
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Robustness for multiversion concurrency control in relational databases

Bram Droogmans
Scriptie ingediend tot het behalen van de graad van master in de informatica

2023
2024

PROMOTOR :

Prof. dr. Frank NEVEN

BEGELEIDER :

dr. Brecht VANDEVOORT

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Robustness for multiversion concurrency control in relational databases

Bram Droogmans
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Frank NEVEN

BEGELEIDER :

dr. Brecht VANDEVOORT

Preface

First, I would like to thank those who helped me with this thesis and its research. I am especially
grateful to Prof. Dr. Frank Neven and Dr. Brecht Vandevoort, who guided me throughout the
year, always ready to assist with any problems and to help determine the best next steps. I
also want to thank my parents, friends, and girlfriend for their moral support and for believing
in me.

The purpose of this work is to support further research and experimentation in the field. This
is achieved by developing three tools that facilitate experimentation, allowing researchers to
configure settings, run experiments, and analyze results using visualizations. Additionally, the
robustness and allocation algorithm has been implemented and tested, and it is ready for use
in future research.

Throughout this project, I learned how to manage a large project structurally, improved my
time management skills, learned how to write a thesis, and gained a better understanding of
my strengths and weaknesses.

1

2

Samenvatting

Introductie

De thesis behandelt een cruciale uitdaging in databasebeheersystemen: het balanceren van
transactiedoorvoer met het minimaliseren van anomalieën. Met de steeds toenemende hoeveel-
heid en complexiteit van data is het belangrijker dan ooit dat databases zowel performant
als betrouwbaar blijven. Dit werk richt zich op robuustheid in transactieallocaties, met name
binnen het multi-version concurrency control (MVCC) framework. Het hoofddoel was het
ontwikkelen en implementeren van een Python-gebaseerde tool die transactiedoorvoertests facili-
teert en het implementeren van het robuustheids- en allocatie-algoritme voor gemengde isolatie-
niveaus.

Motivatie en doelen

De motivatie achter dit onderzoek komt voort uit de noodzaak om gelijktijdige transacties af
te handelen op een manier die de prestaties niet opoffert om de dataintegriteit te behouden.
Traditionele mechanismen behouden weliswaar de dataintegriteit, maar offeren hiervoor vaak
de prestaties op. Deze scriptie heeft als doel de afweging tussen doorvoer en anomalieën te
onderzoeken en strategieën te ontwikkelen om beide tegelijkertijd te optimaliseren. De specifieke
doelstellingen zijn:

• Het ontwikkelen van een tool die transactiedoorvoertests faciliteert.

• Het implementeren van het robuustheids- en allocatie-algoritme voor gemengde isolatie-
niveaus.

Robustness en isolation levels

Databasebeheersystemen ondersteunen meerdere isolatieniveaus, elk met hun eigen afwegingen
tussen doorvoer en minimalisering van anomalieën. De isolatieniveaus die in dit document
worden besproken zijn Read Committed (RC), Snapshot Isolation (SI) en Serializable Snapshot
Isolation (SSI).

• Read Committed: Zorgt ervoor dat de gelezen data op het moment van lezen is
gecommitteerd. Dit niveau voorkomt dirty writes, maar biedt geen bescherming tegen
andere anomalieën.

• Snapshot Isolation: Biedt een momentopname van de database aan het begin van de
transactie, waardoor anomalieën zoals non-repeatable reads worden voorkomen. Echter,
write skew blijft mogelijk.

• Serializable Snapshot Isolation: Het strengste niveau, dat volledige serialiseerbaarheid
waarborgt door alle mogelijke anomalieën te voorkomen. Dit gaat echter wel ten koste
van de prestaties.

3

4

Robuustheid in dit werk verwijst naar de eigenschap die ervoor zorgt dat elke mogelijke volgorde
van transacties serialiseerbaar is onder een gegeven allocatie. Een robuuste allocatie garandeert
dat de database consistent blijft, ongeacht de volgorde waarin transacties worden uitgevoerd.

Tool ontwikkeling

Een belangrijke bijdrage van de thesis is de ontwikkeling van drie Python-gebaseerde tools die
ontworpen zijn om transactiedoorvoertests te faciliteren. De drie tools zijn:

• Het maken van configuraties: Maakt het gemakkelijk om configuratiebestanden voor
verschillende experimentele opstellingen te creëren.

• Uitvoering van experimenten: Ondersteunt de uitvoering van doorvoerexperimenten
door gelijktijdige transacties in een gecontroleerde omgeving te simuleren.

• Visualisatie van de resultaten: Biedt visualisaties om de resultaten van verschillende
configuraties te analyseren en te vergelijken.

Deze tools zijn essentieel gebleken voor het systematisch vergelijken van de resultaten van
verschillende configuraties.

Robustness algoritme

De implementatie van het robuustheids- en allocatie-algoritme is het tweede kernonderdeel
van deze scriptie. Dit algoritme is ontworpen om ervoor te zorgen dat de optimale robuuste
allocatie wordt gegeven voor elke set transacties. Het algoritme werkt door te beginnen bij de
strengste allocatie en vervolgens het isolatieniveau één voor één voor elke transactie te verlagen.
Deze wijziging wordt behouden of ongedaan gemaakt door te controleren of de nieuw verkregen
allocatie robuust is. De implementatie is geverifieerd door gebruik te maken van bekende
(optimale) robuuste allocaties. In totaal werden 23 allocaties getest. Het resultaat van al deze
tests was correct.

Experimenten en resultaten

De uitgevoerde experimenten zijn gericht op het onderzoeken van de invloed van isolatieniveaus
op prestaties en anomalieën. De experimenten toonden aan dat de optimale robuuste allocatie
beter presteert dan de allocatie waarbij alle transacties aan SSI zijn toegewezen. Dit was echter
niet altijd het geval. Soms vertoonden de experimenten onverwacht gedrag, waarbij een van
de programma’s veel vaker werd uitgevoerd dan de andere. De reden hiervoor is nog niet
vastgesteld, en verder experimenteren is noodzakelijk.

Conclusie

Deze thesis richt zich op het cruciale belang van robuustheid in multiversion concurrency
control. Door de doorvoer en het minimaliseren van anomalieën in balans te brengen via
intelligent isolatieniveaubeheer, is het mogelijk om de doorvoer te optimaliseren en tegelijkertijd
de dataintegriteit te behouden. De ontwikkeling en validatie van een Python-gebaseerde tool en
het robuustheids- en allocatie-algoritme ondersteunen toekomstig onderzoek en experimenten,
wat kan leiden tot praktische verbeteringen in het veld. De resultaten tonen het belang aan van
robuuste allocaties voor de prestaties van databasebeheersystemen, hoewel verder onderzoek
nodig is om de tool te valideren en te verfijnen.

Summary

Introduction

The thesis addresses a crucial challenge in database management systems: balancing transaction
throughput with anomaly minimization. With data’s ever-increasing volume and complexity,
ensuring that databases remain both performant and reliable is more important than ever.
This work focuses on robustness in transaction allocations, particularly within the multi-version
concurrency control (MVCC) framework. The main objective was to develop and implement a
Python-based tool that facilitates transaction throughput tests and to implement the robustness
and allocation algorithm for mixed isolation levels.

Motivation and objectives

The motivation behind this research stems from the need to handle concurrent transactions in
a way that does not sacrifice performance to maintain data integrity. Traditional mechanisms
do maintain data integrity but often sacrifice performance for this. This thesis aims to examine
the trade-off between throughput and anomalies. And develop strategies to optimize both
simultaneously. The specific objectives are:

• Developing a tool to facilitate transaction throughput test.

• Implementing the robustness and allocation algorithm for mixed isolation levels.

Robustness and isolation levels

Database management systems support multiple isolation levels, each with its own trade-
offs between throughput and anomaly minimization. The isolation levels discussed in this
paper are Read Committed (RC), Snapshot Isolation (SI), and Serializable Snapshot Isolation
(SSI).

• Read Committed: Ensures that data read is committed at the moment it is read. This
level prevents dirty writes but does not protect against other anomalies.

• Snapshot Isolation: Provides a snapshot of the database at the start of the transaction,
preventing anomalies like non-repeatable reads. But still allowing write skew.

• Serializable Snapshot Isolation: The strictest level, ensuring full serializability by
preventing all possible anomalies. This does result in a lower performance.

Robustness in this work refers to the property of ensuring that every possible schedule of
transactions is serializable under a given allocation. A robust allocation guarantees that the
database remains consistent regardless of the transaction execution order.

5

6

Tool development

A significant contribution of the thesis is the development of the three Python-based tools
designed to facilitate transaction throughput tests. The three tools are:

• Creating configurations: Allows to create configuration files for different experimental
setups easily.

• Experiment execution: Supports the execution of throughput experiments by sim-
ulating concurrent transactions in a controlled environment.

• Visualization of the results: Provides visualizations to analyze and compare the results
of different configurations.

These tools have proven to be essential in systematically comparing the results of different
configurations.

Robustness algorithm

The implementation of the robustness and allocation algorithm is the second core part of this
thesis. This algorithm was designed to ensure that the optimal robust allocation is given due to
any given set of transactions. The algorithm works by starting at the strictest allocation and
then lowering the isolation level for each transaction at a time. This change is kept or undone
by checking whether the newly achieved allocation is robust. The implementation is verified by
using known (optimal) robust allocations. In total, 23 allocations were tested. The result of all
of them was correct.

Experiments and results

The experiments done aim to examine the influence of isolation levels on performance and
anomalies. The experiments showed that the optimal robust allocation outperforms the allo-
cation where all the transactions are mapped to SSI. However, this was not always the case.
Sometimes, the experiments showed unexpected behavior, where one of the programs was run
much more than the others. The reason for this is still undetermined, and further experi-
mentation is necessary.

Conclusion

This thesis focuses on the critical importance of robustness in multiversion concurrency control.
By balancing throughput and anomaly minimization through intelligent isolation level mana-
gement, it is possible to optimize throughput while maintaining data integrity. The development
and validation of a Python-based tool and robustness and allocation algorithm supports future
research and experiments, which might lead to practical improvements in the field. The results
show the importance of robust allocations in the performance of database management systems,
although further research is needed to validate and fine-tune the tool.

Contents

1 Objectives 9
1.1 Introduction . 9
1.2 Goals . 10

2 Theoretical background 11
2.1 Transaction . 11
2.2 Schedule . 11
2.3 Conflict serializability . 12
2.4 Isolation levels . 13

2.4.1 Read committed . 14
2.4.2 Snapshot isolation . 15
2.4.3 Serializable snapshot isolation . 16

2.5 Allocation . 16
2.6 Robustness . 17

3 Facilitating of transaction throughput tests 19
3.1 Benchmarks . 19

3.1.1 Smallbank . 19
3.1.2 Micro . 20
3.1.3 Microplus . 22

3.2 Description . 22
3.2.1 Configuration format . 23
3.2.2 Generating config files . 24
3.2.3 Running the experiment . 25
3.2.4 Results format . 27
3.2.5 Visualising the results . 29

3.3 The Core package . 31
3.3.1 File structure . 32
3.3.2 The protocol . 32

3.4 Verification of the implementation . 36
3.4.1 Running existing throughput experiments 36
3.4.2 Running existing anomaly experiments . 38

4 Robustness and allocation algorithm 41
4.1 Description . 41
4.2 Implementation . 42
4.3 Verification . 45

5 Experiments 47
5.1 Anomaly/performance trade-off experiment . 47

5.1.1 Experimental setup . 47
5.1.2 Results . 47

5.2 Follow-up experiments . 48

7

8 CONTENTS

5.2.1 Experimental setup . 48
5.2.2 Results . 50

6 Conclusions 53

A Example formats 57
A.1 Configuration file . 57
A.2 Results file . 58

B Configurations 61
B.1 Throughput experiment . 61
B.2 Anomaly experiment . 62

Chapter 1

Objectives

1.1 Introduction

It is essential to store data in database systems without it ever becoming corrupt. Hence,
database systems have various methods to ensure the data stays intact. One of these is
transactions; a transaction is a sequence of operations. What makes it unique is that when
using transactions, all operations must be executed, or none are executed. This ensures that
the database is always in a state where the data is intact. However, when multiple users execute
transactions in the database, it becomes a bit more complicated.

The transactions executed simultaneously are called concurrent. Moreover, transactions are
concurrent when the second transaction starts before the first one is finished. When this
happens, there are some unwanted scenarios. For example, two people have a shared bank
account and person A withdraws €50. But in the meantime, person B does the same. Suppose
that initially, the account contains €100. The wanted outcome would be €0 after two with-
drawals of €50. However, because both happen simultaneously, both transactions read €100 as
the initial value and remove €50, making the new balance €50. Because of this, both persons
will have withdrawn €50, but the account will still contain €50 instead of €0. This is not
wanted by the bank and is called a dirty write, since the changes of the first transaction are
ignored by the second.

