceptible individual

β2 rate at which an infectious individual transfers influenza to a susceptible individual

γ1 rate at which an exposed individual becomes infectious with COVID-19 (= inverse of the

length of the latent period)

γ2 rate at which an exposed individual becomes infectious with influenza (= inverse of the

length of the latent period)

γ̂1a probability of asymptomatic COVID-19 infection

γ̂2a probability of asymptomatic influenza infection

Γ̂1i factor by which the probability of asymptomatic COVID-19 infection is changed when an

individual has already been infected with influenza

Γ̂2i factor by which the probability of asymptomatic influenza infection is changed when an

individual has already been infected with COVID-19

δ1 rate at which an individual recovers from COVID-19 (inverse of the length of the infectious

period)

δ2 rate at which an individual recovers from influenza (inverse of the length of the infectious

period)

µ1 probability of death due to COVID-19 infection

µ2 probability of death due to influenza infection

Table 1: List of all compartments and transmission rates of the model in Figure 1 along with their
explanation.

2.1.2 Immunity

Immunity is the body’s ability to resist or defend against infection by pathogens such as viruses and

bacteria. It can be acquired through previous infection (natural) or vaccination (vaccine-induced), which

help the immune system recognize and combat specific pathogens more effectively in the future. Immunity

is defined here to be either homologous, providing protection against the same pathogen, or heterologous,

offering partial protection against different but related pathogens.

In the model, susceptible individuals undergo vaccination at a rate ω and transition to compartment

V . Individuals can receive vaccination against either one (compartments V1 for COVID-19 and V2 for

influenza) or both diseases (compartment V12). Subsequently, individuals in compartment V follow the

same disease flow as those in compartment S but with adapted transition parameters. It is important to

note that vaccines offer only partial protection against the targeted disease.

Immunity is incorporated into the model to influence both, disease transmission and the probability

of symptom development. Disease transmission is affected by the infectiousness of infectious individuals

and the susceptibility of susceptible individuals. Immunity reduces infectiousness by a factor λ̂I (for

homologous immunity) or λ̂i (for heterologous immunity) and reduces susceptibility by a factor Λ̂I (for

homologous immunity) or Λ̂i (for heterologous immunity). Additionally, the probability of developing

symptoms is decreased by a factor Γ̂I (for homologous immunity) or Γ̂i (for heterologous immunity).

The model excludes the possibility of simultaneous infection with both diseases. Literature reports
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Figure 1: A schematic overview of the compartmental model. The index 1 refers to COVID-19 and 2 refers
to influenza. Rectangles of the same color represent the same type of class. Individuals in green classes are
(partly) susceptible to both diseases. An orange color indicates that individuals are infected but cannot yet
transfer the disease, this only happens in the red compartments. Individuals in blue-green compartments
recovered from one disease and are susceptible to the other disease and in the blue compartment, they
recovered from both diseases. Individuals in the gray compartment are dead. The color of the border
indicates the disease associated with the compartment: black for COVID-19 and gray for influenza. A
”+” symbol denotes individuals who have previously been infected with the other pathogen and have
acquired heterologous immunity. Dashed lines indicate flows influenced by immunity.

that the incidence of co-infection with COVID-19 and influenza is low ([27], [18]) making this a reasonable

assumption. The effects of immunity are assumed to be constant. This implies that re-infection with the

same pathogen is not possible.

2.1.3 Model Formulation

As biological systems are inherently stochastic, the incorporation of randomness and noise into the model

is necessary to address uncertainties associated with parameter estimation and unmodeled factors. In a

stochastic compartmental model, transitions between compartments are probabilistic, capturing the inher-

ent randomness in disease transmission and population dynamics. This modeling approach accommodates

individual-level variability.

The co-circulation model proposed is a chain binomial model, more specifically the Reed-Frost model

and is a stochastic alternative to the deterministic SEIRD model formulation using ordinary differential

equations (the system of ODE’s can be found in Table ?? in the Appendix). This model assumes that

infection spreads in discrete units of time governed by the binomial probability distribution. Let I(t) be

the number of infectious individuals and N the total population size, then I(t)/N denotes the proportion

of infectious individuals in the population and assuming homologous mixing, the probability of a contact

being with an infectious individual. The transmission rate represents the number of new infections caused

by a single infectious individual per unit of time and is is denoted by β, t is a certain point in time and ∆
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the length between two time points at which the model states are evaluated. The probability of disease

transmission during a successful contact between a susceptible and an infectious individual within time

interval ]t+∆] is denoted by p. Assuming that all individuals are equally susceptible and infectious and

that the number of new infections depends on the number of infectious individuals in the population, p

is dependent on time and can be expressed as: p(t) = 1 − exp(−∆βI(t)/N). The infectious individuals

are sub-divided into compartments Ia for asymptomatic infection and Is for symptomatic infection with

respective transmission rates βa and βs. Additionally, a differentiation is made between infected individuals

that have already been infected with the other disease (denoted by a plus indicating that heterologous

immunity has been acquired) with heterologous effect on infectiousness being λ̂i. Then, the expression of

the probability of disease transmission becomes:

p(t) = 1− exp

(
−∆

{
βa

[
Ia(t)

N
+ λ̂i

I+a (t)

N

]
+ βs

[
Is(t)

N
+ λ̂i

I+s (t)

N

]})
(1)

Let the number of susceptible individuals at time point t be denoted by S(t), then the number of

new infections (denoted by E∗) at time point t + ∆ is expected to be S(t) · p(t) and follows a binomial

distribution (Equation 2).

E∗(t+∆) ∼ Bin (S(t), p(t)) (2)

The expression 2 represents the flow from the compartment S(t) to compartment E(t) between time

point t and time point t + ∆ or the in-flow of compartment E(t). The number of individuals leaving

compartment E or the number of individuals entering compartment I(t) (ignoring for the time being the

distinction between symptomatic and asymptomatic infections) within the same time interval is denoted

by

I∗(t+∆) ∼ Bin (E(t), 1− exp(−∆γ)) (3)

The number of individuals in compartment E at time point t+∆ is computed as follows:

E(t+∆) = E(t) + E∗(t+∆)− I∗(t+∆) (4)

The transition between other compartments is derived similarly. The full specification of the model

for both diseases (Figure 1) is shown in Tables 2 and 3.

E∗
1 (t+∆)∼Bin(S(t), 1−exp{−∆/N [β1a(I1a(t) + λ̂1iI

+
1a(t)) + β1s(I1s(t) + λ̂1iI

+
1s(t))]})

I∗1a(t+∆)∼Bin(E1(t), 1−exp[−∆γ1γ̂1a])

I∗1s(t+∆)∼Bin(E1(t), 1−exp[−∆γ1(1−γ̂1a)])

R∗s
1a(t+∆)∼Bin(I1a(t), 1−exp[−∆δ1])

R∗s
1s(t+∆)∼Bin(I1s(t), 1−exp[−∆δ1(1−µ1)])

D∗
1(t+∆)∼Bin(I1s(t), 1−exp[−∆δsµ1]) D

+∗
1 (t+∆)∼Bin(I+1s(t), 1−exp[−∆δ1δ̂1iµ1])

E+∗
1 (t+∆)∼Bin(R2(t), 1−exp−∆/N · Λ̂1i[β1a(I1a(t) + λ̂1iI

+
1a(t)) + β1s(I1s(t) + λ̂1iI

+
1s(t))])

I+∗
1a (t+∆)∼Bin(E+

1 (t), 1−exp[−∆γ1γ̂1aΓ̂1i])

I+∗
1s (t+∆)∼Bin(E+

1 (t), 1−exp[−∆γ1(1−γ̂1aΓ̂1i)])

E∗
2 (t+∆)∼Bin(S(t), 1−exp{−∆/N [β2a(I2a(t) + λ̂2iI

+
2a(t)) + β2s(I2s(t) + λ̂2iI

+
2s(t))]})

I∗2a(t+∆)∼Bin(E2(t), 1−exp[−∆γ2γ̂2a])

I∗2s(t+∆)∼Bin(E2(t), 1−exp[−∆γ2(1−γ̂2a)])

R∗s
2a(t+∆)∼Bin(I2a(t), 1−exp[−∆δ2])

R∗s
2s(t+∆)∼Bin(I2s(t), 1−exp[−∆δ2(1−µ2)])

D∗
2(t+∆)∼Bin(I2s(t), 1−exp[−∆δ2µ2])

D+∗
2 (t+∆)∼Bin(I+2s(t), 1−exp[−∆δ2δ̂2iµ2])
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E+∗
2 (t+∆)∼Bin(R1(t), 1−exp−∆/N · Λ̂2i[β2a(I2a(t) + λ̂2iI

+
2a(t)) + β2s(I2s(t) + λ̂2iI

+
2s(t))])

I+∗
2a (t+∆)∼Bin(E+

2 (t), 1−exp[−∆γ2γ̂2aΓ̂2i])

I+∗
2s (t+∆)∼Bin(E+

2 (t), 1−exp[−∆γ2(1−γ̂2aΓ̂2i)])

R∗
12;1s+(t+∆)∼Bin(I+1s(t), 1−exp[−∆δ1δ̂1i(1−µ1)])

R∗
12;2s+(t+∆)∼Bin(I+2s(t), 1−exp[−∆δ2δ̂2i(1−µ2)])

R∗
12;1a+(t+∆)∼Bin(I+1a(t), 1−exp[−∆δ1δ̂1i])

R∗
12;2a+(t+∆)∼Bin(I+2a(t), 1−exp[−∆δ2δ̂2i])

Table 2: Distributions describing the flow between the different compartments in the chain-binomial model.

S(t+∆) = S(t)−E∗
1 (t+∆)−E∗

2 (t+∆)
E1(t+∆) = E1(t)+E∗

1 (t+∆)−I∗1a(t+∆)−I∗1s(t+∆) E2(t+∆) = E2(t)+E∗
2 (t+∆)−I∗2a(t+∆)−I∗2s(t+∆)

I1a(t+∆) = I1a(t)+I∗1a(t+∆)−R∗
1a(t+∆) I2a(t+∆) = I2a(t)+I∗2a(t+∆)−R∗

2a(t+∆)
I1s(t+∆) = I1s(t)+I∗1s(t+∆)−R∗

1s(t+∆)−D∗
1(t+∆) I2s(t+∆) = I2s(t)+I∗2s(t+∆)−R∗

2s(t+∆)−D∗
2(t+∆)

R1(t+∆) = R1(t)+R∗
1(t+∆)−E+∗

2 (t+∆) R2(t+∆) = R2(t)+R∗
2(t+∆)−E+∗

1 (t+∆)
E+

1 (t+∆) = E+
1 (t)+E+∗

1 (t+∆)−I+∗
1a (t+∆)−I+∗

1s (t+∆) E+
2 (t+∆) = E+

2 (t)+E+∗
2 (t+∆)−I+∗

2a (t+∆)−I+∗
2s (t+∆)

I+1a(t+∆) = I+1a(t)+I+∗
1a (t+∆)−R∗

12;1a+(t+∆) I+2a(t+∆) = I+2a(t)+I+∗
2a (t+∆)−R∗

12;2a+(t+∆)
I+1s(t+∆) = I+1s(t)+I+∗

1s (t+∆)−R∗
12;1s+(t+∆) I+2s(t+∆) = I+2s(t)+I+∗

2s (t+∆)−R∗
12;2s+(t+∆)

R12(t+∆) = R12(t)+R∗
12;2a+(t+∆)+R∗

12;2s+(t+∆)+R∗
12;1s+(t+∆)+R∗

12;1s+(t+∆)
D1(t+∆) = D1(t)+D1(t+∆)+D+

1 (t+∆) D2(t+∆) = D2(t) +D2(t+∆) +D+
2 (t+∆)

Table 3: Set of equations determining the total number of individuals in each compartment at time step
t+∆.

2.2 Fitting the Model

Accurate estimation of model parameters is essential for the model to reflect real-world dynamics. There-

fore, the proposed model is fitted to incidence data from COVID-19 and influenza to ensure that estimated

parameters are grounded in observed reality. Fitted models allow for the exploration of various scenarios,

helping to predict the potential outcomes of different public health measures such as vaccination strate-

gies. A Monte Carlo Markov Chain approach is particularly well-suited for fitting infectious disease models

to data because it provides a robust and flexible framework for handling complex models and allows to

estimate a large number of parameters simultaneously. However, MCMC estimation comes at a high com-

putational cost and achieving convergence can be challenging. Additionally, well-suited data from different

sources has to be available. Because handling these aspects would go beyond the scope of this project,

transmission rates have been estimated during the model fitting procedure for both diseases separately

and all other parameters values are selected from estimates reported in literature. The chosen values with

respective references are listed in Table B1 in the Appendix. Although the model allows for immunity to

affect the infectiousness and susceptibility of an individual as well as the probability to develop symptoms,

only the effect on susceptibility is considered in order to simplify the model and be able to find suitable

estimates in the literature.

For the fitting procedure, the co-circulation model is adapted such that it corresponds to the an SEIRD

model with one disease only (see Figure 2). All model parameters apart from β are assigned values from

Table B1. The mathematical expressions defining the model are shown in Table B2 in the Appendix. Due

to the stochastic nature of the model, 100 simulations are run for each disease to generate data. The

number of weekly symptomatic infections is computed and compared to publicly available incidence data.

For COVID-19, a subset (weeks 9 to 12 of 2020) of the data from Sciensano with daily new confirmed

cases in Belgium is used ([29]). For influenza, the data comes from Infectieradar ([28]), an online platform
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where participants can self-report symptoms. A subset of data for the Netherlands 3 has been selected

to correspond to the increasing part of a single wave (weeks 34 to 40 of 2022). The weekly incidence is

computed to eliminate the effect of reporting differences depending on the day of the week.

S E

Ia

Is D

R

β
γ · γa

γ · (1− γa)

δ

δ(
1
− µ

)

δµ

Figure 2: Susceptible (S) individuals get infected with transmission rate β and enter an exposed (E) state.
They become infectious with rate γ and either develop symptoms (Is) with probability 1 − γa or remain
asymptomatic (Ia) with probability γa. Individuals leave the infectious state with rate δ; asymptomatic
individuals recover (R) and symptomatic individuals either die (D) with probability µ or recover with
probability 1− µ.

An MCMC approach with a Metropolis-Hastings algorithm is used to estimate the value of the trans-

mission rates of COVID-19 and influenza. A sequence of samples is generated and each new sample is

accepted or rejected resulting in a sample from a (truncated) normal distribution whose mean is considered

as an estimate of the parameter to be estimated. Classical MCMC methods require the computation of

a likelihood function. The computation of the likelihood function (Equation 5) is however problematic in

this case because there no information about the number of exposed individuals is available in the data.

Therefore, an adaptation of a likelihood-free MCMC approach is used that does not require the compu-

tation of a likelihood function but uses the mean squared error (MSE) as evaluation criterion instead. A

graphical representation of the algorithm used is shown in Figure 3.

T∑

t=1

[
ln

(
E

c

)
+ c · ln(p) + (E − c) · ln(1− p)

]
, with p = 1− exp(−∆γ(1− γa)) (5)

A starting value β0 is chosen within an interval [0.5; 2] based on an educated guess. Their value however

does not impact the final estimate as shown in the results. 100 simulations of the SEIR model in Figure

2 with equations from Table B2 are performed with this value of β and the mean squared error (MSE)

is computed for each simulation according to the formula in 2.2 with I∗s (t) the new symptomatic cases at

time point t from the simulated data and C(t) the incidence at time point t from the available data set

and T the total number of weeks considered.

