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Abstract

Pneumonia remains the main cause of mortality among children under five years old in
Uganda. This study aimed to identify the most effective machine learning model for predicting
pneumonia in young children to enhance early diagnosis and treatment outcomes. A compre-
hensive comparison of six machine learning classification models, including Logistic Regression
(LR), Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbor (KNN), Ran-
dom Forest (RF), and Extreme Gradient Boosting (XGBoost), was conducted on an original
and balanced dataset containing only symptoms and demographics of 7,859 infants, among
whom 973 had pneumonia and 6,886 had non-pneumonia. Given that the dataset showed
class imbalance, three methods of rebalancing were considered and compared: undersampling,
oversampling, and SMOTE. Findings revealed that XGBoost (accuracy=95%, precision=86%,
recall=73%, and F1 score=79%) and RF (accuracy=95%, precision=87%, recall=70%, and F1
score=78%) had the best performance on the original dataset. For the balanced datasets, con-
sidering undersampled, oversampled, and SMOTE methods, XGBoost, RF,and DT achieved
the highest prediction results. Moreover, the predictors ”respiratory distress” and ”chest in-
drawing”, combined with other predictors, were identified as the most significant features for
predicting pneumonia across the original and all three balanced datasets. These results suggest
that machine learning models can be used to accurately distinguish pneumonia in children in
both balanced and imbalanced datasets. Additionally, the significance of key features remains
consistent, highlighting their importance in predictive modeling for pneumonia detection.

1 Introduction

Pneumonia is an infection of the lungs that remains one of the major causes of mortality especially
among children under five years of age worldwide[1]. Despite advances in medical science, the
timely and accurate diagnosis of pneumonia in young children remains a critical challenge, partic-
ularly in low-resource settings. Early diagnosis and treatment are essential to improve outcomes
and reduce the burden on healthcare systems. Effective diagnosis is crucial because it allows for
timely intervention with appropriate antibiotics and supportive care, significantly reducing the risk
of complications and death. However, traditional diagnostic methods often rely on clinical signs
and symptoms, such as fever, cough, and difficulty breathing, which can be nonspecific and eas-
ily confused with other respiratory infections. Furthermore, radiographic imaging and laboratory
tests, while more definitive, often have low sensitivity for detecting early-stage pneumonia and can
cause potential harm due to X-ray exposure. Additionally, the absence of abnormalities in chest
radiographs in some children further complicates their diagnostic utility[2]. These factors, coupled
with the lack of availability in low-resource settings, frequently result in delays in diagnosis and
treatment. Consequently, there is a crucial need for innovative approaches to enhance the predictive
accuracy of pneumonia diagnosis.

In recent years, the integration of machine learning and data science techniques in healthcare
has shown significant potential in improving diagnostic processes and patient outcomes[3]. Machine
learning models can analyze large amounts of clinical data to uncover patterns and associations
that may not be immediately apparent to human clinicians[4]. These models can help in making
more accurate predictions, thereby supporting healthcare professionals in their decision processes.
Moreover, Machine learning has proven effective in enhancing diagnostic accuracy for pneumonia,
particularly for adult patients[5].

This thesis aims to identify the most effective machine learning model for predicting pneumonia
in children under five years old in Uganda. To achieve this objective, a comprehensive comparison of
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six machine learning classification models, including Logistic Regression (LR), Support Vector Ma-
chine (SVM), Decision Tree (DT), K-Nearest Neighbor (KNN), Random Forest (RF), and Extreme
Gradient Boosting (XGBoost), were utilized based on the symptoms and demographics features.
Each of these models represents a distinct approach to classification tasks and has been extensively
employed in various domains for their robustness and predictive capabilities[6].

The dataset for this study includes a different range of features that are hypothesized to be
relevant for pneumonia prediction. These features include demographic details, clinical symptoms,
and condition factors. The data has been cleaned and preprocessed to ensure its quality and
reliability, forming a robust foundation for developing and evaluating the machine learning models.

By comparing the performance of these models using metrics such as accuracy, precision, recall,
and the f1 score, this research aims to identify the best model that offers the highest predictive
performance based on the symptoms and demographics features. Finally, the chosen model will
help healthcare professionals in making more accurate and timely diagnoses, potentially leading to
better patient outcomes and more efficient use of medical resources.

2 Description of the dataset

The dataset used in this study was retrospectively collected to cover a period of six years study from
2014 to 2019 at a district hospital in Uganda. This data was provided in Excel format, to access
easily. It included a wide range of features that were hypothesized to be relevant for pneumonia
prediction. The full dataset consisted of 101 features. These features included demographic details
(age, gender, village name), clinical symptoms (respiratory distress, chest in-drawing, presence of
malaria, skin pustules, body temperature, ability to drink water, cyanosis), and conditions of infants
(used zinc supplements, amoxicillin). Each of these variables was recorded and validated to ensure
data quality and reliability. Additionally, there were two variables indicating the pneumonia status
of children aged 5 years and below: ”severe pneumonia” and ”pneumonia”. Among all variables,
only those related to village name and gender were categorical, and age was continuous while the
rest of the features were binary.

The dataset initially included 7,880 infants. Since the primary objective of this study was to
predict pneumonia in children under five, data exploration identified 21 infants outside this age
range, which were considered outliers and removed from the dataset. Handling missing data was
a critical aspect of this study. Initial exploration revealed some missing values in certain features,
such as village name and patients id. Specifically, 135 records for the patients id were labeled as
”not recorded”. To avoid losing information, this variable was excluded from the analysis. The
village name variable had 23 records with ”not recorded” values, since this variable was categorical,
these records were reassigned to ”None”.

Given that machine learning models require numerical variables, the data underwent prepro-
cessing, including encoding categorical variables such as gender and village name. Moreover, the
two variables ”severe pneumonia” and ”pneumonia” were aggregated into a single variable named
”Pneumonia.”

After completing data cleaning and preprocessing, the final dataset used in this study included
7,859 infants, consisting of 3,989 boys and 3,870 girls, with ages ranging from 0.03 months (1 day)
to 60 months. Among these infants, 12% of the instances (973 cases) were identified as pneumonia
cases, while the remaining 88% (6,886 cases) were distinguished as non-pneumonia cases.
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3 Methodology

In this study, the primary objective is to identify the most effective machine learning model for
predicting pneumonia. To achieve this goal first, a comprehensive comparison of several classifica-
tion models like LR, SVM, DT, KNN, RF, and XGBoost, was conducted. Each of these models
represents a distinct approach to classification tasks and has been extensively employed in various
domains for their robustness. Given that the primary goal is binary classification, these algorithms
were specifically chosen for their strengths in this area.

LR is one of main techniques in statistical modeling which can be used for predicting binary
outcomes. It is designed to handle dichotomous outcomes by modeling the probability of a particular
class or event. So,in order to model the binary probability, the logistic function is utilized, which
is defined as:

p(X) =
eβ0+β1X

1 + eβ0+β1X

The quantity p(X)
1−p(X) is called the odds and can take on any value between 0 and ∞. Values of the

odds close to 0 indicate very low probabilities, while values close to ∞ indicate very high proba-
bilities. By taking logarithm of both side LR model can be employed. Since a linear relationship
makes it easier to interpret the impact of each feature on the response variable, the LR can be
interpreted in terms of log odds, the left-hand side of the equation is called log odds or logit. So,
LR has the form of linear in terms of logit[6].

log

(
P (Y = 1 | X)

1− P (Y = 1 | X)

)
= β0 + β1X1 + β2X2 + . . .+ βpXp

LR provides a simple and interpretable framework for classification,it is also computationally
efficient, and works well with relatively small datasets.