Handling concurrent transactions is called concurrency control. There are multiple methods of
doing so, but all strive for the same thing: serializability. Serializability makes sure there are
no anomalies and thus keeps the data intact. The various methods achieve this by using locking
or abort mechanisms. Locking mechanisms ensure the transaction is the only one writing or
reading the field and prevent other transactions from writing or reading the field while the
initial transaction is still executing. Aborting mechanisms will abort a transaction to restore
the database to a valid state. However, this is slower than doing nothing and hoping for the
best [Wik24a].

The method this thesis uses is called multi-version concurrency control. This method makes
multiple versions of the database. This enables users to immediately read older versions of
fields when another transaction has a write lock on this field. These versions can be called
snapshots. Thus, each user sees a snapshot of the database. Other users will not see changes a
write operation makes until the transaction has been completed [Wik23].

Database management systems also support multiple isolation levels. The names of these can
vary from system to system. These isolation levels increase the throughput at the cost of
anomalies. The stricter the isolation level, the fewer anomalies are allowed at the expense of
throughput. Logically, the less strict an isolation level is, a higher throughput can be achieved
at the cost of more anomalies.

9

10 CHAPTER 1. OBJECTIVES

Transactions don’t always relate to each other in the same way; for example, there can be two
transactions, A and B, and one time, A is finished before B. Another time, B is finished before
A even is started. How transactions relate to each other can be written in a schedule. This
shows when each operation of each transaction is executed. Another concept is allocations; an
allocation maps each transaction to an isolation level. For example, two transactions T1 and
T2 can be mapped to one of the isolations: I1, I2, I3. When mapping T1 to isolation I3 and
T2 to I1, we dictate to the database that transaction T1 has to be run under isolation T3. The
same goes for transaction T2. Another essential concept is the robustness property. When a
set of transactions is called robust, every schedule that can be made and that is allowed by the
allocation is serializable.

Two problems in this domain are the robustness and allocation problems. The robustness
problem is to decide whether a given allocation for a set of transactions is a robust allocation. In
other words, how can it be decided if all schedules possible for a given allocation are serializable?
The allocation problem, then, is the problem of finding an optimal robust allocation for a set
of transactions that does not run and allocate all the transactions to the strictest isolation
level.

1.2 Goals

The main goal is to find the answer to the following research question:

How can robustness help towards increasing transaction throughput and decreasing anomalies?

To do this, the objectives of this thesis consist of implementing a tool in Python to support
further research of the robustness and allocation problems by;

1. Facilitating transaction throughput tests.

2. Implementing the robustness and allocation algorithm for mixed isolation levels (RC, SI,
SSI).

Throughput tests are essential to make a comparison between two allocations. These tests
consist of running transactions in a database for a given amount of time and counting how
many are successfully executed. With these tests, not only is the throughput measured, but
the number of violations is also measured. This enables the user to look at the trade-off
between throughput and the number of violations when changing the allocation. Not only
is it interesting to change the allocation, but changing other parameters that influence the
contention rate might be interesting. It might be that for a certain amount of contention, the
behaviour of an allocation changes. Implementing the robustness and allocation algorithm is
essential to test whether the algorithm is correct. This can be done by using known robust
allocations. Afterwards, it can be used to find the optimal robust allocation.

The structure of the subsequent chapters is as follows. Chapter 2 will explain the necessary
definitions. Next, chapter 3 will go over goal 1, how this was achieved, what the encountered
problems were and how it is validated. Following, chapter 4 will do the same as chapter 3
but then for the second goal. New experiments will be discussed in chapter 5. Finally, the
conclusion will be discussed in chapter 6.

Chapter 2

Theoretical background

Before diving in, it is essential to get some terminology out of the way, hence the following
section.

2.1 Transaction

Let’s take a look at a transaction. A transaction consists of one or more operations that form
a higher-level task. A transaction can consist of three types of operations: a read operation
reading field t, written by R[t], a write operation writing field t, written by W[t] and a special
commit operation denoted by C. This is always the last operation in the transaction and makes
all the changes the transaction made definitive. A vital transaction property is that all of the
operations must be executed. This makes sure the data stays intact. An example where a
transaction can be used is as follows. You go out with a friend, but they forgot their wallet.
So you pay for them, and they promise to wire the money back to your account. The money
has to be removed from their account and added to yours. When this is not done by using a
transaction, it is possible your friend wired the money, and it is gone from their account. But
something went wrong when adding it to your account, so now the money is lost. This scenario
would not have been possible if this was done in a transaction.

When speaking of a set of transactions T , we can give every transaction a unique id i.
Transaction i can then be written as Ti ∈ T . The operations of i can then be written as
Ri[t], Wi[t] and Ci. We also assume that every transaction only has, at most, one read and one
write operation per object.

2.2 Schedule

A (multiversion) schedule s over a set of transactions T can be represented as a tuple: (Os,≤s

,≪s, vs) [VKN23]. Where Os is the set of all the operations of transactions in T , as well as a
special operation op0 writing the initial versions of all existing objects, ≤s denotes the ordering
of the operations, ≪s is the version order denoting the version of the write operations occurring
in s and vs being the version function mapping each read operation a in s to either op0 or to
a write operation in s. If vs(a) = op0, then the version read by a is the initial version of this
object. An essential property of op0 is that the following conditions are required to be true:
op0 ≤s a for every operation a ∈ Os, op0 ≪s a for every write operation a ∈ Os, and for
every read operation a, vs(a) <s a and if vs(a) ̸= op0 then the operation vs(a) is on the same
object as a. Intuitively, the op0 operation is the first operation in the schedule, indicating the
start.

An example of a simple multiversion schedule is shown in Figure 2.1. Arrows denote the version

11

12 CHAPTER 2. THEORETICAL BACKGROUND

op0

T1:

T2:

R1[a] W1[a]C1

R2[b] W2[b]C2

≪s
≪s

vs
vs

Figure 2.1: Example of a simple schedule

function and the version order. A read operation in transaction Ti on field a is denoted by Ri[a].
The same principle is applied for write operations. A schedule is called a single version schedule
if ≪s is compatible with ≤s and every read operation reads the last value. A single version
schedule is single version serial if the operations of multiple transactions are not interleaved.
For example, when three operations a,b & c are structured as follows: a ≤s b ≤s c and a, c ∈ T
then b must be also be in T .

2.3 Conflict serializability

To understand some definitions, it is crucial to understand the different kinds of conflicts
that can occur between two transactions Ti and Tj in a set of transactions T . Assume two
operations bi and aj on the same object t, where aj is an operation from transaction Tj and
bi is an operation from Ti. Then there are three different kinds of conflicts [VKN23], as shown
below:

• ww-conflict: bi = Wi[t] and aj = Wj [t],

• wr-conflict: bi = Wi[t] and aj = Rj [t],

• rw-conflict: bi = Ri[t] and aj = Wj [t].

Note that the commit operations and the special operation op0 never conflict with any other
operation. These conflicts can also be written as dependencies [VKN23]. We say aj depends
on bi in a schedule s over T , denoted by bi →s aj if:

• ww-dependency: bi is ww-conflicting with aj and bi ≪s aj ;

• wr-dependency: bi is wr-conflicting with aj and bi = vs(aj) or bi ≪s vs(aj);

• rw-antidependency: bi is rw-conflicting with aj and vs(bi) ≪s aj .

A ww-dependency means that aj writes a version of an object earlier written by bi. The
latter part of the wr-dependency might look complex, but it just says that the value written
by bi is read by aj or written before the value read by aj . The same goes for the rw-
antidependency.

Figure 2.2 shows all of these conflicts and dependencies. There is a ww-conflict between the
two transactions since both write to t. For an example of a wr-conflict one can look at the write
from T1 and the read of T2. A rw-conflict can be found between the read operation of T1 and
the write operation in T2.

Definition 1. Two schedules, s and s’, are conflict equivalent if for every couple of conflicting
operations bi and aj in s, there are a couple of conflicting operations b′i and a′j in s’. [VKN23]

Definition 2. A schedule is conflict serializable if it is conflict equivalent to a single version
serial schedule. [VKN23]

A single-version serial schedule is a schedule where all the operations of a transaction are
executed sequentially, and only when this transaction is finished is the next one executed. An
example is shown in Figure 2.3.

2.4. ISOLATION LEVELS 13

op0

T1:

T2:

R1[t] W1[t] C1

R2[t] W2[t] C2

vs

vs

≪s

≪s

Figure 2.2: Example of a schedule with all of the dependencies

op0

T1:

T2:

R1[t] W1[t] C1

R2[t] W2[t] C2

vs vs≪s

≪s

Figure 2.3: Example of a single version serial schedule

Another way of checking if a schedule is conflict serializable is by making its serialization graph
SeG(s) [VKN23]. Each transaction in the schedule is a node. There is an edge from Ti to Tj

when an operation aj ∈ Tj depends on operation bi ∈ Ti, which gives bi →s aj . Since not only
the edges are useful to know but also the operations of the edges, there is a mapping function λ,
which maps each edge to the corresponding pair of operations. This can be written as follows,
(bi, aj) ∈ λ(Ti, Tj) if there is an operation aj ∈ Tj depending on an operation bi ∈ Ti. SeG(s)
can then be represented as a set of quadruples (Ti, bi, aj , Tj) giving all the possible pairs of the
transactions Ti and Tj with all options of operations bi →s aj . Thus, one of these tuples can
be seen as an edge. To check whether a schedule s is conflict serializable, we must check for
cycles in the graph. A cycle Γ can be written as a non-empty sequence of edges:

(T1, b1, a2, T2), (T2, b2, a3, T3), ..., (Tn, bn, a1, T1)

in SeG(s). Note that every transaction is mentioned exactly twice. We can write a cycle with
Ti as start and end as Γ[Ti] while respecting the order of transactions in Γ. Then Γ[Ti] is the
following sequence:

(Ti, bi, ai+1, Ti+1), ..., (Tn, bn, a1, T1), ..., (Ti−1, bi−1, ai, Ti)

Then, a schedule s is conflict serializable if SeG(s) is acyclic. In other words, if there are no
cycles in the graph. An example of a serialization graph can be found in Figure 2.4

2.4 Isolation levels

An isolation level states what kind of situations in the schedule the database will allow and what
situations are not allowed. The stricter the isolation level, the lower the achieved throughput will
be. But this will result in fewer anomalies. The defined isolation levels are the following:

• Read committed (RC),

T1

T2

Figure 2.4: Serialization graph SeG(s) for the schedule presented in Figure 2.2

14 CHAPTER 2. THEORETICAL BACKGROUND

• Snapshot isolation (SI),

• Serializable snapshot isolation (SSI).

2.4.1 Read committed

Let’s start with read committed. This isolation level is the least strong out of the three.
This means it won’t abort a transaction as quickly as the others, but it doesn’t guarantee
serializability. For a transaction in a schedule s to be allowed under read committed, it has to
satisfy some conditions.

We say that two transactions, T1 and T2, in a schedule s follow the commit order when the
following is true. Both of the transactions have a write operation to the same field. Assume
that T1 commits before T2 does. To follow the commit order of the schedule, the write operation
from T1 has to come before the write operation from T2. Thus, for every write operation Wi[t]
in a transaction Ti ∈ T different from Tj ∈ T where T is the set of transactions, we have
Wj [t] ≪s Wi[t] iff cj <s ci.

A read operation can be read-last-committed to itself or the transaction’s start. This says what
value the read operation reads. For example, when a read operation is read-last-committed
to the start of a transaction T, written as first(T), it reads the value from a snapshot taken
at the beginning of T. While a read operation that is read-last-committed to itself reads the
value from a snapshot taken right before the operation. Formally, a read operation Rj [t] in a
transaction Ti ∈ T is read-last-committed in s relative to an operation aj ∈ Tj if the following
holds:

• vs(Rj [t]) = op0 or Ci <s aj with vs(Rj [t]) ∈ Ti; and

• there is no write operation Wk[t] ∈ Tk with Ck <s aj and vs(Rj [t]) ≪s Wk[t].

The first condition states that Tj [t] either reads the initial version or a committed version. The
second condition states that Tj [t] reads the most recently committed version of t.

A transaction can contain a dirty write, this is defined as follows. Take two transactions, T1 and
T2, in the schedule as shown in Table 2.1. Each transaction contains a write to some field a. If
transaction one writes to a first and transaction two writes to a before the other transaction can
be committed, one of these values will be overwritten. This will be the value of the transaction
that commits first, in this case, T1. Formally, a dirty write exists when there are two write
operations bi ∈ Ti and aj ∈ Tj with Ti ̸= Tj such that bi <s aj <s Ci.

Now that it is clear when a write operation respects the commit order, a read operation is
read-last-committed to itself or to the start of the transaction and what a dirty write is. Read
committed [VKN23] can be defined as:

Definition 3. Let s be a schedule over a set of transactions T . A transaction Ti ∈ T is allowed
under isolation level read committed in s if:

• Every write operation in a transaction Ti where Ti ∈ schedule s follows the commit order
of s,

• Every read operation from bi ∈ Ti is read-last-committed in s relative to b,

• Ti does not contain a dirty write in s.