MSE =
1

T

√√√√
T∑

t=1

(
C(t)− I∗s (t)

)2

(6)

The MSE of the different simulations is expected to be very different and therefore, the mean of the

100 MSE’s is used as an evaluation criterion. The lower the MSE, the better the approximation of the

simulated data to the real incidence data. In the next steps, a proposal value β∗ is drawn from a normal

distribution with mean the previous value of β (in the first iteration, this is β0) and standard deviation

σ. The evaluation criterion mean(MSE∗) is computed as explained. The acceptance or rejection of the

proposal value β∗ is based on this evaluation criterion: when mean(MSE∗) is lower than mean(MSE), it

3Belgium not available
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START
βi = β0

i = 0, s = 1

run simulation
with βi

compute MSEs s < 100

s = s+ 1

Compute MSE = mean(MSEs)
s = 1, ..., 100

i > 0
β∗ ∼ N(βi−1, σ

2)
i = i+ 1, s = 1

pacc = min
(
1, ē∗

ē

)

u ∼ U(0, 1)u < pacc

ACCEPT
βi = β∗,MSE = MSE∗

REJECT
βi = βi−1,MSE = MSE

i < N

STOP
β =

{β1, ..., βm}

Burn-in
β = {β50,000, ..., β100,000}

NO

YES

NO

YES

YES

NO

YES

NO

Figure 3: Flow chart of the MCMC algorithm. Gray nodes are related to the values of the parameter β,
green nodes show the steps related to the simulation of the stochastic SEIR model, rose nodes are related
to the evaluation criterion and the acceptance or rejection of the proposed value of β and yellow nodes
are related to the number of iterations. A simulation of the stochastic SEIR model is s and an iteration
of the MCMC algorithm is i.

means that the sample arising from simulations with β∗ are considered to approximate the real incidence

better than the sample arising from simulations with β. In that case, the proposal value β∗ it is accepted.

However, also when this is not the case, the proposal value is still accepted with probability the ratio of

the two MSE’s. Therefore, a value u is drawn randomly in the interval [0; 1] is from a uniform distribution

and compared to the ratio. When the value u is smaller than the probability of acceptance pacc, then the

proposal value β∗ is accepted, otherwise, it is rejected (Equation 7).

pacc = min

(
1,

M̄SE∗

M̄SE

)
(7)

The last step in an iteration i is the update of the parameters: βi = β∗ if the proposal value has been

accepted and in that case, MSE = MSE∗. In case that the proposal value has been rejected, β and

MSE remain unchanged (βi = βi− and MSE = MSE∗). In total, 100,000 iterations of this algorithm are

performed. To make sure that initial fluctuations are not represented in the final sample of the parameter,

a burn-in of 50,000 iterations is applied and to make sure that the initial value of the parameter β0 does

not influence the final sample, five different chains of the algorithm are executed with diverging starting

values. The final estimate of the transmission rate is obtained by computing the mean of the final samples

for all chains. The convergence of the chains is assessed graphically through trace-plots and (smoothed)

histograms of the final sample. Also the acceptance probability is assessed.

The tuning of the MCMC parameters has been done through a trial-and-error approach. The standard

deviation of the proposal distribution has been chosen as to be sufficiently small to have not too many

rejections and sufficiently large to have an acceptable diffusion.
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2.2.1 COVID-19

The subset of the data used to fit the model represents the beginning of the pandemic in Belgium. A total

population of 11.7 Million individuals (corresponding approximately to the population size of Belgium)

and 350 infectious individuals (200 exposed, 104 symptomatic and 46 asymptomatic, corresponding to

the ratio of symptomatic/asymptomatic cases used for the model) for the simulations.4 It is assumed

that there are no recovered individuals and that no individuals have died from infection. The standard

deviation for the normal distribution of the proposal value has been tuned to be 0.40.

Figure 4 provides as a graphical tool for assessing the convergence of the different chains. Figure 4a

shows the trace plots of the final samples of β. Although at times the values of β seem to explore higher

values, it converges back to similar values. This is probably due to the random and stochastic nature of

the method used. Figure 4b shows histograms of the final sample of β. The somewhat awkward shape

can be explained by the use of a truncated proposal distribution (see Section 4.2 for further discussion).

(a) Trace plots (b) Histograms

Figure 4: Graphs for the assessment of convergence of the MCMC chains and the quality of the final
sample for COVID-19.

Table 4 shows the initial values (β0) for the chains with the respective estimated value of β and

acceptance rate. The estimated transmission rate β1 for COVID-19 is the mean of the values of the chains

shown in Table 4, namely 1.14. This corresponds to a value of R0 of 10.05 which is high compared to

estimated values in the literature ([34]). This estimate is based on the part of the epidemic where an

effect of interventions was not visible and hence, the model does not capture these effects which results in

a high estimate of the basic reproduction number. Figure 5 shows the incidence of the real data and the

simulated curves from the model with the estimated value of β.

4Different numbers of initial infections have been explored and the number chosen corresponds to the one that produces
data that best approximates the real data.
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chain β0 β acceptance rate

1 0.5 1.147040 0.66106
2 0.8 1.139709 0.64938
3 1.0 1.143503 0.65117
4 1.5 1.147411 0.65759
5 2.0 1.140717 0.65119

final estimate 1.133323 0.654078

Table 4: Results of the different chains of the MCMC estimation of β for COVID-19 along with the final
estimate.

Figure 5: Incidence (symptomatic infections) of COVID-19 based on estimated transmission rate compared
to the incidence according to the data.

2.2.2 Influenza

The subset of the data is chosen such that the beginning (increasing part) of a wave is represented. A

total population of 17 million individuals is used (approximately corresponding to the population size of

the Netherlands) with 1,100 infectious cases (500 exposed, 301 symptomatic and 199 asymptomatic5). It

is assumed that there are no recovered individuals and that no individuals have died from infection. The

parameters are fixed to be equal to those used in the co-circulation model. The standard deviation for the

normal distribution of the proposal value is 0.18.

Figure 6 shows the trace plots for the different chains with a (smoothed) histogram of the final sample.

The trace pots show that the chains seem to have reached convergence. Table 5 shows the initial values

of for the chains with the respective estimated value of β and acceptance rate. The estimated rate of

transmission for influenza is 0.3. This corresponds to a value of R0 of 1.21. which is in line with estimates

from scientific literature ([4]). Figure 7 shows a graph of the real data and the simulated curves from the

model with estimated value of β.

5Different numbers of initial infections have been explored and the number chosen corresponds to the one that produces
data that best approximates the real data.
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(a) Trace plots (b) Distribution of β

Figure 6: Graphs for the assessment of convergence of the MCMC chains and the quality if the final sample
for influenza.

chain β0 β acceptance rate

1 0.5 0.29957 0.58132
2 0.8 0.30129 0.58460
3 1.0 0.30018 0.58247
4 1.5 0.30042 0.58702
5 2.0 0.29950 0.57873

final estimate 0.300 0.5828

Table 5: Results of the different chains of the MCMC estimation of β for COVID-19 along with the final
estimate.

Figure 7: Incidence (symptomatic infections) of influenza based on estimated transmission rate compared
to the incidence according to the data.
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2.3 Theoretical Derivation of the Basic Reproduction Number

Given the high estimate of the transmission rate of COVID-19 obtained during the fitting procedure, the

basic reproduction number R0 is theoretically derived to be able to set the transmission rate for the use in

the simulation study. The basic reproduction number is one of the most important parameters to describe

the spread of an infectious disease an indicates how contagious a disease is. More specifically, it indicates

the average number of secondary infections caused by a single infectious individual in a fully susceptible

population. This means that for an R0 larger than 1, an outbreak is possible. The larger R0, the faster

the disease spreads. An R0 smaller than 1 does not result in an outbreak and eventually gets extinct. To

compute the reproduction number for compartmental models, a method called next generation approach

has been developed ([10]).

The system of ODE’s (Table B3 in the Appendix) is divided into disease classes (E, Ia and Is) and

non-disease classes (S, R and D). The next generation matrix G is a matrix that contains elements gij
that represent the expected number of cases in disease-class i caused by a single infected individual in

disease-class j. To build this matrix, the computation of two vectors is needed: the vector f contains the

different ways that new infections can occur and vector v contains the different ways that infections can

be transferred from one class to another.

f =




S
N (Iaβa + Isβs)

0

0


 and v =




−γE

γγaE − δIa
γ(1− γa)E − δIs


 (8)

The next generation matrix G is the product of two components: F = ∂fi(x0)
∂xj

and V −1 with V =
∂vi(x0)
∂xj

and x0 corresponding to the disease-free equilibrium state (at which E = Ia = Is = R = D = 0,

hence S = N and S/N = 1).

G = FV −1 =



0 βa βs
0 0 0

0 0 0







−1
γ 0 0

−γa
δ

−1
δ 0

−(1−γa)
δ 0 −1

δ


 =




βaγa
δ + βsγs

δ
−βa

δ
−βs

δ

0 0 0

0 0 0


 (9)

R0 is the leading Eigenvalue of G.

R0 =
βaγa + βs(1− γa)

δ
(10)

Details of the computations can be found in the Appendix.

3 Simulation Study

The co-circulation model is used to perform a simulation study for different scenarios. First, the scenarios

are described in Section 3.1. Next, the general settings of the simulations are listed in Section 3.2. Section

3.3 contains a list of summary measures used to describe the results. Finally, the results of the study are

shown in Section 3.4.

3.1 Scenarios

The goal of the first scenario is to explore the dynamics of COVID-19 and Influenza without the effects

of immunity. First, the spread of the diseases is simulated when they are circulating separately (inde-

pendence). This is done by introducing one disease at day 0 and setting the introduction time of the

other disease to be higher than the number of days in a simulation. Next, the simultaneous circulation

of both diseases is simulated by introducing both pathogens at day 0. The population is assumed to be
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fully susceptible and is not vaccinated (ω1 = ω2 = 0). Heterologous immunity is not considered in this

scenario by setting the parameters λ̂1i = λ̂2i = Λ̂1i = Λ̂2i = 1. Without heterologous immunity, the only

interaction between both diseases is through the assumption that co-infection is not possible. Therefore,

this scenario mainly shows the impact of that assumption. The scenario with co-circulation is considered

to be the baseline scenario.

Vaccination is an important intervention when it comes to controlling an epidemic. When (a portion

of) the population is vaccinated, the dynamics of the diseases are expected to change. Scenario 2 studies

these changes. An individual can either be not vaccinated at all, vaccinated against COVID-19 but not

influenza, against influenza but not COVID-19 or against both diseases. The vaccine efficacy is assumed

to be 86.3% for COVID-19 ([14]) and 34.9% for influenza ([26]) in line with results from the literature

(see Section 2.2). The vaccination rate is chosen such that a certain coverage is attained after 1 month.

To simulate a realistic scenario, two different values are selected, corresponding to 85% (corresponding

to the vaccination rate of the general population in Belgium, [3]) of the population being vaccinated

against COVID-19 and 22.6% (corresponding to the vaccination rate of the general population in the

Netherlands, [15]) of the population being vaccinated against Influenza after one month. This results in

a high vaccination rate for COVID-19 and a low vaccination rate for influenza. Heterologous immunity is

not considered in this scenario by setting the parameters λ̂1i = λ̂2i = Λ̂1i = Λ̂2i = 1.

The basic reproduction number of the current COVID-19 strain is lower than that of the original strain

(that is considered in this thesis). Therefore, scenario 3 explores the co-dynamics of both diseases when

they have the same basic reproduction number. This results in a transmission rate of β1 = 0.137. The

population is assumed to be fully susceptible and is not vaccinated (ω1 = ω2 = 0). Heterologous immunity

is not considered in this scenario by setting the parameters λ̂1i = λ̂2i = Λ̂1i = Λ̂2i = 1. Since a large

number of simulations turn out to show still active infections after 500 days, the simulations are performed

for 1000 days.

In the co-circulation model, the effect of heterologous immunity becomes important as it is expected to

impact the disease dynamics. Heterologous immunity is assumed to reduce an individual’s susceptibility

by (1 − λ) · 100%. Scenario’s 4, 5 and 6 explore the effect of heterologous immunity. The magnitude of

the heterologous effect is varied in each scenario while keeping all other parameters constant. The vaccine

with the lowest protective effect against infection considered in this thesis is that of influenza (∼ 36%) and

Assuming that any homologous effect is more powerful than a heterologous effect, four values for the latter

one are chosen to vary between 0 and 30% (corresponding to parameter values of λ = {1, 0.9, 0.8, 0.7}). The
heterologous effects are assumed to be equal for both diseases. In scenario 4, the effect of heterologous

immunity is explored without taking into account vaccination (ω1 = ω2 = 0). Scenario 5 is similar to

scenario 4, but the less aggressive strain of COVID-19 is considered (β1 = 0.137). Since for a considerable

amount of simulations, there are still new infections after 500 days, therefore, the duration of a simulation

is prolonged to 1000 days. Vaccination has the potential to greatly impact the course of an epidemic.

With vaccination, the heterologous immune effect is expected to play a bigger role since more individuals

have acquired immunity than in the case where it could only be acquired naturally. Scenario 6 aims at

investigating the effect of heterologous immunity in a vaccinated population (as described in scenario 2).

The original COVID-19 strain is considered (β1 = 0.375).

3.2 Simulation Settings

The simulation study is performed with a stochastic model. This implies that each simulation is subject

to this stochasticity and yields different results. A large number of simulations is performed and summary

statistics of the quantities of interest are computed. The number of simulations should be sufficiently large

to present clear and stable results. To determine the number of simulations needed to achieve a stable

outcome, the mean attack rate, peak prevalence and peak moment is shown for an increasing number
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of simulations (Figure 8). It appears that all three quantities are relatively stable at 1000 simulations.

Therefore, it seems reasonable to run 1000 simulations for each scenario.

(a) Final Size (b) Cases at Peak (c) Day of the Peak

Figure 8: Mean quantities for an increasing number of simulations.

A simulation runs in time steps of one day. The duration of one simulation should not be shorter than

the duration of any outbreaks since the quantities of interest can be misleading in that case (think of attack

rate that cannot be computed correctly as long as the virus is still active and causing new infections).

Therefore, 1000 simulations with 500 days each have been examined. The day of the last new infection is

recorded for COVID-19 and Influenza. Figure 9 shows the distribution of the days of the last infections.

The latest day of the last infection for any of the diseases in all simulations is day 488. Therefore, it seems

reasonable simulate an epidemic for 500 days.

Figure 9: Histogram of the days of the last infection for all simulations. The vertical line indicates the
maximum.

A single index case is introduced in a population of size 10,000 at day 0 for each of the diseases. The

parameter values for each simulation correspond to the values in Table B1 unless stated otherwise. For

the transmission rate of COVID-19, value of that is more in line with scientific literature has been chosen

rather than the estimate from the fitting procedure, namely β = 0.375 which corresponds to R0 = 3.3.

3.3 Representation of Results

To evaluate an epidemic, different metrics are at our disposal. This simulation study focuses the following

quantities computed for each simulated epidemic:
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• Attack Rate: The attack rate or final size is defined as the proportion of the population that got

infected throughout the entire running time. Both symptomatic as well as asymptomatic infections

are considered. The attack rate is reported for COVID-19 and influenza separately. This metric

helps to understand the scale of an outbreak and the extent of the population that is affected. It

informs the authorities about the scale of interventions needed, such as the distribution of vaccines,

medications, or other healthcare resources. It also provides valuable insights into the transmissibility

of a disease. The attack rate is also used to evaluate the effectiveness of vaccination programs.

