
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Many Minds, One Decision: Leveraging Multiple AI Models for Informed Decision-
Making

Gilles Eerlings
Scriptie ingediend tot het behalen van de graad van master in de informatica

2023
2024

PROMOTOR :

Prof. dr. Kris LUYTEN

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Many Minds, One Decision: Leveraging Multiple AI Models for Informed Decision-
Making

Gilles Eerlings
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Kris LUYTEN

Acknowledgements

First and foremost, I want to thank Prof. Dr. Kris Luyten for their invaluable support,
insightful advice, and interesting ideas. I am grateful for the opportunity to work on this
fascinating topic and to expand my knowledge of machine learning under your guidance. I
also want to thank Prof. Dr. Jori Liesenborgs for the support regarding machine learning and
working with computationally intensive tasks on the VSC. Additionally, I want to thank Prof.
Dr. Gustavo Rovelo Ruiz for the additional guidance regarding the visualization of the end
results. Finally, I want to thank my close friends and parents for their mental support and
encouragement when progress was made..

2

Samenvatting

Kunstmatige intelligentie (AI) speelt een cruciale rol in gebieden zoals gezondheidszorg, fi-
nanciën en justitie, waar machine learning (ML) modellen privégegevens analyseren om signifi-
cante voorspellingen te doen. Echter, biases in ML modellen kunnen leiden tot onrechtvaardige
uitkomsten, wat zorgen oproept over algoritmische transparantie en verantwoording. Complexe
AI modellen, vaak aangeduid als black-box modellen, nemen beslissingen zonder duidelijke
uitleg, waardoor gebruikers deze systemen overmatig vertrouwen of juist wantrouwen. Dit is
vooral problematisch voor niet-experts, aangezien overmatig vertrouwen kan leiden tot gevaar-
lijke fouten terwijl wantrouwen de adoptie van AI kan belemmeren.

Om deze problemen aan te pakken, is er een streven naar algoritmische verantwoording en het
“recht op uitlegbaarheid” nodig, met regelgeving zoals de GDPR van de EU die uitlegbare AI
(XAI) bevordert. XAI streeft ernaar AI systemen transparanter te maken, wat zowel gebruikers
als ontwikkelaars ten goede komt door foutdetectie en continue verbetering mogelijk te maken.
Het creëren van uitlegbare AI modellen, met name deep neural networks (DNNs), blijft echter
een uitdaging vanwege hun complexiteit. Hoewel er vaak een afweging is tussen nauwkeurigheid
en uitlegbaarheid, suggereert recent onderzoek dat uitlegbare modellen een nauwkeurigheid
kunnen bereiken die vergelijkbaar is met die van black-box modellen.

Deze scriptie onderzoekt de uitlegbaarheid van DNNs door veranderingen in hun data en archi-
tectuur te vergelijken. Door talloze licht verschillende modellen te trainen, beoogt het onderzoek
verschillen in hun voorspellingen te koppelen aan veranderingen in hun interne logica. De studie
richt zich op neurale netwerken die zijn getraind op de MNIST dataset van handgeschreven
cijfers, gekozen vanwege de eenvoud en relevantie voor classificatietaken. Deze scriptie is on-
derverdeeld in meerdere hoofdstukken, die elk afzonderlijk worden besproken.

Het eerste hoofdstuk verdiept zich in het concept van model multiplicity, met een primaire focus
op classificatiemodellen. Het begint met het definiëren van model multiplicity door de lens
van het Rashomon effect, waarbij meerdere modellen dezelfde nauwkeurigheid bereiken maar
verschillen in hun interne werking of besluitvormingsgrenzen. Dit fenomeen wordt procedurele
multiplicity genoemd wanneer modellen intern verschillen maar dezelfde uitkomsten produceren,
en predictieve multiplicity wanneer modellen verschillende voorspellingen opleveren ondanks
vergelijkbare nauwkeurigheid.

Het hoofdstuk bespreekt de implicaties van model multiplicity op model evaluatie, waarbij wordt
betoogd dat nauwkeurigheid alleen onvoldoende is voor het selecteren van het beste model.
In plaats daarvan zouden andere wenselijke eigenschappen zoals uitlegbaarheid, eerlijkheid en
robuustheid de modelselectie moeten leiden. Het hoofdstuk benadrukt ook het belang van
juridische en ethische overwegingen, vooral in risicovolle gebieden zoals recidivevoorspelling,
waar eerlijkheid van groot belang is.

Het concept van underspecification wordt gëıntroduceerd, waarbij de noodzaak wordt benadrukt
van een duidelijke specificatie van wenselijke eigenschappen om problemen zoals proxy discrim-
inatie te voorkomen. Daarnaast wordt de uitdaging van rechtvaardiging aangepakt, waarbij de
logica achter het kiezen van het ene model boven het andere in vraag wordt gesteld wanneer
meerdere modellen even nauwkeurige maar uiteenlopende voorspellingen produceren.

3

4

In het volgende hoofdstuk wordt onze aanpak voor het genereren van een diverse set modellen op
basis van de MNIST dataset gedetailleerd beschreven, met de focus op het bereiken van “model
multiplicity”, waarbij modellen een vergelijkbare nauwkeurigheid hebben maar verschillen in
besluitvormingsprocessen. Dit omvat het gebruik van multi-class classifiers en het creëren van
variaties door veranderingen in trainingsdata en machine learning algoritmeparameters.

Om dit te vergemakkelijken, hebben we een softwarearchitectuur ontwikkeld die de generatie
van talloze modellen met verschillende eigenschappen automatiseert, waardoor de bias en ti-
jdsbeperkingen van handmatige modelcreatie worden vermeden. De architectuur bestaat uit
verschillende componenten, waaronder een variatiegenerator, dataloader, dataprocessor, mod-
eltrainer en logger. Deze componenten werken samen om willekeurige combinaties van data en
modelvariaties te genereren, datasets te laden, variaties toe te passen, modellen te trainen en
alle relevante details vast te leggen. Een overzicht van de softwarearchitectuur wordt getoond
in figuur 1.

Figure 1: Een overzicht van de verschillende componenten en hun interacties binnen de
softwarearchitectuur. Het proces begint met de willekeurige generatie van combinaties
van data- en modelvariaties. Deze variaties worden vervolgens verdeeld: datavariaties
worden toegepast op de originele data in de dataprocessor, terwijl modelvariaties worden
gebruikt om het model te creëren. De modeltrainer gebruikt de verwerkte data om
het model te trainen en evalueert de resultaten op de testset. Een logger houdt de
gegenereerde variaties bij en registreert de trainings- en evaluatieresultaten.

De variatiegenerator creëert twee soorten variaties: datavariaties (bijv. kleurinversie, con-
trastaanpassingen) en modelvariaties (bijv. batchgrootte, optimizer keuze). We gebruiken
equivalence partitioning om een uitgebreide dekking van parameterwaarden te waarborgen,
waarbij problematische combinaties worden vermeden door middel van beperkingen.

Datavariaties worden toegepast met behulp van twee strategieën: in-place en appending. In-
place wijzigt bestaande data, waardoor gelaagde augmentaties mogelijk zijn, terwijl appending
gewijzigde data toevoegt aan een kopie van de originele dataset, waardoor de integriteit ervan

5

behouden blijft. Outlier detectie, door middel van isolation forests, identificeert anomalieën
binnen elk cijferlabel, wat resulteert in een gevarieerde dataset die de robuustheid van het
model verbetert.

De architectuur ondersteunt verschillende data-augmentaties, zoals kleurinversie, contrastaan-
passingen, rotaties en translatie. Deze augmentaties worden in een specifieke volgorde toegepast
om inefficiënties te vermijden en reproduceerbaarheid te waarborgen. Daarnaast verkennen we
de effecten van het al dan niet opnemen van outliers en het aanpassen van de hoeveelheid
geaugmenteerde data.

Modelvariaties omvatten het aanpassen van hyperparameters zoals het aantal verborgen la-
gen, trainingsepochen, batchgrootte, dropout lagen, optimizer types en activatiefuncties. We
introduceren ook het gebruik van validatiesets om overfitting te voorkomen.

Door deze parameters systematisch te variëren en een gestructureerde experimentele aanpak te
gebruiken, genereren we een diverse set modellen, elk met unieke besluitvormingsprocessen, die
bijdragen aan ons onderzoek naar model multiplicity.

In het daaropvolgende hoofdstuk onderzoeken we de gegenereerde modellen om degenen te iden-
tificeren die multiplicity vertonen. Dit omvat het evalueren van de prestaties van elk model
met behulp van een testset en het groeperen van vergelijkbare modellen in Rashomon sets.
Aanvankelijk worden de modellen beoordeeld op basis van hun nauwkeurigheid op afzonder-
lijk gemaakte handgeschreven cijfermonsters, waarbij modellen met slechte prestaties of laag
vertrouwen worden gefilterd. Modellen die deze evaluatie doorstaan, worden gegroepeerd op
basis van hun voorspellingsovereenkomsten voor elk testmonster.

Het hoofdstuk introduceert het concept van frequent itemsets om sets van modellen te identifi-
ceren die vaak dezelfde labels voorspellen. Deze aanpak is vergelijkbaar met het Market-Basket
model dat in data mining wordt gebruikt, waarbij modellen worden behandeld als items en
predictiegroepen als baskets. We passen het A-Priori algoritme toe om frequent itemsets te
bepalen, met een hoge supportdrempel om ervoor te zorgen dat alleen zeer vergelijkbare mod-
ellen worden overwogen. Dit resulteert in de identificatie van paren, triplets en grotere sets
modellen met vergelijkbaar voorspellend gedrag.

Het hoofdstuk verkent ook de kenmerken van deze frequent itemsets door de variaties in hun
trainingsdata en hyperparameters te analyseren. Met behulp van metrics zoals Manhattan en
Cosine afstanden meten we de overeenkomst tussen modellen binnen elke itemset. De resultaten
tonen aan dat modellen in frequent itemsets niet alleen vergelijkbaar zijn in hun voorspellingen,
maar ook in de variaties die ze ondergingen tijdens de training, wat suggereert dat het mogelijk
is Rashomon sets te genereren door modellen te creëren met vergelijkbare variaties.

In het laatste hoofdstuk richten we ons op het uitleggen van model multiplicity. In gebruik-
ersgerichte AI toepassingen kan het vertrouwen op een enkel model leiden tot problemen van
overmatig of onvoldoende vertrouwen. Het introduceren van multiplicitous modellen, die een
vergelijkbare voorspellende nauwkeurigheid hebben, biedt een oplossing door gebruikers in staat
te stellen een set modellen, bekend als een Rashomon set, te raadplegen in plaats van een enkel
model. Deze collectieve aanpak kan de besluitvorming in kritieke systemen zoals medische of
juridische adviesplatforms verbeteren.

Om de verschillen in voorspellingen tussen modellen in een Rashomon set uit te leggen, visu-
aliseren we hun voorspellende gedrag en analyseren we de variaties in hun hyperparameters en
gegevenssamenstellingen. Bijvoorbeeld, we onderzochten drie modellen uit een Rashomon set
die verschillende niveaus van vertrouwen toonden bij het voorspellen van een monster gelabeld
als ”5.” Analyse toonde aan dat verschillen in data-augmentaties, zoals horizontale translatie
en contrastaanpassingen, hun niveaus van vertrouwen significant bëınvloedden.

Naast de gegevenssamenstelling spelen model hyperparameters ook een cruciale rol, hoewel
het interpreteren van hun impact deskundige kennis van neurale netwerken vereist. Door deze

6

verschillen te begrijpen, kunnen gebruikers biases toewijzen aan bepaalde modellen op basis
van de specifieke kenmerken van het monster dat ze evalueren.

Summary

Artificial intelligence (AI) plays a crucial role in areas such as healthcare, finance, and justice,
where machine learning (ML) models analyze private data to make significant predictions. How-
ever, biases in ML models can lead to unjust outcomes, highlighting concerns about algorithmic
transparency and accountability. Complex AI models, often referred to as black-box models,
make decisions without clear explanations, causing users to overtrust or undertrust these sys-
tems. This is particularly problematic for non-experts, as overtrust can lead to dangerous errors
while undertrust can impede AI adoption.

To address these issues, there is a push for algorithmic accountability and the “right to ex-
plainability”, with regulations like the EU’s GDPR promoting explainable AI (XAI). XAI aims
to make AI systems more transparent, benefiting both users and developers by enabling error
detection and continuous improvement. However, creating interpretable AI models, especially
deep neural networks (DNNs), remains challenging due to their complexity. While there is often
a trade-off between accuracy and interpretability, recent research suggests that interpretable
models can achieve accuracy comparable to that of black-box models.

This thesis investigates the explainability of DNNs by comparing changes in their data and
architecture. By training numerous slightly varied models, the research aims to link differences
in their predictions to changes in their internal logic. The study focuses on neural networks
trained on the MNIST dataset of handwritten digits, chosen for its simplicity and relevance to
classification tasks. This thesis is divided into multiple chapters, each individually discussed
below.

The first chapter delves into the concept of model multiplicity, primarily focusing on classi-
fication models. It begins by defining model multiplicity through the lens of the Rashomon
effect, where multiple models achieve the same accuracy but differ in their internal workings
or decision boundaries. This phenomenon is termed procedural multiplicity when models dif-
fer internally but produce the same outcomes, and predictive multiplicity when models yield
different predictions despite similar accuracy.

The chapter discusses the implications of model multiplicity on model evaluation, arguing that
accuracy alone is insufficient for selecting the best model. Instead, other desirable properties
such as interpretability, fairness, and robustness should guide model selection. The chapter also
underscores the importance of legal and ethical considerations, especially in high-stakes areas
like recidivism prediction, where fairness is paramount.

The concept of underspecification is introduced, emphasizing the need for clear specification
of desirable properties to avoid issues like proxy discrimination. Additionally, the challenge of
justification is addressed, questioning the rationale behind choosing one model over another
when multiple models produce equally accurate but divergent predictions.

In the following chapter, we detail our approach to generating a diverse set of models based
on the MNIST dataset, focusing on achieving “model multiplicity”, where models have similar
accuracy but differ in decision-making processes. This involves using multi-class classifiers and
creating variations through changes in training data and machine learning algorithm parame-
ters.

7

8

To facilitate this, we developed a software architecture that automates the generation of nu-
merous models with varying properties, avoiding the bias and time constraints of manual model
creation. The architecture comprises several components, including a variation generator, data
loader, data processor, model trainer, and logger. These components work together to generate
random combinations of data and model variations, load datasets, apply variations, train mod-
els, and log all relevant details. An high level overview of the software architecture is shown in
figure 2.

Figure 2: A high-level overview of the different components and their interactions
within the software architecture. The process begins with the random generation of
combinations of data and model variations. These variations are then divided: data
variations are applied to the original data in the data processor, while model variations
are used to create the model. The model trainer uses the processed data to train the
model and evaluates the results on the test set. A logger keeps track of the generated
variations and records the training and evaluation results.

The variation generator creates two types of variations: data variations (e.g., color inversion,
contrast adjustments) and model variations (e.g., batch size, optimizer choice). We use equiva-
lence partitioning to ensure comprehensive coverage of parameter values, avoiding problematic
combinations through constraints.

Data variations are applied using two strategies: in-place and appending. In-place modifies
existing data, allowing for layered augmentations, while appending adds modified data to a
copy of the original dataset, maintaining its integrity. Outlier detection, through isolation
forests, identifies anomalies within each digit label, resulting in a varied dataset that enhances
model robustness.

The architecture supports various data augmentations, including color inversion, contrast ad-
justments, rotations, and translations. These augmentations are applied in a specific sequence
to avoid inefficiencies and ensure reproducibility. Additionally, we explore the effects of includ-
ing or excluding outliers and adjusting the amount of augmented data.

9

Model variations involve adjusting hyperparameters such as the number of hidden layers, train-
ing epochs, batch size, dropout layers, optimizer types, and activation functions. We also
introduce the use of validation sets to prevent overfitting.

By systematically varying these parameters and using a structured experimental approach, we
generate a diverse set of models, each with unique decision-making processes, contributing to
our study of model multiplicity.

In the subsequent chapter, we examine the generated models to identify those that exhibit
multiplicity. This involves evaluating each model’s performance using a test set and grouping
similar models into Rashomon sets. Initially, the models are assessed based on their accuracy
on individually created handwritten digit samples, filtering out models with poor performance
or low confidence. Models that pass this evaluation are grouped according to their prediction
similarities for each test sample.