Figure 2.5 shows an example of a schedule where not all transactions are allowed under RC. This
is because T1 doesn’t satisfy the second condition. R1[v] is read-last-committed to First(T1)
instead of to itself. If it had read the value written by T2, T1 would have been allowed under
RC since both the other conditions are satisfied.

2.4. ISOLATION LEVELS 15

op0

T1:

T2:

W1[t] R1[v] C1

R2[v] W2[v] C2

≪s ≪s

vs

vs

Figure 2.5: Schedule with a transaction that doesn’t satisfy RC

T1 T2
Begin
W(A)

Begin
W(A)

Commit
Commit

Table 2.1: Example of a dirty write given two transactions T1 & T2

2.4.2 Snapshot isolation

The next isolation level is snapshot isolation. It is stricter than read committed but doesn’t
guarantee serializability. Thus, errors might still be made when running under this isolation
level. Before looking at the definition of SI, it is important to understand what a concurrent
write is. Take two transactions Ti and Tj with bi ∈ Ti and aj ∈ Tj two write operations on the
same field:

• First(Tj) <s Ci,

• bi <s aj .

Definition 4. A transaction Ti ∈ T is allowed under isolation level snapshot isolation [VKN23]
in s if:

• Every write operation in a transaction Ti where Ti ∈ schedule s follows the commit order
of s,

• Every read operation from bi ∈ Ti is read-last-committed in s relative to first(Ti),

• Ti does not contain a concurrent write in s.

Notice that the first condition is the same as that for read committed. The second condition,
on the contrary, is a little different. Instead of being read-last-committed to itself, it has to be
relative to first(T). The last condition states that when there is a concurrent write between Ti

and some other transaction, both transactions are not allowed under SI.

Figure 2.6 shows an example of a schedule that contains a transaction that isn’t allowed under
snapshot isolation. This is because it doesn’t satisfy the second condition. Operation R1[v]
is not read-last-committed to first(T1) since it reads the value written by W2[v] This value is
written after the start of T1; thus, it is not read-last-committed to first(T1). Figure 2.7 also
shows an example of a schedule with a transaction that isn’t allowed under snapshot isolation.
Contrary to the previous example, this isn’t allowed because of the last condition. This can
easily be checked by looking at both conditions for a concurrent write. T2 starts before T1

commits, and the first transaction writes before the second does. Thus, there is a concurrent
write between T1 and T2.

16 CHAPTER 2. THEORETICAL BACKGROUND

op0

T1:

T2:

W1[t] R1[v] C1

W2[v] R2[t] C2

≪s ≪s

vs

vs

Figure 2.6: Schedule with a transaction that violates the second condition of SI

op0

T1:

T2:

W1[t] C1

R2[v] W2[t] C2

≪s

≪svs

Figure 2.7: Schedule with a transaction that violates the last condition of SI

op0

T1:

T2:

T3:

R1[t] C1

R2[v] W2[t] C2

W3[v] C3

vs

vs ≪s ≪s

Figure 2.8: Schedule that contains a dangerous structure

2.4.3 Serializable snapshot isolation

The last isolation level is serializable snapshot isolation. This is the most strict and thus
guarantees serializability. For a transaction to be allowed under SSI, it has to satisfy a condition
over the whole schedule instead of a set of conditions defined for the transactions [VKN23]. The
condition the schedule has to meet is that there cannot be a dangerous structure in it.

A dangerous structure consists of three transactions, T1 → T2 → T3 in the schedule s. These
transactions form a dangerous structure when the following conditions are met:

• There is a rw-antidependency between T1 and T2 and between T2 and T3;

• T1 and T2 are concurrent in s;

• T2 and T3 are concurrent in s;

• C3 ≤s C1 and C3 <s C2.

Notice that in the fourth condition, C3 can equal C1. This is in case T1 and T3 are the same
transaction. This is shown in Figure 2.8. There is a rw-antidependency from R1[t] to W2[t] and
from R2[v] to W3[v]. T2 is concurrent with both other transactions. And the third transaction
commits before transaction one or two does. Since all the above conditions are met, there is a
dangerous structure T1 → T2 → T3. Thus, none of these transactions are allowed under SSI.
If a fourth transaction were not part of any dangerous structure, it would have been allowed
under SSI, contrary to the other three.

2.5 Allocation

An allocation maps each transaction of the schedule to an isolation level [VKN23]. For example,
two transactions T1 and T2 both present in schedule s, a possible allocation is A(T1) = RC and
A(T2) = SI. Thus, an allocation dictates the isolation level under which a transaction has to
be run.

2.6. ROBUSTNESS 17

T1 T2 T3 T4

A1 SSI RC SSI SSI
A2 SI SI SSI SSI
A3 SI RC SSI SSI

Table 2.2: Robust allocations for Tex

Definition 5. A schedule s over a set of transactions T is allowed under an allocation A over
T if:

• for every transaction Ti ∈ T with A(Ti) = RC, the transaction is allowed under RC;

• for every transaction Ti ∈ T with A(Ti) ∈ {SI,SSI}, the transaction is allowed under SI;

• there is no dangerous structure Ti → Tj → Tk in s formed by three transactions Ti, Tj , Tk

with A(Ti) = A(Tj) = A(Tk) = SSI.

The first condition says that when a transaction is allocated under RC. It has to satisfy the
conditions to be allowed under RC. The second condition says that all the transactions allocated
under SI or SSI have to satisfy the conditions to be allowed under SI. The third condition states
that there cannot be a dangerous structure between three transactions when they are allocated
under SSI.

2.6 Robustness

The robustness property is defined, which guarantees serializability for all schedules over a given
set of transactions T for a given allocation A [VKN23].

Definition 6. A set of transactions T is robust against an allocation A for T if every schedule
for T that is allowed under A is conflict serializable.

As an example, define the set of transactions Tex = {T1, T2, T3, T4} over four different objects
t, u, v and q as follows:

• T1 = R1[t]R1[v]W1[v]C1;

• T2 = W2[q]W2[t]C2;

• T3 = R3[u]R3[v]W3[q]W3[v]C3;

• T4 = R4[q]W4[u]C4.

The most apparent robust allocation is, of course, the allocation that allocates every transaction
to SSI. But this allocation is not interesting since it is not very fast. Some other robust
allocations are given in Table 2.2. How it is determined whether an allocation is robust or not
will be discussed later in chapter 4. For now, the most important thing to note is that the
starting point is the allocation mapping each transaction to SSI. Notice how A1 only lowered
the isolation of one transaction. The remaining two allocations each go a step further. An
allocation that is not robust is the following:

A4(T1) = SI,A4(T2) = RC,A4(T3) = SI and A4(T4) = SSI.

Notice that this allocation is precisely like A3 but now A(T3) = SI instead of SSI. To know why
this allocation is not robust, looking at the schedule that is not conflict-serializable, as shown in
Figure 2.9, is helpful. Note that not all version functions and version orders are drawn to keep
it simple. Since transactions one and two are not concurrent with any other transactions, these
will not conflict with any other transaction and thus satisfy the conditions of all three isolation
levels. Transactions three and four, however, are concurrent. But still, both are allowed under
SI or SSI. However, the schedule is not conflict-serializable since there would be a cycle in the
serialization graph between T3 and T4. The allocation problem, as mentioned before, is the

18 CHAPTER 2. THEORETICAL BACKGROUND

T1:

T2:

T3:

T4:

R1[t] R1[v] W1[v] C1

W2[q] W2[t] C2

R3[u] R3[v] W3[q] W3[v] C3

R4[q] W4[u] C4

vs

≪s

≪s

Figure 2.9: Schedule of Tex

problem of finding an optimal robust allocation. Finding a robust allocation is not tricky. Map
each transaction to SSI, and we will have a robust allocation. Finding the best robust allocation
is more complicated. We look for an algorithm that favours RC over SI and favours SI over
SSI. This algorithm will be explained in chapter 4.

Chapter 3

Facilitating of transaction
throughput tests

3.1 Benchmarks

The implementation supports a variety of three benchmarks. A benchmark is a set of predefined
transactions that can be run on the database. The implementation supports three benchmarks:
smallbank, micro and microplus. All of the benchmarks have some standard functionalities.
For example, the methods used to select one or more rows for the transaction. Each of the
benchmarks uses the same techniques.

3.1.1 Smallbank

The first benchmark that was implemented is smallbank [VKKN21]. The purpose of smallbank
is to measure the throughput and abort rate with different contention parameters and allocate-
ions. The idea of smallbank is that it represents a bank; thus, the transactions are themed
around this. The five transactions are Balance, Amalgamate, DepositChecking, TransactSavings
and WriteCheck. The database for smallbank consists of three tables: Account, Savings, and
Checking. The account table consists of a name and a customerID. The savings account has two
columns: CustomerID, a foreign key to the Account table, and a Balance field, which specifies
the balance in the savings account. The last table of smallbank is the Checking table, which is
the same as the savings table but keeps track of the savings account’s balance.

Balance

As mentioned before, smallbank has five transactions: Balance, Amalgamate, DepositChecking,
TransactSavings and WriteCheck. The first, Balance, consists of three read operations. The
first is retrieving the CustomerID, which is given a name. The second retrieves the savings
account balance with the retrieved CustomerID, and the last transaction retrieves the sum of
the balance from the checking account and the previously fetched savings account balance. In
Figure 3.1 pseudocode of this transaction can be found.

Amalgamate

The second transaction, amalgamate, takes two parameters: the two accounts that need to be
used. First, the transaction fetches the customerID of the first account. After this, it fetches
the customerID of the second account. Now that it has both the customer IDs of the accounts,
it updates the balance of the savings account of the first customer. The balance is set to zero,
and the value it had is returned. Now that the balance of the savings account from the first

19

20 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

Balance(V):

SELECT CustomerId INTO :C

FROM Account

WHERE Name = :V

SELECT Balance INTO :B

FROM Savings

WHERE CustomerId = :C

SELECT Balance + :B

FROM Checking

WHERE CustomerId = :C

Figure 3.1: Pseudocode balance

customer is emptied, the same can be done for the checking account. Now that the transaction
has emptied both accounts of the first customer but has the values of the accounts before they
were emptied, these values can be added to the balance of the checking account of the second
customer.

DepositChecking

The third transaction, DepositChecking, takes two parameters: a customer’s name and a
numerical value representing the amount to deposit. The transaction first reads the customer
ID for the customer with the name that was given as a parameter. Then, this ID is used to
update the balance of the corresponding checking account. The new balance is the sum of the
old value and the given value as a parameter.

TransactSavings

The fourth transaction, TransactSavings, also takes two parameters. Like DepositChecking, it
takes a customer’s name and a numerical value representing the amount to add to the savings
account. Thus, the transaction starts by reading the customer ID of the customer with the given
name. This ID is then used to update the balance of the corresponding savings account.

WriteCheck

The final transaction, WriteCheck, takes two parameters. Like the previous transactions, these
are a customer’s name and a numerical value, this time used to subtract from the balance.
The transaction starts by reading the customer’s ID with the given name. This ID then reads
the corresponding savings and checks the account balance. The last operation depends on the
relation between the balances and the given value. If the sum of both balances is smaller than
the given value, the balance of the checking account is subtracted by the given value plus 1. If
the sum of the balances is higher or equal to the given value, the current balance of the checking
account is subtracted by the given value.

3.1.2 Micro

The second benchmark is the Micro benchmark [FGA09]. This benchmark was designed to
measure the violation rate, which is defined as the number of anomalies divided by the number
of transactions completed. Before explaining how this is done, it is essential to understand
what the tables look like. The benchmark requires two tables, A and B. Both tables contain an
ID and a value. The value is a numerical field that is later changed by the transactions. This
field in the A table is initialized for every row with a value between 0 and 99. The value from
the B table with the same row is 99 minus that from A. The constraint to check whether a

3.1. BENCHMARKS 21

ChangeA(I):

SELECT valueA INTO :A

FROM A

WHERE id = :I

sleep(sleepTimeAB)

SELECT valueB INTO :B

FROM B

WHERE id = :I

sleep(sleepTimeBU)

delta = 0

if 0 <= :A + :B <= 99:

if :A + :B < 50:

delta = 50

else:

delta = -50

UPDATE A

SET valueA = valueA + delta

WHERE id = :I

Figure 3.2: Pseudocode ChangeA

row is an anomaly is as follows: for every possible ID, the sum of the corresponding row values
from both tables must be between 0 and 99, with 0 and 99 inclusive. For example, take ID=1,
and then the value of A with ID=1 plus that of B with ID=1 must be bigger or equal to 0 and
smaller or equal to 99. This ID is counted as an anomaly when this is not the case. Note that
this constraint is not present in the database schema. This would have aborted the transaction
when making a violation, thus resulting in no violations. Important to remark is that when
transactions are run by themself, they will never create a violation. Therefore, violations are
only made when non-serializable operations are performed.