SVMs are known for their ability to create robust binary classification boundaries and handle
high-dimensional data efficiently. They are effective when the number of dimensions exceeds the
number of samples, and also robust to overfitting by maximizing the margin, especially in high-
dimensional space. They are a powerful extension of the support vector classifier that utilizes kernels
to enhance the feature space, which helps in adjusting nonlinear boundaries, between different
classes.

SVM constructs a hyperplane or set of hyperplanes in a high-dimensional space to separate
data points that can not be separate linearly into different classes. A data point is represented as a
p-dimensional vector, and the objective is to find a (p − 1)-dimensional hyperplane that separates
the classes. Particularly, when the data is not linearly separable, the feature space can be expanded
using kernel functions.

When the boundary between two classes is linear , a support vector classifier(SVC) approach is
used. A linear boundary, or decision boundary, is a straight line that separates the two classes in
the feature space. The SVC aims to find the optimal linear boundary that maximizes the margin
between the classes, which is the distance between the closest points of each class (called support
vectors) and the boundary itself. This maximized margin helps to improve the classifier’s ability to
generalize to new data. It relies on the concept of inner products. The inner product of two vectors
a and b is defined as:

4



Master Thesis Data Science

⟨a,b⟩ =
r∑

i=1

aibi

For two observations xi and xi′ , the inner product is given by:

⟨xi,xi′⟩ =
p∑

j=1

xijxi′j

The linear support vector classifier can be expressed as:

f(x) = β0 +

n∑
i=1

αi⟨x,xi⟩

To evaluate function f(x) the inner product of new point x and each training points xi is needed.
In order to handle non-linear boundaries, SVM approach is used. So, the inner product is replaced
with a kernel function K. A kernel is a function that quantifies the similarity between two observa-
tions. By using different kernel functions, more flexible decision boundaries are created. A popular
choice is the polynomial kernel:

K(xi,xi′) =

1 +

p∑
j=1

xijxi′j

d

where d is the degree of the polynomial. This kernel enables the SVM to fit a polynomial decision
boundary in the original feature space, effectively transforming it into a higher-dimensional space.

Another widely used kernel is the radial basis function (RBF):

K(xi,xi′) = exp

−γ

p∑
j=1

(xij − xi′j)
2



where γ is a positive constant. The RBF kernel has the advantage of creating a local influence,
meaning that only nearby training observations affect the classification of a new point. The use of
kernels allows SVMs to operate in an implicitly defined high-dimensional space without explicitly
computing the coordinates in that space. This is particularly beneficial for kernels like the RBF,
where the feature space can be infinite-dimensional, making direct computation impractical.

DTs are among the most intuitive and interpretable models in machine learning. They are
able to decompose complex decision-making processes into a series of simpler decisions, creating a
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tree structure that is easy to understand and visualize[6]. Each tree includes a root node, which
serves as the topmost node and the starting point for splitting the data based on feature values.
Internal nodes are intermediate nodes in the tree where the predictor space is split based on certain
conditions. Branches that connect these nodes. Lastly, leaf nodes, also known as terminal nodes,
represent the final decision or outcome. In order to make a classification tree, each observation
from the dataset is assigned to a specific region, based on the decision rules learned during the
training process. Once an observation reaches a terminal node, the classification tree predicts that
the observation belongs to the most commonly occurring class within that region.
The task of growing the classification tree is based on three methods: classification error rate which
is the fraction of the training observations in that region that do not belong to the most common
class:

E = 1−max
k

(p̂mk)

The symbol pˆmk indicates the proportion of training observations in the m-th region that
belong to the k-th class. However, classification error is not sensitive enough for growing decision
trees effectively. In practice, two other measures, the Gini index and entropy, are preferred.

The Gini index is defned by:

G =

K∑
k=1

p̂mk(1− p̂mk)

It measures total variance across the K classes. If all of the pˆmk’s are close to zero or one then
the Gini index takes on a small value. An alternative to the Gini index is entropy, which given by:

D = −
K∑

k=1

p̂mk log p̂mk

Given that 0 ≤ p̂ mk ≤ 1, it follows that, 0 ≤ −p̂ mk log p̂ mk.

Entropy will take on a value near zero if the pˆmk’s are all near zero or near one. So, to build a
classification tree, either the Gini index or entropy can be used to evaluate the quality of a specific
split. While trees are easy to explain and display graphically,but they are very nonrobust and small
changes cause a large changes in the final estimated trees. However, by using methods like RF and
XGBoost the predicted performance of trees can be improved.

Ensemble methods like RF and XGBoost are a group of techniques that combine multiple sim-
pler models to create a single powerful model. RF is an improvement over a method called bagging.
Bagging involves building several decision trees on bootstrapped samples of the training data. How-
ever, in RF, for constructing DTs, each time a split is considered, only a random subset of features
is chosen. The algorithm is not allowed to consider a majority of the available predictor and the
number of predictors considered at each split is approximately equal to the square root of the total
number of predictors, m ≈ √

p which m is a number of predictors at each split and p indicates a
total number of predictors.

In a regular bagged tree, most or all of the trees might end up using the strong predictor for the
first split. This makes the trees very similar to each other,and predictions from the bagged trees are
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highly correlated. Consequently,averaging over all trees will not help in reducing the variance. In
particular, this means that bagging will not lead to a substantial reduction in variance over a single
tree in this setting. So, RF solves this problem by limiting the number of predictors considered at
each split. This means that, on average, only a fraction of the predictors will be used for each split,
and (p-m)/p of the splits will not consider the strong predictors, giving other predictors a chance
to contribute to the decision-making process. Therefore, RF decorrelates the trees, making them
less similar to each other and reducing the overall variability in the model’s predictions. This helps
to prevent overfitting and makes the model more reliable.

XGBoost stands out as one of the most powerful and popular algorithms in machine learn-
ing. It follows the gradient boosting framework, which involves sequentially adding DTs to the
model, each tree is fit on a modified version of the original dataset. In this method, the tree is
fitted using the residuals rather than the original outcome. In other words, in each iteration, a DT
is fitted using the current residuals as the response variable instead of the original outcome variable.

As mentioned before, one of the advantages of trees is their easily interpreted visual representa-
tion. However, when employing the technique of bagging, which involves aggregating a large number
of DTs, it becomes impractical to represent the resulting model with a single tree. Therefore, while
bagging significantly enhances prediction accuracy, it does at the cost of model interpretability.
Although, it is hard to explain bagged trees but overall summary of important features of each
predictor can be obtained using the Gini index. So, in order to determine the importance of each
predictor in bagging classification trees, the total reduction in the Gini index is achieved by splits
over a given predictor, and this value is then averaged over all trees in the ensemble.