The chapter introduces the concept of frequent itemsets to identify sets of models that frequently
predict the same labels. This approach is similar to the Market-Basket model used in data
mining, where models are treated as items and prediction groups as baskets. We apply the A-
Priori algorithm to determine frequent itemsets, setting a high support threshold to ensure that
only highly similar models are considered. This results in the identification of pairs, triplets,
and larger sets of models with similar predictive behaviors.

The chapter also explores the characteristics of these frequent itemsets by analyzing the vari-
ations in their training data and hyperparameters. Using metrics like Manhattan and Cosine
distances, we measure the similarity between models within each itemset. The results show
that models in frequent itemsets are not only similar in their predictions but also in the vari-
ations they underwent during training, suggesting the potential for generating Rashomon sets
by creating models with similar variations.

In the final chapter, we focus on explaining model multiplicity. In user-centered AI applications,
relying on a single model can lead to overtrust or undertrust issues. Introducing multiplicitous
models, which have similar predictive accuracy, offers a solution by allowing users to consult a
set of models, known as a Rashomon set, instead of a single model. This collective approach
can enhance decision-making in critical systems like medical or legal advice platforms.

To explain the differences in predictions among models in a Rashomon set, we visualize their
predictive behaviors and analyze the variations in their hyperparameters and data compositions.
For instance, we examined three models from a Rashomon set that showed different confidence
levels in predicting a sample labeled “5”. Analysis revealed that differences in data augmen-
tations, such as horizontal translations and contrast adjustments, significantly influenced their
confidence levels.

In addition to dataset composition, model hyperparameters also play a crucial role, though
interpreting their impact requires expert knowledge in neural networks. By understanding
these differences, users can assign biases to certain models based on the specific characteristics
of the sample they are evaluating.

Contents

1 Introduction 12

2 Model multiplicity 15
2.1 Defining model multiplicity . 15
2.2 Different ways of multiplicity . 15

2.2.1 Procedural multiplicity . 16
2.2.2 Predictive multiplicity . 17

2.3 Impact on model evaluation . 17
2.3.1 Occam’s razor . 18
2.3.2 Other desirable properties . 18
2.3.3 Impact of the law . 19

2.4 The implications of model multiplicity . 19
2.4.1 Underspecification . 19
2.4.2 Justification . 20

2.5 Related work . 20
2.5.1 Meta-rules . 21
2.5.2 Metrics to justify multiplicity . 22

3 Generating many models 24
3.1 The architecture . 24

3.1.1 Variation generator . 24
3.1.2 Data loader . 27
3.1.3 Dataprocessor . 27
3.1.4 Model creation, training and evaluating 27
3.1.5 Logging . 27

3.2 Variation on parameters . 29
3.2.1 Amount of hidden layers . 29
3.2.2 Number of epochs . 29
3.2.3 Batch size . 30
3.2.4 Dropout . 32
3.2.5 Optimizer . 32
3.2.6 Activation function . 34
3.2.7 Presence of a validation set . 35

3.3 Variation on data . 36
3.3.1 Splitting data into outliers and typicals 36
3.3.2 Color augmentation . 39
3.3.3 Position augmentation . 41
3.3.4 In-place and appending . 44
3.3.5 The order of operations . 45

4 Searching for multiplicity in many models 47
4.1 Evaluating the generated models . 47

10

CONTENTS 11

4.1.1 The test set . 47
4.1.2 The evaluation approach . 48

4.2 Grouping of similar answers . 48
4.2.1 The frequent itemsets problem . 50
4.2.2 A-Priori algorithm . 51

4.3 The results . 52
4.3.1 The evaluation process . 52
4.3.2 The grouping process . 54
4.3.3 Are models in frequent itemsets similar? 55

5 Explaining model multiplicity 59
5.1 Explaining by differences . 59
5.2 Related work . 63

6 Conclusions 65
6.1 Conclusions and future work . 65
6.2 Personal reflection . 66

Chapter 1

Introduction

As artificial intelligence (AI) becomes more prevalent in our daily lives [AB18], it extends its
reach into more sensitive domains of life, such as healthcare [YBK18], finances and the justice
system [Oli+22]. People start using machine learning (ML) models that generate predictions
by analyzing private data, such as their medical or criminal history. The predictions made in
these critical fields can become life altering, e.g. COMPAS determining the risk of recidivism in
prisons [Far+23], bank loan qualification or university admission [DF18a]. Designers of machine
learning models have the ability to introduce certain biases into the data which the algorithms
learn from, this to influence the resulting predictions. Using the example of COMPAS, the data
can be altered in a way so that prisoners having a certain gender or race are more frequently
labeled as a higher risk of recidivism, to promote a specific agenda or policy. In these high-
stake situations, the need for gaining insights into how these algorithms make their conclusions
becomes fully apparent. If this process is neglected and the models become so complex that
its decision-making process cannot be easily interpreted, they are referred to as black-box
models, as shown in figure 1.1. Users of these systems will find themselves in a position where
they either have to blindly trust the model (overtrust) or may be hesitant to depend on the
predictions (undertrust). Non-expert users of these models with very little knowledge of the
technical capabilities of the system find themselves quite often in this position. Overtrusting
or overrelying on the AI can have dangerous consequences when the AI makes a mistake or the
data is manipulted as in the COMPAS example. While undertrust hinders the adoptation of
systems using artificial intelligence in society [Lar23].

Figure 1.1: A schematic overview of a black-box model that computes an output based
on an input, without explaining the inner logic.

Researchers and governments have argued for algorithmic accountability or a “right for ex-
plainability”. Which resulted in laws in the EU General Data Protection Regulation (GDPR)

12

13

that establish a certain amount of transparency around automated decision-making [Kam19].
These laws ensure that users receive meaningful information about the inner workings of these
systems and they can be referred to as white-box models. However, as artificial intelligence
takes on increasingly advanced tasks in society, its inner workings become more complex as
well. The explanations provided for these complex models are often based on their algorithmic
decision-making, which non-expert users struggle to understand. This literacy gap hinders their
understanding on how and why their input leads to a certain outcome [Che+19]. This problem,
in combination with the inappropriate amount of trust in these systems, led to the emergence
of a subfield of AI called Explainable Artificial Intelligence (XAI).

XAI aims to transition the development of black-box models towards creating more transparent
AI. It is essential to provide users with insight into these systems and give them the information
to point out errors or flawed systems. Transparent AI does not only benefit end users; developers
of these systems can proactively avoid issues by understanding the details on how the system
behaves. Which can also be used to continuously improve them more easily. Learning new
facts from interpretable models, such as new chess strategies from AlphaZero, can be desirable
[AB18]. When the tools and technologies from XAI are correctly applied, users’ over- and
undertrust will be transformed into an appropriate amount of reliance in AI [FW23].

Despite the numerous benefits XAI brings, there are multiple reasons why it is not systematically
used. The biggest reason being, the complexity of creating interpretable AI, especially the
widely-used deep neural networks (DNNs). These models consist of multiple hidden layers each
having numerous neurons. The collaboration of these neurons often result in a high accuracy,
but interpreting such a nested network is a difficult task. There is often a trade-off between
accuracy and model interpretability, where the most accurate models are often less explainable
and the more interpretable models less accurate [AB18]. However, recent research [Che+18],
has shown that interpretable models can be as accurate as other black-box models. These
findings can be based on the “multiplicity of good models” phenomenon [HG18]. It says that
multiple models can have the same amount of accuracy for a certain task, but can be completely
different in their internal decison making process [BRB22].

This has sparked interest in the way models come to their internal decision process, based on
their architecture and the data they are trained on. If we make a small change in the model’s
dataset or architecture, its internal decision making should change aswell, but can we link the
made differences to the changes in the decision process? The question we search to answer in
this thesis is, can the decision process of a model be explained by comparing the changes in its
trained data and architecture with a large amount of similar but slightly varried models. To
do this we train an extreme amount of redundant models and compare their predictions and
differences to try explain the inner logic of these models.

In this thesis, the choice is made to focus on neural networks trained on the MNIST dataset,
introduced in [Lec+98]. The rationale for choosing neural networks is that these models are not
inherently interpretable and that they are modular. The latter characteristic means that they
can be easily customised, for example, by adding a layer or changing activation functions. This
flexibility will enable and simplify the process of creating varried models. The MNIST dataset
consists of 70000 28x28 grayscale images of the ten handwritten digits, with ten examples of
each digit shown in figure 1.2. The dataset is originally derived from the larger NIST Special
Database 19, which also contains handwritten letters. The MNIST dataset has become a
standard benchmark for classification tasks in machine learning and other computer vision
applications [Coh+17]. The fact that these images are grayscale and the small dimensions of
the images make the dataset easy to work with and perhaps expand. Another more personal
reason to validate the choice of the dataset, is that in the course “Human-AI Interaction”, the
very basis of this study was laid. During an assignment in this course I studied the impact on
the accuracy of neural networks when the digits in the MNIST dataset were slightly altered.
During this introduction, it was made clear that when a model trained on the original dataset
was given a handwritten sample, that the accuracy of the model plummeted. This occurrence
intrigued me to further research how this could happen, which has lead to the development of

14 CHAPTER 1. INTRODUCTION

this thesis.

Figure 1.2: The MNIST dataset, numbers zero up until nine are the labels which are
pictified as the columns, of each label there are ten shown examples. The examples are
already diversified, e.g. a seven with and without a horizontal stroke, which helps in the
further creation of a diverse dataset. [LYP16]

This thesis is divided into multiple chapters: “Model Multiplicity”, “Generating many Models”,
“Searching for Multiplicity in Many Models” and “Explaining Model Multiplicity”. The first
chapter delves into the topic of model multiplicity, explaining its meaning and how it can be used
to increase trustworthiness. The second chapter discusses the method introduced to generate
large numbers of models that vary on different parameters. The third chapter covers the process
of searching through these generated models and grouping similarly behaving models after a
filtering process. The final chapter explains how the different parameters used to generate these
models account for the varied predicting behaviors of models with similar accuracy.

Chapter 2

Model multiplicity

The first chapter delves into the concept of model multiplicity and its formulation in a general
context. It begins with a definition of model multiplicity, followed by a discussion and com-
parison of various types of multiplicity. Additionally, the chapter explores the impact of and
challenges associated with multiplicity and analyzes related work.

It is important to note that this section will primarily focus on model multiplicity in clas-
sification models. While this phenomenon also occurs with regression models, the decision
boundaries used by classifiers often provide clearer examples for illustration. It’s worth noting
that much of the discussion here draws on insights from the seminal work “Model Multiplicity:
Opportunities, Concerns, and Solutions” by Black et al. [BRB22], one of the few high-quality
sources available on this emerging topic

2.1 Defining model multiplicity

Model multiplicity was first introduced as “the Rashomon effect”, which is based on a Japanese
movie. In this movie, four people spectate the same criminal incident from four different
vantage points. Whenever the case came to court, all four witnesses stated the same facts but
their stories of what happened are very different because of the different vantage points. The
Rashomon effect signifies that within a set of functions, there exists a multitude of different
elements capable of producing the same minimum error rate [Bre01]. What this means is that
when you have a collection of functions fitted on the same dataset, a certain amount of functions
will have the same accuracy while having different parameters. The set of functions that exhibit
this behavior is often referred to as the Rashomon set [DAm21].

When the term “functions” in the definition is substituted with “models”, it can be understood
as follows: “models achieving comparable accuracy for a specific prediction task while differing
in terms of their internals”. Here, “internals” refer to the internal processes of a model that
dictate how it makes a certain decision [BRB22]. The concept defined by using the term
“models” instead of “functions’ is referred to as “Model Multiplicity”. To further clarify this
definition, an example is provided in figure 2.1. This figure illustrates two binary classification
examples, each depicting two examples of Rashomon sets and thus, model multiplicity.

2.2 Different ways of multiplicity

As defined in section 2.1, model multiplicity describes how two or more models can be internally
different yet yield the same accuracy for a certain prediction task. In this section, we explore
two ways in which equally accurate models can differ: either in their internals or in their
predictions.

15

16 CHAPTER 2. MODEL MULTIPLICITY

Figure 2.1: Two independent cases of model multiplicity, a simpler linear model (on the
left) and a more complex non-linear model (on the right). Both cases involve the same
binary classification task, which is to label the dots with the corresponding color. Despite
the two models in both examples achieving the same accuracy, the models have a diferent
decision boundaries, illustrating their distinct decision-making processes [BRB22]. Image
from [BRB22].

2.2.1 Procedural multiplicity

When two or more models achieve the same accuracy for a prediction task but differ in their
internal logic, this multiplicity is referred to as procedural multiplicity [BRB22]. The internal
logic of a machine learning model can be represented as a decision boundary. The decision
boundary is a hyperplane that separates different classes in a specific feature space. It serves
as the representation of a line or plane that indicates where the model’s predictions transition
from one class to another. Essentially, the decision boundary is a visual representation of how
a model determines which label to predict based on the features along the axes.

For instance, in figure 2.2, two examples of decision boundaries in the same two-dimensional
feature space are illustrated. These decision boundaries vary in complexity; example A depicts
a linear decision boundary, while example B represents a non-linear decision boundary. Despite
their different complexities, both models in this example achieve the same accuracy, namely
100%, in labeling each sample with the corresponding label.

Figure 2.2: Two representations of decision boundaries are depicted, each in its own
two-dimensional feature space. In subfigure A, a simple straight line serves as the border
between both classes. In contrast, subfigure B features a curved line that delineates the
boundary between the two classes.

2.3. IMPACT ON MODEL EVALUATION 17

As exemplified above, procedural multiplicity can occur when different but equivalent decision
boundaries are utilized. Decision boundaries are learned during the training phase of a machine
learning model. The complexity of the boundary varies based on multiple factors:

1. The dataset: if the dataset is imbalanced, the boundary can be biased toward the majority
class.

2. The weight initializer, if the weights of a neural network are initialized randomly or
according to a certain algorithm [Meh+20].

3. The machine learning algorithm: simple models like linear models produce linear deci-
sion boundaries, whereas deep neural networks can produce complex decision boundaries
ranging from linear to curved, depending on factors such as the number of hidden layers
[BRB22].

4. The amount of learning: overfitting and underfitting can affect the complexity of the
decision boundary.

Another way to achieve procedural multiplicity is by employing multiple models with the same
accuracy but utilizing different features from the data. This means that one model may pro-
cess a specific subset of the data to predict the label, while another model utilizes a different
subset. Consequently, the decision boundaries of both models are entirely different, as the axes
representing the features are not the same [BRB22].

To provide a concrete example, consider two machine learning models designed to score a
person’s creditworthiness. One model bases its decision on the user’s gender, while the other
model relies on their income and tax information. Despite predicting the same label, the models’
decision-making processes are fundamentally different. However, users will remain unaware of
any differences between them, as both models will behave identically and predict the same
labels [And+20]. This introduces the need for explanations in multiplicity, allowing users to
gain insights into how these models differ in their operations.

2.2.2 Predictive multiplicity

In addition to procedural multiplicity, there is predictive multiplicity. Predictive multiplicity
occurs when two or more models have the same accuracy but differ in at least one prediction.
This means that models with the same accuracy may predict different labels for some datapoints
in the same input set [BRB22] [MCU20].

Different model predictions on a certain input indicate differences in their decision boundaries.
Consequently, predictive multiplicity can be considered a special case of procedural multiplicity
[BRB22]. However, the challenge lies in discovering predictive multiplicity. Whenever procedu-
ral multiplicity is found, the process of searching for at least one data point where the models
in a Rashomon set disagree can become endless.

2.3 Impact on model evaluation

When training a model, various choices must be made, including what type of model to use,
how to format the input data, which data attributes are important for the model, the batch size,
the number of epochs, and whether the model should see a validation set. The most common
approach to addressing these questions is by training models with different configurations and
selecting the model with the highest accuracy. However, in the presence of model multiplicity,
multiple models may achieve the same accuracy [BRB22]. This raises an important question:
which is the best model if multiple ones have the same accuracy?

18 CHAPTER 2. MODEL MULTIPLICITY

Figure 2.3: The accuracy-interpretability trade-off between the most common machine
learning algorithms. Models with high inherent interpretability often have a lower pre-
dictive power and consequently may achieve lower accuracy. Conversely, models with
high predictive power may sacrifice interpretability.[AZA21]. Image from [AZA21].

2.3.1 Occam’s razor

One possible approach is to apply Occam’s razor principle, often interpreted as favoring simpler
solutions. In the context of model multiplicity, this principle suggests that when multiple models
achieve the same accuracy, the simplest should be chosen. Simplicity in machine learning
is often equated with the interpretability of the underlying algorithm [Bre01]. For instance,
models employing inherently interpretable algorithms such as decision trees or linear models
are considered simple, whereas deep neural networks are often perceived as more complex. To
illustrate, when both a decision tree and a deep neural network achieve the same accuracy for
a prediction task, the decision tree should be favored due to its simpler architecture.