ChangeA

The first transaction, ChangeA, takes one argument: the row id to change the value. The
transaction starts by reading valueA from the row with the given id. Before the transaction
does anything else, it sleeps for a given amount of time. When this period is over, the value
of B with the same ID is read. Then, the transaction sleeps again. The final operation that is
executed is updating the value of A. But before this can be done, the necessary calculations are
needed to determine the new value of A. This is done by checking if the row is in violation. If
it already is in violation, the transaction doesn’t change it because if it does, it might resolve
the violation. Thus, if it isn’t in violation, it checks whether the sum is lower than 50. When
the sum is lower, 50 is added to A; when the sum is higher, 50 is subtracted from A. The
pseudocode of this transaction can be found in Figure 3.2.

ChangeB

The second transaction, ChangeB, takes one argument, like changeA. This is the row ID to
change the value. It might seem that this transaction does precisely the same as ChangeA but
then for B, but this isn’t entirely the case, as will be explained now. Just as ChangeA, this
transaction starts by reading the value of A, followed by a sleep, and then by reading the value

22 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

of B. If this transaction had been the same as ChangeA, but then for B, the reads had to be
in reverse order. Now that the transaction has the values of both A and B, it sleeps again
before doing the calculations to change B. The transactions sleep as simulated busy times. And
increase the duration of the transactions so that experiments don’t need to run as long to have
the same number of violations. The duration of each sleep is chosen from a normal distribution
given by the parameters in the configuration file. The calculations to determine the value B
has to be changed by are the same as those from ChangeA; check whether the row is already
in violation; if the sum is lower than 50, this is added. When higher, 50 is subtracted.

ChangeAB

The final transaction, ChangeAB, like the previous transactions, takes one argument. This is
the row ID where the values have to be changed. Just like the other two transactions, the values
of A and B are being read within between sleep. Then, the transaction sleeps once more. As
the name of the transaction says, it doesn’t change A or B, but both. This happens by doing
the same calculations as the other transactions, but the value is divided by two and added or
subtracted from A and B.

3.1.3 Microplus

The final benchmark is Microplus. As the name says, this benchmark is based on the micro
benchmark. The purpose remains the same: measuring the violation rate. Remember that the
micro benchmark only had two tables, A and B; this benchmark adds a third table, C, with the
same attributes as the other tables, an ID and a value. When it comes down to the transactions,
the three transactions from the micro benchmark stay the same. But a fourth transaction is
added: transferAB.

TransferAB

The fourth transaction of the microplus benchmark is the transferAB transaction. Like the
others, this transaction takes one argument, the ID of the rows, to change. The first thing that
happens is fetching the value from table C, where the ID is given. This value isn’t used later in
the transaction. This read increases the difference between RC and SI, SSI when two concurrent
transactions write to the same tuple. This difference gets larger because when running under
RC, one transaction waits until the other commits. But when running under SI or SSI, the
transaction aborts and starts over. After this read, the transaction sleeps. Now that the sleep
is done, the value of A is updated, and 100 gets subtracted. This is later added to the value
of B, but not before the transaction sleeps. After the value of B is changed, the transaction is
finished and committed. The pseudocode from this transaction is shown in Figure 3.3.

3.2 Description

The throughput tests are essential to compare the trade-off between throughput and the number
of violations, ideally for multiple configurations. This process can be divided into three parts.
They are creating configurations that might yield interesting results and using them to run the
experiments. And finally, use the results to visualize them so they are easy to understand. This
process can be seen as a pipeline. Creating the configurations can be seen as the first block,
running the experiment as the second block, and visualizing the results as the final block. This
pipeline can be seen in Figure 3.4. This section will go into detail about all of these parts. With
the addition of the configuration format and the result format. These formats are essential to
understand the implementation of the first and last part of the pipeline.

3.2. DESCRIPTION 23

transferAB(I):

SELECT valueC INTO :C

FROM C

WHERE id = :I

sleep(sleepTimeBU)

delta = 100

UPDATE A

SET valueA = valueA - delta

WHERE id = :I

sleep(sleeptimeBU)

UPDATE B

SET valueB = valueB + delta

WHERE id = :I

Figure 3.3: Pseudocode transferAB

Generating configurations Running the experiments Visualizing results

Figure 3.4: Pipeline showing the different parts

3.2.1 Configuration format

Before we could implement the tool, defining a format for the configurations was essential. All
configuration files are in JSON; there are several reasons for this. JSON is easy to read, has
smaller file sizes than XML, and supports fast data transmission. The information needed in a
configuration can be split into three groups: information necessary for the database connection,
general experiment info, and benchmark-specific information. Table 3.1 shows the information
each group contains.

The first group contains attributes necessary to connect to the database, except for the ‘concur-
rent clients’ attribute. This attribute dictates how many clients will connect to the database
while running the experiment. The next group contains attributes that provide general infor-
mation about the experiment. Notice that there are three attributes related to the timing of
the experiment. Warmup is needed because each client must establish a database connection.
Since it doesn’t always have the same duration, this is a short time when clients start running
transactions, but the system hasn’t started measuring. The attribute ‘experiment time’ is the
time clients run transactions, and it is measured. The attribute ‘extra time’ is used for cooldown
so that each client can finish its current transaction and the connection can be closed, but again,
it isn’t measured for the results. The following two attributes of the general info are ‘super
runs’ and ‘runs’. A run is simply the amount of times a timing cycle is run. A super run is how
often each run is done; for example, when a configuration has two super runs and three runs,
the timing cycle is run six times. These super runs are necessary for the experiments related
to the micro and microplus benchmarks. In these experiments, the number of violations will
be counted after the experiment is finished. When running a small number of runs but longer
runs, we will reach the maximum number of violations, the number of rows. This is because
once a row is a violation, it is not removed. Thus, with each violation, there are fewer options to
create a new violation, so the rate drops. Because of this, we need the super runs. This allows
us to run the experiment for the same total time but shorter runs. The idea is that with shorter
runs, the point where the violation rate drops is not yet achieved. The following attribute in the
configuration is the ‘experiment name’, which names the generated file(s). The ‘benchmark’

24 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

Database

concurrent clients
URL
port
username
password
name

General info

warmup time
experiment time
extra time
super runs
runs
experiment name
benchmark

Benchmark specific

rows
allocation for every transaction
sampling weight for every transaction
sampling method

Table 3.1: Table showing attributes per group

attribute, the last of the general info, is used so the program knows which benchmark the
benchmark-specific attributes are for.

The benchmark-specific attributes are more complicated to explain since these are specific for
each benchmark. Still, a couple of them are present in each benchmark, often under slightly
different names. The number of rows states how many rows the database consists of. This could
have been placed in the general info group, but since there was only one benchmark and this
parameter was called ‘number of accounts’, it was renamed but never moved. The following
attribute in the Table 3.1 is ‘allocation for every transaction’. This is for each transaction the
isolation level in which it has to be run. Depending on the benchmark, the number and names
of these attributes change; smallbank has five, while micro and microplus have three and four.
The following attribute is the sampling weight for each transaction; this indicates how likely a
transaction will be executed.

Finally, the last attribute is the sampling method, which defines how the row is chosen for
the transaction. There are two options: hotspot or zipfian. The hotspot distribution has two
parameters: the size of the hotspot and the probability of sampling from the hotspot. These
parameters heavily influence the number of conflicts that will occur. The other distribution,
zipfian, takes one attribute: zipfian skew. A higher number corresponds to more skew towards a
small amount of rows. Hence, a higher skew results in more conflicts. The micro and microplus
benchmarks have four additional attributes that smallbank doesn’t have. These attributes
are related to the sleep used in these benchmarks’ transactions. Remember, each transaction
sleeps two times. These four attributes give two normal distributions to determine these two
durations. The attributes provide the mean and standard deviation of the normal distribution
from which to sample the duration. An example of a configuration can be found in appendix
A.1.

3.2.2 Generating config files

Having defined the configuration format, we can now look at the tool for generating these files.
The tool was made using the Streamlit Python package. This is a very easy-to-use package for
creating a web UI. The tool asks for two big groups of parameters: general information and
benchmark-specific information.

Let’s start with the first group shown in Figure 3.5. It asks the values for the database and

3.2. DESCRIPTION 25

general attributes mentioned in Table 3.1. However, two extra checkboxes exist: ‘custom setup’
and ‘generate config files for all isolation levels’. The custom setup checkbox allows the user
to mix isolation levels when checked. When unchecked, the tool creates configuration files for
all isolation levels: RC, SI, and SSI, which means a configuration where all transactions are
run under read committed, one where all transactions are run under snapshot isolation and
one where everything is run under serializable snapshot isolation. However, when creating a
configuration file with mixed isolation levels, the custom checkbox is checked, and it is possible
to turn off the creation of these files as shown in Figure 3.6. Notice the extra field ‘Experiment
name’. This attribute is necessary for subsection 3.2.5 and will be explained there.

When the user has filled in all these attributes and chooses a benchmark, the benchmark-specific
attributes become visible, as shown in Figure 3.7. Since the checkbox ‘custom setup’ is checked,
the fields allowing the user to choose the isolation levels are shown. As seen in the figure,
multiple values are possible for specific attributes. This is done by generating a configuration
file for each value. This functionality helps create multiple files for multiple configurations at
once rapidly. For example, it might be interesting to run experiments where the zipfian skew
changes to see the effects this might or might not have. This prevents the user from needing to
generate the configurations one by one and gives the option to do it in one click. A limitation
is that using multiple values for only one parameter is possible.

The code for this tool isn’t that difficult. A number input in streamlit can be done using
the provided ‘number input’ function. This function takes various arguments to specify the
range and other parameters of the number and returns the inputted value. This way, all of the
fields are shown. The results of the fields are directly saved in a dictionary, which will later
be added to the configuration file. Due to Streamlit’s intelligent way of dealing with changes
made by the user, the data automatically updates in the dictionary. Notice that there are two
expanders; the first shows the fields for the database and general attributes. The second shows
the benchmark-specific fields. The first is made in the tool’s code itself, while the second is
made by calling the ‘list config’ function from the Core package, which will be discussed later
in section 3.3. This function returns the dictionary containing all of the benchmark-specific
attributes. Since this is stored as a JSON object in the config file, it is easy to merge with the
database and general attributes. Writing the dictionaries to the files can be done by looping
through the dictionaries and writing with the ‘dump’ function from the json package. In the
case of multiple files, the value of the parameter iterated over is included in the name, together
with the experiment name.

3.2.3 Running the experiment

Having generated the config files for the experiments, the user can now run the experiments with
the second tool. This tool takes three command line arguments, two required and one optional:
the path to the configuration file, the path to the results file, and the path to the folder where
the logs need to be saved. The tool starts by reading the benchmark from the config file. If the
config file hasn’t changed since the generation, this shouldn’t be a problem. But just in case,
this is checked. With this name, the ‘benchmark’ function from the Core package (section 3.3)
can be called. And an object from the corresponding benchmark is retrieved. The next thing
that happens is calling the ‘check config’ method from the Core package. This ensures the
configuration file is in the correct format and contains all the right attributes. Remember the
experiment needs to be executed superrun × run times. This can be achieved by using two
nested loops. The first thing that happens before the experiment is executed is initializing the
database. This can be done by the ‘init db’ method from the Core package. When this is done,
the helper function ‘start processes’ is called.

The ‘start processes’ function doesn’t run the experiment but makes the desired amount of
subprocesses, which will, in turn, run the experiment. For this, the multiprocessing package
from Python is used. From this, the Manager object is used. This provides a way to create data
which can be shared between different processes. Three data types from this package are used:

26 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

Figure 3.5: General info in the tool

3.2. DESCRIPTION 27

Figure 3.6: Figure showing the second checkbox can now be unchecked.

Value, Array and Dict. These make a synchronized version of a type—for example, an integer
or an array of integers. These variables are necessary to merge the results atomically. Processes
are created similarly to threads. Then, use the Process constructor from the multiprocessing
package. This constructor takes a target as an argument, which is another function.

This function is the ‘run benchmark’ function. This function takes a couple of arguments:
the configuration dictionary, the object representing the benchmark-specific functionality, and
arguments containing the results after running, such as the number of failed transactions and the
number of completed transactions. The first thing the transaction does is set up the connection
with the database. After the connection is established, the timer for the warmup can be started.
A while loop then runs for the given warmup time in the configuration. When the warmup time
is over, the header in the logfile is written. Now, the client can start the timer that will time
the experiment. This, again, is measured with a while loop. In this loop, the client calls the
‘run transact’ method from the Core package; this method will handle everything from now on
and return how many times an abort was present, etc. Returning the data is done by getting
a write lock on the results’ arguments. This prevents multiple clients from writing at the same
time, resulting in the loss of data.

In doing this, I encountered some difficulties; the first problem was that I had never used JSON
schema. Making the schema file for smallbank was the first challenge to overcome. I used an
online validator to check incrementally whether my configuration was correct. Another issue was
merging the results of all the different clients in the parent process. Since this needs to happen
atomically, the data is not guaranteed to be intact if it does not. This is fixed by using the
synchronized types from the multiprocessing package from Python, as mentioned before. Since
clients can get locks on the variable, dirty writes can not happen anymore. Another difficulty
I encountered was the errors PostgreSQL returns on aborts. The initial idea to identify the
abort reason was to look at the type of error thrown by PostgreSQL. However, the types from
the errors of SI and SSI are from the same type. Since the error messages differed, this issue
was solved by looking at the keywords in this message. For SI, the words ‘concurrent update’
are always present, and when aborting due to a dangerous structure(SSI), the word ‘pivot’ is
always present.