KNN is one of simplest machine learning algorithm. It first identidifies k points close to x0, test
observations. For each test observation x0, the k-NN classifier calculates the distance between x0

and all points in the training dataset. The K points with the smallest distances are selected as the
nearest neighbors, represented by N0. The classifier then estimates the conditional probability for
each class j. This is done by calculating the fraction of the K nearest neighbors which response
values equal j. Mathematically, this is represented as:

Pr(Y = j | X = x0) =
1

K

∑
i∈N0

I(yi = j)

One effective method to increase the performance of all machine learning models is through hy-
perparameter tuning. Hyperparameter tuning, also known as hyperparameter optimization, is the
process of finding the best set of hyperparameters for a machine learning model. It is essential
because the performance of machine learning models can significantly depends on the choice of hy-
perparameters and this hyperparameters need to be fixed before training. In this study, grid search
has been utilized to find hyperparameters for machine learning models. This method involves ex-
haustively searching through a manually specified subset of the hyperparameter space [6]. Defining
a grid of hyperparameter values and for each combination, the model is trained and evaluated using
stratified 5 fold cross-validation. In Table 4 summary of each hyperparameters used in this study
for different models reported.

So, by comparing the performance of these six machine learning models in predicting pneu-
monia, the model shows the highest accuracy, precision, recall, and F1 score will be determined.
The findings gained from this comparative analysis will help in selecting the best model for the
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prediction of pneumonia. By analyzing these evaluation metrics, a comprehensive understanding
of each model’s strengths and weaknesses is gained. For example, a model with high precision but
low recall may be excellent at identifying pneumonia but may miss many actual cases. In contrast,
a model with high recall but low precision may identify nearly all pneumonia cases but also incor-
rectly classify many non-pneumonia cases as pneumonia.

3.1 Evaluation Metrics

In binary classification tasks, it is essential to use multiple criteria for evaluating the performance
of predictive models. Therefore, this study compared the performance of six models using a com-
prehensive set of metrics, including F1 score, accuracy, recall, and precision.

These performance metrics were calculated based on the counts of True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). For instance, accuracy represented
the proportion of correctly predicted samples to the total samples, providing a measure of overall
model performance. The recall measured the proportion of positive samples correctly identified as
positive out of the total number of positive samples. It indicates how many of the positive class
samples present in the dataset were correctly identified by the model. Given the importance of
accurately identifying positive instances in this study, recall served as a critical metric for evaluat-
ing model effectiveness. precision quantifies the proportion of correctly identified positive instances
among all instances that the model classified as positive. A high precision rate indicated a low rate
of false positives, which is desirable in predictive modeling.

In binary classification, a perfect predictive model would ideally indicate both high recall and
precision rates. However, therefore often exists a trade-off between these metrics, as well as with
accuracy. For example, increasing precision may lead to a decrease in recall and vice versa. This
trade-off becomes particularly crucial in scenarios where both precision and recall are equally impor-
tant, and neither can be favored at the expense of the other. In such cases, the F1 Score stands out
as the primary metric of choice. The F1 Score provides a comprehensive evaluation by computing
the harmonic mean of recall and precision, offering a balanced assessment of model performance.
Unlike simple averages, the harmonic mean penalizes extreme values, ensuring that a high F1 Score
is only achieved when both precision and recall are high[7].

In the context of pneumonia prediction, high recall ensures that most cases of pneumonia are
correctly identified, minimizing the risk of false negative cases. High precision, on the other hand,
ensures that the cases identified as pneumonia are indeed true positives, reducing the burden of
unnecessary treatments and follow-up tests on patients who do not have the disease. Thus, the
F1 Score is particularly valuable in medical diagnostics, where the consequences of false negatives
(missed diagnoses) and false positives (incorrect diagnoses) can both be significant. By using the
F1 Score as the primary metric, the evaluation process captures the model’s ability to balance pre-
cision and recall, leading to more reliable and actionable predictive outcomes. For clarity, Table 1
presents the equations utilized for calculating each of the performance metrics: accuracy, precision,
recall, and the F1 score. These metrics provided a robust framework for evaluating the efficacy and
reliability of the predictive models employed in this study.

Additionally, a confusion matrix was utilized, which visually represents the model’s predictions
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each dataset, and also helps to have better understanding of evaluation metrics. In binary classifica-
tion, it displays counts of predicted and actual values, helping to evaluate the model’s performance.
Figure 1 displays”TN” as accurately classified negative examples, while ”TP” indicates accurately
classified positive instances. Conversely, ”FP” represents actual negatives classified as positives,
and ”FN” denots actual positives classified as negatives.

There are several methods for evaluating performance metrics in machine learning, the most
common are train/test splits and cross-validation. The simplest model evaluation procedure is to
split a dataset into two parts and use one part for training a model and the second part for testing
the model. These parts of the dataset are named according to their function, train set, and test
set, respectively. This method is effective if collected dataset is very large and representative of
the problem. It is easy to implement and understand. Also, it is less computationally intensive
compared to other methods like cross-validation, making it faster, especially for large datasets.
One of the reasons that train test split was not used in this study is that considering the common
ratio of train test split like 70% for training and 30% for test, then this split might result in a test
set that does not accurately reflect the class distribution of the overall dataset. In other words,
the split may have few examples of the minority class, if the minority class is underrepresented
or even missing from the test set, the performance metrics will not reflect the model’s ability to
handle the minority class. So, this unbalanced distribution in the test set can lead to misleading
performance metrics, where the model might appear to perform well overall but actually fails to
predict the minority class correctly. Therefore, with an imbalanced dataset, a model could achieve
high accuracy by simply predicting the majority class for all instances. If the test set reflects this
imbalance, then accuracy as a metric becomes less informative and overly optimistic. Also, other
metrics like precision, recall, and F1 score for the minority class can be significantly skewed, giving
a false sense of the model’s effectiveness.

The other common method for evaluating performance metrics of machine learning models is
k-fold cross-validation. This procedure involves randomly splitting the set of observations into k
folds. The first k-1 folds are used to train a model, and the holdout kth fold is used as the test
set[6]. This process is repeated and each of the folds is given an opportunity to be used as the
holdout test set. A total of k models are fit and evaluated, and the performance of the model is
calculated as the mean of these fits. By averaging the performance over these multiple splits, the
method reduces the impact of any one particularly good or bad split. This leads to a more reliable
and less optimistic estimate of model performance since every data point gets to be in the test set
once and in the training set k-1 times, ensuring that the performance evaluation is based on all
available data. Although this might work fine for data with a balanced class distribution, when
the distribution is severely skewed, one or more folds will likely have few or no examples from the
minority class. So, in that situation, stratified cross-validation is preferred. In this study, since the
original dataset was imbalanced, 5-fold stratified cross-validation was used which is a variation of
cross-validation. This variation is designed to handle imbalanced dataset or those with a skewed
class distribution. In the stratified k-fold cross-validation, each fold is made by preserving the same
percentage of samples for each class as in the complete dataset. This ensures that each fold has a
similar class distribution, leading to more accurate performance estimates. This approach makes
sure that each class is adequately represented across all folds, allowing for a fair and accurate eval-
uation of the model’s performance.
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In balanced datasets, where each class is equally represented, 5-fold stratified cross-validation
was employed to ensure fair comparisons with the results of the original dataset. Although the ben-
efits of stratification are less pronounced but still useful. However, stratified k-fold cross-validation
generally does not cause optimistic results in balanced datasets. Instead, it ensures that the evalu-
ation is fair and reliable by maintaining consistency in class distribution across folds. Ensures that
each fold has a consistent representation of classes, leading to reliable performance metrics. This
prevents the random bias that might occur if some folds have a different class distribution, which
could either inflate or deflate performance metrics.