However, this solution falls short when multiple models possess the same accuracy and archi-
tectural complexity. This represents the dilemma that cannot be resolved solely by adhering to
Occam’s razor. Consequently, when there are multiple models in a Rashomon set, there is no
single “best” model if only accuracy is being accounted for.

2.3.2 Other desirable properties

Thus, determining the best model solely based on accuracy is no longer feasible. At first glance,
this may appear to be a problem. However, it actually offers more flexibility to optimize models
for other desirable properties. Properties such as interpretability, fairness, and robustness
were previously viewed as trade-offs between having these and achieving the highest accuracy
[Ber+19]. In figure 2.3 the trade-off between inherent interpretability and accuracy for the most
common model architectures is depicted. Now, thanks to model multiplicity, these desiderata
can guide the model selection process in addition to maximizing predictive accuracy.

For example, in life-altering situations such as the COMPAS case introduced in chapter 1, the
interpretability of the model is crucial. Therefore, when two or more models form a Rashomon
set, the model with the highest interpretability should be prioritized. If other desirable prop-
erties are equally important, the choice should be made to select the model that best fits these
desiderata. Thus, the model evaluation process shifts to prioritize selecting the model that best
fits the problem, rather than solely focusing on accuracy.

2.4. THE IMPLICATIONS OF MODEL MULTIPLICITY 19

2.3.3 Impact of the law

Thus, model multiplicity provides the freedom to prioritize other desiderata in the model selec-
tion process without sacrificing accuracy. However, when focusing on the model’s fairness, the
freedom that allows model developers to focus on different features of the data can have legal
implications.

In high-stakes scenarios, machine learning models may be trained on data containing sensi-
tive personal information such as gender, ethnicity, sex and race [RHN23]. These features,
often termed as normatively objectionable, are considered morally unacceptable as a basis for
decision-making. Models that utilize these attributes or a combination of them to make de-
cisions can lead to discrimination. The discrimination law, is the law that prohibits model
developers to create these models in certain domains. With model multiplicity, developers can
create models that abstain from using these attributes while maintaining equivalent accuracy
to models that do [BRB22].

To exemplify this, let’s consider the COMPAS example. The original COMPAS model aimed
to predict recidivism to assess a person’s likelihood of committing a crime. The COMPAS
dataset consists of 137 features about an individual and their past criminal record. COMPAS
has been frequently accused of racial bias, allegedly negatively impacting black defendants more
than white defendants [DF18b]. Assuming these accusations are true and that the model uses
features related to the defendant’s race, model multiplicity demonstrates that it’s possible to
train a model that is equally accurate without using racially biased features.

2.4 The implications of model multiplicity

Multiplicity provides model developers with increased flexibility to prioritize desiderata such
as interpretability, fairness, and robustness alongside accuracy. However, this flexibility can
also lead to significant problems. In this section, two of these problems will be discussed:
underspecification and justification.

2.4.1 Underspecification

Continuing to choose a model on the basis of acuracy alone, disregards other important factors,
such as interpretability. When evaluating different models, as discussed in Section 2.3.2, it
becomes necessary to choose the model that best fits the desired properties, or desiderata.
This underscores the need to specify these properties upfront, as without explicit definition,
it is unlikely that a model will naturally exhibit them [BRB22]. This challenge is known in
literature as underspecification, emphasizing the importance of defining properties in advance
to guide model development [DAm+20]. The following

As discussed in section 2.3.3, discrimination laws impose strict prohibitions on the use of cer-
tain characteristics in decision-making across a range of high-stakes domains, such as recidivism
and lending. Model multiplicity demonstrates to developers that models can be trained without
relying on normatively objectionable features. However, a challenge arises when removing pro-
scribed features does not necessarily eliminate disparities. This can occur when the unfavorable
predictions made by the model are indirectly influenced by other features. For example, in sec-
tion 2.3.3, we assumed that the COMPAS model used features directly linked to the defendant’s
race. The solution was to train multiple equally accurate models that do not use these features.
However, what if these newly generated models use other features that indirectly correlate with
the defendant’s skin color? This could result in the same discrimination as the model that
directly used the defendant’s race [BRB22].

Furthermore, model developers can exploit models that do not directly rely on controversial
features while remaining discriminatory. This phenomenon, known as proxy discrimination,
occurs when neutral traits are used as proxies for prohibited traits [DCF17]. It allows the
behavior of the model to be justified by explaining that it does not use legally proscribed

20 CHAPTER 2. MODEL MULTIPLICITY

Figure 2.4: Three distinct defendants undergo assessment by three unique COMPAS-
like models. All models demonstrate identical accuracy rates of 66.6%, as verified by
the ground truth depicted in the final row. Because of predictive multiplicity all three
inmates are treated differently by at least one model. For example, when evaluated by
model 3, defendant A is assigned a high risk of recidivism despite having a low actual
risk. In certain scenarios, such as with defendant C and model 1, unjustifiable positive
outcomes may arise. The lack of justification beyond accuracy for these predictions
underscores the ethical dilemmas they present.

features. Proxy discrimination is a prime example of a result caused by underspecification;
models are less likely to discriminate against users if that goal was explicitly defined during the
model development process.

2.4.2 Justification

Multiplicity of models not only introduces the challenge of underspecification but also raises
concerns about justification. When developers create multiple models leading to predictive
multiplicity, these models may yield different labels for the same data point. The issue arises:
what rationale can be provided when one model predicts unfavorably for an individual while
another equally precise model predicts favorably [BRB22]?

To illustrate, consider a scenario where a defendant assessed by the COMPAS model is deemed
to have a high risk of recidivism, while another model with comparable accuracy assigns a low
risk label. Without considering any additional parameters beyond accuracy, there is no clear
basis for favoring one model over the other This implies that due to model multiplicity, there
will always exist an alternative model capable of altering an individual’s prediction. In figure
2.4, this concept is elaborated upon with three different inmates (A, B, and C) being assessed
by three distinct yet equally accurate models. Consequently, model developers are deprived of
a solid justification, particularly in high-stakes scenarios where additional criteria are essential
to justify predictions [BRB22].

2.5 Related work

As model multiplicity is a rather new topic, there has not been done a lot of research on it.
In this section the research work around model multiplicity will be discussed and what their
findings where.

2.5. RELATED WORK 21

Figure 2.5: The complete set of models (grey) encompasses those with the same ac-
curacy for a given prediction task (blue), which, in turn, includes models adhering to
the meta-rules (green). As more rules are defined, the number of candidate models for a
specific task decreases.

2.5.1 Meta-rules

In section 2.4.1, the issue of underspecification is introduced, which arises when model develop-
ers fail to specify the desired behavior of models upfront. Black et al. proposed the concept of
meta-rules as a solution to the underspecification problem. Meta-rules entail a document out-
lining a set of criteria for acceptable procedural and predictive behavior beyond mere accuracy
[BRB22].

Meta-rules serve as a valuable tool for clarifying to model developers how to optimize for
desired properties, as discussed in section 2.3.2, during the model building process. These
criteria also function as a model evaluation tool; all models achieving similar levels of accuracy
on a prediction task (Rashomon set) must adhere to these meta-rules and exhibit behavior
consistent with them [BRB22]. This approach yields a reduced set of candidate models, as
illustrated in figure 2.5.

When a set of models meets the criteria outlined in the meta-rules, these rules can be used
to justify why a particular model is chosen. Instead of selecting models arbitrarily, developers
explicitly evaluate the differences between Rashomon models. However, it becomes challenging
to explore all possible models that satisfy these rules when strict constraints are imposed. This
challenge is aggravated by limitations such as the developer’s ability to conduct experiments
and factors like time and budget constraints. To address this, Black et al. suggest explicitly
defining all the constraints developers may encounter, including factors like available funding, as
these constraints influence the breadth of the search for multiplicitous models [BRB22].

Following the identification of the meta-rule-compliant model set, a crucial question arises: how
do we select a model from this final set? Black et al. propose three aggregation techniques to
distill a single model from a collection of equally “good” models. These techniques aim to restore
justifiability by elucidating the process and criteria for model selection. To illustrate these
proposals, let’s first define the group of models that satisfy the meta-rules asM [BRB22].

The first technique is called mode aggregation. When this technique is applied, a voting system
is established. Each model in M predicts a label for a certain sample x. Each model “votes”
for its predicted label, and the label with the highest number of votes is chosen as the correct
label for that sample. The mode aggregator m is the result of this voting system and harnesses

22 CHAPTER 2. MODEL MULTIPLICITY

the collective knowledge embedded within all voting models. By having this collective knowl-
edge, the aggregator minimises the chance for a disagreement between its prediction and any
individual chosen model from M [BRB22].

Randomized predictions and random model selection are the second and third technique pro-
posed by Black et al. and are based on the principle of randomness. With randomized pre-
dictions, a random model from M is chosen for each sample x, and that model decides the
label for that sample. On the other hand, random model selection involves arbitrarily choosing
one model M from and using it to predict labels for all samples. The distinction lies in the
fact that randomized predictions involve selecting a new model for each sample, while random
model selection chooses a model once for all samples [BRB22].

Each of these techniques, when combined with the documented meta-rules, offers a means of
justifying why a particular model is chosen over another. However, the context in which the
model operates often dictates the preferred technique. To exemplify, consider models operating
in the legal domain, such as the COMPAS model. In such domains, the government bears a legal
burden to ensure consistency in decision-making, rendering randomized predictions ill-advised.
Moreover, in legal cases, preference is often given to stable model explanations, making reliance
on a single model inadvisable. Consequently, mode aggregation emerges as the recommended
technique to address multiplicity in these scenarios. Conversely, in low-stake scenarios like
advertising, where consistency is less critical, and variety in exposure is desirable, randomized
predictions prove to be the optimal technique. This approach ensures that all models have an
impact in this low-stakes environment, allowing for a diverse range of ads to be shown to users
[BRB22].

2.5.2 Metrics to justify multiplicity

As discussed in Section 2.4.2, in addition to underspecification, a lack of justification presents
a challenge stemming from predictive multiplicity. To elucidate this issue further, Marx et al.
propose that developers of multiplicitous models should quantify and disclose multiplicity to
stakeholders, akin to how we quantify and disclose test error. This approach would necessitate
changes in how models are developed and deployed in applications involving human interac-
tion [MCU20]. Marx, Calmon and Ustun investigate how stakeholders could be informed by
introducing two metrics: ambiguity and discrepancy.

Before defining these metrics, the authors establish the concept of a Rashomon set as an ϵ-level
set, with ϵ denoting the maximum acceptable error tolerance in accuracy among models to be
included in the ϵ-level set.

Ambiguity

Marx et al. introduce the metric ambiguity over the ϵ-level set Sϵ(h0). This metric measures
the proportion of data points in a dataset (n) that receive conflicting labels when classified by
another model h ∈ Sϵ(h0). The definition of ambiguity (α) involves a baseline classifier (h0),
which represents the model typically deployed, and a dataset characterized by features denoted
by x. The formal depiction of ambiguity is provided in equation 2.1.

αϵ(h0) :=
1

n

n∑
i=1

max
h∈Sϵ(h0)

1[h(xi) ̸= h0(xi)] (2.1)

Essentially, ambiguity quantifies the extent to which predictions can vary when using an al-
ternative model with comparable accuracy. This metric indicates the proportion of individuals
whose predictions are influenced by the choice of model from a Rashomon set and, consequently,
the proportion of individuals subject to potential discrimination [MCU20].

2.5. RELATED WORK 23

Discrepancy

Discrepancy (δ) over the ϵ-level set Sϵ(h0), is the maximum proportion of inconsistent pre-
dictions between the baseline classifier and another classifier h ∈ Sϵ(h0), which is shown in
equation 2.2

δϵ(h0) := max
h∈Sϵ(h0)

1

n

n∑
i=1

1[h(xi) ̸= h0(xi)] (2.2)

In essence, discrepancy quantifies the maximum number of predictions that could change if the
baseline model were replaced by an equally accurate alternative.

When these metrics are given to the stakeholders, the model evaluation process discussed in
section 2.3 becomes more fine cut. As stakeholders gain insight into the potential ramifica-
tions of changing the deployed model and whether deployment is warranted in the first place
[MCU20].

Chapter 3

Generating many models

As outlined in the introduction (see chapter 1), our objective is to create a large set of models
based on the MNIST dataset. These models will have similar accuracy levels but will differ in
how they arrive at their decisions, achieving what we term ’model multiplicity’ (discussed in
chapter 2). Unlike the examples in the previous chapter, our experiments use multi-class clas-
sifiers instead of binary ones. Our first step involves generating a significant number of models
that vary in their internal decision-making processes. This section details our experimental
approach to accomplish this.

To induce variations in the models, we will adjust several aspects, such as the training data and
the parameters of the machine learning algorithms (explored further in sections 3.2 and 3.3).
Subsequently, we will describe the structure of our experiment, including the key components
and how they interact to produce models with diverse decision-making processes.

3.1 The architecture

The objective of this experiment is to generate models that vary along different dimensions,
including model hyperparameters (see section 3.2) and data variations (see section 3.3). To
achieve this, we require a method capable of automatically generating a large quantity of models
based on random combinations of these hyperparameters and data variations. This automation
is essential to avoid the bias and significant time investment associated with manual model
creation. In this section we introduce a software architecture that facilitates the generation of
numerous neural networks with varying properties.

This architecture consists of several components, each performing a specific task to generate
a fully trained neural network on the MNIST dataset. However, the system is designed to
work with any dataset and can incorporate new variations as needed. The components handle
tasks such as generating random combinations of variations, loading the dataset, applying
data variations, creating and training the model, and logging. Figure 3.1 shows how these
components work together to achieve the final goal.

3.1.1 Variation generator

The equivalence partitioner is responsible for generating combinations of variations. This com-
ponent creates two types of variations: model variations and data variations, each consisting of
different sets of parameters.

Data variations are composed of parameters, such as color inversion or contrast adjustments,
which will be further discussed in section 3.3. These parameters generally cover three aspects:
the extent of data to be affected, the intensity of the data manipulation, and whether it should

24

3.1. THE ARCHITECTURE 25

Figure 3.1: A high-level overview of the different components and their interactions
within the software architecture. The process begins with the random generation of
combinations of data and model variations. These variations are then divided: data
variations are applied to the original data in the data processor, while model variations
are used to create the model. The model trainer uses the processed data to train the
model and evaluates the results on the test set. A logger keeps track of the generated
variations and records the training and evaluation results.

26 CHAPTER 3. GENERATING MANY MODELS

Parameter Description Parameter partitions

Amount typicals Percentage of typicals al-
lowed

0, 0.2, 0.4, 0.6, 0.8, 1

Amount outliers Percentage of outliers al-
lowed

0, 0.2, 0.4, 0.6, 0.8, 1

Data variation amount Percentage of data to ap-
ply augmentation on

0, 0.2, 0.4, 0.6, 0.8, 1

Data variation strategy In-place or append aug-
mentation strategy

in-place, appending

Contrast factor Adjusts contrast 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6,
1.8

Rotation degrees Amount of degrees to turn -20, -15, -10, -5, 0, 5, 10, 15, 20
Translation factor Amount of pixels to trans-

late
-2, -1, 0, 1, 2

Hidden layers Amount of hidden layers 1, 2, 3
Dropout Include or exclude

dropout layers
true, false

Optimizer Optimizer for the model adadelta, adagrad, adam,
adamax, ftrl, nadam, rmsprop,
sgd

Activation function Activation functions for
the hidden layers

elu, exponential, gelu, hard sig-
moid, linear, relu, sigmoid, soft-
max, softplus, swish, tanh

Batch size The batch size for training 32, 64, 128, 256, 512

Table 3.1: A detailed overview of the various data and model augmentations used in
the experiment. The upper section of the table lists the data variations, while the lower
sections covers model variations, detailing the structure of the neural network.

be applied in-place or appending. For instance, consider the augmentation technique of contrast
adjustments. The associated parameters include the amount of data to be contrast-adjusted,
whether the contrast should be increased or decreased, and whether the adjustments should
be made to the working dataset or the original dataset. Exceptions to these three parameters
include outlier detection and color inversion augmentations. Outlier detection involves two
parameters: the amount of typicals and the amount of outliers. Similarly, color inversion
involves two parameters since the strength of inversion cannot vary.

Model-based variations are hyperparameters such as batch size or choice of optimizer, which
are determined before the training process, these are described in section 3.2. Unlike data
variations, these parameters are individual and not grouped.