3.2.4 Results format

Before looking at the visualizations of the results, it is essential to understand the format in
which the results are outputted. Just like the configurations, it is in JSON format. As shown
in Figure 3.8, the file can be built as a tree. The first element is ‘superruns’, an array of JSON
objects. Each object starts with the ‘run’ element, like ‘superrun’, an array of JSON objects.
This is necessary since it is interesting to know how many transactions are completed per run.
This array again consists of JSON objects. But all of them contain the same attributes.

The first attribute in this object is the ‘completedTotal’. As the name indicates, this represents
the total amount of completed transactions in this run. Next up is the amount of failed
transactions. However, unlike the completed, we are not interested in the total amount.
However, knowing how many transactions failed under each isolation level is interesting. Thus,
the ‘failed’ attribute consists of three attributes representing the three isolation levels. Since

28 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

Figure 3.7: Figure showing the parameters of the micro benchmark

3.2. DESCRIPTION 29

superruns

runs

completedTotal

failed

deadlock

concurrentWrite

dangerousStructure

completed

RC

SI

SSI

programs

...

violationRate

Figure 3.8: Tree structure of the result format

it is interesting to know how many transactions are completed per isolation level, the same is
done here. Knowing the number of completed and aborted transactions per isolation level is
also interesting per transaction type, also called a program. Thus, the following attribute is
‘programs’, which consists of JSON objects representing this for each program. Smallbank will
have five, but micro and microplus will have three and four. Besides this, each program has
an additional attribute called ‘runtime’, which dictates how much time was spent running this
type of transaction. This was added to check if the weights given in the configuration are being
respected. The final attribute each element in the array of runs contains is the ‘violationRate’.
This attribute is only present in the results of micro and microplus since this can not be
measured with smallbank. A complete results file can be found in appendix A.2

3.2.5 Visualising the results

Now that it is clear what a result file looks like, we can look at the third tool, which visualizes
the results. The tool supports a variety of visualizations, changing for each benchmark. For
smallbank, there are three visualizations available. The first shows the throughput shown in
Figure 3.9, the second shows the Aborts per second shown in Figure 3.10, and the last is a
stacked bar chart that shows the number of aborts per abort type shown in Figure 3.11. These
three visualizations support iteration over the zipfian skew, hotspot probability and hotspot
size attributes. To run the tool, three command-line arguments have to be provided: the folder
containing the config files, the folder containing the result files, and the param to plot. The
tool will automatically read all the files in these folders; thus, only relevant config files must be
present.

Regarding the other benchmarks, the tool supports two types of visualization: one showing
the violation rate on the y-axis and the parameter with multiple values on the x-axis. This
visualization will later be shown in an experiment to validate the tool. The second plots the
number of anomalies over the throughput as shown in Figure 3.12. This visualization is useful
to see how an allocation compares against other allocations. Each dot represents an allocation.

30 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

Figure 3.9: Plot showing the throughput

Figure 3.10: Plot showing the aborts/second

3.3. THE CORE PACKAGE 31

Figure 3.11: Plot showing aborts due to each abort type

Figure 3.12: Figure showing the number of anomalies over the throughput for a
configuration

When hovering over a dot, the allocation is shown. In this example, the two points with zero
anomalies are the SSI allocation and the robust allocation.

3.3 The Core package

The core package is a package containing all the functionality specific to benchmarks. For
example, the implementation of all the transactions, such as sampling the rows, running
the transaction until it successfully executes, and providing a way to retrieve all the needed
parameters, are included. When a tool needs to retrieve or execute specific functionality from
the benchmark, the methods provided by this package are used. Since all of the benchmark-
specific functionality is contained in this package, it is easy to add a benchmark since the tools
utilizing this do not have to be changed. This section will start by explaining the file structure
of the package and what these files are for. Then, the package will be discussed in depth.
Moreover, the code structure and how each provided method works.

32 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

Core

cctest core

benchmarks.py

protocol.py

small bank module.py

smallBank config.json

smallBank schema.sql

MANIFEST.IN

requirements.txt

setup.py

Figure 3.13: Snippet of the file structure of the Core package

3.3.1 File structure

The structure of the package is as shown in Figure 3.13. Notice that not only files for smallbank
are shown; the files of the other benchmarks are in the same place as those of smallbank. The
files directly in the Core folder are necessary to install the package. The requirements file
lists all the packages needed, and the setup dictates how the package must be installed. The
MANIFEST.IN includes all the necessary data files, such as the smallBank config.json and
smallBank config.sql.

The actual code of the package is located in the cctest core folder. The benchmarks.py file
contains one function. This function takes one argument, a string representing a benchmark.
For example, ‘smallBank’. The function checks which benchmark this argument matches and
returns the corresponding benchmark object. This is useful since the functions from benchmarks
being called from outside the package are the same for each benchmark. Next is the protocol.py
file. A protocol in Python is a way to define structural typing within the language. A protocol
consists of a set of methods or attributes an object must have to be compatible with the protocol.
In doing this, inheriting from a base class is unnecessary. However, using a protocol and still
explicitly declaring has its advantages. For example, type checkers can statically verify that the
class implements the protocol correctly. This is done in the package since it is easier to know
if the protocol is implemented correctly.

3.3.2 The protocol

The protocol requires six methods, five of which are abstract and must be implemented by
the benchmark classes. The first method is called ‘init db’ and takes one argument, the
dictionary containing all the information from the configuration file. The second method is
‘run transact’. This method takes two required arguments and one optional. A dictionary
containing the configuration and the object representing the connection to the database is
required. The optional argument is the name of the log file. Since the user can choose not
to log this isn’t needed. The second method is the ‘check config’ method, which has one
argument. Like the others, this is a dictionary containing the configuration parameters. The
fourth method is the ‘list config’ method, which takes two arguments: ‘custom isolation levels’
and ‘default isolation levels’. Both arguments are booleans and are provided by the tool used to
generate the configuration files. The final abstract method is ‘check consistency’; this method
takes the dictionary representing the configuration file. The last method, which is not abstract,
is the ‘zipfian’ method. This method is not abstract since this way of sampling stays the same

3.3. THE CORE PACKAGE 33

DROP TABLE IF EXISTS Account CASCADE;

DROP TABLE IF EXISTS Savings CASCADE;

DROP TABLE IF EXISTS Checking CASCADE;

CREATE TABLE Account (

name VARCHAR(255) NOT NULL PRIMARY KEY,

CustomerID INT GENERATED ALWAYS AS IDENTITY,

UNIQUE (CustomerID)

);

Figure 3.14: Snippet of the smallBank sql file

for all the benchmarks. It takes two arguments: the skew and n, where n represents the number
of rows in the database.

Init db

As mentioned, this method takes one argument: the dictionary representing the configuration.
Since the database schema differs for each benchmark, it makes sense that this function cannot
be the same for all the benchmarks. Before filling the database with the generated data, it
is essential to make the tables. The corresponding SQL file is used; for smallbank, this is:
‘smallBank schema.sql’ as mentioned before. A snippet of this file is shown in Figure 3.14.
Notice the drop table commands in the beginning. These are present to spare the user from
cleaning the database by hand each time an experiment is run. It also allows the user to run
multiple experiments directly after each other using a script.

Now that the necessary tables have been created, the database can be filled with data. For
smallbank, this is done by a for-loop, which goes from zero to the number of accounts specified
in the configuration. In this for loop, three queries are run; the first inserts an account into
the account table. The two other queries insert an entry in the checking and savings table with
the ID of the previously inserted account. The balance of these accounts is randomly chosen
between 100 and 10000. Since there is no constraint on what these balances need to be, this
doesn’t matter too much. The principle stays the same regarding micro and microplus: the
database is created by executing the corresponding SQL file. And then the data is added. This
will be done for micro with two inserts, one for A and one for B; for microplus, there will be a
third for C. The value for A is randomly generated between 0 and 99, B is 99 minus the value
from A, and C is generated similarly to A.

Run transact

The run transact method, as the name says, runs the transaction. It starts by selecting which
transaction to run. For this, the weights of each transaction are used in the configuration
file. These weights illustrate how likely it is for a transaction to be executed. Before the
transaction is executed, the function samples the necessary row(s) from the database. The
‘sample account’ helper function does this. This function looks at what sampling method to
use and the parameters of the chosen method. After successfully sampling, it returns the
selected row(s) to the ‘run transact’ function. Now that the rows have been sampled, the start
time is written to the log file together with the chosen transaction and the row it will work on.
Then, a while loop is started. This loop goes until the transaction is successfully executed; in
case of an abort, the transaction is executed with the same parameters.

In this while loop, the helper function ‘run transact once’ is called; this function actually runs
the chosen transaction. The result of this function is None in case of successful execution; in
case of an abort, the error is returned. The number of aborts before the transaction successfully
executes is counted, and the error why it aborts. When the transaction is executed, the
timer stops, and the duration is saved. Now, all diagnostic data is written in the log file.

34 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

"accountSamplingMethod": {

"type": "enum",

"values": ["zipfian", "hotspot"]

},

"if": {

"properties": {

"accountSamplingMethod": { "const": "zipfian" }

}

},

"then": {

"properties": {

"zipfianSkew": { "type": "number" }

},

"required": ["zipfianSkew"]

},

"else": {

"properties": {

"hotspotSize": { "type": "integer" },

"hotspotProbability": {

"type": "number",

"minimum": 0,

"maximum": 1

}

},

"required": ["hotspotSize", "hotspotProbability"]

}

Figure 3.15: Snippet of smallbank’s JSON schema

This is the transaction, number of aborts due to deadlocks(RC), number of aborts due to
concurrent writes(SI), number of aborts due to dangerous structures(SSI), start time, end
time, duration and finally, the row that was used. Finally, the method is finished and can
return the results. These results are almost the same as the data being logged: number of
aborts due to deadlocks(RC), number of aborts due to concurrent writes(SI), number of aborts
due to dangerous structures(SSI), the isolation level the transaction was completed under, the
transaction that was chosen and executed and finally the duration.

Check config

The ‘Check config’ function takes the configuration dictionary as an argument and checks
whether all required attributes are present and of the correct type. This is done by using JSON
schema. JSON schema allows the definition of a json template, which can be used to validate
json files against. This schema is different for each benchmark since each benchmark requires
different parameters. A small snippet of the schema of smallbank can be seen in Figure 3.15.
Notice that this snippet contains details on how the sampling method’s attributes. Thus, this
is present in all the JSON schemas of the benchmarks. The function loads this schema and uses
the validate function provided by the JSON schema package to validate if the given dictionary
is correct. If it isn’t, the error is shown to the user. However, this isn’t the case when using a
configuration file the tool generates unless it was changed.

List config

The ‘List config’ function takes two parameters: ‘custom isolation levels’ and ‘default isol-
ation levels’. As noted, both of these are booleans. Representing whether or not a corresponding
checkbox in the tool for generating configuration files was checked. The first boolean represents

3.3. THE CORE PACKAGE 35

the checkbox whether the user wants to mix isolation levels. The second boolean represents the
checkbox whether the user wants the configurations for default isolation levels generated. This
function makes the UI for the benchmark-specific attributes earlier shown in Figure 3.7. The
main difficulty in this function lies in checking the filled-in data. For example, it needs to be
checked that only one attribute contains multiple values.

Another difficulty is generating the wanted files. For this, the two parameters are required.
Until this point, the function has constructed an array containing dictionaries representing the
filled-in values. However, these dictionaries either have custom isolation levels or no isolation
level yet. There are a couple of possible scenarios regarding these two parameters: either the
user has checked both, has only checked the box for custom isolation levels or hasn’t checked the
custom isolation level box and thus wants the default isolation levels. When both are checked,
it is easy; we need to add four to the final output for each dictionary we already have. One with
the custom allocation and three for the default allocations. For this, a helper function is used,
which always adds the default allocations and can also add the custom allocation. Because
of this, the code for the case where only the default allocations need to be added remains
the same. Except for the call to the helper function, which now doesn’t allow for a custom
allocation. When only the custom allocation is requested, we add the isolation levels to the
dictionaries in the array. This logic is necessary for all the benchmarks; the difference lies in
the fields that must be filled in and checked.

Check consistency

The last abstract method is the ‘Check consistency’ function. This function is a bit different
from the others since there is no data consistency constraint in the smallbank benchmark.
The function there doesn’t return anything. But in the other benchmarks, this isn’t the case.
Since the data consistency constraint is the same for the micro and microplus benchmarks, this
function remains the same for both. The function starts by connecting to the database; since
this method is always called after the experiment is finished, the previously used connections
are already closed. Then, a loop is present, from zero to the number of rows in the database.
In this loop, two queries are run, one to select the value from A and one to get the value from
B. When both values are fetched, the sum can be calculated and checked whether it is in the
allowed interval.