Table 1: Evaluation Metrics
Metric Equation

Accuracy TP+TN
TP+FP+FN+TN

Recall TP
TP+FN

Precision TP
TP+FP

F1 Score 2× Precision×Recall
Precision+Recall

Figure 1: Confusion matrix

3.2 Imbalance Data Set

The dataset used in this study showed a notable degree of class imbalance which is a common
occurrence in classification tasks. Imbalance refers to the situation where the distribution of classes
within the dataset is highly skewed, with some classes representing a significantly larger proportion
of the data than others. Specifically, classes that include a large proportion of the dataset are
termed ’majority classes,’ while those representing a smaller fraction are referred to as ’minority
classes.

The severity in the minority class can vary, ranging from mild, where the minority class comprises
20–40% of the dataset, to moderate, where it represents 1–20%, and extreme, where it constitutes
less than 1% of the dataset[7]. In the dataset analyzed for this study, the minority class is considered
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moderate, including only 12% of instances. By rebalancing class distributions using the sampling
method, machine learning models are able to learn from a balanced dataset, therefore improving
their performance in predicting minority class instances.

Addressing class imbalance is essential in order to prevent bias in machine learning models[8].
Failure to adequately account for this issue can reflect on model performance lead to poor predic-
tions. Therefore, it is essential to implement strategies to rebalance the dataset prior to applying
machine learning algorithms[9].

Resampling techniques help as a fundamental strategy for addressing the challenges caused by
highly unbalanced datasets. In this study three techniques have been utilized: simple random
under-sampling, over-sampling, and Synthetic Minority Over-sampling Technique (SMOTE). Sim-
ple random undersampling is one of the common techniques for resampling imbalanced data[10].
It reduces the dominance of the majority class by removing instances from the majority class.
In contrast, over-sampling which requires adding more examples from the minority class, aims to
strengthen the representation of the minority class, ensuring that it receives adequate attention
during model training. SMOTE, addresses the limitations of traditional over-sampling methods by
generating synthetic samples rather than simply duplicating existing ones. This technique creates
new minority class instances by interpolating between existing ones, thereby preserving the under-
lying distribution of the minority class while reducing the risk of overfitting[8]. In this methodology,
the process begins by selecting a random example from the minority class. Subsequently, the algo-
rithm identifies the k nearest neighbors for this selected example, often setting k to a value such as
5. From this set of neighbors, one is randomly chosen. Then, a synthetic example is generated at a
point randomly selected between the chosen example and its selected neighbor within the feature
space. This approach effectively expands the dataset by creating synthetic instances that closely
resemble the minority class which addresses the imbalance issue and enhances the model’s ability
to learn from underrepresented samples.

Figure 2: Random undersampling method Figure from [8]

Figure 3: Random oversampling method Figure from [8]
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However, it is essential to recognize that while resampling techniques offer benefits in terms of
balancing classes, they are not without limitations. One main drawback of under-sampling strate-
gies is randomly removing records from the majority class, which can result in the loss of valuable
information. This random removal may cause removing important patterns and information of the
majority class. Moreover, the sample chosen may not be an accurate representation of the popu-
lation, which leads to a biased sample. Additionally,over-sampling increases the risk of overfitting,
where the model becomes overly specialized to the training data, leading to poor generalization on
unseen data. This occurs when random records from the minority class are duplicated, potentially
raising the importance of certain instances and compromising the model’s ability to generalize to
new data. Although, SMOTE reduces the risk of overfitting, but it doesn’t consider the majority
class while creating synthetic samples. In addition to that, it may create synthetic samples between
samples that represent noise. As a result, the new dataset will have more noise than the original
one, which can affect performance.

So, in this study, the machine learning models were applied in two distinct phases to increase
the robustness and accuracy of pneumonia prediction. First, all machine learning models were
tested on the original dataset, which included only demographic details and clinical symptoms.
Second, all machine learning models were then evaluated using three different rebalancing tech-
niques, undersampling, oversampling, and SMOTE to address class imbalances and improve model
performance. Each of these phases helped to determine the most effective machine learning model
and preprocessing strategy for predicting pneumonia in young children.

4 Results and Discussion

The study comprising of total 7,859 infants, including 3,989 boys and 3,870 girls, with ages ranging
from minimum of 1 day to 60 months. As shown in Figure 4, the number of pneumonia cases
decreases as infants get older. Preliminary data exploration revealed that approximately 12% of
the entire dataset exhibited pneumonia cases (973 instances) and around 88% percent of non-
pneumonia cases (6886 instances). The distribution of pneumonia cases can be seen in Figure5.

Figure 4: Number of pneumonia cases across different age and gender
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Figure 5: Distribution of pneumonia cases

Moreover, to address the class imbalance in the dataset, resampling techniques were employed.
This process yielded four distinct datasets: the original imbalanced dataset, the undersampled
dataset, the oversampled dataset, and the SMOTE dataset. These datasets served as the foundation
for subsequent analyses and model development. Furthermore, a confusion matrix, which visually
represents the model’s predictions for each dataset, was used.

4.1 Evaluation of performance with the original dataset

In this part, the findings from the comparison of six machine learning models on the original
dataset, considering only demographics and symptoms, are reported in Table 2. The results for RF
and XGBoost indicated close performance.

The XGBoost model demonstrated the highest performance (accuracy = 95%, precision = 86%,
recall = 73%, and F1 score = 79%), followed by the RF model (accuracy = 95%, precision = 87%,
recall = 70%, and F1 score = 78%) and the DT model (accuracy = 94%, precision = 84%, recall =
72%, and F1 score = 76%). The F1 score for the XGBoost model reached 79%, while for RF and
DT, it stood at 78% and 77%, respectively. Figure 6 shows the confusion matrix for both RF and
XGBoost on the original dataset. It is evident that the RF model wrongly predicted more cases
(292 cases) compared to the XGBoost model (264 cases).

In order to understand the importance of each predictor, Gini importance or mean decrease in
impurity (MDI) was calculated. It counted the number of times a feature was used to split a node,
weighted by the number of samples it split [6]. Figure 7 displays the important features for both
the RF and XGBoost models. It demonstrates that among all the trees in the RF and XGBoost
models, the predictors ”respiratory distress” and ”chest indrawing with fast breathing” were the
most influential variables.
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Table 2: Performance comparison of machine learning models on the original dataset

Model Recall F1 Score Accuracy Precision

RF 70% 78% 95% 87%
XGBoost 73% 79% 95% 86%
DT 72% 77% 94% 84%
LR 72% 76% 86% 95%
SVM 68% 75% 84% 94%
KNN 65% 72% 82% 92%

Figure 6: Confusion matrix for RF and XGBoost on the original dataset
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Figure 7: Feature importance for RF and XGBoost on the original dataset

4.2 Evaluation of performance with the balanced datasets

Given the fact that the dataset indicates a huge class imbalance, with 973 instances of pneumonia
and 6,886 instances of nonpneumonia, it was required to address this bias. To achieve this, three
different methods undersampling, oversampling, and SMOTE were utilized to balance the dataset.
The results of these approaches were then compared to determine their effectiveness.