Randomness in creating different parameter combinations is a core aspect of this experiment.
However, pure randomness could result in incomplete coverage of cases or specific scenarios. To
address this, we implement equivalence partitioning. All parameters are divided into partitions
considered equivalent. For example, the percentage of outliers is divided into five partitions:
0, 0.2, 0.4, 0.6, 0.8, and 1. These values represent five equivalence classes: the lower boundary
(0), low (0.2), lower middle (0.4), upper middle (0.6), high (0.8), and the upper boundary (1).
Table 3.1 shows all parameters and their corresponding partitions.

Some combinations of partitions can cause issues in the final result. For example, if both
the amounts of typicals and outliers are set to zero, no data will be present in the dataset,
causing obvious problems. To avoid such problematic combinations, constraints are applied. If
a combination of parameters is problematic, it is regarded as invalid, and a new combination
is generated.

3.1. THE ARCHITECTURE 27

3.1.2 Data loader

The data loader is responsible for loading the original data and storing both the working data
and the original dataset. This makes it a crucial component of the experiment. It ensures that
other components can access the correct amount of data from the appropriate subset, allowing
augmentations to be applied accurately.

3.1.3 Dataprocessor

The data processor is the component responsible for executing all data variations provided by
the equivalence partitioner on the dataset. Upon receiving these variations, it reorders them
in the correct sequence to avoid undesired variations, which will be further discussed in section
3.3.5 and executes them accordingly. The data processor works closely with the data loader,
taking data from it before applying the variations and storing the results back into the data
loader.

3.1.4 Model creation, training and evaluating

The creation of models based on the hyperparameters based on the random partition given by
the equivalence partitioner is done in the model trainer component. It first generates the model
by building the different layers prescribed by the partition, then it compiles it with correct
optimizer and loss function. After these two steps the model is ready to receive the augmented
data from the data loader which it can train on. Finally the test set is given to evaluate the
generalization capabilities of the model on unseen data.

3.1.5 Logging

Since the process of random model generation is automated, we cannot know which variations
are applied to a specific model. This information is crucial for comparing multiple models
with the same accuracy, based on the variations applied to the training data and the model
architecture. To address this, we need to log the augmentations applied to the dataset and the
hyperparameters introduced to the model. This logging is managed by the delta component,
which is linked to both a model and a dataset, representing how each model differs from the
default dataset and model.

The delta component is integrated into various components such as the equivalence partitioner,
data processor, and model trainer. Each time a new variation partition is created, a new delta
is generated to log all the variations. When the data processor applies these variations, it logs
the amount of data affected and the label distribution. Similarly, when a model is trained and
evaluated by the model trainer, the results are logged in the delta. The data logged in a delta
include:

1. Random seed: The seed used to ensure reproducibility, used in methods like the splitting
of the training dataset.

2. ID: A unique identifier for the delta, used to track and link it with the corresponding
model.

3. Model layers: Configuration details of the model layers, including the number of neurons
and activation functions.

4. Loss function: The loss function used, always set to sparse categorical cross entropy.

5. Optimizer: The optimization algorithm used to minimize the loss function during train-
ing.

6. Batch size: The number of data samples processed in each training iteration.

7. Dataset: Description of the dataset composition, including applied variations and data
distribution across training and validation sets.

28 CHAPTER 3. GENERATING MANY MODELS

Entry Description Value Ranges

Amount of layers Number of hidden layers 1, 2, 3
Dropout Inclusion or exclusion of dropout layers 0, 1
Activation function One-hot encoded representation of the

activation functions
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10

Batch size One-hot encoded representation of the
batch size

0, 1, 2, 3, 4

Validation set Integer indicating the presence of a val-
idation set

0, 1

Outliers Float representing the percentage of
outliers in the dataset

[0, 1]

Typicals Float representing the percentage of
typical data points in the dataset

[0, 1]

Invert Float representing the percentage of in-
verted data in the dataset

[0, 1]

Horizontal translation Float representing the percentage of
horizontally translated data in the
dataset

[0, 1]

Amount of horizontal translation Number of pixels translated horizon-
tally

-2, -1, 0, 1, 2

Vertical translation Float representing the percentage of
vertically translated data in the dataset

[0, 1]

Amount of vertical translation Number of pixels translated vertically -2, -1, 0, 1, 2
Rotate Float representing the percentage of ro-

tated data in the dataset
[0, 1]

Amount of rotation One-hot encoded representation of de-
grees rotated

0, 1, 2, 3, 4, 5, 6, 7

Contrast Float representing the percentage of
contrast-adjusted data in the dataset

[0, 1]

Amount of contrast adjustment Strength of contrast adjustment 0.2, 0.4, 0.6, 0.8, 1,
1.2, 1.4, 1.6, 1.8

Table 3.2: Detailed overview of the various entries in a compressed delta, including de-
scriptions and value ranges for each parameter related to data and model augmentations.

8. Has validation set: A boolean indicating whether a validation set was used during
training.

9. Train results: Loss and accuracy metrics from the last epoch of training, including
validation results if applicable.

10. Evaluation metrics: Final loss and accuracy metrics on the test set to evaluate perfor-
mance.

Once a model is fully generated, trained on the augmented dataset, and evaluated on the
test set, the delta is exported to a JSON file. JSON is chosen because it can be easily con-
verted to a Python dictionary, supports complex nested data structures, and remains human-
readable.

While the delta component is primarily used for logging, it can also serve as a blueprint to
reproduce the same or slightly altered models. For example, a delta for a random model can
be imported for a new model with modified activation functions, creating a new model. A
compressed version of the delta, containing core information in a more compact format, is used
for comparisons. Some entries are one-hot encoded to make distance-based comparisons more
meaningful, all aspects of the compressed delta are depicted in table 3.2.

3.2. VARIATION ON PARAMETERS 29

3.2 Variation on parameters

The objective of this experiment is to construct a diverse ensemble of neural networks, each
characterized by distinct decision-making processes. To achieve this, we adjust various hyper-
parameters of the models. Hyperparameters are settings determined before training starts, and
they significantly affect both the training behavior and the final performance of the models.
In our experiment, we modify the following hyperparameters: the number of hidden layers,
the number of training epochs, the batch size, whether to include dropout layers, the choice of
optimizers, and the type of activation functions used. The loss functions are not varied across
the models; due to the requirement for multi-class classification capabilities, and the incom-
patibility of certain loss functions with this criterion, sparse categorical cross-entropy has been
uniformly selected as the loss function for all models.

3.2.1 Amount of hidden layers

As introduced in chapter 1, neural networks are a fundamental concept of deep learning, which
make use of layers built out of interconnected neurons to process data and analyze complex
patterns in data. These layers are categorized into three types:

1. Input layer: The first layer of the network that receives the input data. The number
of neurons equals the number of features in the data. For instance, the MNIST dataset’s
784-dimensional data means the input layer has 784 neurons.

2. Hidden layers: These layers are sandwiched between the input and output layers and
are crucial for learning. Varying the number and size of these layers alters the model’s
predictive behavior.

3. Output layer: The last layer of a network produces the output or the predictions that
the model makes. In this experiment this layer will be of size ten, as there are ten possible
labels that could be predicted.

The role of hidden layers is to analyze the data’s embedded patterns; an increase in the number
of these layers enables the learning of more complex patterns. This capability is often correlated
with a deeper understanding of the problem, leading to enhanced predictive accuracy. How-
ever, too many layers can lead to overfitting, where the model fits the training data too closely
and performs poorly on new data. This happens when the model’s complexity exceeds the
problem’s needs [UJ20; Haw03]. Additionally, an excessive count of hidden layers can precipi-
tate the vanishing gradient issue during backpropagation, where the gradients shrink, impeding
weight updates in earlier layers [GBC16]. A high number of hidden layers also increases the
time complexity, slowing down training and prediction [UJ20]. On the contrary, too few lay-
ers can lead to underfitting, where the model is too simple to capture the data’s complexity
[UJ20].Selecting an optimal number of hidden layers is thus critical and remains a subject of
ongoing research.

In this experiment, we aim to generate a diverse set of models with varying decision-making
processes. To ensure the training duration remains feasible, we confine the number of hidden
layers to between one and three, with a consistent count of 128 neurons per layer.

3.2.2 Number of epochs

The training of a machine learning model consists of two main phases: the forward pass and
the backward pass. During the forward pass, the model processes the input data to compute
its output. This computation involves passing the data through various layers of the model.
In the backward pass, the model adjusts the weights and biases of its neurons, starting from
the output layer and moving towards the input layer. This adjustment is how the model learns
how to identify patterns in the data.

An “epoch” is a term used to describe one complete cycle of passing the training data through

30 CHAPTER 3. GENERATING MANY MODELS

the model both the forward and backward passes. Therefore, if a neural network processes all
the training data once, that counts as one epoch. The total number of epochs indicates how
many times the neural network will see and learn from the entire dataset. Exposing the neural
network to more training data enhances its ability to discern patterns within the data. Training
for an insufficient number of epochs leads to underfitting, where the network fails to capture
essential patterns. Conversely, excessive training can result in overfitting, where the network
begins to memorize the noise rather than the underlying data patterns.

The ideal number of epochs allows the model to ”converge.” This means the model no longer
improves significantly with further training and has captured the primary patterns in the data.
The convergence point depends on other model parameters, such as the number and size of
the layers. Generally, models with more layers or neurons need more training to converge
[Sid+18].

In this experiment, a large set of models, each characterized by a unique parameter configura-
tion, must be trained until they converge. Due to the variability in architecture, these models
are expected to require different training durations to achieve optimal performance.

To facilitate this process and mitigate overfitting risks, the experiment employs the “early stop-
ping” regularization technique. This approach terminates the training when the performance
on a validation set ceases to improve and instead starts to decline, indicating that the model has
started to learn noise rather than useful data patterns. The “patience” parameter within this
technique determines the number of epochs to continue training after no further improvements
are observed. This helps to avoid stopping too early before the model has fully learned from
the data. Figure 3.2 illustrates the early stopping technique and shows why monitoring the
loss or error is crucial. Without early stopping, the model would overfit the training data and
perform poorly on new, unseen data.

To manage the training time across many models, we set a hard limit of 100 epochs. If a
model’s validation loss continues to decrease even after this limit, training will stop regardless.
This approach helps make the training of numerous models less time-consuming while ensuring
they are adequately trained.

3.2.3 Batch size

During training, if the total amount of data is too large to fit into memory, an epoch can be
divided into several smaller segments called “batches”. These batches determine the number
of training samples used to compute the gradient in a single iteration of model training. This
means that after processing each batch (or iteration), the network updates its weights and
biases, facilitating learning. The “batch size” is a hyperparameter that specifies the number
of training samples in each batch. Figure 3.3 illustrates how an epoch is divided into several
batches of a specific size.

There are several techniques that model developers can use to train their models efficiently by
varying the batch size. These include:

1. Batch Gradient Descent: Here, the batch size equals the entire training set size, and
the network updates after processing all data. This approach provides stable convergence
due to the exact gradient calculation from the entire dataset [LeC+12]. However, this
can require significant memory, especially for large datasets and when training on GPUs.

2. Stochastic Gradient Descent: Here, the batch size is one, meaning the network’s
parameters are updated after each sample is processed. Although the high noise level
introduced by this approach can aid the model in escaping local minima, it can render
the convergence path highly erratic and slow [LeC+12].

3. Mini-batch Gradient Descent: This method strikes a balance by setting the batch size
between one and the total size of the training set. It merges the computational benefits
of batch processing with the advantageous stochastic noise in gradient estimation. This

3.2. VARIATION ON PARAMETERS 31

Figure 3.2: The typical error trajectories for both training and validation sets as a
function of the number of training iterations. Initially, the error for both sets decreases
as the number of iterations increases, indicating learning and improvement in model
accuracy. The training error continues to decrease throughout, showing the model’s
increasing fit to the training data. Conversely, the validation error decreases to a point
before starting to rise again, suggesting the onset of overfitting. The vertical dashed line
marks the early stopping point, which is determined when the validation error begins
to increase, indicating the optimal stopping point to prevent overfitting and ensure the
model generalizes well to unseen data. [GQ01]. Replicated from [GQ01].

Figure 3.3: The training data segmented into multiple batches of a specific batch size
during a single epoch. The number of batches (n) is determined by dividing the total
amount of training samples by the batch size [Tha+24]. Imaage from [Tha+24].

32 CHAPTER 3. GENERATING MANY MODELS

balance facilitates more stable and accelerated convergence compared to pure SGD and
avoids the memory constraints of full batch gradient descent. The main challenge here
is selecting an optimal batch size; overly large batches diminish the stochastic noise’s
benefits, whereas excessively small batches decrease training efficiency [Ben12].

For this experiment, mini-batch gradient descent was selected due to its advantages in speeding
up training and the flexibility it offers in adjusting batch sizes. Literature indicates that the
optimal batch size is within the range of 32 to 512 [Kes+16; Ben12]. Therefore, we allowed the
models in this experiment to train with batch sizes of 32, 64, 128, 256, and 512, aiming to cover
a broad spectrum of sizes to enhance model diversity.

3.2.4 Dropout

As we discussed in Section 3.2.1, large neural networks are powerful and can accurately predict
complex tasks. However, these larger networks are more prone to overfitting. Dropout is a
technique used to prevent overfitting by randomly disabling neurons in the input and hidden
layers during training [BS13]. When a neuron is ”dropped out,” it doesn’t contribute to the
network during that training epoch. The selection of neurons for dropout is governed by a
predetermined probability, as specified by the model’s developer [Sri+14].

Dropout prevents the network from memorizing the data by ensuring that each training sample
is processed by a different subset of neurons [Sri+14]. This randomness means that no neuron
can depend on the presence of another, forcing the network to learn more robust features. This
approach spreads the learning across a broader set of connections. An example of dropout in a
neural network with two hidden layers is shown in figure 3.4.

Incorporating dropout layers leads to model multiplicity in our experiments. By inducing
variations in neuron participation, it effectively creates distinct models at each training iteration,
even when all other parameters remain constant. This contributes to the extensive diversity of
models examined in this experiment. To explore this, some models will include dropout layers
while others will not.

3.2.5 Optimizer

The efficiency and effectiveness of a neural network’s learning process are greatly influenced
by the choice of optimizer. An optimizer helps adjusting the neural network’s weights and
learning rate to minimize the loss function, helping the model learn from the training data
effectively..

The learning rate (γ) is a crucial hyperparameter that determines the size of the steps the
model takes in updating its weights at each iteration. It directly controls how fast the model
learns. A very high learning rate may lead the model to converge too quickly to a suboptimal
solution, while a very low learning rate can slow down the whole learning process significantly.
The impact of different learning rates is shown in figure 3.5.

In this experiment, we explore four categories of optimizers: basic gradient descent variants,
adaptive learning rate optimizers, adaptive moment estimation optimizers, and hybrid optimiz-
ers.

Basic gradient descent variants

Basic gradient descent optimizers update the weights of the neural network by solely following
the gradient of the loss function. This category includes the Stochastic Gradient Descent (SGD)
optimizer, which adjusts the model’s weights using a fixed learning rate based on one or a few
data points at a time, as explained in section 3.2.3.

Using a fixed learning rate makes these algorithms straightforward to implement. However,
this simplicity can lead to issues such as slow convergence, where the optimizer takes a long

3.2. VARIATION ON PARAMETERS 33

Figure 3.4: The effect of dropout in a neural network. Subfigure (A) depicts a standard
neural network with two hidden layers, where all neurons are active during training.
Subfigure (B) illustrates the network after applying dropout. Here, some neurons are
randomly deactivated (marked with a cross). This process ensures that the active neurons
do not depend solely on the full set of neurons but only on those that are active. This
reduces the network’s reliance on any individual neuron, helping to prevent overfitting.
Image replicated from [Sri+14].

Figure 3.5: Impact of learning rate (γ) in optimizer algorithms and how it progresses
the updates on a loss function J(θ) with respect to a parameter θ. In the first subfigure a
low learning rate is shown which results in a small steps towards the minimum, which will
take a lot of time. The second subfigure shows a high learning rate, which causes very
large steps, this can cause the updates to overshoot the minimum, making it difficult for
the model to converge. The right subfigure shows an appropriate learning rate, which is
dynamic as it starts with big steps and decreases as it approaches the minimum. Image
from [BN21].

34 CHAPTER 3. GENERATING MANY MODELS

time to find the minimum, or getting stuck in local minima, where the optimizer settles in a
suboptimal point and misses the global minimum.

Adaptive learning rate optimizers

Adaptive learning rate optimizers are designed to overcome the challenges of using a fixed
learning rate. Unlike basic methods that use the same rate for all updates, these advanced
optimizers adjust the learning rate based on how the training is progressing. As the training
continues, they typically reduce the learning rate, helping the model to gradually settle into
the best solution without overshooting.