Zipfian

The zipfian function is the only function that is the same for all the benchmarks. It takes two
parameters: the skew and the number of rows. Before looking at the implementation, it is
important to know what the zipfian distribution looks like [Wik24b]. The distribution on N
elements assigns to the element of rank k the probability:

f(k;N) =
1

HN

1

k

Where HN is a normalization constant, the Nth harmonic number:

HN =

N∑
k=1

1

k

However, in the implementation, the generalized version is used, where s is the skew:

f(k;N, s) =
1

Hn,s

1

ks

where HN,s is a generalized harmonic number:

HN,s =

N∑
k=1

1

ks

36 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

The zipfian function will first calculate this generalized harmonic number by looping from zero
to n, where n is the number of rows and adding the value to the total sum. When the harmonic
number is calculated, a random number between zero and one is generated and multiplied by
this harmonic number. This gives a number a with: 0 ≤ a ≤ HN,s. Now, the interval at which
this value lies needs to be checked. This can be done by calculating the harmonic numbers
again, but now, in this loop, it needs to be checked if the current harmonic number is bigger
than the generated value. If so, this is the row that will be used.

3.4 Verification of the implementation

An excellent way to know if the tool’s implementation is correct is by running existing experi-
ments. This is how the tool has been verified. The experiments that have been redone can
be split into two groups: the experiments correlated to the throughput benchmark, smallbank,
and the experiments related to the anomaly benchmarks, micro and microplus.

3.4.1 Running existing throughput experiments

The experiments run again are those of the ‘Robustness against Read Committed for Transaction
Templates’ paper. The experiment that has been redone is the one shown in Figure 3.16. This
experiment aims to learn the impact of different contention parameters on the transactions/sec-
ond and aborts/second. This results in configurations with both sampling methods: hotspot
sampling & zipfian distribution, and different parameters for hotspot sampling such as hotspot
probability: 0.1, 0.3, 0.5, 0.7 & 0.9 and hotspot size: 1000, 100 & 10. The experiment shows
that with a larger hotspot size, the throughput drops for SI and SSI while RC stays around
the same throughput. With a smaller hotspot, this effect only becomes more prominent. This
makes sense since a smaller hotspot will result in more conflicts and, thus, lower throughput,
even for RC. A very small hotpot (10 accounts) even shows that with a high hotspot probability,
all three isolation levels barely achieve some throughput. The same happens when the zipfian
skew increases, as seen in Figure 3.16d.

Now that it is clear how the existing experiment works, it is possible to look at the tool’s results.
These results are shown in Figure 3.17. We can see that the throughput behaves differently
than in the experiments from the paper. The throughput of read committed even rises instead
of dropping to almost zero, as seen in Figure 3.16a. When looking at snapshot isolation, the
trend is that it falls as expected but not as much as in the paper. It reaches a higher throughput
for a low hotspot probability than read committed. However, the confidence interval of the RC
is quite large and overlaps with the bar of SI. Thus, this might have been a couple of bad runs.
When it comes down to SSI, the throughput is always low. And stays the same when changing
the hotspot probability. These remarks can be seen in Figure 3.17b, which shows the number
of aborts per second. The figure shows that there are no aborts when running under RC. This
follows the results of the paper, which are near zero. The abort rate of SI increases when the
hotspot probability increases, which makes sense since the throughput dropped. The abort rate
of SSI drops when the probability rises, which is not as expected since the throughput stays
around the same value.

When comparing the results of the tool with the results from the paper, it is crucial to know
the differences in parameters and the specifications of the machine on which it was run. First,
look at the experimental setup from the paper. The database system was run on a server with
two 2.3 GHz Xeon Gold 6140 CPUs with 18 cores each, 192 GB RAM, and a 200 GB SSD
local disk. A separate machine issued the transactional workload to the database through a
low-latency connection. Now, look at the setup of the experiments that were done to test the
tool. The database was run on a laptop with a 4.463 GHz AMD Ryzen 7 5800H CPU with 8
cores, 16 GB RAM, and 146 GB SSD local disk. The tool itself was also run on this machine.
It is also essential to compare the parameters of the configurations. The only difference is the
duration of the experiment. The experiments done in the paper have a duration of 60 seconds

3.4. VERIFICATION OF THE IMPLEMENTATION 37

(a) Hotspot of 1000 accounts (b) Hotspot of 100 accounts

(c) Hotspot of 10 accounts (d) Zipfian distribution

Figure 3.16: Results from the ‘Robustness against Read Committed for Transaction
Templates’ paper [VKKN21]

(a) Hotspot of 10 accounts (throughput) (b) Hotspot of 10 accounts (abort rate)

Figure 3.17: Results of the tool

38 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

Figure 3.18: The inversion of the paper [FGA09]

per run, while the experiments done with the tool have a duration of 20 seconds. The complete
configuration can be found in appendix B.1.

The main difference in results is that the throughput of RC and SSI stays the same when the
hotspot probability is increased. RC remains high, while SSI remains low. For SI, the tendency
from the experiments in the paper is the same as the tool’s tendency. The only difference is
that the result from the tool is less extreme than that from the paper. The differences in setup
can declare these differences in results. The amount of possible concurrent clients that execute
transactions on the database is much more prominent with the setup from the paper. This
explains the difference in results. Since there are not as many clients running transactions,
the contention parameters, although the same, are a different percentage when compared with
the concurrent clients. For example, a hotspot size 10 with 16 or 50 clients is a big difference;
with 16 clients, only 6 choose a row already picked. But with 50, this immediately becomes
40. Thus resulting in less contention. This explains why RC does not drop as much as in
Figure 3.16a. And why SI remains higher as well. Knowing this, the result of the tool with
a hotspot size of 10 can be compared to the result from the paper with a hotspot size of 100
Figure 3.16b or 1000 Figure 3.16c. Now, the tool’s results look more like the results from the
paper. Considering this, the tool’s results are trustworthy enough to be used in other possible
new experiments.

3.4.2 Running existing anomaly experiments

The second experiment run again comes from the ‘Quantifying Isolation Anomalies’ paper
[FGA09]. The experiment we are interested in uses the micro benchmark. It changes the
mix of transactions and shows the violation rate. The specific experiment we are looking at
is an experiment with an inversion in violation rate. SI got more violations than RC. This
result is shown in Figure 3.18. The transaction mix refers to the percentage of ‘ChangeA’
transactions. Note that this benchmark has three transactions, ‘ChangeA’, ‘ChangeB’ and
‘ChangeAB’. In this experiment, ‘ChangeAB’ was not used. The result shows that the inversion
is most significant with a transaction mix of 20 and 30 per cent. The confidence intervals overlap
at all the other points; thus, we can not be sure whether there is an inversion.

Since the inversion is clearest with a mix of 20 and 30 percent, these are the ones that have
been run in the tool. The result of the tool is shown in Figure 3.19. Note that this is a bar chart
instead of a line chart, but it still indicates whether or not there is an inversion. We can see
that the inversion is not present when looking at the tool’s result. However, when comparing

3.4. VERIFICATION OF THE IMPLEMENTATION 39

Figure 3.19: The result of the tool

Parameter Value

Mean sleeptime AB 900
Sdev sleeptime AB 120
Mean sleeptime BU 100
Sdev sleeptime BU 30

Table 3.2: Parameters and values of the inversion experiment

the violation rate of RC with the violation rate of the experiment, this is around the same
value. However, when looking at the violation rate of SI, we can see that it is much lower. This
is the reason why the inversion is not present. To understand why it is essential to compare
both experiments’ experimental setup and parameters.

Start with the parameters. The essential parameters for the inversion are the sleep times and
the transaction mix. The sleep times used for Figure 3.18 are shown in Table 3.2. The paper
calculated these as the best values for creating the inversion. Thus, these values are also used
in the experiment with the tool. Other parameters, like the number of concurrent clients,
etc., also use the same values as described in the paper; a complete configuration is shown in
appendix B.2. Therefore, this does not explain the difference in outcome. Let us now compare
the experimental setup. The experiment with the tool was done on a laptop with a 4.463 GHz
AMD Ryzen 7 5800H CPU with 8 cores and 16 GB RAM. When it comes down to the setup
of the experiment done in the paper, we do not know. Since this was not mentioned, it is
hard to make a comparison. Therefore, we cannot be sure if the difference in setup explains
the difference in results. However, this is probably the case. If the setup from the paper was
slower than the setup used to test the tool, it might be that the achieved throughput of the
tool’s experiment was higher, but only the same number of violations was reached. This would
explain the lower violation rate.

40 CHAPTER 3. FACILITATING OF TRANSACTION THROUGHPUT TESTS

Chapter 4

Robustness and allocation
algorithm

4.1 Description

The second part is the algorithm for finding the optimal robust allocation of a schedule. The
algorithm gives the optimal robust allocation for a given schedule. This is useful since finding a
robust allocation is not hard. Allocate each transaction to SSI. But this is slow; hence, finding
more optimal robust allocations, if not the most optimal, is interesting. Before discussing the
algorithm for finding the optimal allocation, examining the algorithm that checks robustness
against an allocation is necessary. This is shown in algorithm 1. The algorithm works by
searching for a schedule that is not conflict serializable; thus, the allocation is not robust.
For this, we introduce multiversion split schedules. We represent conflicting operations from
transactions in a set T as quadruples (Ti, bi, aj , Tj) with bi ∈ Ti and aj ∈ Tj conflicting
operations, with Ti, Tj ∈ T . These quadruples can be called conflicting quadruples for T . For
an operation bi, we define prefixb(T) as the restriction of T to all operations that are before or
equal to b according to ≤T . The same goes for postfixb(T), the restriction of T to all operations
strictly after b.

Definition 7. (Multiversion split schedule). Let T be a set of transactions, A an allocation
for T , and C = (T1, b1, a2, T2), (T2, b2, a3, T3), . . . , (Tm, bm, a1, T1) a sequence of conflicting
quadruples for T such that each transaction in T occurs in at most two different quadruples.
A multiversion split schedule for T and A based on C is a multiversion schedule that has the
following form:

prefixb1(T1) · T2 · ... · Tm · postfixb1(T1) · Tm+1 · ... · Tn

where

1. there is no operation in T1 conflicting with an operation in any of the transactions
T3, . . . , Tm−1;

2. there is no write operation in prefixb1(T1) ww-conflicting with a write operation in T2 or
Tm;

3. A(T1) ∈ {SI, SSI}, then there is no write operation in postfixb1(T1) ww-conflicting with
a write operation in T2 or Tm;

4. b1 is rw-conflicting with a2;

5. bm is rw-conflicting with a1 or (A(T1) = RC and b1 <T1
a1);

6. A(T1) ̸= SSI or A(T2) ̸= SSI or A(Tm) ̸=SSI;

41

42 CHAPTER 4. ROBUSTNESS AND ALLOCATION ALGORITHM

7. if A(T1) = SSI and A(T2) = SSI, then there is no operation in T1 wr-conflicting with an
operation in T2; and

8. if AT1 = SSI and A(Tm) = SSI, then there is no operation in T1 rw-conflicting with an
operation in Tm.

Furthermore, Tm+1, . . . , Tn are the remaining transactions in T (those not mentioned in C) in
an arbitrary order. [VKKN21]

The multiversion split schedule splits a transaction T1 into two parts. This split occurs at
operation b1; the two parts are the pre-and postfix, as mentioned. Between these parts,
transactions 3 to m are placed. The eight conditions must be met to decide whether these
transactions can be placed between the two parts of b1. These are the conditions in the last
for loop on line 19. Note that these are broken into two groups as well. Conditions 1-3 make
sure that the transactions in the split schedule s do not exhibit concurrent or dirty writes not
allowed by A. Conditions 4 and 5 ensure dependencies b1 → a2 and bm → a1 to occur in s
and conditions 6-8 enforce that there is no dangerous structure over transactions allocated to
SSI.

The algorithm does not search for a multiversion split schedule by iterating over all possible
sequences C of conflicting quadruples since this number can be exponential in the size of T .
Instead, a mixed-iso-graph structure will be made (line 7 in algorithm 1). For a transaction
T1 and a set of transactions T define mixed-iso-graph(T1, T) as the graph with as nodes all
transactions in T that do not have a conflicting operation with T1, and with an edge between
transactions Ti and Tj if Ti has a conflicting operation with Tj . The algorithm iterates over
all possible triples of transactions T1, T2 and Tm as defined in definition 7. And verifies if a
path exists from T2 to Tm as seen in algorithm 1 on line 20 where the reachable function is
called. Thereby witnessing the existence of a corresponding sequence of conflicting quadruples
between T2 and Tm. By the definition of mixed-iso-graph(T1, T \{T1, T2, Tm}), condition 1 of
definition 7 is satisfied. The other conditions of algorithm 1 verify whether the other conditions
of definition 7 hold for at least one option of b1, a1 ∈ T1, a2 ∈ T2 and bm ∈ Tm.