• Extinction Probability: The extinction probability indicates how likely an infectious disease is

to die out in a population without causing a (major) outbreak. In a deterministic model, the ba-

sic reproduction number R0 is a well known threshold to determine whether a pathogen will cause

an outbreak or whether it will get extinct. In a stochastic model, the probability of extinction is

closely related to the basic reproduction number and can be approximated by R−I0
0 (with I0 the

initial number of index cases) for models with one infectious group ([2]) which is not the case for the

co-circulation model proposed. Therefore, an approach based on the distribution of attack rates is

applied. The distribution of attack rates is typically bimodal and allows for a clear cutoff between

”very small” (outbreaks) and ”larger” (no outbreaks) values. This cutoff is determined graphically

(through a histogram). Practically, the extinction probability is the proportion of simulations that

result in very small attack rates. When no cutoff can be determined, the extinction probability is not

computed. The extinction probability is computed for COVID-19 and influenza separately. Exam-

ining the extinction probability can help in assessing the effectiveness of public health interventions.

• Cases (Prevalence) at Peak: The cases at peak is the largest number of simultaneously infected

(symptomatic as well as asymptomatic) individuals (prevalence). It is analysed for both diseases

separately as well as both diseases combined (daily sum of the prevalences). The prevalence at peak

helps to understand how quickly a disease spreads and is a key metric that informs a wide range of

strategic decisions aimed at minimizing the impact of an outbreak. It is crucial to determine the

potential burden on the health care system (hospital capacity, ICU beds, medical staff availability,

...) and to plan allocation of resources. It is also an important metric that drives policy makers to

implement interventions.

• Day of the Peak: The day of the peak indicates when the maximum number of cases will occur

and is expressed in days since the start of the simulation. It is analyzed for each disease separately

as well as for both diseases combined. The timing of the peak is important for the preparedness

of the healthcare system and for the timing of public health interventions. By understanding when

the peak is likely to occur, interventions can be timed to flatten the curve and reduce the peak

prevalence, thereby mitigating the spread of the disease.

• Duration of an Outbreak: The duration of an outbreak is defined as the number of days between

the first infection and the last recovery. It is important to note that only non-extinct simulations are

considered. For scenarios in which the probability of extinction cannot be computed, this quantity

is ignored. The duration of an outbreak gives an idea about the intensity of an epidemic. Very long

outbreaks with a relatively low attack rate are often less problematic than very short outbreaks with

a large final size. However, the duration of an outbreak can have an important psychological impact

on the population.

Apart from the duration of an outbreak, all quantities are computed for the totality of simulations,

not only for those that are considered to be outbreaks. Quantities are represented relative to the entire

population size and is therefore expressed in percent (or as a value in the interval [0; 1]). Since the model
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is of stochastic nature, each simulation yields different results and therefore, the full distribution of the

different metrics is shown as well as the mean and the 95% quantile range.

3.4 Results

3.4.1 Scenario 1: Co-circulation versus Independence

The results of the baseline scenario (co-circulation) are reported first and then compared to the scenario

without interaction.

The extinction probability is more than three times lower for COVID-19 (20.8%) than for influenza

(66.7%). COVID-19 affects a larger proportion of the population on average (75.7%) than influenza

(14.4%). This is no surprise given the higher basic reproduction number for COVID-19. Even though

major influenza outbreaks on average affect less people in total, they are much longer (375 days, 95%

quantile interval [261;488]) than major COVID-19 outbreaks (190 days 95% quantile interval [164;230]).

The peak for both diseases combined occurs on average at day 74 with a prevalence of 22.6% at peak. The

mean prevalence at peak is 22.3% for COVID-19 (on day 60) and 0.8% for influenza (on day 72).

Figure 10: (Scenario 1) Distribution of relative attack rates of COVID-19 and influenza for the scenarios
with independence and with co-circulation. The black dots represent the mean attack rates. The asterisk
represents the probability of extinction.

Figure 10 shows that the interaction between both diseases through the impossibility of co-infection

causes less major outbreaks for influenza (probability of extinction increases with 3.3%) and the mean

attack rate decreases with 2.2% compared to independence. The duration of major influenza outbreaks is

increased on average by 47 days on average with co-circulation (see Figure 12). Figure 11 shows that the

moment of the influenza peak is delayed by 9 days on average for influenza when both diseases interact

while the prevalence at peak remains unaffected. Co-circulation appears to have no impact on the dynamics

of COVID-19. Qualitatively similar observations are made when considering outbreaks only (see Figures

C1, C2 and C3 in the Appendix). Tables C1 and C2 in the Appendix provide 95% quantile ranges as well

as all summary statistics for major outbreaks only.
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Figure 12: (Scenario 1) Mean duration of influenza and COVID-19 major outbreaks with 95% quantile
ranges for the scenarios with independence and with co-circulation.

(a) Cases at Peak (b) Day of the Peak

Figure 11: (Scenario 1) Distributions related to the peak for COVID-19 and influenza for the scenarios
with independence and with co-circulation. The black dots represent the means of the distributions.

3.4.2 Scenario 2: Effect of Vaccination

The scenario with vaccination is compared to the baseline scenario.

Vaccination effectively decreases the attack rates of both diseases to very low levels (0.4% for COVID-

19 and 2.4% for influenza), as shows Figure 13. The extinction probability can no longer be computed

according to the definition given in Section 3.3 since the distributions is no longer bimodal. It appears that

all simulations get extinct or at least no large outbreaks occur. The maximum attack rate for COVID-19

is 2.7% in the case of vaccination. For influenza, the maximum attack rate is higher (23.2%) but no clear

cut-off value can be determined for major outbreaks versus extinction.
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Figure 13: (Scenario 2) Distribution of relative attack rates of COVID-19 and influenza for the scenarios
with and without vaccination. The black dots represent the mean attack rates. The asterisk represents
the probability of extinction.

Figure 14 shows that also the mean prevalences at peak are decreased by vaccination. Both diseases

combined on average only affect at most 0.2% of the population while this is 0.1% for COVID-19 and

influenza. The moment of the peak occurs 21 days earlier for both diseases combined (day 52) and about

a month earlier for COVID-19 (day 50) as well as influenza (day 40). Tables C3 and C4 in the Appendix

provide 95% quantile ranges.

(a) Cases at Peak (b) Day of the Peak

Figure 14: (Scenario 3A) Distributions related to the peak for COVID-19 and influenza for the scenarios
with and without vaccination. The black dots represent the means of the distribution.

3.4.3 Scenario 3: Less Aggressive COVID-19

The scenario with a less aggressive strain of COVID-19 is compared to the baseline scenario. When a less

aggressive variant of COVID-19 is considered, less people are affected by COVID-19 (as can be expected).

The mean attack rate is drastically decreased to 12.7% (see Figure 15) and the mean prevalence at peak is
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decreased to 0.7% (see Figure 16a) with a peak that occurs on average 51 days later. The mean duration of

a major outbreak increases significantly for COVID-19 to 659 days. 95% of all major COVID-19 outbreaks

are longer than 486 days. For Influenza, an opposite trend is observed: the mean attack rate is slightly

increased to 15.8% and the mean prevalence at peak is increased to 0.9% for a peak that occurs on average

13 days earlier. The mean duration of a major outbreak decreases slightly to 328 days which means that

COVID-19 outbreaks are on average much longer than for influenza, also shown in Figure 17. When

considering major outbreaks only, the observations are quantitatively similar (see Figures C4, C5 and

C6 in the Appendix). Also for the extinction probabilities, the trend is opposite for the two diseases: it

increases to 67.2% for COVID-19 but decreases slightly to 64.9% for Influenza.

Figure 15: (Scenario 3) Distribution of relative attack rates of COVID-19 and influenza for the scenarios
with the original and a less aggressive COVID-19 strain. The black dots represent the mean attack rates.
The asterisk represents the probability of extinction.

Figure 16 shows that the moment of the peak occurs on average nearly 2 months (59 days) later for

both diseases combined. On average, only 1.5% of the population is affected by either COVID-19 or

influenza at the peak. Tables C5 and C6 in the Appendix provide 95% quantile ranges.
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(a) Cases at Peak (b) Day of the Peak

Figure 16: (Scenario 3) Distributions related to the peak for COVID-19 and influenza for the scenarios
with the original and a less aggressive COVID-19 strain. The black dots represent the means of the
distributions.

Figure 17: (Scenario 3) Mean duration of influenza and COVID-19 major outbreaks with 95% quantile
ranges for the scenarios with independence and with co-circulation.

3.5 Scenario 4: Co-Circulation Accounting for Heterologous Immunity

The baseline scenario corresponds to the scenario without immunity (0%) and is compared to the scenarios

with protective effects of 10, 20 and 30%. Individuals who have recovered from COVID-19 are less

susceptible to infection with influenza and vice versa. A decreasing attack rate is observed in Figure

19 for influenza with increasing heterologous effect (14.4, 11.6, 5.5 and 2.5 % for heterologous effect of

{0, 10, 20, 30}, respectively). However, this effect is not visible when only outbreaks are taken into account

(see Figure C7 in the Appendix). The extinction probabilities and the mean duration of major outbreaks

(Figure 18) do not appear to be affected by heterologous immunity. However, the upper bound of the 95%

quantile range of major outbreak duration decreases with increasing heterologous effect.

Figure 20 shows that as heterologous immunity increases, the peak occurs earlier on average (with

small irregularities) and the prevalence at peak is lower for influenza. The prevalence at peak as well as

the day of the peak are not affected by heterologous immunity.

Figure 18: (Scenario 4) Mean duration of influenza and COVID-19 outbreaks with 95% percentile range
for 4 different levels of heterologous immunity effect (0, 10, 20 and 30%).
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Figure 19: (Scenario 4) Distribution of relative attack rates of COVID-19 and influenza for the scenarios
with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to
infection. The black dots represent the mean attack rates. The asterisk represents the probability of
extinction.

(a) Cases at Peak (b) Day of the Peak

Figure 20: (Scenario 4) Distributions related to the peak for COVID-19 and influenza for the scenarios
with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to
infection. The black dots represent the means of the distributions.

3.6 Scenario 5: Co-Circulation Accounting for Heterologous Immunity with a less

Aggressive Variant of COVID-19

The heterologous effect causes the number of COVID-19 infections to decrease both, overall and at peak.

The mean attack rates are 11.7% for low, 9.9% for moderate and 9.8% for high heterologous immunity

compared to 12.7% for no immunity. The prevalences at peak are 0.6% for low and 0.5% for moderate

and high heterologous immunity compared to 0.7% for no immunity. These trends are also observed when
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only major outbreaks are taken into account (see Figures C10 and C11 in the Appendix). Figure 23 shows

that major COVID-19 outbreaks become slightly longer on average with increasing heterologous effect

(668 days for low, 679 days for moderate and 683 days for high heterologous immunity compared to 659

days for no immunity). An effect on the dynamics of influenza or both diseases combined is not observed.

The moment of the peak does not appear to be affected either.

Although the trend is not monotonic, the extinction probability shows an increasing trend for COVID-

19 and a decreasing trend for influenza with increasing heterologous immunity (see Figure 21).

Figure 21: (Scenario 5) Distribution of relative attack rates of COVID-19 (less aggressive variant) and
influenza for the scenarios with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect
on the susceptibility to infection. The black dots represent the mean attack rates. The asterisk represents
the probability of extinction

(a) Cases at Peak (b) Day of the Peak

Figure 22: (Scenario 2B) Distributions related to the peak for COVID-19 (less aggressive variant) and
influenza for the scenarios with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect
on the susceptibility to infection. The black dots represent the means of the distributions

23



Figure 23: (Scenario 5) Mean duration of influenza and COVID-19 outbreaks with 95% percentile range
for 4 different levels of heterologous immunity (for the scenarios with no (0%), low (10%), moderate (20%)
and high (30%) heterologous effect on the susceptibility to infection.

3.7 Scenario 6: Heterologous Immunity Effect with Vaccination

Figure 24 shows a clear decline in influenza infections both, overall and at peak. The mean attack

rates are 1.6% for low, 0.9% for moderate and 0.5% for high heterologous immunity compared to 2.4%

for no immunity and the prevalences at peak are 0.11% for low, 0.07% for moderate and 0.05% for high

heterologous immunity compared to 0.14% for no immunity. The influenza peak occurs several days earlier

with increasing heterologous effect (day 39 for low, day 31 for moderate and day 23 for high heterologous

immunity compared to day 41 for no immunity). The trends regarding the peak of the epidemic (prevalence

as well as moment) are also observed for both diseases combined. No effects are observed for COVID-19,

but an effect of unobservable magnitude cannot be ruled out.

Figure 24: (Scenario 6) Distribution of relative attack rates of COVID-19 and influenza for the scenarios
with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to
infection in combination with vaccination and considering the original COVID-19 strain. The black dots
represent the mean attack rates.

24



(a) Cases at Peak (b) Day of the Peak

Figure 25: (Scenario 6) Distributions for both diseases combined and for the two diseases separately,
for the scenarios with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the
susceptibility to infection in combination with vaccination and considering the original COVID-19 strain.
The black dots represent the mean attack rates.

4 Discussion

4.1 Interpretation of Results

Scenario 1 shows the effect impact of co-circulation on the dynamics of both diseases. If co-infection is

ruled out, the exposed and infected individuals are not susceptible to the other disease during the latent

and infectious periods, meaning that the number of susceptibles is lower. The high transmission rate of

COVID-19 results in a significant number of people becoming infected with the disease, and the relatively

long latenct and infectious periods means that a large number of people can temporarily not be infected

with influenza. The combination of a low number of simultaneous influenza infections and the reduced

number of susceptible people means that the extinction probability increases. The same reasoning explains

the decline in mean attack rate. This decrease is not driven by the increase in extinction probability as it

can be observed even when only major outbreaks are taken into account. In principle, the same applies

to COVID-19, however, no effect is visible. This is likely due to the lower number of influenza infections

compared to COVID-19 infections and associated smaller decline in those susceptible. In addition, the

latent and infectious periods for influenza are much shorter, meaning that the number of individuals

(temporarily) not susceptible to COVID-19 is relatively small which explains that no impact on COVID-

19 is observed.

Scenario 2 shows that vaccination is indeed a very effective way to reduce the number of infections

(both, overall and at peak) to the point where major outbreaks no longer occur. The vaccine efficacy and

vaccination rate are higher for COVID-19 than for influenza, which explains the stronger impact on the

dynamics of COVID-19.

Scenario 3 shows that a less aggressive COVID-19 strain causes fewer COVID-19 infections. Since

there is an interaction between the two diseases, a change in COVID-19 also leads to changes in the spread

and dynamics of influenza. Counter intuitively, more people are affected by influenza when COVID-19 is

less aggressive, both overall and at peak. Since no form of immunity is taken into account in this scenario,

this increase is likely due to the assumption that co-infection is not possible. If fewer people are affected

by COVID-19, fewer people are temporarily excluded from influenza infection. In this scenario, the two
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diseases have the same basic reproduction and their extinction probabilities are similar. The increase

in extinction probability is expected for COVID-19 because this quantity is closely related to the basic

reproduction number. An influenza outbreak is slightly shorter compared to the baseline scenario but

has a higher peak, while a COVID-19 outbreak lasts much longer but is also much ”flatter” compared to

the baseline scenario. Because COVID-19 circulates in the population for a long time, the assumption

that immunity lasts forever and that re-infection is not possible becomes unrealistic. If re-infection is

considered, it can be expected that COVID-19 will not die out, will circulate constantly and thus become

a much greater persistent threat.