Another important feature of these optimizers is their ability to set different learning rates for
each parameter of the model [Des20]. This means that features that occur more frequently
can have smaller learning rates, preventing them from dominating the learning process, while
less frequent features can have larger rates to ensure they are not ignored. This approach is
especially beneficial for working with sparse data, where it’s crucial to learn effectively from
less common features.

In this experiment, we used Adagrad, Adadelta, and RMSprop as examples of adaptive learning
rate optimizers.

Adaptive moment estimation optimizers

Adaptive moment estimation optimizers are a type of optimization algorithm that improves
learning by using both past gradient information and adaptive learning rates. By calculating
the momentum, which is the moving average of past gradients, these optimizers help smooth the
learning path towards the minimum. This smoother path comes from incorporating information
from previous steps, which helps overcome some of the erratic movements that can occur in
optimization.

These optimizers also adjust the learning rate as the training progresses, speeding up conver-
gence towards the best solution [Des20]. In this experiment, we used Adam, Adamax, and
Nadam as examples of adaptive moment estimation optimizers.

Hybrid optimizers

Hybrid optimizers combine strategies from various optimization methods to enhance their over-
all performance. By blending the strengths of different approaches, these optimizers create a
more robust and efficient way to find optimal solutions. They are designed to compensate for
the weaknesses of individual methods, ensuring more reliable results across different types of
problems.

In our experiments, we focused on the Follow-the-Regularized-Leader (FTRL) optimizer. FTRL
uses a mix of L1 and L2 regularization to prevent overfitting, which is crucial for maintaining
the model’s ability to generalize to new data. This combination is particularly effective in online
optimization scenarios, where data arrives in a stream, and the optimizer needs to update the
model in real-time.

FTRL is especially useful for situations where many features in the data are irrelevant. By
regularizing the model, it helps to focus on the most important features, ignoring the noise and
preventing the model from overfitting to the less relevant data [Des20].

3.2.6 Activation function

Each node in a neural network layer uses an activation function to determine if the neuron should
be activated. This decision affects whether the input is passed on to the next layer. Activation
functions are crucial because they allow the network to model complex relationships and learn

3.2. VARIATION ON PARAMETERS 35

efficiently [SSA20]. These functions introduce non-linearity into the network, enabling it to
approximate any continuous function and solve complex real-world problems [RAS20].

By using different activation functions, we can observe various learning dynamics and perfor-
mance levels in the model. This is particularly relevant in studying model multiplicity, where
diverse activation functions can lead to different model behaviors and generalization abilities.
It’s important to note that only the hidden layers use variable activation functions in this ex-
periment. The output layer consistently uses the softmax function to ensure that models are
comparable in their predictive results. Moreover, all hidden layers in a network use the same
activation function to constrain the variation.

In this experiment, we explore three categories of activation functions: linear, non-linear, and
specialized.

Linear activation functions

Linear functions pass the input directly through to the output. These are often used in the
output layer for continuous value predictions or simple tasks [SSA20]. They are computationally
efficient and stable but are not suitable for modeling complex patterns in hidden layers.

Non-linear activation functions

Non-linear activation functions form the cornerstone of contemporary neural networks by fa-
cilitating the capture of complex and high-dimensional data patterns, surpassing linear model
capabilities. The experiment utilizes several non-linear activation functions, including ELU,
GELU, hard sigmoid, sigmoid, softplus, swish, tanh, and ReLU, each contributing distinctively
to the network’s performance and functional capabilities [SSA20].

Specialized activation functions

This category includes functions typically employed under specific circumstances or in special-
ized network layers. In this experiment, the softmax function is used in the output layer to
derive probabilities for each class label [SSA20]. The exponential function, which returns a
positive number that can grow exponentially, is prone to numerical instability due to potential
large magnitude values.

3.2.7 Presence of a validation set

The use of a validation set is a fundamental aspect of training neural networks. This subset of
data, which is not used for training, serves to evaluate the model’s performance on unseen data.
Incorporating a validation set enhances generalization capabilities, mitigating the risk of overfit-
ting. The validation set is instrumental in determining the optimal number of training epochs,
as it enables performance monitoring for early stopping, as detailed in section 3.2.2.

However, using a validation set has its drawbacks. Primarily, it reduces the amount of data
available for training the model. In our experiments, we create the validation set by reserving
a portion of the training data for this purpose. This reduction can lead to a scarcity of training
data, especially in datasets that are not very large to begin with.

For example, the original MNIST dataset has 60,000 images. While this number may seem
large, the modifications and variations we discuss in section 3.3 can significantly reduce this
size. Since the volume of training data is crucial for the performance of machine learning models
[UL24], this reduction can make the model less effective, as it has less data to learn from.

Given these considerations, we allow models in this experiment to use a validation set or not.
This choice introduces an interesting variable in studying model multiplicity, as it shows how
different training strategies can lead to different model behaviors.

36 CHAPTER 3. GENERATING MANY MODELS

Figure 3.6: In this illustration, the top row (A) shows a collection of five typical samples
of the number “3” from the dataset. These samples are very similar and represent the
standard appearance of this digit. The bottom row (B) displays five outliers of the
number “3”, which are noticeably different from the norm, showing variations that set
them apart from the typical examples.

3.3 Variation on data

As previously mentioned in the introduction (chapter 1), we are working with the MNIST
dataset, which contains 70000 28x28 grayscale images of ten different handwritten digits. This
section aims to discuss the various modifications we apply to the dataset’s images. We will
address three key aspects for each type of variation: why we apply these variations, how we
implement them, and the effects they have on the outcomes

The specific variations we will discuss include separating outliers from typical images, inverting
colors, adjusting contrast, applying rotations and translations. Additionally, this thesis intro-
duces two methods of making these adjustments: appending changes to the original images
and making changes directly in-place. To provide clear examples, our discussion will focus on
images labeled as “3” from the MNIST training dataset.

3.3.1 Splitting data into outliers and typicals

The first variation we make to the dataset is dividing it into two groups: outliers and typicals.
This process is often referred to as anomaly detection in literature, which involves identifying
and isolating anomalies, or abnormal patterns, from normal samples. Anomalies are often
defined as a pattern that does not conform to expected normal behavior [CBK09]. In the
context of the MNIST dataset, we look for images of digits that differ significantly from the
norm, such as those with unusually thick or thin strokes, or digits that are rotated. The norm
here being the generic representation of the label “3” in the dataset. Figure 3.6 displays five
examples each of outliers and typicals from the dataset.

Isolation forest

Anomaly detection has been widely studied for decades, with various methods developed for
identifying these unusual patterns. Machine learning techniques, which can be either supervised
or unsupervised, are among the most used methods.

Supervised anomaly detection expects the training data to be labeled as normal or anoma-
lous. This approach poses challenges such as the difficulty of obtaining correctly labeled

3.3. VARIATION ON DATA 37

data—particularly for the MNIST dataset, where such labels do not preexist. If we were to
label the data ourselves, it could introduce bias, which is undesirable. Additionally, anomalies
are typically rare compared to normal data, leading to imbalanced datasets that can result in
poor model performance [CBK09].

Unsupervised anomaly detection, on the other hand does not require labeled data for training,
which simplifies its use. Instead, it relies on the assumption that normal samples outnum-
ber anomalies, which is usually the case with the MNIST dataset, we opt for unsupervised
techniques. The common unsupervised approach is clustering-based, where data is grouped
into clusters. This method presupposes that normal data forms large, dense clusters, while
anomalies are found in smaller or sparse clusters [CBK09]. However, due to the computational
demands of clustering algorithms, especially with large, high-dimensional data like MNIST (784
dimensions per sample), this method becomes impractical for large-scale experiments due to its
slow processing speed. Because of this, another method has to be chosen and the choice has
become an isolation forest.

An isolation forest is a unsupervised method that works based on the principle of isolation.
Isolation means that anomalies will be separated from all the normal samples. To do this
isolation forest do not use distance or density measures as clustering methods do. This omission
of density calculations significantly accelerates the algorithm’s execution time, making it well-
suited for high-dimensional datasets such as MNIST. The effectiveness of isolation forests stems
from their utilization of the inherent sparsity and distinctiveness of anomalies within the dataset
[LTZ09].

Figure 3.7: Subfigure A demonstrates the Isolation Forest algorithm applied to a small
dataset containing three anomalies, marked by red dots. In this figure, a single split
isolates one anomaly, illustrating the algorithm’s sensitivity to unusual data points. In
contrast, subfigure B shows the isolation of a normal data point, which requires multiple
splits to be isolated. This distinction is reflected in the tree structure: the depth for the
anomaly in subfigure A is one, whereas the depth for the normal data point in subfigure
B is four. Image replicated from [LTZ09].

The algorithm constructs a series of isolation trees, each initiated from a randomly selected
feature and a corresponding split value, which is determined randomly between the minimum
and maximum values of that feature. This splits up the data into two groups, which will be
initial child nodes of the isolation tree. This random selection of feature and feature value is
repeated until all data points are isolated into individual leaf nodes. The path length from the
root to a leaf indicates the number of splits required to isolate a sample, serves as a metric
for anomaly detection. Anomalies, being fewer and inherently different, typically demonstrate
shorter path lengths, indicating fewer partitions necessary for isolation. This principle can be

38 CHAPTER 3. GENERATING MANY MODELS

seen in figure 3.7, where in the left graph the isolation of an anomaly is shown and on the right
the isolation of a normal data sample. As shown the isolation of the anomaly takes one step,
which means in the isolation tree, the anomaly will have a path of length one from the root.
When multiple trees collectively produce a shorter path for specific nodes, they are likely to be
anomalies [LTZ09].

A key aspect of the isolation forest algorithm is its random selection of features and split values.
This randomness means that the algorithm might produce different results each time it’s run
on the same data. However, in our experiments, this variability is actually advantageous. Our
objective is to generate a wide variety of datasets, and the inherent randomness of the algorithm
helps achieve this by mixing up the data in different ways each time.

Benefits and risks

The debate on whether outliers should be removed from datasets is ongoing, with valid ar-
guments both for and against their removal. The presence or absence of these anomalies can
significantly impact a model’s decision-making process. There are key benefits to removing
outliers from a dataset:

1. Improved Data Quality: Anomalies are abnormal data points. Removing these can
significantly enhance the dataset’s quality. The absence of outliers reduces noise and
errors, which enhances the dataset’s representation of the true underlying patterns, thus
improving its overall quality [Lar+19].

2. Enhanced Model Accuracy: The performance of machine learning algorithms heavily
relies on the quality of the data. High-quality data leads to more reliable decision-making
by the model. Anomalies can cause a model to learn from noise rather than the true
underlying patterns, leading to an inaccurate representation of data. This often results
in a model that overfits noise, failing to perform well on new, unseen data [RB21].

3. Simpler Models: Datasets filled with anomalies often require more complex models
to accurately classify these unusual points. Removing outliers can simplify the decision
boundaries, leading to simpler, more straightforward models. These models are easier to
understand, and often more generalizable.

While removing outliers from datasets can improve the simplicity and accuracy of models, it’s
important to consider the potential downsides:

1. Loss of Realistic Extremes: Sometimes, what appears as an outlier might actually
represent extreme but realistic variations within the subject matter. Removing these
points could make the dataset less representative of all possible scenarios, potentially
omitting crucial aspects needed for a full analysis.

2. Introduction of Bias: Eliminating outliers can inadvertently introduce bias. This hap-
pens especially if these outliers are systematically linked to specific features or outcomes.
Such bias can distort the model’s interpretation of the data, leading to inaccurate predic-
tions that don’t reflect real-world diversity.

3. Poor Performance on Unseen Data: If a model is trained on a dataset that excludes
outliers, it may struggle to perform well on new datasets that include such extremes. This
lack of preparedness can lead to errors when the model is applied in real-world conditions
that differ from the training data.

Outliers in the MNIST dataset

Our experiment explores the effects of including different amounts of outliers in the training
data, with settings that vary from 0% to 100% of outliers and typical data points. This approach
allows us to see how models behave under various conditions: some models are trained with
many outliers, others with none, and some with a mix of both typicals and outliers. The

3.3. VARIATION ON DATA 39

outcome is a diverse set of models. Some perform well on normal instances of the digit “3”,
while they may struggle with nearly unreadable versions of it. This creates a broad spectrum
of model performance, with some excelling with outliers and others doing better with typical
data points.

An essential aspect of our approach is the use of an isolation forest for each digit label, which
helps us identify anomalies within each specific group of digits. This method is more efficient
than applying the isolation forest across all data, which could slow down the process and make
it difficult to pinpoint all anomalies. For example, a “3” that closely resembles a “9” might
be mistakenly identified as an anomaly if we considered the entire dataset, but when analyzing
only the “3”s, it’s correctly recognized as typical for that group.

To understand how many outliers exist in the dataset, a model was developed using only the
outlier data extracted from the entire dataset. The results indicated that 13% of the dataset
consisted of outliers. Additionally, these outliers were not uniformly distributed across the
various categories or labels. This information is detailed in figure 3.8, which provides a visual
summary of how many outliers there are and how they are spread across different labels. The
uneven distribution could be due to the inherent randomness of the isolation forest method or
from the unique ways numbers are written. For example, the number “1” is often just a simple
straight or slightly curved line, less affected by individual handwriting styles. In contrast, more
complex numbers like “0” or “8” might vary more significantly with handwriting, making them
more susceptible to being classified as outliers.

3.3.2 Color augmentation

Color augmentation is a method that enhances image data by modifying pixel values to create
varied data instances. This process helps models become more resilient to changes in lighting
or color balance. In our experiments, we applied two specific techniques: color inversion and
contrast adjustments. Techniques like color channel swapping, which might reorder the channels
in a color image from RGB to BGR, are irrelevant to our grayscale images and were not
considered.

Color inversion

Color inversion is a simple yet effective augmentation technique. In this method, each color
in an image is swapped with its opposite within the color model used. Color models are the
numeric representation of colors, such as RGB and grayscale. What color inversion essentially
means is that light colors will become dark and dark colors become lighter.

In a grayscale color model like the MNIST dataset, colors are limited to one dimension, where
each pixel ranges from 0 (black) to 255 (white). Inverting grayscale images is done by sub-
tracting the current pixel value from 255, this transforms light colors to dark and vice versa.
For example, in the MNIST dataset, which consists of white digits on black backgrounds, in-
version changes this to black digits on white backgrounds. The effect of this transformation is
illustrated in figure 3.9, showing a side-by-side comparison of an original and inverted MNIST
sample.

In our experiments, we vary the proportion of inverted images in the dataset from 0% to 100%
in 20% increments. This variation allows some models to train with predominantly original
images while others see more inverted images, enhancing their ability to recognize digits across
different color schemes.

Contrast adjustments

Contrast adjustment is another color augmentation technique used alongside color inversion. It
adjusts how distinctly the light and dark colors stand out in an image. Increasing the contrast
makes the light and dark colors more distinct by brightening the colors, whereas decreasing it
makes these differences subtle, resulting in a more uniform and faded image.

40 CHAPTER 3. GENERATING MANY MODELS

Figure 3.8: This figure provides a visual summary of the distribution of typical data
points and outliers in the MNIST dataset. Subfigure A shows that typicals constitute
the majority, numbering 52,095, while there are 7,941 outliers, making up approximately
13% of the dataset. Subfigure B further explores the outliers, illustrating how the labels
are distributed unevenly among them. Notably, the count of label “1” is almost one-third
that of label “0”, indicating a significant imbalance in representation among the outlier
labels.

3.3. VARIATION ON DATA 41

Figure 3.9: The impact of color inversion on a sample from the MNIST dataset. In
subfigure A the original image with the white number and black background is shown.
Subfigure B represents the inverted version of the same image, where the color values are
reversed, resulting in a white digit on a black background.

For grayscale images like those in the MNIST dataset, contrast can be adjusted by multiplying
pixel values by a contrast factor. This factor is a float value between zero and two, if the value
is one, the contrast will stay the same. A factor of one maintains the original contrast, values
below one reduce the contrast—potentially to a minimum threshold of 0.2 to prevent all pixels
from becoming uniformly black—and values above one enhance the contrast up to a maximum
of 1.8 to avoid excessive whitening that could obscure critical image features. The effects of
contrast adjustments on an MNIST sample are depicted in figure 3.10: decreased contrast on
the left, original in the middle, and increased contrast on the right.

As with the color inversion, we vary the proportion of contrast adjusted images in the dataset
from 0% to 100% in 20% increments. Which allows some models to train with mostly increased
or decreased contrasted images, while others see a smaller amount of these, resulting in different
model behaviour.