In undersampling, the number of instances for each class was 973, achieved by randomly remov-
ing the instances in the majority class to match the minority class. Table 3 presents a comparison
of six machine learning models on an undersampled dataset. The results highlight that RF and
XGBoost had the highest performance among the models evaluated. Specifically, the F1 score for
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RF and XGBoost both achieved scores of 87%.
Figure 8 visualizes the confusion matrices of the RF and XGBoost models for the undersampled

dataset. It is evident that the number of cases incorrectly identified as nonpneumonia is 190 in
the XGBoost model, compared to 170 cases in the RF model. Although both models showed close
results this small discrepancy can be attributed to the inherent differences in how these models
handle classification tasks. The RF model, which is an ensemble of decision trees, tends to provide
more robust predictions by averaging the results of multiple trees. This averaging process can re-
duce the variance and help the model generalize better on the undersampled dataset, leading to
slightly fewer false negatives.

The MDI displays which features were important for RF and XGBoost models on the undersam-
pled dataset. Figure 9 highlights that the predictors ”respiratory distress” and ”chest indrawing
with fast breat” were critically important for both models. Following these, ”malaria” and ”village
name” were notably important for the XGBoost model, while ”village name” and ”age of the child”
were key predictors for the RF model. This distinction underscores how each model evaluates
the contribution of different features to its predictive performance. For XGBoost, the inclusion of
”malaria” as a significant predictor suggests its utility in capturing complex interactions between
co-infections and pneumonia. In contrast, RF places more emphasis on the ”age of the child”, indi-
cating its broader consideration of demographic factors. Both models agree on the high importance
of ”respiratory distress” and ”chest in drawing fast breat”, reflecting these symptoms have critical
role in diagnosing pneumonia.

In the oversampling method, the number of instances for each class was adjusted to 6,886 by
resampling from the majority class. Table 3 displays a comparative analysis of six machine learning
models using an oversampled dataset. The findings underscore the superior performance of RF
and XGBoost among the rest of the models,achieving the highest F1 score at 98%, followed by DT
which reach scores of 97%. However, the slight difference in the overall F1 scores (98% for RF
and 97% for DT) highlights the added benefit of aggregation of multiple DT in RF and XGBoost
which leads to better generalization and slightly improved performance metrics, such as precision
and recall, which contribute to a higher F1 score. Figure10 shows the confusion matrices of the RF
and XGBoost models on the oversampled dataset. The number of cases incorrectly identified as
non-pneumonia for RF and XGBoost models is equal to 5 and 12 cases,respectively.

16



Master Thesis Data Science

Table 3: Performance comparison of machine learning models on different datasets

Recall F1 Score Accuracy Precision

Undersampled Method

RF 83% 87% 88% 92%
XGBoost 80% 87% 88% 94%
DT 81% 85% 86% 91%
LR 81% 86% 86% 92%
SVM 82% 86% 87% 93%
KNN 63% 63% 64% 64%

Oversampled Method

RF 99% 98% 97% 98%
XGBoost 99% 98% 98% 97%
DT 99% 97% 96% 94%
LR 81% 86% 87% 92%
SVM 81% 87% 87% 93%
KNN 98% 94% 93% 88%

SMOTE Method

RF 94% 94% 94% 93%
XGBoost 96% 95% 95% 95%
DT 93% 91% 91% 90%
LR 88% 89% 89% 89%
SVM 84% 87% 87% 90%
KNN 95% 88% 87% 82%

Figure 8: Confusion matrix for RF and XGBoost on the undersampled dataset.
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Figure 9: Feature importance of RF and XGBoost on the undersampled dataset.

Figure 11 displays the important features for both the RF and XGBoost models on the oversam-
pled dataset. It highlights that the predictors ”respiratory distress” and ”chest indrawing with fast
breathing” again are crucial for both models. However, there are some differences in the important
features identified by each model. For the RF model, the predictors ”village name,” ”age,” and
”malaria” were considered significant. These features played a critical role in the model’s decision-
making process. The importance of these features suggests that the RF model placed significant
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emphasis on demographic and symptom features in its prediction process.

In contrast, the XGBoost model identified different important features. The predictors ”low
weight”, ”muac less than 115mm”, ”red umbilicus”, and ”low temperature” were distinguished as
essential for the XGBoost model. These features had a high influence on the model’s performance
and were prioritized in its predictions. ”muac (mid-upper arm circumference) less than 115mm” and
”low weight” are indicators of severe malnutrition, while ”red umbilicus” and ”low temperature” are
clinical signs that indicate infection. The XGBoost model’s focus on these predictors suggested it is
more sensitive to symptoms indicators. So, while both models agreed on the importance of certain
predictors related to respiratory symptoms, they differed in their emphasis on other features. The
RF model focused more on demographic and symptom features, whereas the XGBoost model gave
more weight to symptom indicators.

Figure 10: Confusion matrix for RF and XGBoost on the oversampled dataset.
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Figure 11: Feature importance of RF and XGboost on the oversampled dataset.

In the SMOTE sampling method, the number of instances for each class was adjusted to 6,886
through the generation of synthetic instances. Table 3 indicates the comparison of six machine
learning models on SMOTE datasets. The results show that the XGBoost model had the highest
performance compared to the other models. The F1 score for XGBoost was 95%, followed by RF
and DT, with scores of 94% and 91%, respectively.

Figure 12 displays that the number of cases incorrectly identified as non-pneumonia (false neg-
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atives) for the XGboost model and RF was 303 and 378, respectively. Although,the results showed
close performance of both RF and XGBoost models, but XGBoost demonstrated a lower false neg-
ative rate compared to RF. This indicates its superior sensitivity in detecting pneumonia cases.
Therefore, XGBoost was more effective at minimizing the number of pneumonia cases incorrectly
classified as non-pneumonia, which is crucial for ensuring timely and accurate medical interventions.

Figure 12: Confusion matrix for RF and XGBoost on the SMOTE dataset.

Feature importance based on the decrease in Gini importance for RF and XGBoost models can
be seen in Figure 13. Both the RF and XGBoost models highlighted ”respiratory distress” and
”chest indrawing with fast breathing” as crucial predictors. These symptoms were consistently
identified as essential indicators in diagnosing pneumonia, reflecting their high predictive power
across both modeling frameworks. While predictors ”bacterial infection”, ”malaria” , ”anemia”,
and ”diarrhea” identified as most influential for XGBoost. These variables emphasize their strong
association with pneumonia. Predictors ”Village name”, ”c malaria”, ”vomiting” and ”age” were
among the most important variables for Rf model. These predictors underscore that the RF model
placed greater emphasis on demographic and symptom indicators.
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Figure 13: Feature importance of RF and XGBoost on the SMOTE dataset.

Figure14 shows comparison of F1 score of six machine learning models for four distinc datasets.
Overall, the results from these three techniques reveal varying levels of effectiveness in addressing
class imbalance in the dataset. Firstly, undersampling techniques showed moderate performance
across all classifiers, indicating that this method was the least effective compared to the other re-
sampling methods. Undersampling reduces the number of majority class instances to balance the
dataset, but it often leads to loss of valuable information and may not adequately represent the over-
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all data distribution. Conversely, oversampling and specifically SMOTE demonstrated significant
improvements in the RF and XGBoost classifier’s performance. By generating synthetic examples
of the minority class, SMOTE effectively balanced the dataset and enhanced the classifier’s ability
to learn from minority class instances. This led to improved predictive accuracy and reduced bias
towards the majority class. However, oversampling can increase the potential risk of overfitting due
to the duplication of data. Therefore, this method is not recommended.
So, the SMOTE technique among the resampling methods is recommended due to its ability to
balance the dataset effectively without as much risk of overfitting. Also, it generates synthetic
examples that closely resemble the minority class, thereby enhancing the classifier’s ability to gen-
eralize to new, unseen data while improving sensitivity to minority class instances.