The effect of a heterologous immune reaction was also investigated. This effect becomes important once

an individual has acquired homologous immunity either through infection or vaccination. If vaccination

is not considered (scenarios 4 and 5), heterologous immunity only becomes relevant once individuals have

recovered. For the original COVID-19 strain (scenario 4), effects are only observed for influenza. Since the

number of COVID-19 recoveries is relatively large compared to the number of influenza recoveries (and

therefore the number of individuals with reduced susceptibility to COVID-19), which limits the impact

of the protective effect, the heterologous effect is expected to be larger for influenza. The peak of both

diseases together is largely driven by COVID-19, which explains why no effect is observed for both diseases

together, although an effect is observed for influenza. However, when a less aggressive COVID-19 strain is

considered (scenario 5), effects of heterologous immunity are observed for COVID-19 but not no longer for

influenza. In this scenario, the number of individuals affected by COVID-19 is, on average, significantly

smaller than with the original strain and is, on average, even lower than the number of individuals affected

by influenza, causing the heterologous effect to become visible for COVID-19. When a portion of the

population is vaccinated against a disease, that portion is less susceptible to the disease in question due

to the homologous immune response and the vaccinated population is also slightly less susceptible to the

other disease. As more individuals are vaccinated against COVID-19, the effect of this type of immunity

is expected to be more visible for influenza. Also, the heterologous immunity effect is stronger relative to

the homologous effect for influenza than it is for COVID-19. For COVID-19, the homologous immunity

effect is very strong, reducing the attack rates to very low levels. The heterologous effect is expected to

lower it even more, but the possible effect is of course less strong.

4.2 Limitations and Future Research

This thesis uses a mathematical modeling approach to study the co-dynamics of COVID-19 and influenza

and investigate the effects of homologous and heterologous immunity on these dynamics. A model is

always a simplification of reality tat requires a number of assumptions. While these assumptions simplify

the model and the mathematics involved, they have important implications.

The model assumes a constant population. In reality, populations undergo constant change due to

births, deaths and migration. Ignoring these factors can lead to oversimplification that may not capture

the full dynamics of disease spread. It also introduces limitations in terms of realism and long-term

accuracy. However, by keeping the population constant, the model focuses exclusively on the transmission

dynamics of the diseases (in this case, COVID-19 and influenza), making it easier to isolate the effects of

interest. Given the relatively short time frame of a simulation, only minimal changes in the population

are expected with negligible impact on the results, making this assumption acceptable.

The population is assumed to be homologous, meaning that each individual in the population is

considered equal in terms of disease parameters. In fact, age affects the susceptibility to COVID-19 and

the probability of developing symptoms ([9]). Due to differences in contact patterns, different transmission

rates are assumed among different age groups ([21]). In the future, the model should be adapted to account

for different age groups. Another possible extension is the inclusion of risk factors.

The model assumes that if an individual is infected with one disease, they cannot be infected with the
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other disease. Although it is possible to become infected with both diseases simultaneously, the prevalence

of co-infection with COVID-19 and influenza reported in the literature is low ([31], [20]), so this assumption

is not expected have a significant effect on the results.

Although this model includes immunity, it is in many ways a simplification of reality. First of all, no

distinction is made between natural and vaccine-induced immunity and both are assumed to be constant.

This also implies that an individual cannot be re-infected with the same disease. Studies show that for both

diseases, the immunity wanes after a certain period of time, making re-infection possible. For influenza,

the prevalence of re-infection was low and the time between two consecutive infections was relatively high

in most cases, suggesting that the assumption made is acceptable given the duration of a simulation ([33],

[27]). However, For COVID-19, the literature suggests that re-infection is possible in a shorter period of

time ([5], [22]) and neglecting this could lead to a lower number of COVID-19 infections, which in turn

has an impact on influenza infections depending on the situation, as show the results of this thesis. When

considering re-infections, care should be taken to describe different disease courses in such cases, if the

data indicate this. No distinction is made between infection-induced and vaccine-induced heterologous

immunity. Furthermore, it is assumed that the heterologous effects are the same for both diseases and

that immunity only affects the susceptibility of an individual. Once data on these mechanisms is available,

the assumptions in the model can be relaxed without further adjustments.

In the model, vaccination of the susceptible population occurs at rate ω. The number of individuals

vaccinated at a certain time is a stochastic process that depends on the number of susceptible individuals.

On average, this means: the more susceptible individuals, the more vaccinations. That is not how it works

in a real population. In general, the number of people who can be vaccinated in a given period (e.g. per

day) can be expected to be relatively constant or perhaps increases over time (as capacity increases). The

rate is also expected to decline towards the end, as most individuals who want to get vaccinated have

already done so. In addition, the rate is calibrated so that the vaccination coverage in Belgium is reached

after about a month. Thereafter, the fully susceptible population continues to be vaccinated at the same

rate and eventually the entire susceptible population is vaccinated. The model assumes full the effect

of the vaccine after a single dose and immediately after vaccination. In fact, not every individual in a

population is equally likely to get vaccinated. This is not taken into account in this model and should be

considered as an aspect of a more heterogeneous population. In the future, adjustments to the vaccination

parameters should be made so that the population is only vaccinated up to a certain coverage and that

the vaccination is not dependent on the number of susceptible individuals.

Estimation of the transmission rate was carries out using an adapted likelihood-free MCMC method,

since the computation of the likelihood is problematic in this case. In the future, suitable methods for

approximate Bayesian computation (ABC) should be explored. The Metropolis-Hastings algorithm used

has the advantage of being easily implemented but its performance is sensitive to the choice of the proposal

distribution. The tuning of the standard deviation of the proposal distribution was performed through

a trial-and-error approach, there is no guarantee that it is close to optimal. Other methods should be

explored such as gradient-based approaches or Halimtonian Monte Carlo methods, which avoid the random

walk that negatively affects the efficiency of the algorithm. Furthermore, the proposal distribution is

truncated (restricted to strictly positive values). Currently, this is not taken into account when computing

the acceptance probability. Methods that avoid the use of a truncated proposal distribution should be

explored (such as parameter transformation). Alternatively, the use of a truncated proposal distribution

should be properly accounted for.

Selecting a set of model parameters from the literature is not trivial. Both diseases are constantly

evolving and so are their characteristics. Furthermore, a wide range of methods and data have been used

to determine parameter values, consequently leading to a wide range of possible values. It is a big challenge

to choose the values that best suit this particular model. The impact of parameter choices on the results

should be examined in a sensitivity analysis in the future.
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Analysis of the results is based on all infections, symptomatic and asymptomatic. However, not all

infections pose a problem for public health. While asymptomatic cases play an important role in the

spread of a disease, they do not directly affect the healthcare system. Symptomatic individuals however

can place a burden on general practitioners and pharmaceutical supplies, but also on economy, for example

through absenteeism from work. Some symptomatic individuals may require intensive medical care through

hospitalization. This is not directly included in the model and should be accounted for in a possible

extension, including different effects of immunity on the likelihood of being hospitalized. The same holds

for disease-related deaths. They are incorporated in the model but the probability of death is not yet

influenced by any form of immunity.

All co-circulation scenarios in this work introduce both pathogens simultaneously. The impact of

different introduction times should be studied as influenza is considered a seasonal threat while COVID-19

can be considered a persistent threat. In addition to a different approach to modeling vaccination, other

policies related to vaccination should also be considered. A flexible running time can be considered in

which a simulation automatically stops as soon as there are no more infectious individuals present. This

avoids unnecessary long running times and stopping simulations while epidemics are still ongoing.

4.3 Ethical Considerations

The work presented involves simulation studies in which no human individuals were directly affected. The

data used is publicly available and not personally identifiable, ensuring privacy and confidentiality. Some

ethical considerations related to mathematical modeling of infectious diseases are discussed.

Ultimately, the model is intended to serve as guidance and support for decision makers. It is crucial to

ensure that the model is accurate and transparent, as misleading results can lead to inappropriate policy

decisions, potentially harming public health. Therefore the structure of the model as well as assumptions,

limitations, and uncertainties associated with the results are clearly communicated.

Decisions should not solely be based on the results of this model, but other aspects such as real-world

feasibility and societal impact should also be included in the decision making process. In particular,

the impact of interventions on different population groups should be considered. Although no specific

interventions are proposed based on the results of the simulation study, potential interventions focus

on immunization of individuals and, more specifically, vaccination. Interventions should always aim to

maximize benefits and minimize harm to the population, protecting public health while aiming to respect

individual autonomy. While vaccines generally support the principles of beneficence and non-maleficence,

vaccine hesitancy and equitable access to vaccines are important factors to keep in mind.

A model should be as realistic as possible to ensure its applicability and relevance. The model param-

eters were selected in accordance with scientific literature and real world data were used to fit the model.

The simulated scenarios realistic.

The stakeholders of the presented co-circulation model include researchers in infectious disease mod-

eling and public health officials, as well as healthcare providers, vaccine manufacturers and the general

public.

5 Conclusion

Since COVID-19 and influenza are expected to co-exist for the foreseeable future, understanding the spread

and co-dynamics of both diseases is critical. A key component in the interaction between COVID-19 and

influenza is the presence of a heterologous immune response. Here, a stochastic compartmental model is

proposed that allows modeling the co-circulation of both diseases and offers the possibility of incorporat-

ing vaccine-induced homologous immunity and vaccine-induced as well as infection-induced heterologous

immunity in a very flexible way. Once better information on transmission parameters or vaccination be-
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comes available, the model can be easily adapted and also extended to include compartments such as

patient isolation, hospitalization or severity of infection if needed. The proposed model allows for con-

ducting a wide variety of simulation studies that help contribute to understanding the complex dynamics

of COVID-19 and influenza and shed light on the role of heterologous immunity. It also allows testing

different vaccination strategies to help policymakers make informed decisions. Further research on this

type of immunity is needed to provide high-quality estimates for model parameters.

This work shows that when preparing for future epidemics, it is not sufficient to model the spread and

dynamics of both diseases separately to estimate their combined impact. It is important to account for

their interaction to make more accurate predictions. It is shown that the interaction between COVID-

19 and influenza results in the the total number of influenza infections, as well as the peak prevalence

and the probability of major outbreaks, being lower than if both diseases were assumed to circulate

independently. However, taking this interaction into account, influenza outbreaks last longer on average.

This is important information for organizing health care, as a longer but smaller epidemic requires different

preparation. The simulation study also shows that these impacts depend on the transmission potential of

COVID-19, demonstrating the importance of keeping model parameters as current as possible at all times.

It also shows that the transmission rate of COVID-19 has a major impact on the duration of an outbreak,

which in turn impacts how healthcare services operate.

Although little is known about the extent of a heterologous immune effect between COVID-19 and

influenza, this study shows that it impacts the number of infections of the disease at a lower transmission

rate. It also shows that when the population is vaccinated (assuming a significantly higher vaccination rate

and higher protection for COVID-19), the heterologous effect leads to a decrease in influenza infections

and the total number of infections (for both diseases combined). The results motivate further research on

how the effects of heterologous immunity can be exploited to develop optimal vaccination strategies, and

the proposed model provides a solid framework for this.
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Appendix A - Detailed Model

Deterministic SEIRD Model

The system of ODE’s corresponding to a deterministic version of the presented model are shown in the

table.

d
dtS(t)=−S(t)[β1a(I1a(t)+λ̂1iI

+
1a(t))+β1s(I1s(t) + λ̂1iI

+
1s(t))+β2a(I2a(t) + λ̂2iI

+
2a(t))+β2s(I2s(t) + λ̂2iI

+
2s(t))]

d
dtE1(t)=S(t)[β1a(I1a(t)+λ̂1iI

+
1a(t))+β1s(I1s(t) + λ̂1iI

+
1s(t))]−E1(t)γ1

d
dtI1a(t)=E1(t)γ1γ̂1a−I1a(t)δ1
d
dtI1s(t)=E1(t)γ1(1−γ̂1a)−I1s(t)δ1
d
dtR1(t)=I1a(t)δ1+I1s(t)δ1(1−µ1)−R1(t)[β2a(I2a(t) + λ̂2iI

+
2a(t))+β2s(I2s(t) + λ̂2iI

+
2s(t))]

d
dtD1(t)=[I1s(t)+I+1s(t)]δ1µ1
d
dtE

+
1 (t)=R2(t)[β1a(I1a(t)+λ̂1iI

+
1a(t))+β1s(I1s(t) + λ̂1iI

+
1s(t))]−E+

1 (t)γ1
d
dtI

+
1a(t)=E+

1 (t)γ1γ̂1aΓ̂1i−I+1a(t)δ1
d
dtI

+
1s(t)=E+

1 (t)γ1(1−γ̂1aΓ̂1i)−I+1s(t)δ1

d
dtE2(t)=S(t)[β2a(I2a(t) + λ̂2iI

+
2a(t))+β2s(I2s(t) + λ̂2iI

+
2s(t))]− E2(t)γ2

d
dtI2a(t)=E2(t)γ2γ̂2a−I2a(t)δ2
d
dtI2s(t)=E2(t)γ2(1−γ̂2a)−I2s(t)δ2
d
dtR2(t)=I2a(t)δ2+I2s(t)δ2(1−µ2)−R2(t)[β1a(I1a(t)+λ̂1iI

+
1a(t))+β1s(I1s(t) + λ̂1iI

+
1s(t))]

d
dtD2(t)=[I2s(t)+I+2s(t)]δ2µ2
d
dtE

+
2 (t)=R1(t)β2a(I2a(t) + λ̂2iI

+
2a(t))+β2s(I2s(t) + λ̂2iI

+
2s(t))]−E+

2 (t)γ2
d
dtI

+
2a(t)=E+

2 (t)γ2γ̂2aΓ̂2i−I+2a(t)δ2δ̂2i
d
dtI

+
2s(t)=E+

2 (t)γ2(1−γ̂2aΓ̂2i)−I+2s(t)δ2δ̂2i

d
dtR12(t)=I+2a(t)δaδ̂2i+I+2s(t)δsδ̂2i(1−µ2)+I+1s(t)δ1(̂1−µ1)+I+1a(t)δ1δ̂1i

Table A1: Set of ODE’s describing the deterministic version of the simplified Model shown in Figure 1

Detailed Model Schemes and Equations

The first model shows the flow of fully susceptible individuals.