Figure 3.10: The effect of changing the contrast of a sample out of the MNIST dataset,
decreased contrast (A), the original (B) and increased contrast (C). Subfigure A shows
the effect of setting the contrast factor to 0.2, which reduces the difference between light
and dark areas to a minimum, resulting in an almost uniformly gray image. In subfigure
C the contrast factor is set to 1.8, which enhances the distinction between the digits and
their background. However, this high contrast setting slightly erases the gray areas along
the digit edges.

3.3.3 Position augmentation

Position augmentation is another valuable data augmentation technique used to enhance the
training of machine learning models. Unlike color augmentation, which alters pixel values,
position augmentation changes where pixels are located in an image. This technique includes
rotating or shifting the positions of objects within images to help models better understand
and predict different spatial arrangements. Such training can improve model performance in

42 CHAPTER 3. GENERATING MANY MODELS

Figure 3.11: The effect of rotating a sample out of the MNIST dataset, left rotation
(A), the original (B) and right rotation (C). Subfigure A shows a rotation of 20 degrees,
which rotates the number to the left. In subfigure C the number is rotated -20 degrees,
resulting in a rotation to the right.

real-world situations where objects may not be perfectly aligned or oriented. In this thesis, we
focus on using rotations and translations, while other methods like shearing and flipping were
not included.

Rotating

Rotation or image rotation, as a form of geometric transformation, involves repositioning im-
age pixels based on a rotation matrix that applies to each pixel’s coordinates, facilitating the
counterclockwise rotation by a specified angle [Van22]. In equation 3.1, this rotation matrix[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
is applied on the matrix

[
x
y

]
, which represents a pixel’s x and y value of the

original image [Wei03]. The result of this matrix multiplication is the new matrix

[
x′

y′

]
, which

is the pixel’s new position. This calculation is then applied to each pixel in the image. An
important note is that the angle is defined in radians. Figure 3.11 illustrates this by showing
a sample from the MNIST dataset rotated to both the left and the right in addition to the
original configuration.

[
x′

y′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[
x
y

]
(3.1)

When rotating an image, parts of it might extend beyond the original frame. To manage this,
our thesis opts to fill these out-of-bounds areas with the same value, without any interpolation,
preserving the image’s original dimensions. Additionally, to avoid misinterpretation of num-
bers, the experiment restricts rotations between -20 to 20 degrees in 5-degree increments, to
prevent misidentification of numerals, a critical consideration illustrated in figure 3.12. Here,
an excessively rotated “6” misleadingly appears similar to a “9”. This precaution ensures the
integrity of the dataset’s real-world applicability in handwritten digit recognition. Rotational
variation within this experiment ranges from 0% to 100% in 20% increments, enabling an ex-
tensive evaluation of model adaptability across different rotational contexts.

Translating

Translation refers to the shifting of the entire image by a certain amount of pixels in one or
more directions. In image processing, such as in this experiment this means moving the image
up, down, left or right. In practice, this is done by moving each pixel P (x, y) over a certain
distance dx for horizontal and dy for vertical translations. The pixel position after translation
is defined as P (x′, y′). A translation for a single pixel is defined in equation 3.2, important to
note that if only a horizontal translation is needed dy is zero and if only a vertical translation

3.3. VARIATION ON DATA 43

Figure 3.12: A representation of problematic rotations in the MNIST dataset. Subfigure
A shows the original image, and Subfigure B shows the same image rotated 180 degrees.
This rotation makes Subfigure B look nearly identical to another dataset sample labeled
as “9”, shown in subfigure C. Due to this similarity, models may incorrectly identify both
images as the same digit, leading to undesirable errors in digit recognition.

is needed dx is zero. A negative distance will result into a movement to the left or upward, a
positive distance will result into a movement to the right or downward [Van22].

[
x′

y′

]
=

[
x
y

]
+

[
dx
dy

]
(3.2)

When translating images, we must consider what happens to pixels that shift outside the original
boundaries and those that shift into the frame. Pixels that move outside the image borders are
removed, which can be problematic as significant parts of the image, like parts of digits, might
be lost. This issue is illustrated in figure 3.12, where essential features of digits are cut off,
making it hard to distinguish the digit. To prevent this, we limit translations to a maximum
of two pixels in any direction. Conversely, pixels that enter the image frame due to translation
are set to black, under the assumption that these areas represent non-informative background
rather than digit defining content.

Figure 3.13: The effects of problematic translations in the MNIST dataset. Subfigure A
displays the original image, while subfigure B shows the image after a vertical translation.
Subfigure C presents a vertically translated image of a different sample representing the
label “3”. Both subfigures B and C appear almost identical, making it extremely difficult
for models to distinguish between them. This similarity poses significant challenges in
accurately identifying the images after translation.

In our experiments, we treat horizontal and vertical translations as separate processes to provide
a diverse range of image movements. This method allows us to move images just horizontally,
just vertically, or in both directions but to varying degrees. By not always translating in both
directions simultaneously, we create a dataset with a wide variety of image positions. Like with
other types of data augmentation, we adjust the frequency of these translations from 0% to
100% in 20% increments. This variability ensures that different models are trained on different
types of data, to have that variety in model behaviour.

44 CHAPTER 3. GENERATING MANY MODELS

Others

In our experiments, we evaluated additional position augmentation techniques like flipping
and shearing alongside the primary methods. Flipping images horizontally or vertically can
increase data variability by mirroring images, which is useful when the object’s orientation can
vary without altering its fundamental characteristics. However, applying this to digits, such
as those in the MNIST dataset, can change the digit’s meaning turning a “6” into a “9”, for
example or result in a unrealistic representation of the digit. These inaccuracies could cause
a machine learning model to learn incorrect patterns that are not representative of real-world
scenarios. Therefore, we prioritized maintaining accurate digit representation over increasing
model robustness with these techniques.

Image shearing involves skewing an image along one axis, which distorts its geometry. Like flip-
ping, shearing can create unrealistic representations of numbers. Since our goal is to accurately
represent handwritten digits, we found that shearing disrupts this objective.

3.3.4 In-place and appending

In this experiment, all data augmentation techniques, with the exception of outlier detection,
can be categorized into two implementation strategies: in-place or by appending to the dataset.
These strategies necessitate distinguishing between two datasets: the “working dataset” and
the “original dataset”. The working dataset is dynamic; it is where data is augmented and
reinserted, growing and diversifying with each applied technique. In contrast, the original
dataset remains static, preserving the initial data state, exemplified by white digits on a black
background.

In-place augmentation directly modifies a portion of the working dataset. For example, if
50% of the data is selected for augmentation, only that subset is altered and replaced. This
method allows for layered augmentations, where newly applied techniques can modify previously
augmented data. This can result in complex data transformations, such as inverted samples
with a decreased contrast as shown in figure 3.14

Figure 3.14: Layered Augmentations Demonstrated on an MNIST Sample. Subfigure
A illustrates the effect of decreasing contrast, making the digit less distinct against its
background. Subfigure B shows the same sample with its colors inverted, creating a
visual contrast. Subfigure C combines the techniques shown in A and B, resulting in a
digit that is both color-inverted and has reduced contrast, demonstrating the combined
impact of multiple augmentations.

A critical limitation of this approach is the potential for complete data replacement if aug-
mentations are applied to 100% of the working dataset, thereby risking the loss of the original
data’s representational fidelity. To prevent this, appending augmentation was introduced. This
method involves applying a technique to the original dataset and then adding the augmented
data to the working dataset. This approach maintains a balance, preserving original data while
introducing variety through augmented data. For example, applying an inversion to 100% of
the data in an appending manner results in a dataset containing both original and inverted

3.3. VARIATION ON DATA 45

Figure 3.15: The impact of different augmentation sequences on the dataset. Subfigures
A and B show results when inverting is performed first, followed by other augmentations
such as translation and rotation. In contrast, subfigures C and D demonstrate a consistent
augmentation order: starting with translation, followed by rotation, and concluding with
inversion. Both B and D depict the average appearance of the digit “3” after these
processes, highlighting how the order of operations influences the final image.

samples. Unlike in-place methods, appending does not support layered augmentations but en-
sures continuous growth of the dataset. Thus all augmentations except outlier detection have
the possibility to be in-place or appending so both advantages can be possible.

Outlier detection is exclusively an in-place augmentation technique because it involves catego-
rizing the data into “typicals” and “outliers”. If these categories were simply appended back
to the dataset, it would result in duplicates, which are undesirable in machine learning because
they can skew the model’s learning process. Once the data is split during outlier detection,
both the working and the original datasets are divided accordingly. This means that any sub-
sequent augmentations that use the appending method will not reintroduce data that has been
separated out, maintaining the integrity of the learning process.

3.3.5 The order of operations

When numerous augmentations are applied to a dataset and can be layered by applying them
in-place, the need arises to consider whether there should be a specific order to these operations.
Without an established sequence, augmentations would be applied randomly, leading to several
issues: inefficiency in time usage, challenges in reproducibility, and difficulties in comparing
results across different models.

The time-related inefficiency is evident when considering the sequencing of specific augmenta-
tions, like outlier detection. Outlier detection reduces the dataset’s size, which subsequently
decreases the processing time for any augmentations that follow. If outlier detection is applied
later, it has to deal with altered data, which complicates the detection process and slows it
down.

Reproducibility is jeopardized when augmentations are applied without a consistent order. This
randomness precludes the possibility of replicating a specific augmentation sequence, crucial for
recreating the same model outputs or implementing controlled variations.

46 CHAPTER 3. GENERATING MANY MODELS

The comparability of different models is hindered when the order of augmentations varies. As
illustrated in figure 3.15, identical augmentations applied in different sequences yield distinct
results. I In this figure, subfigures A and B show black borders when the sample is inverted
because the inversion happens before positional augmentations. As explained in section 3.3.3,
new pixels introduced during these augmentations are made black. In inverted images, these
black zones are critical as they outline the digit and significantly affect the model’s learning
process, as the model may mistakenly learn these background patterns as part of the digits. This
variability in results, despite identical processing steps, highlights the need for a standardized
sequence of operations to ensure reliable model comparisons.

To establish a consistent and efficient process, the following order of operations is applied:

1. Outlier detection To minimize time-related inefficiencies, outlier detection is performed
first.

2. Position augmentations To prevent the introduction of black borders, positional aug-
mentations are carried out before any color augmentations. Translations are done before
rotations, but this specific order does not impact the final result.

3. Color augmentations To further avoid black borders, color augmentations are the final
step, with contrast adjustments happening before inversion.

Chapter 4

Searching for multiplicity in
many models

In this part of the experiment, we analyze the models generated in chapter 3 to identify those
that are multiplicitous. This chapter describes the process, which includes two main tasks:
evaluating the generated models and grouping similar models into Rashomon sets. Figure 4.1
provides an overview of this process, illustrating each component and their connections in this
experiment.

Figure 4.1: An overview of the experiment. It shows the model generator (chapter 3),
and the model evaluator and grouper (discussed in this chapter). The evaluator assesses
the generated models on a test set, filtering out poor performers. The remaining good
learners are grouped into Rashomon sets based on the similarity of their predictions.

4.1 Evaluating the generated models

As specified in Chapter 2, multiplicitous models exhibit comparable predictive accuracy. To
quantify this accuracy, the models must be assessed using a test set. By evaluating each
model’s predictive performance on each individual sample within the test set, we can ascertain
similarities. This section details the composition of the test set, the evaluation methodology,
and the process for filtering out inadequate learners.

4.1.1 The test set

As described in Chapter 2, multiplicitous models achieve similar accuracy on a test set. To
identify these model sets, we must first evaluate their performance. The initial step is to create
an appropriate test set.

The data used for evaluation must be distinct from the training data. While the MNIST
dataset’s predefined test set could be used, we chose to create our own handwritten digit samples

47

48 CHAPTER 4. SEARCHING FOR MULTIPLICITY IN MANY MODELS

Figure 4.2: Samples of the digit “1” from the test set, demonstrating variety in the
data. Some samples are straight lines, similar to the training set. Others have a second
diagonal line, which is rare in the training set, and one sample includes a horizontal line,
which is never seen in the training set. This variety reflects real-world scenarios where
people write numbers differently.

to ensure greater variety. For each digit, we created ten samples, aiming to capture diverse
handwriting styles. Figure 4.2 shows examples of the digit “1” to illustrate this variety.

4.1.2 The evaluation approach

A straightforward approach would be to let all generated models evaluate the entire test set and
calculate an overall accuracy. However, accuracy only indicates how often the model correctly
classifies labels relative to the total predictions. When grouping similar models, relying solely
on overall accuracy can be misleading since equal accuracies do not guarantee identical sample
classifications. Therefore, we evaluate models based on their individual predictions.

The goal of this method is to group models that predict the correct label for a set of samples,
resulting in collections of models that “think” alike. To form these groups, each sample is
evaluated by all models one at a time. After predicting a label with an associated accuracy, a
filtering process eliminates “bad learners”.

All generated models use sparse categorical cross-entropy as their loss function and softmax
as the activation function for the output layer, which produces a probability for each label
representing confidence. “Bad learners” are models that are unsure of their predictions and
essentially guessing, meaning their confidence levels for the predicted label and another label
are close. In this experiment, the confidence difference (epsilon) between the predicted label
and any other label must be at least 0.1 (or 10%). This ensures that only “good learners” are
grouped together.

The evaluation process, including the filtering steps, is described in figure 4.3. This figure
presents a flow chart where tasks are depicted as squares, and decision points, such as filtering
based on whether the top label’s confidence is close to the second, are represented as yellow
diamonds.

Excluding bad learners is crucial because their uncertain predictions could distort the results,
making it difficult to identify models that genuinely think similarly. This uncertainty might
arise because the models did not converge to a minimum or the training data was too diverse
for them to learn clear patterns. If the model is a “good learner” and predicts correctly, its ID
is stored in a bucket that holds models that predicted the same label for that sample. After
each model has been evaluated on each sample, the result is a collection of buckets containing
models that confidently predicted the same correct label. The way these buckets are created
for an arbitrary sample is shown in figure 4.4.

4.2 Grouping of similar answers

These buckets of similar acting models are based on sample specific predictions and are not a
sign of model multiplicity. For this to be true, they have to be in a large amount of buckets as

4.2. GROUPING OF SIMILAR ANSWERS 49

Figure 4.3: Flowchart depicting the model evaluation process. The process starts by
loading a data sample and the generated models into memory. Each model is evaluated
in sequence to check if the accuracy is NaN (Not a Number), in which case the model
is labeled as a bad learner. If the probability of the most confident label is close to the
second most confident label, the model is also labeled as a bad learner. Otherwise, the
model is labeled as a good learner and the predicted label is accepted. This means the
model is added to a bucket containing all models that predicted that label for the specific
sample. This process is repeated for each model and each new data sample.

50 CHAPTER 4. SEARCHING FOR MULTIPLICITY IN MANY MODELS

Figure 4.4: The creation of buckets that contain “good leaners” that give a sample the
same correct label. In this example a sample with label “3” is being predicted by five
models in which two of them give it the correct label and have a high enough confidence
to be “good learners” are grouped in the bucket of that sample.

will be the same as similar predictive reasoning. To find if these buckets are often or frequent
paired with each other we have to determine the amount of times they are grouped and form a
baseline threshold to be viewed as frequent pairs. This is essentially an example of the mining
of frequent itemsets problem often found in data mining [Bor12].

4.2.1 The frequent itemsets problem

Before we can define the frequent itemset problem, we need to explain the Market-Basket model.
This data model comes from supermarket shelf management and defines relationships between
two kinds of objects. First, there is a large set of items (e.g., products sold in a supermarket).
Second, there are baskets (e.g., items bought by one customer in the store), which are small
subsets of items called itemsets [LRU20].

Frequent itemsets are sets of items that appear in many baskets. To define ”many,” we introduce
a support threshold (s). The support for an itemset is the number of baskets in which that
itemset appears. An itemset is considered frequent if its support is at least the support threshold
[LRU20].

In our experiment, we apply the Market-Basket model by treating the generated models as
items and the buckets of equivalent predictors created during the evaluation process as baskets.
To clarify, figure 4.5 shows an example of how equivalent predictors can be classified as frequent
or infrequent based on a support threshold of two.