Now that algorithm 1 is clear, it is possible to look at algorithm 2. Note that the allocation stays
robust when increasing (RC → SI, SI → SSI) an isolation level in the optimal robust allocation.
The difference is that it is not the optimal allocation anymore. This principle can be used when
finding the optimal allocation. Start with the allocation that allocates all transactions on SSI.
Now, we iterate over the transactions and try lowering the isolation level. First, to RC, if this
allocation is not robust, try if the allocation is robust when running this transaction under SI.
If this is not the case, move this back up to SSI and move to the next transaction. When an
allocation is robust with a transaction allocated to RC or SI, we can also move to the next
transaction. This is precisely what algorithm 2 does. The check whether an allocation is robust
is done by using algorithm 1.

4.2 Implementation

Now that it is clear what the algorithm looks like and how it works, it is possible to look
at the implementation of it. The implementation is done in Python and uses one package,
networkx. I started by implementing algorithm 1 since this is needed by algorithm 2. Let us
begin with explaining the reachable function, defined on line 1 in algorithm 1. Instead of three
arguments shown in the algorithm, I added a fourth, T . This was necessary for making the
mixed-iso-graph. Because of this, the other three arguments are just the id of the transaction
in T .

The first part of this function is exactly as in algorithm 1, but note that in the pseudocode,
only one for loop is present that iterates over two things. This is done by a nested for loop—one
for each operation to iterate over. The construction of the mixed-iso-graph is done in a helper
function named ‘mixed iso graph’. This function takes the same four arguments as the reachable

4.2. IMPLEMENTATION 43

Algorithm 1: Deciding robustness against an allocation.

Input: Set of transactions T and allocation A for T
Output: True iff T is robust against A

1 def reachable(T2, Tm, T1):
2 if T2 = Tm then
3 return True;

4 for b2 ∈ T2, am ∈ Tm do
5 if b2 conflicts with am then
6 return True;

7 G := mixed-iso-graph(T1, T \ {T1, T2, Tm});
8 TC := reflexive-transitive-closure of G;
9 for T3, Tm−1 in TC do

10 for b2 ∈ T2, a3 ∈ T3, bm−1 ∈ Tm−1, am ∈ Tm do
11 if b2 conflicts with a3 and bm−1 conflicts with am then
12 return True;

13 return False;

14 def wr-conflict-free(Ti, Tj):
15 for bi ∈ Ti, aj ∈ Tj do
16 if bi is wr-conflicting with aj then
17 return False;

18 return True;

19 def ww-conflict-free(b1, T1, T2, Tm):
20 for c1 ∈ T1 do
21 if c1 ∈ prefixb1(T1) or A(T1) ∈ {SI,SSI} then
22 for c2 ∈ T2 do
23 if c1is ww-conflicting with c2 then
24 return False;

25 for cm ∈ Tm do
26 if c1is ww-conflicting with cm then
27 return False;

28 return True;

29 for T1 ∈ T , T2 ∈ T , Tm ∈ T \{T1} do
30 if reachable(T2, Tm, T1) and
31 (A(T1) ̸= SSI or A(T2) ̸= SSI or A(Tm) ̸=SSI) and
32 (A(T1) ̸= SSI or A(T2) ̸= SSI or
33 wr-conflict-free(T1, T2)) and
34 (A(T1) ̸= SSI or A(Tm) ̸= SSI or
35 wr-conflict-free(Tm, T1)) then
36 for b1 ∈ T1, a1 ∈ T1, a2 ∈ T2, bm ∈ Tm do
37 if ww-conflict-free(b1, T1, T2, Tm) and
38 bm conflicts with a1 and
39 b1 is rw-conflicting with a2 and
40 (bm is rw-conflicting with a1 or
41 (A(T1) = RC and b1 <T1 a1)) then
42 return False;

43 return True;

44 CHAPTER 4. ROBUSTNESS AND ALLOCATION ALGORITHM

Algorithm 2: Computing the optimal robust allocation

Input: Set of transactions T
Output: Optimal robust allocation A for T

1 A := ASSI

2 for T ∈ T do
3 if T is robust against A [T → RC] then
4 A := A [T → RC]

5 else if T is robust against A [T → SI] then
6 A := A [T → SI]

7 return A

function. Note that a graph needs to be constructed here. The networkx package is used for
this. This package allows us to easily create an empty graph and add nodes and edges whenever
possible. The nodes are added in a for loop that iterates over all the transactions in T and
checks whether the current transaction has an operation which conflicts with an operation of
T1. After the nodes have been added, the edges are added in a two-deep for loop. The for
loops iterate over all possible tuples in the graph, for each tuple is checked if an operation in
one transaction conflicts with an operation in the other transaction. When this is the case, an
edge is added. Now, the graph is finished and can be returned.

The second part of the reachable function (line 8-13 in algorithm 1) starts with the reflexive-
transitive-closure of G. This is done with the built-in function from the networkx package.
Note that this function only calculates the transitive closure. However, reflexive is an argument
option. The outer for loop of the algorithm can be done as one for loop in the implementation
due to the edges function of networkx. This returns a list of edges (tuples). The inner for loop,
however, is done by a four-deep nested loop since this iterates over four operations.

Note that the algorithm often checks whether operations are conflicting. To do this, a helper
function is made. Named ‘conflict free’ and takes two arguments. Two transactions or two
operations. However, both have to be the same; transactions and operations are not allowed
to mix. When two transactions are given, the function iterates over all possible couples of
operations. For each couple of operations, the function is recursively called again. In the case
of two operations, it is checked if they both operate on the same field and if at least one is a
write.

The following two functions are wr-conflict-free and ww-conflict-free as described in algorithm 1.
The first checks whether there is a wr-conflict between the two transactions’ operations. This
function iterates over the operations of both transactions with two nested for loops. The check
is done like the ‘conflict free’ function. But now, it checks if the operation of the outer query is
a read and the operation of the inner query is a write. The ww-conflict-free function works a bit
differently because it receives four arguments. However, the implementation of this function is
exactly as described in algorithm 1. The prefix is calculated with the help of a helper function.
This helper loops over the operations of the given transaction and adds them to a list until it
comes across the given operation b1. Then, b1 is added, and the list is returned.

The for loop on line 29 of algorithm 1 is almost the same as the algorithm dictates. The
difference is how the transactions are given. The set of transactions T and allocation A are
provided as a dictionary. The key of a dictionary is a number used as the identifier of the
transactions. The value is a tuple. This tuple consists of the allocation followed by a list
representing the transactions’ operations. Each operation is described as ‘X y’, where X is the
operation. Thus, R or W. And y is the field. Because of this, all the for loops that iterate
over transactions iterate over the dictionary’s keys, hence why the implementation works with
indices.

Now it is possible to look at the implementation of algorithm 2. This function takes one

4.3. VERIFICATION 45

Bal Am DC TS WC

A1 RC
A2 RC RC RC
A3 RC RC
A4 RC TS
A5 SSI RC RC SSI SSI

Table 4.1: Robust allocations for the smallbank benchmark [VKKN21]

T1 T2 T3 T4 robust?

A1 SSI RC SSI SSI yes
A2 SI SI SSI SSI yes
A3 SI RC SSI SSI yes
A4 RC RC SSI SSI no
A5 SI RC SI SSI no
A6 SI RC SSI SI no
A7 SI RC SI SSI no

Table 4.2: Robust allocation from the running example in [VKN24]

argument, just like the function that checks for robustness. It is T and A. This differs from
the description in algorithm 2 where only T is given. This is so that the default isolation
ASSI can be given. And the format does not have to change when calling the ‘robust against’
function.

Further, the function does exactly as described in the algorithm. The only difficulty was that
tuples were immutable, so the tuple was converted into a list to change the isolation level.
Then, the isolation level is updated, and the list is converted into a tuple again. So why work
with tuples in the first place? This was to calculate sets like T \T1. To do this, a copy is made
of the original dictionary. However, when working with lists, the pointer is copied instead of
created with a new value. This is not the case with tuples; hence, tuples are used instead of
lists.

4.3 Verification

It is essential to make sure the implementation results are correct. For this, sets of transactions
known as robust are run. These sets of transactions come from a couple of papers. These sets
are shown in Table 4.1 and Table 4.2. The first table shows robust subsets of the smallbank
benchmark. Note that all allocations are subsets of the possible transactions except for A5. This
shows the optimal robust allocation of the complete set of transactions. The second table shown
in Table 4.2 shows allocations of the running example discussed in the paper and whether they
are robust. In addition to these allocations, the following allocation of the microplus benchmark
is also tested.

A(ChangeA) = SSI, A(ChangeB) = SSI, A(ChangeAB) = SI and A(TransferAB) = RC

A separate testing script was made in Python to test all of these allocations. This script runs
the ‘robust against’ function (algorithm 1) for each allocation. In addition to the allocations
given, changes were made. To the subsets of smallbank (A1 - A4 from Table 4.1), additional
transactions were added and allocated under RC as well, these additional transactions can be
new transactions not yet in the subset, or transactions that are already in the subset but need
to be present multiple times not to be robust. These new allocations have to result in not being
robust with a correct implementation. No changes were made for the allocations of Table 4.2,

46 CHAPTER 4. ROBUSTNESS AND ALLOCATION ALGORITHM

Figure 4.1: Results of the allocations in Table 4.1

Figure 4.2: Results of the allocations of Table 4.2

and these seven allocations are tested. Then, three variants of the microplus allocation are run.
The isolation level is lowered for each of the transactions not yet allocated under RC. Thus,
SSI → SI and SI → RC.

The results of all these allocations are shown in Figure 4.1, Figure 4.2 and Figure 4.3. Note that
the green printed lines are robust, and the red lines are not robust according to the algorithm.
When we compare this to the allocations in the mentioned tables, we see that this is correct.
Even the added allocations with added transactions or lowered isolation levels give the correct
result. From these experiments, we can conclude that the implementation of the algorithm
works as expected. The implementation can be used to experiment further and find robust
allocations.

Figure 4.3: Results of the microplus allocations

Chapter 5

Experiments

5.1 Anomaly/performance trade-off experiment

This experiment examines the trade-off between the number of anomalies and performance
when using different allocations. A common assumption is that running with a lower isolation
level increases the number of anomalies and the throughput. The experiment aims to prove
that robust allocations indeed do not have any anomalies and achieve higher throughput than
ASSI. The experiment hypothesizes that this will indeed be the case.

5.1.1 Experimental setup

The experiment was run on the Flemish supercomputer centre. The nodes used exist of two
2.3GHz Xeon Gold 6140 CPUs with each 18 cores, 192 GB RAM, and 200 GB SSD local disk.
For the experiment, two nodes were used—one for the database and one for running the clients
that execute the transactions. The PostgreSQL database used version 16.2; for Python, version
3.11 was used. The experiment focuses on the microplus benchmark and has the following
parameters. The values of the parameters are shown in Table 5.1.

Note that the parameters needed to set up the database connection are not displayed. The
parameters regarding the transactions’ isolation levels and sampling weights are also not dis-
played. The isolation levels are not shown since multiple allocations were run. The run
allocations are: ARC , ASI , ASSI , the robust allocation and the reversed allocation. The
reversed allocation is the reverse of the robust allocation. Remember that the optimal robust
allocation looks like:

A(ChangeA) = SSI, A(ChangeB) = SSI, A(ChangeAB) = SI and A(TransferAB) = RC

Then the reversed allocation looks like:

A(ChangeA) = RC, A(ChangeB) = SSI, A(ChangeAB) = SSI and A(TransferAB) = SSI

To compare these allocations with each other, all of the allocations needed to be run on the
same nodes. Since the two nodes might be two nodes next to each other, they can also be far
away from each other. The sampling weights are not shown since all of the weights are the
same. Hence, every transaction has the same chance of being run.

5.1.2 Results

Now that the setup is clear, it is possible to discuss the results. The results were unexpected,
and the robust allocation was slower than the allocation mapping all transactions to SSI. This
can be seen in Figure 5.1. But this was not always the case, as shown in Figure 5.2. This raised

47

48 CHAPTER 5. EXPERIMENTS

Parameter Value

#concurrent clients 50
warmup 5

experiment 30
extra time 5
#super runs 2

#runs 1
#rows 200

Sampling method hotspot
hotspot size 20

hotspot probability 0.5
sleep time AB 100
sdev sleep AB 10
sleep time BU 100
sdev sleep BU 10

Table 5.1: Parameters of the experiment

the question of why this was the case. The theory of why this was is that some programs run
longer than others. The runtime per program was added to the result format to confirm this.
When this was added, it was immediately apparent that this was indeed the case. In the case of
Figure 5.1, the robust allocation ran ChangeA and ChangeB 800 seconds longer than the other
programs. This only happened in the robust allocation, which is quite weird. The question
arose about why these programs were run so much longer than the others. A possibility is that
a client is stuck on a transaction right before the end of the experiment but keeps aborting,
even after the experiment. Thus explaining the much higher runtime. To verify this, the option
to log was added to the experiments. Each client has its log file, in which the transactions’
start and end are written, along with the amount of aborts and final duration.

After examining these log files, it became clear that the high runtime was not caused by a
transaction that keeps being aborted in the end. What did happen is that some transactions
do abort often, more than 50 times. But this is not necessarily the last transaction that is run.
The reason why these transactions have been aborted so many times is not yet clear. This does
not happen every time the experiment is run. To get a better view of this, the experiments in
section 5.2 have been done. Since they sometimes behave as expected, it is possible to show
this result as shown in Figure 5.2. This gives the impression that when the programs behave
as expected, the robust allocation is indeed faster than ASSI .