S

ES1;S2
1
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1a
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2
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12
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2
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2a RS1;S2

2
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β
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δ 1
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µ 1

)
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δ
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γ2 γ̂2a

γ2
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)

δ2

δ
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µ
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β1

γ1
(1 − γ̂1a

Γ̂1i
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γ1 γ̂1a Γ̂
1i

δ1
(1 − µ1

)

δ 1

δ
1µ

1

δ2
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Figure A1: Model 1: disease course for fully susceptible individuals

E∗S1S2
1 (t+∆)∼Bin

(
S(t), 1−exp

[
−∆
N

·p1
])
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E∗S1R2
1 (t+∆)∼Bin

(
RS1S2

2 (t), 1−exp
[
−∆
N

·Λ̂1i ·p1
])

p1 = β1a ·
[
IS1S2
1a (t) + λ̂1i ·

(
IS1R2
1a (t) + IS1V 2

1a (t) + IS1V R2
1a (t)

)
+ λ̂1I ·

(
IV 1S2
1a (t) + IV 1R2

1a (t) + IV 1V 2
1a (t) + IV 1V R2

1a (t)
)]

+β1s ·
[
IS1S2
1s (t) + λ̂1i ·

(
IS1R2
1s (t) + IS1V 2

1s (t) + IS1V R2
1s (t)

)
+ λ̂1I ·

(
IV 1S2
1s (t) + IV 1R2

1s (t) + IV 1V 2
1s (t) + IV 1V R2

1s (t)
)]

I∗S1S2
1a (t+∆)∼Bin

(
ES1S2

1 (t), 1−exp [−∆·γ1 ·γ̂1a]
)

I∗S1S2
1s (t+∆)∼Bin

(
ES1S2

1 (t), 1−exp [−∆·γ1 ·(1−γ̂1a)]
)

I∗S1R2
1a (t+∆)∼Bin

(
ES1R2

1 (t), 1−exp
[
−∆·γ1 ·γ̂1a ·Γ̂1i

])
I∗S1R2
1s (t+∆)∼Bin

(
ES1R2

1 (t), 1−exp
[
−∆·γ1 ·(1−γ̂1a ·Γ̂1i)

])
R∗S1S2

1a (t+∆)∼Bin
(
IS1S2
1a (t), 1−exp [−∆·δ1]

)
R∗S1S2

1s (t+∆)∼Bin
(
IS1S2
1s (t), 1−exp [−∆·δ1 ·(1−µ1)]

)
DS1S2

1s (t+∆)∼Bin
(
IS1S2
1s , 1−exp [−∆·δ1 ·µ1]

)
DS1R2

1s (t+∆)∼Bin
(
IS1R2
1s , 1−exp [−∆·δ1 ·µ1]

)
E∗S1S2

2 (t+∆)∼Bin
(
S(t), 1−exp

[
−∆
N

·p2
])

E∗R1S2
2 (t+∆)∼Bin

(
RS1S2

1 (t), 1−exp
[
−∆
N

·Λ̂2i ·p2
])

p2 = β2a ·
[
IS1S2
2a (t) + λ̂2i ·

(
IR1S2
2a (t) + IV 1S2

2a (t) + IV R1S2
2a (t)

)
+ λ̂1I ·

(
IS1V 2
2a (t) + IR1V 2

2a (t) + IV 1V 2
2a (t) + IV R1V 2

2a (t)
)]

+β2s ·
[
IS1S2
2s (t) + λ̂2i ·

(
IR1S2
2s (t) + IV 1S2

2s (t) + IV R1S2
2s (t)

)
+ λ̂2I ·

(
IS1V 2
2s (t) + IR1V 2

2s (t) + IV 1V 2
2s (t) + IV R1V 2

2s (t)
)]

I∗S1S2
2a (t+∆)∼Bin

(
ES1S2

2 (t), 1−exp [−∆·γ2 ·γ̂2a]
)

I∗S1S2
2s (t+∆)∼Bin

(
ES1S2

2 (t), 1−exp [−∆·γ2 ·(1−γ̂2a)]
)

I∗R1S2
2a (t+∆)∼Bin

(
ER1S2

2 (t), 1−exp
[
−∆·γ2 ·γ̂2a ·Γ̂2i

])
I∗R1S2
2s (t+∆)∼Bin

(
ER1S2

2 (t), 1−exp
[
−∆·γ2 ·(1−γ̂2a ·Γ̂2i)

])
R∗S1S2

2a (t+∆)∼Bin
(
IS1S2
2a (t), 1−exp [−∆·δ2]

)
R∗S1S2

2s (t+∆)∼Bin
(
IS1S2
2s (t), 1−exp [−∆·δ2 ·(1−µ2)]

)
DS1S2

2s (t+∆)∼Bin
(
IS1S2
2s , 1−exp [−∆·δ2 ·µ2]

)
DR1S2

2s (t+∆)∼Bin
(
IR1S2
2s , 1−exp [−∆·δ2 ·µ2]

)
RS1S2

1a2 (t+∆)∼Bin
(
IS1R2
1a , 1−exp [−∆·δ1]

)
RV 1S2

1a2 (t+∆)∼Bin
(
IS1R2
1a , 1−exp [−∆·δ1]

)
RS1V 2

1a2 (t+∆)∼Bin
(
IS1V R2
1a , 1−exp [−∆·δ1]

)
RV 1V 2

1a2 (t+∆)∼Bin
(
IV 1V R2
1a , 1−exp [−∆·δ1]

)
S1(t+∆) = S1(t)− ES1S2

1 (t+∆)− ES1S2
2 (t+∆)

ES1S2
1 (t+∆) = ES1S2

1 (t) + E∗S1S2
1 (t+∆)− I∗S1S2

1a (t+∆)− I∗S1S2
1s (t+∆)

ES1S2
2 (t+∆) = ES1S2

2 (t) + E∗S1S2
2 (t+∆)− I∗S1S2

2a (t+∆)− I∗S1S2
2s (t+∆)

IS1S2
1a (t+∆) = IS1S2

1a (t) + I∗S1S2
1a (t+∆)−R∗S1S2

1a (t+∆)

IS1S2
1s (t+∆) = IS1S2

1s (t) + I∗S1S2
1s (t+∆)−R∗S1S2

1s (t+∆)−D∗S1S2
1 (t+∆)

IS1S2
2s (t+∆) = IS1S2

2s (t) + I∗S1S2
2s (t+∆)−R∗S1S2

2s (t+∆)−D∗S1S2
2 (t+∆)

IS1S2
2a (t+∆) = IS1S2

2a (t) + I∗S1S2
2a (t+∆)−R∗S1S2

2a (t+∆)

RS1S2
1 (t+∆) = RS1S2

1 (t) +R∗S1S2
1a (t+∆) +R∗S1S2

1s (t+∆)− E∗R1S2
2 (t+∆)

RS1S2
2 (t+∆) = RS1S2

2 (t) +R∗S1S2
2a (t+∆) +R∗S1S2

2s (t+∆)− E∗S1R2
1 (t+∆)

ER1S2
2 (t+∆) = ER1S2

2 (t) + E∗R1S2
2 (t+∆)− I∗R1S2

2a (t+∆)− I∗R1S2
2s (t+∆)

ES1R2
1 (t+∆) = ES1R2

1 (t) + E∗S1R2
1 (t+∆)− I∗S1R2

1a (t+∆)− I∗S1R2
1s (t+∆)

IR1S2
2a (t+∆) = IR1S2

2a (t) + I∗R1S2
2a (t+∆)−R∗S1S2

12a (t+∆)

IR1S2
2s (t+∆) = IR1S2

2s (t) + I∗R1S2
2s (t+∆)−R∗S1S2

12s (t+∆)−D∗R1S2
2 (t+∆)

IS1R2
1s (t+∆) = IS1R2

1s (t) + I∗S1R2
1s (t+∆)−R∗S1S2

1s2 (t+∆)−D∗S1R2
1 (t+∆)

IS1R2
1a (t+∆) = IS1R2

1a (t) + I∗S1R2
1a (t+∆)−R∗S1S2

1a2 (t+∆)
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RS1S2
12 (t+∆) = RS1S2

12 (t) +R∗S1S2
1a2 (t+∆) +R∗S1S2

1s2 (t+∆) +R∗S1S2
12a (t+∆) +R∗S1S2

12s (t+∆)

DS1S2
1 (t+∆) = DS1S2

1 (t) +D∗S1S2
1 (t+∆) +D∗S1R2

1 (t+∆)

DS1S2
2 (t+∆) = DS1S2

2 (t) +D∗S1S2
2 (t+∆) +D∗R1S2

2 (t+∆)

Table A2: Model 1: stochastic model specification

The next model shows the flow of individuals vaccinated against COVID-19 but not influenza.

V1

EV 1;S2
1
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1
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2
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2
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)
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Figure A2: Model 2: disease course for individuals vaccinated against COVID-19 but not influenza

V ∗
1 (t+∆)∼Bin(S(t), 1−exp [−∆·ω1])

E∗V 1S2
1 (t+∆)∼Bin

(
V1(t), 1−exp

[
−∆
N

·Λ̂1I·p1
])

E∗V 1R2
1 (t+∆)∼Bin

(
RV 1S2

2 (t), 1−exp
[
−∆
N

·Λ̂1I ·p1
])

p1 = β1a ·
[
IS1S2
1a (t) + λ̂1i ·

(
IS1R2
1a (t) + IS1V 2

1a (t) + IS1V R2
1a (t)

)
+ λ̂1I ·

(
IV 1S2
1a (t) + IV 1R2

1a (t) + IV 1V 2
1a (t) + IV 1V R2

1a (t)
)]

+β1s ·
[
IS1S2
1s (t) + λ̂1i ·

(
IS1R2
1s (t) + IS1V 2

1s (t) + IS1V R2
1s (t)

)
+ λ̂1I ·

(
IV 1S2
1s (t) + IV 1R2

1s (t) + IV 1V 2
1s (t) + IV 1V R2

1s (t)
)]

I∗V 1S2
1a (t+∆)∼Bin

(
EV 1S2

1 (t), 1−exp
[
−∆·γ1 ·γ̂1a ·Γ̂1I

])
I∗V 1S2
1s (t+∆)∼Bin

(
EV 1S2

1 (t), 1−exp
[
−∆·γ1 ·(1−γ̂1a ·Γ̂1I)

])
I∗V 1R2
1a (t+∆)∼Bin

(
EV 1R2

1 (t), 1−exp
[
−∆·γ1 ·γ̂1a ·Γ̂1I

])
I∗V 1R2
1s (t+∆)∼Bin

(
EV 1R2

1 (t), 1−exp
[
−∆·γ1 ·(1−γ̂1a ·Γ̂1I)

])
R∗V 1S2

1a (t+∆)∼Bin
(
IV 1S2
1a (t), 1−exp [−∆·δ1]

)
R∗V 1S2

1s (t+∆)∼Bin
(
IV 1S2
1s (t), 1−exp [−∆·δ1 ·(1−µ1)]

)
DV 1S2

1s (t+∆)∼Bin
(
IV 1S2
1s , 1−exp [−∆·δ1 ·µ1]

)
DV 1R2

1s (t+∆)∼Bin
(
IV 1R2
1s , 1−exp [−∆·δ1 ·µ1]

)
E∗V 1S2

2 (t+∆)∼Bin
(
V1(t), 1−exp

[
−∆
N

·Λ̂2i ·p2
])

E∗V R1S2
2 (t+∆)∼Bin

(
RV 1S2

1 (t), 1−exp
[
−∆
N

·Λ̂2i ·p2
])

p2 = β2a ·
[
IS1S2
2a (t) + λ̂2i ·

(
IR1S2
2a (t) + IV 1S2

2a (t) + IV R1S2
2a (t)

)
+ λ̂1I ·

(
IS1V 2
2a (t) + IR1V 2

2a (t) + IV 1V 2
2a (t) + IV R1V 2

2a (t)
)]

+β2s ·
[
IS1S2
2s (t) + λ̂2i ·

(
IR1S2
2s (t) + IV 1S2

2s (t) + IV R1S2
2s (t)

)
+ λ̂2I ·

(
IS1V 2
2s (t) + IR1V 2

2s (t) + IV 1V 2
2s (t) + IV R1V 2

2s (t)
)]

I∗V 1S2
2a (t+∆)∼Bin

(
EV 1S2

2 (t), 1−exp
[
−∆·γ2 ·γ̂2a ·Γ̂2i

])
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I∗V 1S2
2s (t+∆)∼Bin

(
EV 1S2

2 (t), 1−exp
[
−∆·γ2 ·(1−γ̂2a ·Γ̂2i)

])
I∗V R1S2
2a (t+∆)∼Bin

(
EV R1S2

2 (t), 1−exp
[
−∆·γ2 ·γ̂2a ·Γ̂2i

])
I∗V R1S2
2s (t+∆)∼Bin

(
EV R1S2

2 (t), 1−exp
[
−∆·γ2 ·(1−γ̂2a ·Γ̂2i)

])
R∗V 1S2

2a (t+∆)∼Bin
(
IV 1S2
2a (t), 1−exp [−∆·δ2]

)
R∗V 1S2

2s (t+∆)∼Bin
(
IV 1S2
2s (t), 1−exp [−∆·δ2 ·(1−µ2)]

)
DV 1S2

2s (t+∆)∼Bin
(
IV 1S2
2s , 1−exp [−∆·δ2 ·µ2]

)
DV R1S2

2s (t+∆)∼Bin
(
IV R1S2
2s , 1−exp [−∆·δ2 ·µ2]

)
RS1S2

1s2 (t+∆)∼Bin
(
IS1R2
1s , 1−exp [−∆·δ1 ·(1−µ1)]

)
RV 1S2

V R1s2(t+∆)∼Bin
(
IV 1R2
1s , 1−exp [−∆·δ1 ·(1−µ1)]

)
RS1V 2

1s2 (t+∆)∼Bin
(
IS1V R2
1s , 1−exp [−∆·δ1 ·(1−µ1)]

)
RV 1V 2

1s2 (t+∆)∼Bin
(
IV 1V R2
1s , 1−exp [−∆·δ1 ·(1−µ1)]

)
V1(t+∆) = V1(t) + V ∗

1 (t+∆)− EV 1S2
1 (t+∆)− EV 1S2

2 (t+∆)

EV 1S2
1 (t+∆) = EV 1S2

1 (t) + E∗V 1S2
1 (t+∆)− I∗V 1S2

1a (t+∆)− I∗V 1S2
1s (t+∆)

EV 1S2
2 (t+∆) = EV 1S2

2 (t) + E∗V 1S2
2 (t+∆)− I∗V 1S2

2a (t+∆)− I∗V 1S2
2s (t+∆)

IV 1S2
1a (t+∆) = IV 1S2

1a (t) + I∗V 1S2
1a (t+∆)−R∗V 1S2

1a (t+∆)

IV 1S2
1s (t+∆) = IV 1S2

1s (t) + I∗V 1S2
1s (t+∆)−R∗V 1S2

1s (t+∆)−D∗V 1S2
1 (t+∆)

IV 1S2
2s (t+∆) = IV 1S2

2s (t) + I∗V 1S2
2s (t+∆)−R∗V 1S2

2s (t+∆)−D∗V 1S2
2 (t+∆)

IV 1S2
2a (t+∆) = IV 1S2

2a (t) + I∗V 1S2
2a (t+∆)−R∗V 1S2

2a (t+∆)

RV 1S2
1 (t+∆) = RV 1S2

1 (t) +R∗V 1S2
1a (t+∆) +R∗V 1S2

1s (t+∆)− E∗V R1S2
2 (t+∆)

RV 1S2
2 (t+∆) = RV 1S2

2 (t) +R∗V 1S2
2a (t+∆) +R∗V 1S2

2s (t+∆)− E∗V 1R2
1 (t+∆)

EV R1S2
2 (t+∆) = EV R1S2

2 (t) + E∗V R1S2
2 (t+∆)− I∗V R1S2

2a (t+∆)− I∗V R1S2
2s (t+∆)

IV R1S2
2a (t+∆) = IV R1S2

2a (t) + I∗V R1S2
2a (t+∆)−R∗V 1S2

12a (t+∆)

EV 1R2
1 (t+∆) = EV 1R2

1 (t) + E∗V 1R2
1 (t+∆)− I∗V 1R2

1a (t+∆)− I∗V 1R2
1s (t+∆)

IV R1S2
2s (t+∆) = IV R1S2

2s (t) + I∗V R1S2
2s (t+∆)−R∗V 1S2

12s (t+∆)−D∗V R1S2
2 (t+∆)

IV 1R2
1s (t+∆) = IV 1R2

1s (t) + I∗V 1R2
1s (t+∆)−R∗V 1S2

1s2 (t+∆)−D∗V 1R2
1 (t+∆)

IV 1R2
1a (t+∆) = IV 1R2

1a (t) + I∗V 1R2
1a (t+∆)−R∗V 1S2

1a2 (t+∆)

RV 1S2
12 (t+∆) = RV 1S2

12 (t) +R∗V 1S2
1a2 (t+∆) +R∗V 1S2

1s2 (t+∆) +R∗V 1S2
12a (t+∆) +R∗V 1S2

12s (t+∆)

DV 1S2
1 (t+∆) = DV 1S2

1 (t) +D∗V 1S2
1 (t+∆) +D∗V 1R2

1 (t+∆)

DV 1S2
2 (t+∆) = DV 1S2

2 (t) +D∗V 1S2
2 (t+∆) +D∗V R1S2

2 (t+∆)

Table A3: Model 2: stochastic model specification

The next model shows the flow of individuals vaccinated against influenza but not COVID-19.
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V2
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1

IS1;V 2
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IS1;V 2
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1
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2

IR1;V 2
2a

IR1;V 2
2s

RS1;V 2
12
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IS1;V 2
2s

IS1;V 2
2a RS1;V 2

2

DS1;V 2
2
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1

IS1;V R2
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IS1;V R2
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β
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β
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Γ̂1i
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)
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δ2 (1 − µ
2 )
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δ2µ2

β1

γ1
(1 − γ̂1a

Γ̂1i
)

γ1 γ̂1a Γ̂
1i

δ1
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Model 3: disease course for individuals vaccinated against influenza but not COVID-19.