In our experiment, baskets are stored in files. To find the support of all possible itemsets, we
need to count occurrences as the data is read. A naive approach is to make one pass over the
basket data, creating all subsets for every item and increasing the corresponding count. Since
we want to find all frequent itemsets of all sizes, we also generate pairs of itemsets. However,
this approach leads to a memory problem, as it creates 2items subsets. For a large number

4.2. GROUPING OF SIMILAR ANSWERS 51

Figure 4.5: The formation of itemsets involves creating combinations of items and
counting how often they appear in the baskets of equivalent predictors. The support
threshold is set to two, which means that itemsets appearing in at least two baskets are
considered frequent. In this example, six itemsets are labeled as frequent (green), and
four are labeled as infrequent (red).

of items, this won’t fit into main memory, resulting in disk thrashing and slower run times
[LRU20].

To solve this issue, algorithms use the concept of “monotonicity”. This means that if a set of
items is frequent, then every subset of that itemset is also frequent. For example, let’s define
two itemsets, J and I, where J ⊆ I. This means every basket containing I must also contain
all items in J , so the support of J is at least the support of I. If I meets the support threshold
s, then J will also meet it, making both I and J frequent [LRU20]. In practice, monotonicity
reduces the need to generate candidate pairs exhaustively because if an item doesn’t meet the
support threshold, no superset of that item can be frequent. The algorithm to find frequent
pairs used in this thesis is the popular A-Priori algorithm, which is discussed in the next
section.

4.2.2 A-Priori algorithm

The A-Priori algorithm is a two-pass algorithm designed to reduce the number of item pairs
to count, though it requires making two passes over the data. It leverages the concept of
monotonicity to minimize the number of pairs that need to be generated. Before running the
algorithm, the support threshold must be set. This threshold is domain-specific and can vary,
but for our purposes, we aim for it to be relatively high. The outcomes of applying different
thresholds are discussed in section 4.3.

Finding frequent pairs

In the first pass of the A-Priori algorithm, two tables are created. The first table is a map that
translates model names to integers, reducing the memory required to store strings. The second
table keeps the counts for all individual items, using the integers from the first table as indices.
As baskets are read, each time an item is encountered, its counter is incremented by one.

52 CHAPTER 4. SEARCHING FOR MULTIPLICITY IN MANY MODELS

After the first pass, we can examine the support for each individual item (singleton), identifying
many infrequent singletons. The results are then transferred to a new table, which retains the
unique integer mapping for each item but sets the count for each infrequent item to zero while
preserving the support for frequent items [LRU20].

The second pass of the A-Priori algorithm involves looping over the baskets again, but this
time it only counts pairs composed of two frequent items. First, pairs are generated by looking
in each basket and creating all possible pairs of frequent singletons found in that basket. This
process is repeated for each basket [LRU20].

During the loop over all baskets, the frequency of all generated pairs is counted. Because of
the principle of monotonicity, no frequent pairs will be missed, as a pair cannot be frequent if
one of its items is infrequent. By pruning infrequent items, the memory required to store the
item pairs is reduced since only frequent items need to be stored. At the end of this pass, the
pairs are evaluated based on their support to determine if they meet the support threshold to
be considered frequent itemsets of size two [LRU20].

Finding all frequent itemsets

The same process used for finding itemsets of size two can be expanded to find itemsets of
a larger size (k). In the A-Priori algorithm, there will be a pass for each set size k. This
means that to find triplets instead of pairs, three passes are needed instead of two. This small
adjustment allows the algorithm to search for frequent itemsets of all sizes, stopping when there
are no frequent itemsets of a certain size. Due to monotonicity, if there are no frequent itemsets
of size k, there will be no frequent itemsets of size k+1, ensuring that no frequent itemsets are
missed [LRU20].

The process of changing from size k to k+1 in the A-Priori algorithm involves two steps. First,
a set of candidate itemsets of size k is created. These itemsets need their support counted
to determine if they are frequent. If they are frequent, they are added to another set that
represents the frequent itemsets.

In the second step, these frequent itemsets of size k are used to generate candidate itemsets of
size k + 1. These candidate itemsets are then evaluated in the next pass to check if they are
frequent. This process is repeated until the value of k is so high that no frequent itemsets of
size k are found [LRU20]. The complete process of finding itemsets of size k using the A-Priori
algorithm is illustrated in a flowchart in figure 4.6.

4.3 The results

Using the methods outlined in chapter 3, we generated 500 random instances of neural networks
trained on the MNIST dataset. These models differ in their training data and hyperparameters,
creating a diverse sample. In this section, we discuss the results of the evaluation process and
the A-Priori algorithm applied to these 500 models.

4.3.1 The evaluation process

As discussed in section 4.1, the models are evaluated on a handwritten MNIST-like test set
containing ten samples for each digit. The evaluation results in baskets of equivalent predictors,
which are models that predict the same label for a given sample, excluding bad learners. Bad
learners are models that are not confident in their predictions, indicated by the confidence
level of the predicted label compared to other labels. If the confidence difference between the
predicted label and any other label is less than 0.1, the prediction is filtered out. Table 4.1 shows
the frequency of models being unsure about their predictions. The first column lists ranges of
“bad learner” occurrences, indicating how often a model is unsure. The second column shows
the number of models in each range, and the third column shows the percentage of models in
each range. For example, the second row indicates that 255 models made between 1 and 25

4.3. THE RESULTS 53

Figure 4.6: Flowchart depicting the A-Priori algorithm. The algorithm begins by count-
ing the support of itemsets of size k. Itemsets that do not meet the support threshold
are labeled as infrequent and, due to monotonicity, are disregarded for the rest of the
algorithm. Itemsets with support greater than or equal to the threshold are labeled as
frequent. If no frequent itemsets exist, the algorithm stops, as there can be no frequent
itemsets of a larger k due to monotonicity. If frequent itemsets exist, k is incremented by
one, and candidate itemsets of size k are generated. The process then repeats, with the
support of these new itemsets being counted. This continues until there are no frequent
itemsets.

54 CHAPTER 4. SEARCHING FOR MULTIPLICITY IN MANY MODELS

Amount of excluded predictions Amount of models Percentage of models

0 79 15.8%
1-25 255 51%
26-50 27 5.4%
51-75 22 4.4%
76-99 13 2.6%
100 104 20.8%

Total 500 100%

Table 4.1: Table of bad learner occasions. The first column indicates the frequency
ranges for excluded predictions, starting from no uncertain predictions and increasing in
steps of 25 up to 100 (all) samples. The second column shows the number of models
that fall within these ranges. The third column displays the percentage of these models
relative to the total number of models, providing a clear view of how many models fall
into each frequency range compared to the entire collection.

unsure predictions across the entire test set, meaning they are usually very confident in their
predictions.

These results indicate a clear difference in model quality. Most models are quite confident in
their predictions, suggesting they converged well. However, 20.8% of the models are completely
unsure of their predictions, effectively guessing 100% of the time.

The length of the baskets of equivalent predictors represents the number of models that pre-
dicted the same correct label for a sample. Larger baskets indicate greater agreement among
the models. Figure 4.7 shows a boxplot illustrating the distribution of basket lengths. The
average basket length is 156, meaning that on average, 30% of the models predict the same
label for a sample. It is important to note that only good learners contribute to these baskets.
Considering the results from table 4.1, 104 models are always bad learners, increasing the 30%
agreement rate to around 40%.

However, some samples have small basket lengths, indicating that most models make mistakes
on these samples. This could be due to these samples having features that are underrepresented
during training or resembling other labels. Figure 4.8 shows a confusion matrix that depicts the
frequency of misclassifications, including the frequency of bad learners per label. An interesting
misclassification is for label “7”, as these samples are more commonly labeled as the digit “3”.
This makes sense as the models might see the second horizontal stripe as a deciding feature for
both labels. Another notable aspect of this confusion matrix is that samples labeled “7” and
“9” are more often misclassified than correctly classified.

4.3.2 The grouping process

The baskets generated by the evaluation process is not a direct sign of model multiplicity, to
accomplish this frequent itemsets have to be found. To accomplish this the A-Priori algorithm
is applied to the baskets. As we are looking for models models that act as similar as possible,
the support threshold should be a relative high value. To experiment what different thresholds
result in multiple thresholds have been tried out. As discussed in section 4.2.2, the algorithm
will find itemsets of different sizes which means that multiple models have acted similar on
the test set, as we are looking for multiple models we are not interested in frequent singletons.
In table 4.2, the amount of pairs, triplets, quadruplets, quintuplets and sextuplets found by
A-Priori using different support thesholds. The lower the support threshold the more itemsets
of larger sizes are labeled as frequent, if the threshold is higher the amount of frequent itemsets
of all sizes decline. As we are looking for very similar models lower thresholds such as 60% or
65% are not good enough to filter out the less similar models. The threshold of 80% returns no
results, which indicates that no models are labeling the same samples correctly with confidence

4.3. THE RESULTS 55

Figure 4.7: Box plot illustrating the lengths of 100 baskets which are the results of
the evaluation step. Each basket represents a collection of models that has predicted the
same label for a specific sample of the test set. The x-axis represents the basket length ,
indicating the number of models within each basket.

80% of the time, thus this threshold is also not considered any further. The results from 70%
and 75% tresholds are interesting as they do not return large amounts of frequent itemsets but
only a select few, which have to further explored.

The baskets generated by the evaluation process are not a direct indication of model multiplicity.
To achieve this, frequent itemsets must be identified using the A-Priori algorithm. Since we aim
to find models that behave as similarly as possible, the support threshold should be relatively
high. To explore the effects of different thresholds, various values were tested. As discussed
in section 4.2.2, the algorithm finds itemsets of different sizes, meaning multiple models have
similar behavior on the test set. We are not interested in frequent singletons. Table 4.2 shows
the number of pairs, triplets, quadruplets, quintuplets, and sextuplets found by A-Priori using
different support thresholds. Lower support thresholds result in more frequent larger itemsets,
while higher thresholds reduce the number of frequent itemsets of all sizes. Lower thresholds,
such as 60% or 65%, are insufficient to filter out less similar models. The threshold of 80%
returns no results, which indicates that no models are labeling the same samples correctly with
confidence 80% of the time, making this threshold unsuitable. The results from the 70% and
75% thresholds are notable as they return only a select few frequent itemsets. The groups of
models in each of the itemsets with a high support threshold are comparable in their predictive
behavior and could be viewed as Rashomon sets.

4.3.3 Are models in frequent itemsets similar?

The A-Priori algorithm identifies frequent itemsets that contain models exhibiting similar pre-
dictive behavior on the test data. These models, generated using the method described in
chapter 3, vary in their data composition and hyperparameters used for training. These dif-
ferences are logged in the delta component (section 3.1.5) and a compact version called the
compressed delta. This compressed delta, with one-hot encoded parameters, allows us to com-
pare the differences between models within the same frequent itemset. In this experiment,
we compare models by calculating the distance between their corresponding compressed delta
vectors. By analyzing the distances between compressed deltas of similar models, we can po-

56 CHAPTER 4. SEARCHING FOR MULTIPLICITY IN MANY MODELS

Figure 4.8: Normalized confusion matrix for the test dataset. Each cell represents the
proportion of instances where the true label (shown on the y-axis) was predicted as the
corresponding label (shown on the x-axis). The label -1 is included as an indicator for bad
learner occasions. The diagonal elements represent the correctly classified instances, while
the off-diagonal elements show the misclassifications. This matrix helps in understanding
the relative frequency of misclassifications, highlighting which labels are often confused
with each other.

Support threshold Pairs Triplets Quadruplets Quintuplets Sextuplets

60% 692 1055 477 77 3
65% 147 72 3 0 0
70% 27 2 0 0 0
75% 1 0 0 0 0
80% 0 0 0 0 0

Table 4.2: Number of frequent itemsets of different sizes identified by the A-Priori
algorithm at various support thresholds. Lower support thresholds result in more frequent
larger itemsets, while higher thresholds reduce the number of frequent itemsets. The
table shows the count of pairs, triplets, quadruplets, quintuplets, and sextuplets for each
threshold.

4.3. THE RESULTS 57

tentially link parameter variations to specific predictive behaviors. A low distance between
two models in a frequent itemset indicates that they underwent similar variations, while a high
distance should indicate different variations.

There are various mathematical methods to calculate the distance between vectors, and the
choice of distance metric depends on the vector’s composition. Since we are using one-hot
encoded values, the vectors will be sparse, containing many zeros. The best metric for sparse
vectors is cosine similarity, which measures the angle between two vectors, focusing on their
orientation rather than their magnitude. This makes it effective when vectors consist of many
zeros. To convert cosine similarity to cosine distance, we subtract the cosine similarity value
from 1. Another distance function that handles sparsity well is the Manhattan distance, or L1
Norm, which sums the absolute differences between two vectors.

Before the distance can be calculated, an adjustment must be made to the compressed deltas:
the application of a scaling factor to the following parameters: outliers, typicals, invert, hori-
zontal translation, vertical translation, rotate, and contrast. These parameters are float values
between 0 and 1, representing the percentage of the dataset influenced by that variation. For
example, if one model’s dataset consists of 10% inverted digits and another has 70%, the dif-
ference between them is only 0.6, which does not significantly affect the distance calculation.
Because these parameters are crucial in defining the data composition, their values are multi-
plied by 10. This adjustment increases the difference between 10% and 70% inverted images to
6, reflecting the significance of this variation more accurately.

Since the A-Priori algorithm returns frequent itemsets larger than pairs, we need to calculate
the differences between multiple vectors. This is done by performing a pair-wise distance
calculation for all vectors in each frequent itemset. Essentially, all combinations of size two are
generated from the models in that itemset. After examining all pairs, the average distance for
that itemset is calculated. This average distance represents how different the deltas are among
the vectors.

In table 4.3, the median distances (Manhattan and Cosine) of frequent itemsets of different
sizes with their corresponding itemset support are shown. The maximum distance between two
compressed deltas is 97.6 for Manhattan and 1 for Cosine, indicating that the models in the
itemsets are quite comparable. Additionally, the table reveals a trend: the higher the itemset
support, the lower the distances between the compressed deltas of the models in those itemsets.
This suggests that models with similar predictive behavior are also similar in the variations
they have undergone, which implies the possibility of generating Rashomon sets by creating
models with similar variations. However, it is important to note that the results for the 75%
support threshold could be misleading, as they are based on only one sample.

58 CHAPTER 4. SEARCHING FOR MULTIPLICITY IN MANY MODELS

Itemset Support Itemset length Manhattan Distance Cosine Distance

60% 2 24.700 0.279
3 24.133 0.295
4 23.633 0.285
5 23.540 0.277
6 22.940 0.264

65% 2 23.400 0.279
3 23.733 0.266
4 23.700 0.260

70% 2 21.100 0.201
3 21.067 0.205

75% 2 18.500 0.103

Table 4.3: The Manhattan and Cosine distances between the compressed deltas of
models within the same frequent itemset are presented. Frequent itemsets with higher
support thresholds (greater than 70%) exhibit lower distances compared to those with
lower support thresholds.

Chapter 5

Explaining model multiplicity

When artificial intelligence is applied in user-centered applications, typically only one model is
used. This can lead to overtrust if the user blindly trusts the model, or undertrust if the user
does not trust the model and chooses not to use the application. By introducing a method to
find multiplicitous models, we have identified models with similar predictive accuracy, making
them equivalent advisors for a given use case. Instead of using these models individually, we can
use models from a Rashomon set as a council of expert advisors. This approach means the user
does not have to rely on a single model that may make mistakes, but can instead consider the
advice of multiple equivalent models before making a decision. This can be especially relevant
in critical decision support systems, such as those providing medical or legal advice, including
systems like COMPAS.

5.1 Explaining by differences

In this section, we introduce a basic method for visualizing the different predictions of models
in a Rashomon set. We do this by examining the predictions of similarly behaving models and
comparing the differences in their hyperparameters and data composition. This information is
logged in the models’ compressed delta, which has been previously used to compare how similar
Rashomon sets are across different support thresholds (section 4.3.3). The difference with this
approach is that we now focus solely on the models from a specific Rashomon set, allowing
them to predict a specific sample. They will provide their predicted labels, which may differ
since they are not exact copies. We will then explain the differences in the predicted labels by
analyzing their internal differences.

We tested a Rashomon set of three models that came from a frequent itemset with a support
threshold of 70%. The sample tested is an inverted version of a sample labeled “5” from the
test set. The three models show very different confidence levels in their predicted labels, as
shown in figure 5.1. The first model is uncertain whether the correct label is five or eight, but
slightly favors five. The second model has the same uncertainty but leans towards eight. The
third model is very confident that the sample is labeled five and has no doubts.