Figure 14: F1 score comparison of machine learning models with different datasets.

5 Possible drawbacks of the used methods

While this study presents promising approaches for predicting pneumonia in children under five
using machine learning models, several potential drawbacks and limitations must be considered.
Firstly, the study relies on historical clinical data, which may not capture all factors that would
play an important role in the diagnosis of pneumonia. The dataset may also contain inherent
bias due to its specific geographical and temporal context, which could therefore challenge the
generalizability of findings to other regions or time frames.

Moreover, machine learning models including LR, SVM, DT, KNN, RF, and XGBoost, each
have their limitations. For example, models like DT and KNN are prone to overfitting, especially
in the presence of noisy data. Meanwhile, complex models like RF and XGBoost are powerful but
require a lot of computational resources and are also not so interpretable.

Additionally, the resampling techniques utilized in this study to reduce class imbalances like
undersampling, oversampling, and SMOTE can introduce their issues. Undersampling removes
samples which could lead to the loss of valuable information, while oversampling and SMOTE can
cause overfitting by inflating the minority class. Finally, the ethical and practical implications of
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these predictive models in real-world healthcare settings need to be carefully considered. Issues
such as data privacy, the need for continuous model updating, and the integration of these tools
into existing healthcare workflows cause significant challenges.

6 Ethical thinking, societal relevance, and stakeholder aware-
ness

Early detection of pneumonia especially in children under five years old is essential. When pneumo-
nia is recognized at an early stage, timely treatment can be utilized. This early detection can help
in reducing the risk of severe complications, such as respiratory failure or secondary infections. So,
by using machine learning models, healthcare providers can more effectively recognize children who
are at higher risk of developing pneumonia. These models can analyze various factors and predict
the most vulnerable children. Additionally, this allows healthcare to prioritize their resources and
interventions for those at greatest risk, ensuring that they receive the necessary medical attention
and care. This approach can potentially save many lives by preventing the disease from progressing
to a critical stage. Moreover, pneumonia prediction through predictive modeling can significantly
help in the development of preventive strategies and public health initiatives. Meanwhile, to ac-
curate predictions, healthcare providers can implement community measures such as vaccination
campaigns, education on early symptoms, and strategies to reduce exposure to risk factors. These
efforts can help in reducing the overall rate of pneumonia, thereby reducing the burden on healthcare
systems and families. This approach ensures that the disease is managed not just at the individual
level, but also at the community and national levels.

During these few months in order to ensure the study’s success, I actively engaged with both
internal and external supervisors. We held meetings to explain the progress of the study and
gathered their feedback and support. Their input helped design a study that was relevant and
respectful to the community’s needs. Meanwhile, transparency and honesty are met throughout
the study in reporting the research findings. Any limitations, potential biases, and conflicts of
interest were reported. The results were presented accurately and without manipulation to reflect
the true outcomes of the study.

7 Conclusion

This study predicted pneumonia in children under five years based on symptoms and demographic
features. The results of considering only symptoms and demographics revealed that two features
” respiratory distress ” and ”chest indrawing ” combined with other features were identified as
important predictors for the prediction of pneumonia. Among the balanced datasets, undersampling
due to removing information had moderate results. However, the SMOTE resampling method seems
to work well, whereas the oversampling method is not recommended due to its vulnerability to
overfitting. Therefore, the predictions based on the SMOTE-balanced dataset will be recommended
over two other sampling methods for its superior accuracy. Compared to SMOTE dataset, original
dataset recommended for prediction of pneumonia in children under five years. Since, the original
dataset faithfully reflects the natural distribution of classes encountered in real-world applications.
Evaluating models on the original dataset ensures that performance metrics accurately reflect their
capabilities in real-world scenarios. So, the original dataset is sufficient to predict pneumonia in
children.
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Overall, RF, XGBoost, and DT showed better performance with fewer misclassified cases across
four different dataset. This strong performance is primarily attributed to the fact that RF and
XGBoost are ensemble methods, which combine multiple trees to improve accuracy, while DT
operates as a single tree model. Ensemble methods are generally more robust against overfitting,
noise, and outliers compared to standalone models like DT. Meanwhile, RF and XGBoost stands
out due to its balanced approach of using multiple trees. These method are especially effective
in handling imbalanced datasets. As a result, they provide more accurate and reliable predictions
compared to other models in both original and balanced datasets. So, the consistent and balanced
performance of these two ensemble methods make them particularly effective choice for predicting
pneumonia in children under five years.

8 Ideas for future research

In future research, it is recommended to consider additional data sources such as genetic infor-
mation, economic status, and environmental conditions. This can provide a better comprehensive
understanding of important factors that influence the risk of pneumonia and improve the perfor-
mance of models.

Additionally, more advanced machine learning techniques, like deep learning, could be consid-
ered. Also, research should investigate the development and testing of such models and address
how these models are interpretable and computationally feasible. Investigation into the effective-
ness of various preventive measures, including vaccination programs and public health campaigns,
could add evidence to support or contradict such strategies for reducing the incidence of pneumonia.
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Table 4: Hyperparameter configurations for different datasets

Model Hyperparameter

Original Dataset

RF {’max depth’: 20, ’max features’: ’sqrt’, ’min samples leaf’: 1,
’min samples split’: 2, ’n estimators’: 200}

XGBoost {’colsample bytree’: 1.0, ’learning rate’: 0.01, ’max depth’: 6, ’n estimators’:
300, ’subsample’: 0.6}

DT {’max depth’: 10, ’max features’: None, ’min samples leaf’: 5,
’min samples split’: 20}

LR {’C’: 100, ’penalty’: ’l2’, ’solver’: ’lbfgs’}
SVM {’kernel’ :’poly’}
KNN {’algorithm’: ’kd tree’, ’leaf size’: 20, ’n neighbors’: 3, ’p’: 1, ’weights’: ’dis-

tance’}
Undersampled Dataset

RF {’max depth’: 30, ’max features’: ’log2’, ’min samples leaf’: 1,
’min samples split’: 2, ’n estimators’: 300}

XGBoost {’colsample bytree’: 0.8, ’learning rate’: 0.01, ’max depth’: 6, ’n estimators’:
300, ’subsample’: 0.6}

DT max depth = 10, max features = None, min samples leaf = 10,
min samples split = 2

LR {’C’: 0.01, ’penalty’: ’none’, ’solver’: ’lbfgs’}
SVM {’kernel’ : ’poly’}
KNN {’algorithm’: ’kd tree’, ’leaf size’: 10, ’n neighbors’: 11, ’p’: 1, ’weights’: ’dis-

tance’}
Oversampled Dataset

RF {’max depth’: None, ’max features’: ’log2’, ’min samples leaf’: 1,
’min samples split’: 2, ’n estimators’: 300}

XGBoost {’colsample bytree’: 0.8, ’learning rate’: 0.2, ’max depth’: 9, ’n estimators’:
300, ’subsample’: 0.8}

DT {’max depth’: 40, ’max features’: ’sqrt’, ’min samples leaf’: 1,
’min samples split’: 2}