V ∗
2 (t+∆)∼Bin(S(t), 1−exp [−∆·ω2])

E∗S1V 2
1 (t+∆)∼Bin

(
V2(t), 1− exp

[
−∆
N

·Λ̂1i ·p1
])

E∗S1V R2
1 (t+∆)∼Bin

(
RS1V 2

2 (t), 1−exp
[
−∆
N

·Λ̂1i ·p1
])

p1 = β1a ·
[
IS1S2
1a (t) + λ̂1i ·

(
IS1R2
1a (t) + IS1V 2

1a (t) + IS1V R2
1a (t)

)
+ λ̂1I ·

(
IV 1S2
1a (t) + IV 1R2

1a (t) + IV 1V 2
1a (t) + IV 1V R2

1a (t)
)]

+β1s ·
[
IS1S2
1s (t) + λ̂1i ·

(
IS1R2
1s (t) + IS1V 2

1s (t) + IS1V R2
1s (t)

)
+ λ̂1I ·

(
IV 1S2
1s (t) + IV 1R2

1s (t) + IV 1V 2
1s (t) + IV 1V R2

1s (t)
)]

I∗S1V 2
1a (t+∆)∼Bin

(
ES1V 2

1 (t), 1−exp
[
−∆·γ1 ·γ̂1a ·Γ̂1i

])
I∗S1V 2
1s (t+∆)∼Bin

(
ES1V 2

1 (t), 1−exp
[
−∆·γ1 ·(1−γ̂1a ·Γ̂1i)

])
I∗S1V R2
1a (t+∆)∼Bin

(
ES1V R2

1 (t), 1−exp
[
−∆·γ1 ·γ̂1a ·Γ̂1i

])
I∗S1V R2
1s (t+∆)∼Bin

(
ES1V R2

1 (t), 1−exp
[
−∆·γ1 ·(1−γ̂1a ·Γ̂1i)

])
R∗S1V 2

1a (t+∆)∼Bin
(
IS1V 2
1a (t), 1−exp [−∆·δ1]

)
R∗S1V 2

1s (t+∆)∼Bin
(
IS1V 2
1s (t), 1−exp [−∆·δ1 ·(1−µ1)]

)
DS1V 2

1s (t+∆)∼Bin
(
IS1V 2
1s , 1−exp [−∆·δ1 ·µ1]

)
DS1V R2

1s (t+∆)∼Bin
(
IS1V R2
1s , 1−exp [−∆·δ1 ·µ1]

)
E∗S1V 2

2 (t+∆)∼Bin
(
V2(t), 1−exp

[
−∆
N

·Λ̂2I ·p2
])

E∗R1V 2
2 (t+∆)∼Bin

(
RS1V 2

1 (t), 1−exp
[
−∆
N

·Λ̂2I ·p2
])

p2 = β2a ·
[
IS1S2
2a (t) + λ̂2i ·

(
IR1S2
2a (t) + IV 1S2

2a (t) + IV R1S2
2a (t)

)
+ λ̂1I ·

(
IS1V 2
2a (t) + IR1V 2

2a (t) + IV 1V 2
2a (t) + IV R1V 2

2a (t)
)]

+β2s ·
[
IS1S2
2s (t) + λ̂2i ·

(
IR1S2
2s (t) + IV 1S2

2s (t) + IV R1S2
2s (t)

)
+ λ̂2I ·

(
IS1V 2
2s (t) + IR1V 2

2s (t) + IV 1V 2
2s (t) + IV R1V 2

2s (t)
)]

I∗S1V 2
2a (t+∆)∼Bin

(
ES1V 2

2 (t), 1−exp
[
−∆·γ2 ·γ̂2a ·Γ̂2I

])
I∗S1V 2
2s (t+∆)∼Bin

(
ES1V 2

2 (t), 1−exp
[
−∆·γ2 ·(1−γ̂2a ·Γ̂2I)

])
I∗R1V 2
2a (t+∆)∼Bin

(
ER1V 2

2 (t), 1−exp
[
−∆·γ2 ·γ̂2a ·Γ̂2I

])
I∗R1V 2
2s (t+∆)∼Bin

(
ER1V 2

2 (t), 1−exp
[
−∆·γ2 ·(1−γ̂2a ·Γ̂2I)

])
R∗S1V 2

2a (t+∆)∼Bin
(
IS1V 2
2a (t), 1−exp [−∆·δ2]

)
R∗S1V 2

2s (t+∆)∼Bin
(
IS1V 2
2s (t), 1−exp [−∆·δ2 ·(1−µ2)]

)
DS1V 2

2s (t+∆)∼Bin
(
IS1V 2
2s , 1−exp [−∆·δ2 ·µ2]

)
DR1V 2

2s (t+∆)∼Bin
(
IR1V 2
2s , 1−exp [−∆·δ2 ·µ2]

)
RS1S2

12a (t+∆)∼Bin
(
IR1S2
2a , 1−exp [−∆·δ2]

)
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RV 1S2
12a (t+∆)∼Bin

(
IV R1S2
2a , 1−exp [−∆·δ2]

)
RS1V 2

12a (t+∆)∼Bin
(
IR1V 2
2a , 1−exp [−∆·δ2]

)
RV 1V 2

12a (t+∆)∼Bin
(
IV R1V 2
2a , 1−exp [−∆·δ2]

)
V2(t+∆)=V2(t) + V ∗

2 (t+∆)− ES1V 2
1 (t+∆)− ES1V 2

2 (t+∆)

ES1V 2
1 (t+∆)=ES1V 2

1 (t) + E∗S1V 2
1 (t+∆)− I∗S1V 2

1a (t+∆)− I∗S1V 2
1s (t+∆)

ES1V 2
2 (t+∆)=ES1V 2

2 (t) + E∗S1V 2
2 (t+∆)− I∗S1V 2

2a (t+∆)− I∗S1V 2
2s (t+∆)

IS1V 2
1a (t+∆)=IS1V 2

1a (t) + I∗S1V 2
1a (t+∆)−R∗S1V 2

1a (t+∆)

IS1V 2
1s (t+∆)=IS1V 2

1s (t) + I∗S1V 2
1s (t+∆)−R∗S1V 2

1s (t+∆)−D∗S1V 2
1 (t+∆)

IS1V 2
2s (t+∆)=IS1V 2

2s (t) + I∗S1V 2
2s (t+∆)−R∗S1V 2

2s (t+∆)−D∗S1V 2
2 (t+∆)

IS1V 2
2a (t+∆)=IS1V 2

2a (t) + I∗S1V 2
2a (t+∆)−R∗S1V 2

2a (t+∆)

RS1V 2
1 (t+∆)=RS1V 2

1 (t) +R∗S1V 2
1a (t+∆) +R∗S1V 2

1s (t+∆)− E∗R1V 2
2 (t+∆)

RS1V 2
2 (t+∆)=RS1V 2

2 (t) +R∗S1V 2
2a (t+∆) +R∗S1V 2

2s (t+∆)− E∗S1V R2
1 (t+∆)

ER1V 2
2 (t+∆)=ER1V 2

2 (t) + E∗R1V 2
2 (t+∆)− I∗R1V 2

2a (t+∆)− I∗R1V 2
2s (t+∆)

ES1V R2
1 (t+∆)=ES1V R2

1 (t) + E∗S1V R2
1 (t+∆)− I∗S1V R2

1a (t+∆)− I∗S1V R2
1s (t+∆)

IR1V 2
2a (t+∆)=IR1V 2

2a (t) + I∗R1V 2
2a (t+∆)−R∗S1V 2

2a (t+∆)

IR1V 2
2s (t+∆)=IR1V 2

2s (t) + I∗R1V 2
2s (t+∆)−R∗S1V 2

12s (t+∆)−D∗R1V 2
2 (t+∆)

IS1V R2
1s (t+∆)=IS1V R2

1s (t) + I∗S1V R2
1s (t+∆)−R∗S1V 2

1s2 (t+∆)−D∗S1V R2
1 (t+∆)

IS1V R2
1a (t+∆)=IS1V R2

1a (t) + I∗S1V R2
1a (t+∆)−R∗S1V 2

1a2 (t+∆)

RS1V 2
12 (t+∆)=RS1V 2

12 (t) +R∗S1V 2
1a2 (t+∆) +R∗S1V 2

1s2 (t+∆) +R∗S1V 2
12a (t+∆) +R∗S1V 2

12s (t+∆)

DS1V 2
1 (t+∆)=DS1V 2

1 (t) +D∗S1V 2
1 (t+∆) +D∗S1V R2

1 (t+∆)

DS1V 2
2 (t+∆)=DS1V 2

2 (t) +D∗S1V 2
2 (t+∆) +D∗R1V 2

2 (t+∆)

Table A4: Model 3: stochastic model specification

The next model shows the flow of individuals vaccinated against both, COVID-19 and influenza.

V12

EV 1;V 2
1

IV 1;V 2
1a

IV 1;V 2
1s
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1
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Figure A3: Model 4: disease course for individuals vaccinated against both, COVID-19 and influenza

V ∗2
12 (t+∆)∼Bin(V1(t), 1−exp [−∆·ω2])

V ∗1
12 (t+∆)∼Bin(V2(t), 1−exp [−∆·ω1])

E∗V 1V 2
1 (t+∆)∼Bin

(
V12(t), 1−exp

[
−∆
N

·Λ̂1I ·p1
])
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E∗V 1V R2
1 (t+∆)∼Bin

(
RV 1V 2

2 (t), 1−exp
[
−∆
N

·Λ̂1I ·p1
])

p1 = β1a ·
[
IS1S2
1a (t) + λ̂1i ·

(
IS1R2
1a (t) + IS1V 2

1a (t) + IS1V R2
1a (t)

)
+ λ̂1I ·

(
IV 1S2
1a (t) + IV 1R2

1a (t) + IV 1V 2
1a (t) + IV 1V R2

1a (t)
)]

+β1s ·
[
IS1S2
1s (t) + λ̂1i ·

(
IS1R2
1s (t) + IS1V 2

1s (t) + IS1V R2
1s (t)

)
+ λ̂1I ·

(
IV 1S2
1s (t) + IV 1R2

1s (t) + IV 1V 2
1s (t) + IV 1V R2

1s (t)
)]

I∗V 1V 2
1a (t+∆)∼Bin

(
EV 1V 2

1 , 1−exp
[
−∆·γ1 ·γ̂1a ·Γ̂1I

])
I∗V 1V 2
1s (t+∆)∼Bin

(
EV 1V 2

1 , 1−exp
[
−∆·γ1 ·(1−γ̂1a ·Γ̂1I)

])
I∗V 1V R2
1a (t+∆)∼Bin

(
EV 1V R2

1 , 1−exp
[
−∆·γ1 ·γ̂1a ·Γ̂1I

])
I∗V 1V R2
1s (t+∆)∼Bin

(
EV 1V R2

1 , 1−exp
[
−∆·γ1 ·(1−γ̂1a ·Γ̂1I)

])
R∗V 1V 2

1a (t+∆)∼Bin
(
IV 1V 2
1a (t), 1−exp [−∆·δ1]

)
R∗V 1V 2

1s (t+∆)∼Bin
(
IV 1V 2
1s (t), 1−exp [−∆·δ1 ·(1−µ1)]

)
DV 1V 2

1s (t+∆)∼Bin
(
IV 1V 2
1s , 1−exp [−∆·δ1 ·µ1]

)
DV 1V R2

1s (t+∆)∼Bin
(
IV 1V R2
1s , 1−exp [−∆·δ1 ·µ1]

)
E∗V 1V 2

2 (t+∆)∼Bin
(
V12(t), 1−exp

[
−∆
N

·Λ̂2I ·p2
])

E∗V R1V 2
2 (t+∆)∼Bin

(
RV 1V 2

1 (t), 1−exp
[
−∆
N

·Λ̂2I ·p2
])

p2 = β2a ·
[
IS1S2
2a (t) + λ̂2i ·

(
IR1S2
2a (t) + IV 1S2

2a (t) + IV R1S2
2a (t)

)
+ λ̂1I ·

(
IS1V 2
2a (t) + IR1V 2

2a (t) + IV 1V 2
2a (t) + IV R1V 2

2a (t)
)]

+β2s ·
[
IS1S2
2s (t) + λ̂2i ·

(
IR1S2
2s (t) + IV 1S2

2s (t) + IV R1S2
2s (t)

)
+ λ̂2I ·

(
IS1V 2
2s (t) + IR1V 2

2s (t) + IV 1V 2
2s (t) + IV R1V 2

2s (t)
)]

I∗V 1V 2
2a (t+∆)∼Bin

(
EV 1V 2

2 , 1−exp
[
−∆·γ2 ·γ̂2a ·Γ̂2I

])
I∗V 1V 2
2s (t+∆)∼Bin

(
EV 1V 2

2 , 1−exp
[
−∆·γ2 ·(1−γ̂2a ·Γ̂2I)

])
I∗V R1V 2
2a (t+∆)∼Bin

(
EV R1V 2

2 , 1−exp
[
−∆·γ2 ·γ̂2a ·Γ̂2I

])
I∗V R1V 2
2s (t+∆)∼Bin

(
EV R1V 2

2 , 1−exp
[
−∆·γ2 ·(1−γ̂2a ·Γ̂2I)

])
R∗V 1V 2

2a (t+∆)∼Bin
(
IV 1V 2
2a (t), 1−exp [−∆·δ2]

)
R∗V 1V 2

2s (t+∆)∼Bin
(
IV 1V 2
2s (t), 1−exp [−∆·δ2 ·(1−µ2)]

)
DV 1V 2

2s (t+∆)∼Bin
(
IV 1V 2
2s , 1−exp [−∆·δ2 ·µ2]

)
DV R1V 2

2s (t+∆)∼Bin
(
IV R1V 2
2s , 1−exp [−∆·δ2 ·µ2]

)
RS1S2

12s (t+∆)∼Bin
(
IR1S2
2s , 1−exp [−∆·δ2 ·(1−µ2)]

)
RV 1S2

12s (t+∆)∼Bin
(
IV R1S2
2s , 1−exp [−∆·δ2 ·(1−µ2)]

)
RS1V 2

12s (t+∆)∼Bin
(
IR1V 2
2s , 1−exp [−∆·δ2 ·(1−µ2)]

)
RV 1V 2

12s (t+∆)∼Bin
(
IV R1V 2
2s , 1−exp [−∆·δ2 ·(1−µ2)]

)
V12(t+∆)=V12(t) + V ∗1

12 (t+∆) + V ∗2
12 (t+∆)− EV 1V 2

1 (t+∆)− EV 1V 2
2 (t+∆)