5.2 Follow-up experiments

It is important to know when the runtime of a transaction is much higher than the runtime of
other transactions. That is the purpose of these experiments. To map the contention parameters
where this situation occurs.

5.2.1 Experimental setup

These experiments have not been done at the Flemish supercomputer center. Instead, they have
been done locally on a laptop with a 4.463 GHz AMD Ryzen 7 5800H CPU with 8 cores, 16GB
of RAM and 140GB SSD local disk. The PostgreSQL and Python versions are 16.2 and 3.11,
respectively. The experiments focus on the microplus benchmark like the experiments that
were previously done. The configurations that were done combine different values for some
parameters. These parameters are the number of clients, the hotspot size, and the hotspot
probability. The values used for the number of clients go from five clients up to 20 in steps of
five. The values of the hotspot size go from five up to 25 in steps of five. As for the hotspot

5.2. FOLLOW-UP EXPERIMENTS 49

(a) Robust allocation

(b) ASSI

Figure 5.1: Unexpected result of the trade-off experiments

Figure 5.2: Expected result of the trade-off experiments

50 CHAPTER 5. EXPERIMENTS

Figure 5.3: Table showing the runtimes of the experiments

Figure 5.4: Biggest difference in runtime

probability, it goes from 0.5 up to 0.9 in steps of 0.1. All combinations were run. That results
in 4 × 5 × 5 = 100 combinations. Then, each configuration has four different allocations since
the reversed allocation was not rerun to save some time. This comes down to 400 experiments
run.

5.2.2 Results

A visualization was added to analyze the results as shown in Figure 5.3. The table shows the
superrun, run, and program in the first three rows. Each row has a unique name corresponding
to the configuration. This name is the file’s filename that contains the result concatenated with
the isolation level. For each configuration, the highest runtime is marked for easy comparison.
When this value is higher than usual, the configuration becomes interesting. Some interesting
takeaways from these runtimes are that the differences in runtime seem to get higher when the
amount of clients increases. This makes sense since the total amount of time transactions are
being run increases. With 20 clients, the most significant difference was about 200 seconds, as
shown in Figure 5.4. When plotting the trade-off of this configuration, we get the graph from
Figure 5.5. So, even with the most significant difference of these 100 configurations, it still is
not large enough to get an inversion between ASSI and the optimal robust allocation. Thus,
the question remains when this exactly occurs and why.

5.2. FOLLOW-UP EXPERIMENTS 51

Figure 5.5: Trade-off visualization of the big runtime difference

52 CHAPTER 5. EXPERIMENTS

Chapter 6

Conclusions

The purpose of the thesis is to explore the impact of robustness in the trade-off between
throughput and anomaly minimization in database management systems. By developing a
Python-based tool, we aimed to facilitate transaction throughput tests and to implement the
robustness and allocation algorithm for mixed isolation levels.

Throughout the research, it became evident that robustness plays an essential role in enhancing
transaction throughput while simultaneously minimizing anomalies. The trade-offs when using
different isolation levels and the impact on both throughput and anomaly rates were widely
tested and analyzed. The results show that stricter isolation levels like Serializable Snapshot
Isolation(SSI) reduce the number of anomalies and the throughput. Less strict isolation levels
like Read Committed(RC) increase the throughput heavily but also allow a lot of anomalies.

The throughput tests revealed that robustness, defined as ensuring serializability across all
possible schedules for a given allocation, is crucial for balancing performance and data integrity.
The tool not only facilitated these tests but also provided a variety of visualizations to compare
different allocations, helping to identify the optimal balance for various scenarios. However,
further experimentation is necessary to determine when specific programs take up almost all
the runtime.

Moreover, the robustness and allocation algorithm’s implementation and verification against
known robust allocations proved successful, establishing a foundation for future research and
practical applications. The work opens opportunities for further exploration into dynamic and
adaptive allocation strategies that can respond to changes in workload and contention rates in
real-time. Potentially changing the database management practices.

In conclusion, the thesis highlights the importance of robust allocation strategies in database
management systems. This is done by balancing throughput and anomaly minimization through
carefully managing the isolation. It is possible to optimize performance while maintaining the
integrity of the data. The tools and implemented algorithm provide a strong foundation for
further research in the field.

When implementing the tools, I learned how PostgreSQL does concurrency control and how
this works; I had to create an in-depth understanding of the concepts to start implementing the
tools. During the year, I learned how to manage my time. The first semester, I succeeded pretty
well. The second semester, however, was a bigger challenge; the courses I had this semester were
harder to combine and demanded more time. This, in combination with solicitations, did not
make it any easier. I noticed that implementing the robustness and allocation algorithm did not
interest me as much as implementing the other tools and the corresponding experiments, which
I found to be more interesting, seeing how the different allocations influenced the throughput
and the anomaly rate. I also learned how to manage a large project structurally, learned how
to write a thesis, and gained a better understanding of my strengths and weaknesses.

53

54 CHAPTER 6. CONCLUSIONS

Bibliography

[FGA09] Alan Fekete, Shirley N Goldrei, and Jorge Pérez Asenjo. Quantifying isolation
anomalies. Proceedings of the VLDB Endowment, 2(1):467–478, 2009.

[VKKN21] Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. Robustness
against read committed for transaction templates. arXiv preprint arXiv:2107.12239,
2021.

[VKN23] Brecht Vandevoort, Bas Ketsman, and Frank Neven. Allocating isolation levels to
transactions in a multiversion setting. In Proceedings of the 42nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 69–78, 2023.

[VKN24] Brecht Vandevoort, Bas Ketsman, and Frank Neven. Allocating isolation levels to
transactions in a multiversion setting. SIGMOD Rec., 53(1):16–23, may 2024.

[Wik23] Wikipedia contributors. Multiversion concurrency control — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Multiversion_

concurrency_control&oldid=1187695173, 2023. [Online; accessed 1-April-2024].

[Wik24a] Wikipedia contributors. Concurrency control — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Concurrency_control&oldid=

1212090482, 2024. [Online; accessed 13-May-2024].

[Wik24b] Wikipedia contributors. Zipf’s law — Wikipedia, the free encyclopedia. https://

en.wikipedia.org/w/index.php?title=Zipf%27s_law&oldid=1225573378, 2024.
[Online; accessed 26-May-2024].

55

https://en.wikipedia.org/w/index.php?title=Multiversion_concurrency_control&oldid=1187695173
https://en.wikipedia.org/w/index.php?title=Multiversion_concurrency_control&oldid=1187695173
https://en.wikipedia.org/w/index.php?title=Concurrency_control&oldid=1212090482
https://en.wikipedia.org/w/index.php?title=Concurrency_control&oldid=1212090482
https://en.wikipedia.org/w/index.php?title=Zipf%27s_law&oldid=1225573378
https://en.wikipedia.org/w/index.php?title=Zipf%27s_law&oldid=1225573378

56 BIBLIOGRAPHY

Appendix A

Example formats

A.1 Configuration file
{

"concurrentClients": 50,

"dbUrl": "localhost",

"dbPort": 5432,

"dbUsername": "postgres",

"dbPassword": "postgres",

"dbName": "postgres",

"timing": {

"warmup": 5,

"experiment": 30,

"extraTime": 5

},

"numberOfSuperruns": 2,

"numberOfRuns": 1,

"experimentName": "RC",

"benchmark": "microplus",

"microplus": {

"numberOfRows": 200,

"programChangeAIsolationLevel": "RC",

"programChangeBIsolationLevel": "RC",

"programChangeABIsolationLevel": "RC",

"programTransferABIsolationLevel": "RC",

"samplingMethod": "hotspot",

"programChangeASamplingWeight": 0.1,

"programChangeBSamplingWeight": 0.1,

"programChangeABSamplingWeight": 0.1,

"programTransferABSamplingWeight": 0.1,

"sleepTimeAB": 100.0,

"sdevsleepAB": 10.0,

"sleepTimeBU": 100.0,

"sdevsleepBU": 10.0,

"hotspotSize": 20,

"hotspotProbability": 0.5

}

}

Listing 1: Example of a microplus configuration file

57

58 APPENDIX A. EXAMPLE FORMATS

A.2 Results file

{

"superruns": [

{

"runs": [

{

"completedTotal": 2860,

"failed": {

"deadlock": 0,

"concurrentWrite": 1742,

"dangerousStructure": 2420

},

"completed": {

"RC": 0,

"SI": 0,

"SSI": 2860

},

"programs": {

"changeB": {

"failed": {

"deadlock": 0,

"concurrentWrite": 310,

"dangerousStructure": 449

},

"completed": {

"RC": 0,

"SI": 0,

"SSI": 724

},

"runtime": 293.92844343185425

},

"changeA": {

"failed": {

"deadlock": 0,

"concurrentWrite": 489,

"dangerousStructure": 784

},

"completed": {

"RC": 0,

"SI": 0,

"SSI": 753

},

"runtime": 409.4000663757324

},

"changeAB": {

"failed": {

"deadlock": 0,

"concurrentWrite": 536,

"dangerousStructure": 874

},

"completed": {

"RC": 0,

"SI": 0,

"SSI": 643

A.2. RESULTS FILE 59

},

"runtime": 415.00815749168396

},

"transferAB": {

"failed": {

"deadlock": 0,

"concurrentWrite": 407,

"dangerousStructure": 313

},

"completed": {

"RC": 0,

"SI": 0,

"SSI": 740

},

"runtime": 400.0276367664337

}

},

"violationRate": 0.0

}

]

}

]

}

Listing 2: Result file of an experiment from the microplus benchmark

60 APPENDIX A. EXAMPLE FORMATS

Appendix B

Configurations

B.1 Throughput experiment
{

"concurrentClients": 16,

"dbUrl": "localhost",

"dbPort": 5432,

"dbUsername": "bram",

"dbPassword": "mapr-app-2",

"dbName": "mapr-app-2",

"timing": {

"warmup": 5,

"experiment": 20,

"extraTime": 5

},

"numberOfSuperruns": 1,

"numberOfRuns": 5,

"experimentName": "RC",

"benchmark": "smallBank",

"smallBank": {

"numberOfAccounts": 18000,

"programDepositCheckingSamplingWeight": 1,

"programBalanceSamplingWeight": 1,

"programTransactSavingsSamplingWeight": 1,

"programAmalgamateSamplingWeight": 1,

"programWriteCheckSamplingWeight": 1,

"accountSamplingMethod": "hotspot",

"hotspotSize": 10,

"hotspotProbability": 0.1,

"programDepositCheckingAllocatedIsolationLevel": "RC",

"programBalanceAllocatedIsolationLevel": "RC",

"programTransactSavingsAllocatedIsolationLevel": "RC",

"programAmalgamateAllocatedIsolationLevel": "RC",

"programWriteCheckAllocatedIsolationLevel": "RC"

}

}

Listing 3: Configuration for the throughput experiment

61

62 APPENDIX B. CONFIGURATIONS

B.2 Anomaly experiment
{

"concurrentClients": 10,

"dbUrl": "localhost",

"dbPort": 5432,

"dbUsername": "bram",

"dbPassword": "mapr-app-2",

"dbName": "mapr-app-2",

"timing": {

"warmup": 1,

"experiment": 30,

"extraTime": 0

},

"numberOfSuperruns": 5,

"numberOfRuns": 50,

"experimentName": "RC",

"benchmark": "micro",

"micro": {

"numberOfRows": 600,

"samplingMethod": "hotspot",

"hotspotSize": 500,

"hotspotProbability": 0.9,

"sleepTimeAB": 900.0,

"sdevsleepAB": 120.0,

"sleepTimeBU": 100.0,

"sdevsleepBU": 30.0,

"programChangeASamplingWeight": 0.2,

"programChangeBSamplingWeight": 0.8,

"programChangeABSamplingWeight": 0.0,

"programChangeAIsolationLevel": "RC",

"programChangeBIsolationLevel": "RC",

"programChangeABIsolationLevel": "RC"

}

}

Listing 4: Configuration for the inversion experiment

	Objectives
	Introduction
	Goals

	Theoretical background
	Transaction
	Schedule
	Conflict serializability
	Isolation levels
	Read committed
	Snapshot isolation
	Serializable snapshot isolation

	Allocation
	Robustness

	Facilitating of transaction throughput tests
	Benchmarks
	Smallbank
	Micro
	Microplus

	Description
	Configuration format
	Generating config files
	Running the experiment
	Results format
	Visualising the results

	The Core package
	File structure
	The protocol

	Verification of the implementation
	Running existing throughput experiments
	Running existing anomaly experiments

	Robustness and allocation algorithm
	Description
	Implementation
	Verification

	Experiments
	Anomaly/performance trade-off experiment
	Experimental setup
	Results

	Follow-up experiments
	Experimental setup
	Results

	Conclusions
	Example formats
	Configuration file
	Results file

	Configurations
	Throughput experiment
	Anomaly experiment