LR {’C’: 0.01, ’max iter’: 100, ’penalty’: ’l1’, ’solver’: ’liblinear’}
SVM {’kernel’:’poly’}
KNN {’algorithm’: ’auto’, ’leaf size’: 10, ’n neighbors’: 3, ’p’: 1, ’weights’: ’dis-

tance’}
SMOTE Dataset

RF {’max depth’: 30, ’max features’: ’log2’, ’min samples leaf’: 1,
’min samples split’: 2, ’n estimators’: 100}

XGBoost {’colsample bytree’: 0.6, ’learning rate’: 0.2, ’max depth’: 9, ’n estimators’:
300, ’subsample’: 0.8}

DT {’max depth’: 40, ’max features’: None, ’min samples leaf’: 1,
’min samples split’: 2}

LR {’C’: 100, ’penalty’: ’l2’, ’solver’: ’liblinear’}
SVM {’kernel’ : ’poly’}
KNN {’algorithm’: ’auto’, ’leaf size’: 10, ’n neighbors’: 3, ’p’: 1, ’weights’: ’dis-

tance’}
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9 Software Code

All machine learning models:

Desicion Tree:

import pandas as pd

from sklearn.model_selection import StratifiedKFold

from sklearn.ensemble import RandomForestClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# Initialize StratifiedKFold with desired number of folds

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

# Initialize your classifier (Replace this with your classifier initialization code)

classifier_dt = DecisionTreeClassifier()

# Initialize empty lists to store evaluation metrics for each fold

accuracies = []

precisions = []

recalls = []

f1_scores = []

threshold = 0.5

# Iterate through folds

for train_index, test_index in skf.split(X, y):

X_train, X_test = X.iloc[train_index], X.iloc[test_index]

y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Train your classifier (Replace this with your model training code)

classifier_dt.fit(X_train, y_train)

# Evaluate your classifier using various metrics

y_pred = classifier_dt.predict(X_test)

binary_dt_pred = [1 if pred >= threshold else 0 for pred in y_pred]

accuracy = accuracy_score(y_test, binary_dt_pred)

precision = precision_score(y_test, binary_dt_pred)

recall = recall_score(y_test, binary_dt_pred)

f1 = f1_score(y_test, binary_dt_pred)

# Append metrics to respective lists

accuracies.append(accuracy)

precisions.append(precision)

recalls.append(recall)

f1_scores.append(f1)
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# Print metrics for the current fold

print(f"Fold Accuracy: {accuracy}")

print(f"Fold Precision: {precision}")

print(f"Fold Recall: {recall}")

print(f"Fold F1 Score: {f1}")

print("\n")

mean_accuracy = sum(accuracies) / len(accuracies)

mean_precision = sum(precisions) / len(precisions)

mean_recall = sum(recalls) / len(recalls)

mean_f1_score = sum(f1_scores) / len(f1_scores)

print(f"Mean Accuracy: {mean_accuracy}")

print(f"Mean Precision: {mean_precision}")

print(f"Mean Recall: {mean_recall}")

print(f"Mean F1 Score: {mean_f1_score}")

Random Forest :

import pandas as pd

from sklearn.model_selection import StratifiedKFold

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, ConfusionMatrixDisplay

# Initialize StratifiedKFold with desired number of folds

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

classifier_rf = RandomForestClassifier()

# Initialize empty lists to store evaluation metrics for each fold

accuracies = []

precisions = []

recalls = []

f1_scores = []

num_classes = len(np.unique(y))

aggregated_conf_matrix = np.zeros((num_classes, num_classes), dtype=int)

# Iterate through folds

for train_index, test_index in skf.split(X, y):

X_train, X_test = X.iloc[train_index], X.iloc[test_index]

y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Train your classifier (Replace this with your model training code)

classifier_rf.fit(X_train, y_train)
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# Evaluate your classifier using various metrics

y_pred = classifier_rf.predict(X_test)

fold_conf_matrix = confusion_matrix(y_test, y_pred, labels=np.unique(y))

aggregated_conf_matrix += fold_conf_matrix

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred)

recall = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

# Append metrics to respective lists

accuracies.append(accuracy)

precisions.append(precision)

recalls.append(recall)

f1_scores.append(f1)

# Print metrics for the current fold

print(f"Fold Accuracy: {accuracy}")

print(f"Fold Precision: {precision}")

print(f"Fold Recall: {recall}")

print(f"Fold F1 Score: {f1}")

print("\n")

# After the loop, you can perform any post-processing or analysis on the results

# For example, you can calculate mean and standard deviation of the metrics across folds

mean_accuracy = sum(accuracies) / len(accuracies)

mean_precision = sum(precisions) / len(precisions)

mean_recall = sum(recalls) / len(recalls)

mean_f1_score = sum(f1_scores) / len(f1_scores)

print(f"Mean Accuracy: {mean_accuracy}")

print(f"Mean Precision: {mean_precision}")

print(f"Mean Recall: {mean_recall}")

print(f"Mean F1 Score: {mean_f1_score}")

XGBoost :

import pandas as pd

from sklearn.model_selection import StratifiedKFold

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
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# Initialize StratifiedKFold with desired number of folds

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

classifier_xgb = GradientBoostingClassifier()

# Initialize empty lists to store evaluation metrics for each fold

accuracies = []

precisions = []

recalls = []

f1_scores = []

num_classes = len(np.unique(y))

aggregated_conf_matrix = np.zeros((num_classes, num_classes), dtype=int)

threshold = 0.5

# Iterate through folds

for train_index, test_index in skf.split(X, y):

X_train, X_test = X.iloc[train_index], X.iloc[test_index]

y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Train your classifier (Replace this with your model training code)

classifier_xgb.fit(X_train, y_train)

# Evaluate your classifier using various metrics

y_pred = classifier_xgb.predict(X_test)

fold_conf_matrix = confusion_matrix(y_test, y_pred, labels=np.unique(y))

aggregated_conf_matrix += fold_conf_matrix

binary_xgb_pred = [1 if pred >= threshold else 0 for pred in y_pred]

accuracy = accuracy_score(y_test, binary_xgb_pred)

precision = precision_score(y_test, binary_xgb_pred)

recall = recall_score(y_test, binary_xgb_pred)

f1 = f1_score(y_test, binary_xgb_pred)

# Append metrics to respective lists

accuracies.append(accuracy)

precisions.append(precision)

recalls.append(recall)

f1_scores.append(f1)

# Print metrics for the current fold

print(f"Fold Accuracy: {accuracy}")

print(f"Fold Precision: {precision}")
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print(f"Fold Recall: {recall}")

print(f"Fold F1 Score: {f1}")

print("\n")

mean_accuracy = sum(accuracies) / len(accuracies)

mean_precision = sum(precisions) / len(precisions)

mean_recall = sum(recalls) / len(recalls)

mean_f1_score = sum(f1_scores) / len(f1_scores)

print(f"Mean Accuracy: {mean_accuracy}")

print(f"Mean Precision: {mean_precision}")

print(f"Mean Recall: {mean_recall}")

print(f"Mean F1 Score: {mean_f1_score}")

Logistic Regression:

import pandas as pd

from sklearn.model_selection import StratifiedKFold

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# Initialize StratifiedKFold with desired number of folds

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

classifier_lr = LogisticRegression()

# Initialize empty lists to store evaluation metrics for each fold

accuracies = []

precisions = []

recalls = []

f1_scores = []

threshold = 0.5

# Iterate through folds

for train_index, test_index in skf.split(X, y):