EV 1V 2
1 (t+∆)=EV 1V 2

1 (t) + E∗V 1V 2
1 (t+∆)− I∗V 1V 2

1a (t+∆)− I∗V 1V 2
1s (t+∆)

EV 1V 2
2 (t+∆)=EV 1V 2

2 (t) + E∗V 1V 2
2 (t+∆)− I∗V 1V 2

2a (t+∆)− I∗V 1V 2
2s (t+∆)

IV 1V 2
1a (t+∆)=IV 1V 2

1a (t) + I∗V 1V 2
1a (t+∆)−R∗V 1V 2

1a (t+∆)

IV 1V 2
1s (t+∆)=IV 1V 2

1s (t) + I∗V 1V 2
1s (t+∆)−R∗V 1V 2

1s (t+∆)−D∗V 1V 2
1 (t+∆)

IV 1V 2
2s (t+∆)=IV 1V 2

2s (t) + I∗V 1V 2
2s (t+∆)−R∗V 1V 2

2s (t+∆)−D∗V 1V 2
2 (t+∆)

IV 1V 2
2a (t+∆)=IV 1V 2

2a (t) + I∗V 1V 2
2a (t+∆)−R∗V 1V 2

2a (t+∆)

RV 1V 2
1 (t+∆)=RV 1V 2

1 (t) +R∗V 1V 2
1a (t+∆) +R∗V 1V 2

1s (t+∆)− E∗V R1V 2
2 (t+∆)

RV 1V 2
2 (t+∆)=RV 1V 2

2 (t) +R∗V 1V 2
2a (t+∆) +R∗V 1V 2

2s (t+∆)− E∗
1 (t+∆)

EV R1V 2
2 (t+∆)=EV R1V 2

2 (t) + E∗V R1V 2
2 (t+∆)− I∗V R1V 2

2a (t+∆)− I∗V R1V 2
2s (t+∆)

EV 1V R2
1 (t+∆)=EV 1V R2

1 (t) + E∗V 1V R2
1 (t+∆)− I∗V 1V R2

1a (t+∆)− I∗V 1V R2
1s (t+∆)

IV R1V 2
2a (t+∆)=IV R1V 2

2a (t) + I∗V R1V 2
2a (t+∆)−R∗V 1V 2

2a (t+∆)

IV R1V 2
2s (t+∆)=IV R1V 2

2s (t) + I∗V R1V 2
2s (t+∆)−R∗V 1V 2

12s (t+∆)−D∗V R1V 2
2 (t+∆)

IV 1V R2
1s (t+∆)=IV 1V R2

1s (t) + I∗V 1V R2
1s (t+∆)−R∗V 1V 2

1s2 (t+∆)−D∗V 1V R2
1 (t+∆)
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IV 1V R2
1a (t+∆)=IV 1V R2

1a (t) + I∗V 1V R2
1a (t+∆)−R∗V 1V 2

1a2 (t+∆)

RV 1V 2
12 (t+∆)=RV 1V 2

12 (t) +R∗V 1V 2
1a2 (t+∆) +R∗V 1V 2

1s2 (t+∆) +R∗V 1V 2
12a (t+∆) +R∗V 1V 2

12s (t+∆)

DV 1V 2
1 (t+∆)=DV 1V 2

1 (t) +D∗V 1V 2
1 (t+∆) +D∗V 1V R2

1 (t+∆)

DV 1V 2
2 (t+∆)=DV 1V 2

2 (t) +D∗V 1V 2
2 (t+∆) +D∗V 1V 2

2 (t+∆)

Table A5: Model 4: stochastic model specification
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Appendix B - Model Parameters

Parameter Settings

Parameter Description Value Reference

β1a transmission rate between susceptible individuals and in-

fected asymptomatic individuals for COVID-19

0.55× β1s [18]

β1s transmission rate between susceptible individuals and in-

fected symptomatic individuals for COVID-19

0.375 see Section ??

β2a transmission rate between susceptible individuals and in-

fected asymptomatic individuals for influenza

0.51× β2s [32]

β2s transmission rate between susceptible individuals and in-

fected symptomatic individuals for influenza

0.300 see Section ??

γ−1
1 latent period for COVID-19 2 [1]

γ−1
2 latent period for influenza 1.6 [7]

γ̂1a probability of asymptomatic infection for COVID-19 0.308 [24]

γ̂2a probability of asymptomatic infection for influenza 0.331 [6]

δ−1
1 length of infectious period for COVID-19 10.2 [1]

δ−1
2 length of infectious period for influenza 4.8 [6]

µ1 mortality probability (due to symptomatic infection) for

COVID-19

0.015 [12]

µ2 mortality probability (due to symptomatic infection) for

influenza

0.004 [30]

ω1 rate of vaccination for COVID-19 (based on the vaccination

coverage in Belgium)

0.05 [3]

ω2 rate of vaccination for influenza (based on the vaccination

coverage in the Netherlands)

0.01 [15]

Immunity effects

λ̂1i Effect of heterologous immunity on the infectiousness with

COVID-19

1 fixed

λ̂1I Effect of homologous immunity on the infectiousness with

COVID-19

1 fixed

λ̂2i Effect of heterologous immunity on the infectiousness with

influenza

1 fixed

λ̂2I Effect of homologous immunity on the infectiousness with

influenza

1 fixed

Λ̂1i Effect of heterologous immunity on the susceptibility to

COVID-19

Λ̂1I Effect of homologous immunity on the susceptibility to

COVID-19

(1-0.863) [14]

Λ̂2i Effect of heterologous immunity on the susceptibility to

influenza

Λ̂2I Effect of homologous immunity on the susceptibility to in-

fluenza

(1-0.349) [26]

Γ̂1i effect of heterologous immunity on the probability of de-

veloping symptoms for COVID-19

1 assumed
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Γ̂1I effect of homologous immunity (vaccine) on the probability

of developing symptoms for COVID-19

1 assumed

Γ̂2i effect of heterologous immunity on the probability of de-

veloping symptoms for influenza

1 assumed

Γ̂2I effect of homologous immunity (vaccine) on the probability

of developing symptoms for influenza

1 assumed

Table B1: A list of all model parameters along with their respective values, descriptions, and sources.
If a parameter value is derived from scientific literature, it indicates that the value is chosen based on
previous research. Transmission rates are estimated in this thesis, and the reference directs the reader to
the corresponding section. ”Fixed” indicates that parameter values are determined in the experiments,
depending on the scenario, and ”Assumed” means the value is chosen by the author of this thesis.

Fitting Procedure

E∗(t+∆) ∼ {S(t), 1− exp[−∆/N(βaIa(t) + βsIs(t))]} S(t+∆) = S(t)− E∗(t+∆)
I∗a(t+∆) ∼ {E(t), 1− exp(−∆γγ̂a)} E(t+∆) = E(t) + E∗(t+∆)− I∗a(t+∆)− I∗s (t+∆)
I∗s (t+∆) ∼ {E(t), 1− exp(−∆γ(1− γ̂a))} Ia(t+∆) = Ia(t) + I∗a(t+∆)−R∗

a(t+∆)
R∗

a(t+∆) ∼ {Ia(t), 1− exp(−∆δ)} Is(t+∆) = Is(t) + I∗s (t+∆)−R∗
s(t+∆)−D∗(t+∆)

R∗
s(t+∆) ∼ {Is(t), 1− exp(−∆δ(1− µ)} R(t+∆) = R(t) +R∗

a(t+∆) +R∗
s(t+∆)

D∗(t+∆) ∼ {Is(t), 1− exp(−∆δµ)} D(t+∆) = D(t) +D∗(t+∆)

Table B2: Set of equations describing the stochastic version of the SEIR Model from figure 2

Derivation of R0 with the Next Generation Approach

Table B3 shows the set of ODE’s corresponding to the SEIR-model in Figure 2.

d
dtS(t) =

−S
N (Ia(t)βa + Is(t)βs)

d
dtE(t) = S

N (Ia(t)βa + Is(t)βs)− γE(t)
d
dtIa(t) = γγaE(t)− δIa(t)
d
dtIs(t) = γ(1− γa)E(t)− δIs(t)
d
dtR(t) = δIa(t) + δ(1− µ)Is(t)
d
dtD(t) = µIs(t)

Table B3: ODE’s correpsonding to the SEIR model in Figure 2

This system has three disease-classes (E, Ia and Is) and three non-disease classes (S, R and D).

The vector f contains the different ways that new infections can occur and vector v contains the

different ways that infections can be transferred from one class to another.

f =




S
N (Iaβa + Isβs)

0

0


 and v =




−γE

γγaE − δIa
γ(1− γa)E − δIs




The next generation matrix G is the product of two components: F = ∂fi(x0)
∂xj

and V −1 with V =
∂vi(x0)
∂xj

and x0 corresponding to the disease-free equilibrium state (at which E = Ia = Is = R = D = 0,

hence S = N and S/N = 1).

The two components of G are:
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F =




∂(Iaβa+Isβs)
∂E

∂(Iaβa+Isβs)
∂Ia

∂(Iaβa+Isβs)
∂Is

∂0
∂E

∂0
∂Ia

∂0
∂Is

∂0
∂E

∂0
∂Ia

∂0
∂Is


 =



0 βa βs
0 0 0

0 0 0




and

V =




∂(−γE)
∂E

∂(−γE)
∂Ia

∂(−γE)
∂Is

∂(γγaE−δIa)
∂E

∂(γγaE−δIa)
∂Ia

∂(γγaE−δIa)
∂Is

∂(γ(1−γa)E−δIs)
∂E

∂(γ(1−γa)E−δIs)
∂Ia

∂(γ(1−γa)E−δIs)
∂Is


 =




−γ 0 0

γγa −δ 0

γ(1− γa) 0 −δ




To find V −1, the adjugate matrix adj(V ) is needed. It corresponds to the transpose of the cofactor

matrix C of F :

adj(V ) = CT =




∣∣∣∣∣
−δ 0

0 −δ

∣∣∣∣∣ −
∣∣∣∣∣

γγa 0

γ(1− γa) −δ

∣∣∣∣∣

∣∣∣∣∣
γγa −δ

γ(1− γa) 0

∣∣∣∣∣

−
∣∣∣∣∣
0 0

0 −δ

∣∣∣∣∣

∣∣∣∣∣
−γ 0

γ(1− γa) −δ

∣∣∣∣∣ −
∣∣∣∣∣

−γ 0

γ(1− γa) 0

∣∣∣∣∣∣∣∣∣∣
0 0

−δ 0

∣∣∣∣∣ −
∣∣∣∣∣
−γ 0

γγa 0

∣∣∣∣∣

∣∣∣∣∣
−γ 0

γγa −δ

∣∣∣∣∣




T

=



δ2 γγaδ γ(1− γa)δ

0 γδ 0

0 0 γδ




T

=




δ2 0 0

γγaδ γδ 0

γ(1− γa)δ 0 γδ




V −1 = adj(V )
|V | with |V | = −γδ2:

V −1 =




−1
γ 0 0

−γa
δ

−1
δ 0

−(1−γa)
δ 0 −1

δ




The next generation matrix is:

G = FV −1 =



0 βa βs
0 0 0

0 0 0







−1
γ 0 0

−γa
δ

−1
δ 0

−(1−γa)
δ 0 −1

δ


 =




βaγa
δ + βsγs

δ
−βa

δ
−βs

δ

0 0 0

0 0 0




R0 is the leading Eigenvalue of G. To find this Eigenvalue, solve the following equality:

|G− λI| = 0

⇔

∣∣∣∣∣∣∣

βaγa
δ + βs(1−γa)

δ − λ −βa

δ
−βs

δ

0 −λ 0

0 0 −λ

∣∣∣∣∣∣∣
= 0

⇔
(
βaγa
δ

+
βs(1− γa)

δ
− λ

)
· λ2 = 0

⇔ λ = R0 =
βaγa + βs(1− γa)

δ
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Appendix C - Additional Results

Scenario 1 - Co-circulation versus Independence

Attack Rate - All Simulations

COVID-19 Influenza

mean median 95% QR mean median 95% QR

Independence 0.7543 0.9635 [0.0001;0.9688] 0.1664 0.0004 [0.0001;0.4861]

Co-circulation 0.7570 0.9631 [0.0001;0.9685] 0.1440 0.0004 [0.0001;0.4720]

Attack Rate - Outbreaks Only

COVID-19 Influenza

mean median 95% QR mean median 95% QR

Independence 0.9642 0.9644 [0.9590;0.9690] 0.4544 0.4548 [0.4042;0.4934]

Co-circulation 0.9641 0.9641 [0.9589;0.9690] 0.4311 0.4323 [0.3671;0.4843]

Table C1: (Scenario 1) Mean, median and 95% quantile range (QR) of attack rates including all simulations
(upper panel) and including only major outbreaks (lower panel) for the scenarios of independence and co-
circulation

Figure C1: (Scenario 1) Distribution of attack rates for major outbreaks only

Cases at Peak - All Simulations

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR

Independence 0.2222 0.2813 [0.0001;0.2954] 0.0100 0.0002 [0.0001;0.0333] - - -

Co-circulation 0.2226 0.2807 [0.0001;0.2947] 0.0077 0.0002 [0.0001;0.0295] 0.225 0.2819 [0.0001;0.2950]

Cases at Peak - Major Outbreaks Only

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR

Independence 0.2838 0.2835 [0.2707;0.2966] 0.0269 0.0269 [0.0190;0.0359] - - -

Co-circulation 0.2831 0.2831 [0.2708;0.2950] 0.0227 0.0227 [0.0143;0.0315] 0.2582 0.2830 [0.0238;0.2952]

Day of the Peak - All Simulations

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR
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Independence 59.8 72.0 [1.0;90.0] 63.2 9.0 [1.0;212.1] - - -

Co-circulation 60.1 72.0 [1.5;90.0] 72.2 9 [1;259] 73.6 74.0 [2.5;167.0]

Day of the Peak - Outbreaks Only

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR

Independence 75.2 75.0 [64.0;91.0] 160.5 155.5 [109.0;234.9] - - -

Co-circulation 75.2 74.0 [64.6;91] 198.5 198.0 [121;284] 83.3 75 [65;171.2]

Table C2: (Scenario 1) Mean, median and 95% quantile range (QR) of the prevalence at peak and the day
of the peak including all simulations (upper panels) and including only major outbreaks (lower panels) for
the scenarios of independence and co-circulation

Figure C2: (Scenario 1) Distribution of cases at peak for major outbreaks only

Figure C3: (Scenario 1) Distribution of the day of the peak for major outbreaks only

Scenario 2 - Effect of Vaccination

Attack Rate - All Simulations

COVID-19 Influenza
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mean median 95% QR mean median 95% QR

No Vaccination 0.7570 0.9631 [0.0.0001;0.9685] 0.1440 0.0004 [0.0001;0.4720]

Vaccination 0.0041 0.0027 [0.0001;0.0147] 0.237 0.0001 [0.0001;0.1411]

(Scenario 2) Mean, median and 95% quantile range (QR) of attack rates including all simulations for the
scenarios with and without vaccination

Cases at Peak - All Simulations

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR

No Vaccination 0.2226 0.2807 [0.0001;0.2947] 0.0077 0.0002 [0.0001;0.0295] 0.2255 0.2819 [0.0001;0.2950]

Vaccination 0.0010 0.0007 [0.0001;0.0033] 0.0014 0.0002 [0.0001;0.0075] 0.0021 0.0014 [0.0001;0.0077]

Day of the Peak - All Simulations

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR

No Vaccination 60.1 72.0 [1.5;90.0] 72.2 9.0 [1.0;259.0] 73.6 74.0 [2.5;167.0]

Vaccination 30.2 31.5 [1.5;72.0] 40.5 7.0 [1.0;179.0] 52.3 40.0 [2.0;168.0]

Table C4: (Scenario 2) Mean, median and 95% quantile range (QR) of the prevalence at peak and the day
of the peak including all simulations for the scenarios with and without vaccination.

Scenario 3: Less Aggressive COVID-19

Attack Rate - All Simulations

COVID-19 Influenza

mean median 95% QR mean median 95% QR

Original 0.7570 0.9631 [0.0001;0.9685] 0.1440 0.0004 [0.0001;0.4720]

Less Aggressive 0.1266 0.0004 [0.0001;0.4285] 0.1581 0.0003 [0.0001;0.4848]

Attack Rate - Outbreaks Only

COVID-19 Influenza

mean median 95% QR mean median 95% QR

Original 0.9641 0.9641 [0.9589;0.9690] 0.4311 0.4323 [0.3671;0.4843]

Less Aggressive 0.3853 0.3829 [0.3205;0.4426] 0.4502 0.4528 [0.3920;0.4926]

Table C5: (Scenario 1) Mean, median and 95% quantile range (QR) of attack rates including all simulations
(upper panel) and including only major outbreaks (lower panel) for the scenarios with the original and a
less aggressive COVID-19 strain.

46



Figure C4: (Scenario 3) Distribution of attack rates for major outbreaks only for the scenarios with the
original and a less aggressive COVID-19 strain.

Cases at Peak - All Simulations

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR

Original 0.2226 0.2807 [0.0001;0.2947] 0.0077 0.0002 [0.0001;0.0295] 0.225 0.2819 [0.0001;0.2950]

Less Aggressive 0.0072 0.0002 [0.0001;0.0276] 0.0094 0.0002 [0.0001;0.0324] 0.0150 0.0192 [0.0001;0.0362]

Cases at Peak - Major Outbreaks Only

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR

Original 0.2831 0.2831 [0.2708;0.2950] 0.0227 0.0227 [0.0143;0.0315] 0.2582 0.2830 [0.0238;0.2952]

Less Aggressive 0.0214 0.0214 [0.0123;0.0307] 0.0266 0.0268 [0.0173;0.0348] 0.0153 0.0196 [0.0001;0.0361]

Day of the Peak - All Simulations

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR

Original 60.1 72.0 [1.5;90.0] 72.2 9 [1;259] 73.6 74.0 [2.5;167.0]

Less Aggressive 111.1 13 [1.5;425] 59.5 8 [1;216] 132.9 132 [1.5;407]

Day of the Peak - Outbreaks Only

COVID-19 Influenza Both

mean median 95% QR mean median 95% QR mean median 95% QR

Original 75.2 74.0 [64.6;91] 198.5 198.0 [121;284] 83.3 75 [65;171.2]

Less Aggressive 313.1 294.8 [205.2;530.5] 157.8 149 [108.8;242.5] 136.5 135 [1.5;408.1]

Table C6: (Scenario 3) Mean, median and 95% quantile range (QR) of the prevalence at peak and the day
of the peak including all simulations (upper panels) and including only major outbreaks (lower panels) for
the scenarios with the original and a less aggressive COVID-19 strain.
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Figure C5: (Scenario 3) Distribution of cases at peak for major outbreaks only for the scenarios with the
original and a less aggressive COVID-19 strain.

Figure C6: (Scenario 3) Distribution of the day of the peak for major outbreaks only for the scenarios
with the original and a less aggressive COVID-19 strain.

Scenario 4: Co-Circulation Accounting for Heterologous Immunity

Attack Rate - All Simulations

COVID-19 Influenza

λ mean median 95% QR mean median 95% QR

1 0.7570 0.9631 [0.0001;0.9685] 0.1440 0.0004 [0.0001;0.4720]

0.9 0.7432 0.9626 [0.0001;0.9684] 0.1155 0.0005 [0.0001;0.4693]

0.8 0.7848 0.9631 [0.0001;0.9689] 0.0550 0.0004 [0.0001;0.4655]

0.7 0.7383 0.9627 [0.0001;0.9687] 0.0517 0.0004 [0.0001;0.4674]

Attack Rate - Outbreaks Only

COVID-19 Influenza

λ mean median 95% QR mean median 95% QR

1 0.9641 0.9641 [0.9590;0.9689] 0.4311 0.4323 [0.3671;0.4843]

0.9 0.9637 0.9638 [0.9578;0.9687] 0.3307 0.3080 [0.1972;0.4851]

0.8 0.9638 0.9639 [0.9578;0.9692] 0.2786 0.1941 [0.1067;0.4857]

0.7 0.9636 0.9639 [0.9567;0.9691] 0.4179 0.4477 [0.1106;0.4923]
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Table C7: (Scenario 4) Mean, median and 95% quantile range (QR) of attack rates including all simulations
(upper panel) and including only major outbreaks (lower panel) for the scenarios with no (0%), low (10%),
moderate (20%) and high (30%) heterologous effect on the susceptibility to infection.

Figure C7: (Scenario 4) Distribution of attack rates for major outbreaks only for the scenarios with no
(0%), low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to infection.

Cases at Peak - All Simulations

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 0.2226 0.2807 [0.0001;0.2947] 0.0077 0.0002 [0.0001;0.0295] 0.2255 0.2819 [0.0001;0.2950]

0.9 0.2182 0.2805 [0.0001;0.2940] 0.0054 0.0002 [0.0001;0.0299] 0.2213 0.2813 [0.0001;0.2944]

0.8 0.2304 0.2808 [0.0001;0.2947] 0.0031 0.0002 [0.0001;0.0274] 0.2329 0.2814 [0.0002;0.2953]

0.7 0.2169 0.2803 [0.0001;0.2945] 0.0034 0.0002 [0.0001;0.0289] 0.2198 0.2809 [0.0001;0.2952]

Cases at Peak - Outbreaks Only

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 0.2831 0.2831 [0.2708;0.2950] 0.0227 0.0227 [0.0143;0.0315] 0.2582 0.2830 [0.0238;0.2952]

0.9 0.2827 0.2825 [0.2709;0.2946] 0.0151 0.0125 [0.0057;0.0327] 0.2576 0.2827 [0.0239;0.2948]

0.8 0.2827 0.2825 [0.2700;0.1954] 0.0263 0.0263 [0.0181;0.0330] 0.2625 0.2824 [0.0251;0.2956]

0.7 0.2828 0.2828 [0.2694;0.2956] 0.0261 0.0264 [0.0164;0.0330] 0.2556 0.2825 [0.0228;0.2956]

Day of the Peak - All Simulations

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 60.1 72.0 [1.5;90.0] 72.2 9.0 [1.0;259.2] 73.6 74.0 [2.5;167.0]

0.9 59.4 72.0 [1.5;91.0] 84.3 12.0 [1.0;335.2] 72.8 74.0 [2.0;165.0]

0.8 62.4 73.0 [1.0;92.0] 53.4 9.7 [1.0;308.1] 73.9 74.0 [2.0;165.0]

0.7 58.9 72.0 [1.5;91.0] 41.0 10.0 [1.0;190.0] 73.7 74.0 [2.5;174.1]

Day of the Peak - Outbreaks Only

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 75.2 74.0 [64.6;91.0] 198.5 198.0 [121.0;284.0] 83.3 75.0 [65.0;171.2]

0.9 75.6 75.0 [65.0;91.7] 219.9 216.5 [69.9;378.6] 83.6 76.0 [65.0;170.6]

0.8 75.6 74.0 [64.0;93.0] 160.2 155.0 [114.6;224.6] 82.3 75.0 [65.0;172.6]

0.7 75.6 74.0 [64.0;92.9] 159.3 158.0 [108.1;224.7] 84.6 75.0 [64.0;180.0]
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Table C8: (Scenario 4) Mean, median and 95% quantile range (QR) of the prevalence at peak and the day
of the peak including all simulations (upper panels) and including only major outbreaks (lower panels)
for the scenarios with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the
susceptibility to infection.

Figure C8: (Scenario 4) Distribution of cases at peak for major outbreaks only for the scenarios with no
(0%), low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to infection.

Figure C9: (Scenario 4) Distribution of the day of the peak for major outbreaks only for the scenarios with
no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to infection.

Scenario 5: Co-Circulation Accounting for Heterologous Immunity with a less Aggres-

sive Variant of COVID-19

Attack Rate - All Simulations

COVID-19 Influenza

λ mean median 95% QR mean median 95% QR

1 0.1266 0.0004 [0.0001;0.4285] 0.1581 0.0003 [0.0001;0.4848]

0.9 0.1172 0.0003 [0.0001;0.4223] 0.1639 0.0004 [0.0001;0.4858]

0.8 0.0987 0.0002 [0.0001;0.4200] 0.1588 0.0002 [0.0001;0.4928]
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0.7 0.0979 0.0003 [0.0001;0.4213] 0.1700 0.0004 [0.0001;0.4885]

Attack Rate - Outbreaks Only

COVID-19 Influenza

λ mean median 95% QR mean median 95% QR

1 0.3853 0.3892 [0.3205;0.4426] 0.4502 0.4528 [0.3920;0.4926]

0.9 0.3635 0.3694 [0.2549;0.4378] 0.4499 0.4519 [0.3883;0.5001]

0.8 0.3430 0.3643 [0.1962;0.4329] 0.4510 0.3917 [0.5016;0.4512]

0.7 0.3167 0.3632 [0.1044;0.4304] 0.4485 0.4524 [0.3805;0.5032]

Table C9: (Scenario 5) Mean, median and 95% quantile range (QR) of attack rates including all simulations
(upper panel) and including only major outbreaks (lower panel) for the scenarios with no (0%), low (10%),
moderate (20%) and high (30%) heterologous effect on the susceptibility to infection considering a less
aggressive COVID-19 strain.

Figure C10: (Scenario 5) Distribution of attack rates for major outbreaks only for the scenarios with no
(0%), low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to infection
considering a less aggressive COVID-19 strain.

Cases at Peak - All Simulations

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 0.0072 0.0002 [0.0001;0.0276] 0.0094 0.0002 [0.0001;0.0324] 0.0150 0.0192 [0.0001;0.0362]

0.9 0.0065 0.0002 [0.0001;0.0276] 0.0098 0.0002 [0.0001;0.0327] 0.0151 0.0191 [0.0001;0.0371]

0.8 0.0055 0.0002 [0.0001;0.0275] 0.0095 0.0002 [0.0001;0.0326] 0.0144 0.0184 [0.0001;0.0352]

0.7 0.0055 0.0002 [0.0001;0.0270] 0.0101 0.0002 [0.0001;0.0329] 0.0150 0.0200 [0.0001;0.0351]

Cases at Peak - Outbreaks Only

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 0.0214 0.0214 [0.0123;0.0307] 0.0266 0.0268 [0.0173;0.0348] 0.0258 0.0258 [0.0141;0.0381]

0.9 0.0199 0.0197 [0.0098;0.0301] 0.0266 0.0265 [0.0182;0.0353] 0.0262 0.0261 [0.0150;0.0402]

0.8 0.0188 0.0194 [0.0066;0.0314] 0.0267 0.0267 [0.0183;0.0347] 0.0261 0.0261 [0.0158;0.0376]

0.7 0.0173 0.0188 [0.0047;0.0297] 0.0264 0.0263 [0.0175;0.0360] 0.0260 0.0262 [0.0158;0.0361]

Day of the Peak - All Simulations

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 111.1 13 [1.5;425] 59.5 8 [1;216.1] 132.9 132 [1.5;407]

0.9 109.4 12.2 [1;435.1] 61.9 10 [1;205] 127.6 132 [2;395.1]
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0.8 99.7 11 [1;468.5] 59.3 9 [1;205] 121.9 126.5 [1.5;405.1]

0.7 103.7 12.5 [1;462] 63.6 9 [1;208] 125.6 131.2 [2;383.1]

Day of the Peak - Outbreaks Only

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 313.1 294.8 [205.2;530.5] 157.8 149 [108.8;242.5] 220.9 189 [111;448]

0.9 312.9 292 [190;203.8] 157.5 153 [112;226.9] 213.2 181 [116;421.3]

0.8 317 302.5 [178.2;566] 156.3 150 [109.4;228] 213.1 177 [113;461.4]

0.7 306.2 290 [173.4;553.3] 157.9 153 [108;223.1] 210.7 178 [110;430]

Table C10: (Scenario 5) Mean, median and 95% quantile range (QR) of the prevalence at peak and the day
of the peak including all simulations (upper panels) and including only major outbreaks (lower panels)
for the scenarios with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the
susceptibility to infection considering a less aggressive COVID-19 strain.

Figure C11: (Scenario 5) Distribution of cases at peak for major outbreaks only for the scenarios with
no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to infection
considering a less aggressive COVID-19 strain.

Figure C12: (Scenario 4) Distribution of the day of the peak for major outbreaks only for the scenarios
with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to
infection.

5.1 Scenario 6: Heterologous Immunity Effect with Vaccination
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Attack Rate - All Simulations

COVID-19 Influenza

λ mean median 95% QR mean median 95% QR

1 0.0041 0.0027 [0.0001;0.0147] 0.0237 0.0003 [0.0001;0.1411]

0.9 0.0035 0.0022 [0.0001;0.0139] 0.0160 0.0004 [0.0001;0.0892]

0.8 0.0035 0.0023 [0.0001;0.0126] 0.0086 0.0003 [0.0001;0.0606]

0.7 0.0033 0.0020 [0.0001;0.0126] 0.0046 0.0003 [0.0001;0.0388]

Table C11: (Scenario 5) Mean, median and 95% quantile range (QR) of attack rates including all simu-
lations (upper panel) and including only major outbreaks (lower panel) for the scenarios with no (0%),
low (10%), moderate (20%) and high (30%) heterologous effect on the susceptibility to infection with
vaccination.

Cases at Peak - All Simulations

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 0.0010 0.0007 [0.0001;0.0033] 0.0014 0.0002 [0.0001;0.0075] 0.0021 0.0014 [0.0001;0.0029]

0.9 0.0009 0.0007 [0.0001;0.0029] 0.0011 0.0002 [0.0001;0.0051] 0.0017 0.0013 [0.0001;0.0052]

0.8 0.0009 0.0007 [0.0001;0.0028] 0.0007 0.0002 [0.0001;0.0035] 0.0014 0.0011 [0.0001;0.0042]

0.7 0.0008 0.0006 [0.0001;0.0027] 0.0005 0.0002 [0.0001;0.0027] 0.0012 0.0010 [0.0001;0.0033]

Day of the Peak - All Simulations

COVID-19 Influenza Both

λ mean median 95% QR mean median 95% QR mean median 95% QR

1 30.2 31.5 [1.5;72] 40.5 7 [1;179] 52.3 40 [2;168]

0.9 28 28.5 [1.5;66] 38.6 10 [1;170] 48.8 39 [2;166]

0.8 29 29.5 [1.5;69.5] 31.2 8.5 [1;170] 42.4 36 [2;149]

0.7 28 28 [1.5;68.5] 23 7 [1;121] 36.6 33 [2;113]

Table C12: (Scenario 5) Mean, median and 95% quantile range (QR) of the prevalence at peak and the day
of the peak including all simulations (upper panels) and including only major outbreaks (lower panels)
for the scenarios with no (0%), low (10%), moderate (20%) and high (30%) heterologous effect on the
susceptibility to infection with vaccination.

Appendix D - Software Code

The code is available at GitHub: nadine-barth/Co-circulation-Model-COVID-19-and-Influenza
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