X_train, X_test = X.iloc[train_index], X.iloc[test_index]

y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Train your classifier

classifier_lr.fit(X_train, y_train)

# Evaluate your classifier using various metrics

y_pred_proba = classifier_lr.predict(X_test)

binary_lr_pred = [1 if pred >= threshold else 0 for pred in y_pred_proba]

accuracy = accuracy_score(y_test, binary_lr_pred)

precision = precision_score(y_test, binary_lr_pred)
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recall = recall_score(y_test, binary_lr_pred)

f1 = f1_score(y_test, binary_lr_pred)

# Append metrics to respective lists

accuracies.append(accuracy)

precisions.append(precision)

recalls.append(recall)

f1_scores.append(f1)

# Print metrics for the current fold

print(f"Fold Accuracy: {accuracy}")

print(f"Fold Precision: {precision}")

print(f"Fold Recall: {recall}")

print(f"Fold F1 Score: {f1}")

print("\n")

mean_accuracy = sum(accuracies) / len(accuracies)

mean_precision = sum(precisions) / len(precisions)

mean_recall = sum(recalls) / len(recalls)

mean_f1_score = sum(f1_scores) / len(f1_scores)

print(f"Mean Recall: {mean_recall}")

print(f"Mean F1 Score: {mean_f1_score}")

print(f"Mean Accuracy: {mean_accuracy}")

print(f"Mean Precision: {mean_precision}")

Support vector machine:

import pandas as pd

from sklearn.model_selection import StratifiedKFold

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# Initialize StratifiedKFold with desired number of folds

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

classifier_svc = SVC(kernel=’poly’)

# Initialize empty lists to store evaluation metrics for each fold

accuracies = []

precisions = []

recalls = []

f1_scores = []

threshold = 0.5

# Iterate through folds
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for train_index, test_index in skf.split(X, y):

X_train, X_test = X.iloc[train_index], X.iloc[test_index]

y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Train your classifier

classifier_svc.fit(X_train, y_train)

# Evaluate your classifier using various metrics

y_pred_proba = classifier_svc.predict(X_test)

binary_svm_pred = [1 if pred >= threshold else 0 for pred in y_pred_proba]

accuracy = accuracy_score(y_test, binary_svm_pred)

precision = precision_score(y_test, binary_svm_pred)

recall = recall_score(y_test, binary_svm_pred)

f1 = f1_score(y_test, binary_svm_pred)

# Append metrics to respective lists

accuracies.append(accuracy)

precisions.append(precision)

recalls.append(recall)

f1_scores.append(f1)

# Print metrics for the current fold

print(f"Fold Accuracy: {accuracy}")

print(f"Fold Precision: {precision}")

print(f"Fold Recall: {recall}")

print(f"Fold F1 Score: {f1}")

print("\n")

mean_accuracy = sum(accuracies) / len(accuracies)

mean_precision = sum(precisions) / len(precisions)

mean_recall = sum(recalls) / len(recalls)

mean_f1_score = sum(f1_scores) / len(f1_scores)

print(f"Mean Accuracy: {mean_accuracy}")

print(f"Mean Precision: {mean_precision}")

print(f"Mean Recall: {mean_recall}")

print(f"Mean F1 Score: {mean_f1_score}")

KNN:

import pandas as pd

from sklearn.model_selection import StratifiedKFold

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# Initialize StratifiedKFold with desired number of folds
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skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

classifier_knn = KNeighborsClassifier()

# Initialize empty lists to store evaluation metrics for each fold

accuracies = []

precisions = []

recalls = []

f1_scores = []

threshold = 0.5

# Iterate through folds

for train_index, test_index in skf.split(X, y):

X_train, X_test = X.iloc[train_index], X.iloc[test_index]

y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Train your classifier

classifier_knn.fit(X_train, y_train)

# Evaluate your classifier using various metrics

y_pred_proba = classifier_knn.predict(X_test.values)

binary_knn_pred = [1 if pred >= threshold else 0 for pred in y_pred_proba]

accuracy = accuracy_score(y_test, binary_knn_pred)

precision = precision_score(y_test, binary_knn_pred)

recall = recall_score(y_test, binary_knn_pred)

f1 = f1_score(y_test, binary_knn_pred)

# Append metrics to respective lists

accuracies.append(accuracy)

precisions.append(precision)

recalls.append(recall)

f1_scores.append(f1)

# Print metrics for the current fold

print(f"Fold Accuracy: {accuracy}")

print(f"Fold Precision: {precision}")

print(f"Fold Recall: {recall}")

print(f"Fold F1 Score: {f1}")

print("\n")

mean_accuracy = sum(accuracies) / len(accuracies)

mean_precision = sum(precisions) / len(precisions)

mean_recall = sum(recalls) / len(recalls)

mean_f1_score = sum(f1_scores) / len(f1_scores)
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print(f"Mean Accuracy: {mean_accuracy}")

print(f"Mean Precision: {mean_precision}")

print(f"Mean Recall: {mean_recall}")

print(f"Mean F1 Score: {mean_f1_score}")

%%%%

Display the confusion matrix :

# Display the aggregated confusion matrix using ConfusionMatrixDisplay

disp = ConfusionMatrixDisplay(confusion_matrix=aggregated_conf_matrix, display_labels=["Non_Pnemounia", "Pnemounia"])

fig, ax = plt.subplots() # Set the figure size

disp.plot(ax=ax)

plt.title(’Confusion Matrix for Random Forest’)

plt.show()

%%%%

Feature Importance:

feature_names = list(X.columns)

forest_importances = pd.Series(classifier_rf.feature_importances_, index=feature_names).sort_values(ascending=False)

fig, ax = plt.subplots(figsize=(12, 7))

forest_importances.plot.bar( ax=ax)

ax.set_title("Feature importances using MDI for Random Forest on undersampled dataset")

ax.set_ylabel("Mean decrease in impurity")

fig.tight_layout()

%%%

% Mehtods fo balancing data set

% Methods1 : Undersampling

count_class_0, count_class_1 = new_sympthoms.pneumonia.value_counts()

# Divide by class

df_class_0 = new_sympthoms[new_sympthoms[’pneumonia’] == 0]

df_class_1 = new_sympthoms[new_sympthoms[’pneumonia’] == 1]

df_class_0_under = df_class_0.sample(count_class_1)

df_test_under = pd.concat([df_class_0_under, df_class_1], axis=0)

print(’Random under-sampling:’)

print(df_test_under.pneumonia.value_counts())

X = df_test_under.drop([’pneumonia’], axis=1)

y = df_test_under[’pneumonia’]

%%% Method2 : Oversampling methods

# Oversample 1-class and concat the DataFrames of both classes

df_class_1_over = df_class_1.sample(count_class_0, replace=True)

df_test_over = pd.concat([df_class_0, df_class_1_over], axis=0)
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print(’Random over-sampling:’)

print(df_test_over.pneumonia.value_counts())

X = df_test_over.drop([’pneumonia’], axis=1)

y = df_test_over[’pneumonia’]

%%% Method3 : SMOTE

X_1 = new_sympthoms.drop([’pneumonia’], axis=1)

y_1 = new_sympthoms[’pneumonia’]

from imblearn.over_sampling import SMOTE

smote = SMOTE(sampling_strategy=’minority’)

X, y = smote.fit_resample(X_1, y_1)

y.value_counts()
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