To explain the large differences in confidence, we examine the differences in data composition
of the three models. First, we look at the data augmentation distributions for the labels five
and eight. It is possible that one of the labels underwent more augmentations compared to the
other. Figure 5.2 shows a grouped bar chart for the label five (A) and eight (B), depicting the
amount of data for a label that underwent a certain data augmentation. A side note is that the
augmentation type ”amount” shows the percentage of the total dataset that the label represents.
As the bar charts indicate, both labels underwent the same amount of augmentations. This
implies that the datasets for both labels are balanced, with no label being overrepresented,
which could have led to a preference for a certain label. Since the sample these models are

59

60 CHAPTER 5. EXPLAINING MODEL MULTIPLICITY

Figure 5.1: The different confidence levels for each label predicted by three multiplic-
itous models on a sample with the true label of five. The first and second models are
uncertain between the labels five and eight, with the first model leaning towards five and
the second towards eight. The third model, however, is the only one confident that the
correct label is five.

evaluated on is an inverted digit, a lack of inverted images during training could have led to
poor predictions. However, all three models have seen almost the same amount of inverted
images.

However, the percentage of data that underwent augmentation does not indicate the strength of
each augmentation. For example, a contrast augmentation can either decrease or increase the
contrast, which is crucial for augmentations such as contrast, rotations, and translations. The
differences in augmentation strengths are visualized in figure 5.3. The first subfigure shows that
the models that did not predict the correct label underwent positive horizontal translations,
meaning the digits they learned from were slightly moved to the right, while the model that
is confident in the correct prediction had its digits moved slightly to the left. In subfigure B,
the differences in rotations are shown: the unsure models underwent positive rotations (rotated
to the left), while the confident model’s data was rotated to the right. Subfigure C shows
that both unsure models experienced increased contrast, while the confident model had a very
strong decreased contrast. These differences in augmentation strengths could be linked to the
variations in predicted labels and their corresponding confidence levels.

In addition to differences in dataset composition, differences in model hyperparameters can also
explain variations in predictive behavior for a certain sample. However, interpreting the impact
of specific hyperparameters requires deep knowledge of neural networks and their learning
processes. Therefore, these parameters are more suitable for expert users. The differences are
shown in Table 5.1. While an immediate conclusion cannot be drawn, the difference in batch
size is notable and could lead to different predictive behavior.

By considering the differences among the various advisors, a bias can be assigned to a certain
model. For example, when predicting a sample with decreased contrast, an end user can
examine the differences in contrast within the models’ datasets and place more trust in the
third model, which has been trained on similar data. However, this method is not final and will
require further refinements to improve the ability to visualize differences in a more user-centered

5.1. EXPLAINING BY DIFFERENCES 61

Figure 5.2: Two grouped bar charts depicting the percentage of data for a label that
underwent dataset augmentations. The ”amount” label visualizes the percentage of the
total dataset with the corresponding label. Subfigure A represents the distribution of
augmentations for label ”five” and subfigure B for label ”eight.” The differences between
the two labels are negligible. However, the differences between the three models are
noticeable for the horizontal translation augmentation. For the other augmentations, the
distribution is quite similar, indicating that the amount of augmented data is nearly the
same.

62 CHAPTER 5. EXPLAINING MODEL MULTIPLICITY

Figure 5.3: Three bar charts depict the strengths of horizontal and vertical translations,
rotations, and contrast adjustments, revealing differences between the models. The first
and second models both have positive horizontal translations, while the best-performing
model has a negative horizontal translation. For rotations, the best model has negative
rotations, whereas the other two have positive rotations. The first and second models
increase contrast, while the third model decreases it. This suggests the third model
performs better with decreased contrast, right tilts, or leftward movements.

5.2. RELATED WORK 63

Model Hidden Layers Dropout Act.Fun. Optimizer Batch size Validation set

1 1 No ReLu RMSProp 512 Yes
2 2 Yes GeLu AdaMax 32 Yes
3 3 No GeLu FTRL 256 Yes

Table 5.1: The differences in hyperparameters for models in a Rashomon set require
domain knowledge in machine learning and cannot be easily interpreted by end-users,
making them more suitable for expert users.

Figure 5.4: The TimberTrek sunburst chart incorporates additional features such as
filtering decision trees based on various parameters, including accuracy and height. In the
Tree Windows, the trees created by the user are displayed. However, as the decision space
becomes more diverse, the window can become cluttered quickly, making it increasingly
difficult for users to explore all possible paths [Wan+22].

approach.

5.2 Related work

As model multiplicity is a relatively new research area, there has been limited research on
explaining the different models within a Rashomon set. However, one visualization tool for
Rashomon sets has been identified: TimberTrek. TimberTrek employs a sunburst chart, en-
abling users to explore the different decision paths taken by various models within a Rashomon
set. This allows users to examine all decision trees and select the one that best aligns with their
decision-making process [Wan+22]. While TimberTrek is an effective tool for navigating the
decision spaces of multiplicitous models, it can become cluttered as the decision space expands,
as illustrated in figure 5.4.

Since TimberTrek only works with decision trees, it cannot be used with systems that do not
use this specific model architecture. As we are using neural networks, which have a non-linear
decision boundary, visualizing the different decisions is not possible. However, the idea of
allowing users to create their own decision paths is interesting. We could implement this by
letting users explore the different dataset augmentations of multiplicitous models and curate
a model with their selected augmentations. This approach would enable users to learn how

64 CHAPTER 5. EXPLAINING MODEL MULTIPLICITY

different augmentations impact the predictions made by the created model.

Chapter 6

Conclusions

6.1 Conclusions and future work

This thesis aimed to investigate the phenomenon of the ”multiplicity of good models” and
develop a method for identifying these models. Additionally, we sought to explain the different
predictive behaviors of these models by linking them to variations in data composition and
network architecture, focusing on neural networks that are multi-class predictors trained on
the MNIST dataset. Our study demonstrated that a large number of models, varying in their
training data and model hyperparameters, can be automatically generated using equivalence
partitioning and controlled randomness. This method allows for the efficient generation of
diverse models, facilitating the identification of multiplicitous models by evaluating them on a
test set.

Our findings indicate that models exhibiting similar predictive behaviors tend to have undergone
similar variations, thus confirming our research question. The method to generate multiplicitous
models introduced in this thesis can be used in future research to further investigate how model
multiplicity can change the model evaluation process and the future of user-centered applications
that utilize neural networks. The presence of multiplicitous models in these use cases can reduce
overtrust and undertrust by providing a council of expert advisors instead of relying on a single
model for critical decisions.

While the study provides valuable insights, it is important to note the limitations. One major
limitation is the use of the A-Priori algorithm to find frequent itemsets of equivalent predictors.
This algorithm uses a lot of memory because it has to generate all possible combinations of
frequent items of different sizes, which can result in disk thrashing when memory capacity is
reached, significantly slowing down the algorithm. In this thesis, we evaluated 500 models on a
small test set of 100 samples. To increase the variety of the test set, we introduced variations
such as inverting, rotations, and translations, resulting in a larger test set of 1000 samples.
This increase led to a higher number of baskets, quickly reaching memory capacity and making
it unable to run on my hardware. The same problem occurred when we tried to increase the
number of models for the evaluation process.

Another limitation is the lack of a user study. One of the goals of this thesis was to reduce
overtrust and undertrust in decision support systems by implementing multiple expert advisors
instead of relying on a single model. The impact of this council could have been better evaluated
if the council and the internal differences between the models were shown to a set of test users.
Without this study, we miss out on real-world feedback that could validate the increase in
appropriate levels of trust.

These limitations have identified several key areas for future work on this topic. First, re-
search alternative methods to better visualize the differences between multiple models of the

65

66 CHAPTER 6. CONCLUSIONS

same Rashomon set. These methods should then be implemented on a user-centered platform
to conduct a user study and effectively gather insights on how this affects trust in artificial
intelligence. Next, develop a scalable algorithm that finds frequent itemsets more efficiently,
allowing for the expansion of the dataset and the number of models. Finally, apply the method
introduced in this study to datasets other than the MNIST dataset, incorporating more com-
plex data such as time-series data and implementing more complex neural networks, such as
convolutional neural networks or recurrent neural networks.

6.2 Personal reflection

Embarking on this research journey has been both challenging and rewarding, particularly as
this thesis originated from a hand-drawn sketch and has evolved into a fully functioning proof of
concept that utilizes new phenomena. The process of effectively executing an idea originating
from a brainstorming session fills me with pride.

Throughout this process, I encountered numerous technical challenges, particularly with the
computational limitations of the A-Priori algorithm and the parallel generation of neural net-
works. These hurdles pushed me to think creatively and adapt my approaches to achieve
meaningful results despite hardware constraints. This experience has significantly enhanced
my problem-solving skills and deepened my understanding of the complexities involved in ma-
chine learning research.

One of the most enlightening aspects of this project was realizing the potential impact of my
work on real-world applications. The idea that a council of models could provide more balanced
and trustworthy decision support systems is something I find particularly inspiring. This has
strengthened my belief in the importance of transparency and diversity in AI systems, and I
am excited about the possibilities for future research in this area.

In conclusion, this thesis has been a significant learning experience, shaping my perspective on
both the technical and human aspects of AI. I look forward to continuing this journey, building
on the foundation laid by this research, and contributing to the development of more robust
and trustworthy AI systems.

Bibliography

[Lec+98] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[Bre01] Leo Breiman. “Statistical Modeling: The Two Cultures (with comments and a
rejoinder by the author)”. In: Statistical Science 16.3 (Aug. 2001). issn: 0883-
4237. doi: 10.1214/ss/1009213726. url: http://dx.doi.org/10.1214/ss/
1009213726.

[GQ01] Ramazan Gençay and Min Qi. “Pricing and hedging derivative securities with
neural networks: Bayesian regularization, early stopping, and bagging”. In: Neural
Networks, IEEE Transactions on 12 (Aug. 2001), pp. 726–734. doi: 10.1109/72.
935086.

[Haw03] Douglas M. Hawkins. “The Problem of Overfitting”. In: Journal of Chemical In-
formation and Computer Sciences 44.1 (Dec. 2003), pp. 1–12. issn: 0095-2338.
doi: 10.1021/ci0342472. url: http://dx.doi.org/10.1021/ci0342472.

[Wei03] Eric WWeisstein. “Rotation matrix”. In: https://mathworld. wolfram. com/ (2003).
[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A

Survey”. In: ACM Comput. Surv. 41 (July 2009). doi: 10.1145/1541880.1541882.
[LTZ09] Fei Tony Liu, Kai Ting, and Zhi-Hua Zhou. “Isolation Forest”. In: Jan. 2009,

pp. 413–422. doi: 10.1109/ICDM.2008.17.
[Ben12] Yoshua Bengio. “Practical recommendations for gradient-based training of deep

architectures”. In: CoRR abs/1206.5533 (2012). arXiv: 1206.5533. url: http:
//arxiv.org/abs/1206.5533.

[Bor12] Christian Borgelt. “Frequent item set mining”. In:WIREs Data Mining and Knowl-
edge Discovery 2.6 (Oct. 2012), pp. 437–456. issn: 1942-4795. doi: 10.1002/widm.
1074. url: http://dx.doi.org/10.1002/widm.1074.

[LeC+12] Yann A. LeCun et al. “Efficient BackProp”. In: Neural Networks: Tricks of the
Trade: Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr, and Klaus-
Robert Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–48.
isbn: 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_3. url: https:
//doi.org/10.1007/978-3-642-35289-8_3.

[BS13] Pierre Baldi and Peter J Sadowski. “Understanding Dropout”. In: Advances in
Neural Information Processing Systems. Ed. by C.J. Burges et al. Vol. 26. Curran
Associates, Inc., 2013. url: https://proceedings.neurips.cc/paper_files/
paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf.

[Sri+14] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–
1958. url: http://jmlr.org/papers/v15/srivastava14a.html.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://
www.deeplearningbook.org. MIT Press, 2016.

[Kes+16] Nitish Shirish Keskar et al. “On Large-Batch Training for Deep Learning: Gen-
eralization Gap and Sharp Minima”. In: CoRR abs/1609.04836 (2016). arXiv:
1609.04836. url: http://arxiv.org/abs/1609.04836.

[LYP16] Seung-Hwan Lim, Steven Young, and Robert Patton. “An analysis of image storage
systems for scalable training of deep neural networks”. In: Apr. 2016.

67

68 BIBLIOGRAPHY

[Coh+17] Gregory Cohen et al. “EMNIST: Extending MNIST to handwritten letters”. In:
2017 International Joint Conference on Neural Networks (IJCNN). 2017, pp. 2921–
2926. doi: 10.1109/IJCNN.2017.7966217.

[DCF17] Anupam Datta, Cmu, and Matt Fredrikson. “Proxy Discrimination in Data-Driven
Systems Theory and Experiments with Machine Learnt Programs”. In: 2017. url:
https://api.semanticscholar.org/CorpusID:204906842.

[AB18] Amina Adadi and Mohammed Berrada. “Peeking Inside the Black-Box: A Survey
on Explainable Artificial Intelligence (XAI)”. In: IEEE Access 6 (2018), pp. 52138–
52160. issn: 2169-3536. doi: 10.1109/access.2018.2870052. url: http://dx.
doi.org/10.1109/ACCESS.2018.2870052.

[Che+18] Chaofan Chen et al. An Interpretable Model with Globally Consistent Explanations
for Credit Risk. 2018. arXiv: 1811.12615 [cs.LG].

[DF18a] Julia Dressel and Hany Farid. “The accuracy, fairness, and limits of predicting
recidivism”. In: Science Advances 4.1 (Jan. 2018). issn: 2375-2548. doi: 10.1126/
sciadv.aao5580. url: http://dx.doi.org/10.1126/sciadv.aao5580.

[DF18b] Julia Dressel and Hany Farid. “The accuracy, fairness, and limits of predicting
recidivism”. In: Science Advances 4.1 (Jan. 2018). issn: 2375-2548. doi: 10.1126/
sciadv.aao5580. url: http://dx.doi.org/10.1126/sciadv.aao5580.

[HG18] Patrick Hall and Navdeep Gill. An introduction to machine learning interpretabil-
ity: An applied perspective on fairness, accountability, transparency, and explain-
able AI. en. 2018.

[Sid+18] Md. Abu Bakr Siddique et al. “Study and Observation of the Variations of Accu-
racies for Handwritten Digits Recognition with Various Hidden Layers and Epochs
using Neural Network Algorithm”. In: 2018 4th International Conference on Elec-
trical Engineering and Information and Communication Technology (iCEEiCT).
2018, pp. 118–123. doi: 10.1109/CEEICT.2018.8628144.

[YBK18] Kun-Hsing Yu, Andrew L. Beam, and Isaac S. Kohane. “Artificial intelligence in
healthcare”. In: Nature Biomedical Engineering 2.10 (Oct. 2018), pp. 719–731.
issn: 2157-846X. doi: 10.1038/s41551-018-0305-z. url: http://dx.doi.org/
10.1038/s41551-018-0305-z.

[Ber+19] Dimitris Bertsimas et al. “The Price of Interpretability”. In: (2019). doi: 10.
48550/ARXIV.1907.03419. url: https://arxiv.org/abs/1907.03419.

[Che+19] Hao-Fei Cheng et al. “Explaining Decision-Making Algorithms through UI: Strate-
gies to Help Non-Expert Stakeholders”. In: Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. CHI ’19. ACM, May 2019. doi: 10.
1145/3290605.3300789. url: http://dx.doi.org/10.1145/3290605.3300789.

[Kam19] Margot E. Kaminski. “”The Right to Explanation, Explained””. In: (2019). doi:
10.15779/Z38TD9N83H. url: https://lawcat.berkeley.edu/record/1128984.

[Lar+19] Stefan Larson et al. “Outlier Detection for Improved Data Quality and Diversity
in Dialog Systems”. In: (2019). doi: 10.48550/ARXIV.1904.03122. url: https:
//arxiv.org/abs/1904.03122.

[And+20] Christopher Anders et al. “Fairwashing explanations with off-manifold detergent”.
In: Proceedings of the 37th International Conference on Machine Learning. Ed.
by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning
Research. PMLR, July 2020, pp. 314–323. url: https://proceedings.mlr.
press/v119/anders20a.html.

[DAm+20] Alexander D’Amour et al. “Underspecification Presents Challenges for Credibility
in Modern Machine Learning”. In: CoRR abs/2011.03395 (2020). arXiv: 2011.
03395. url: https://arxiv.org/abs/2011.03395.

[Des20] Chitra Desai. “Comparative Analysis of Optimizers in Deep Neural Networks”. In:
(Oct. 2020).

[LRU20] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive
datasets. en. 3rd ed. Cambridge, England: Cambridge University Press, Jan. 2020.

[MCU20] Charles Marx, Flavio Calmon, and Berk Ustun. “Predictive Multiplicity in Classifi-
cation”. In: Proceedings of the 37th International Conference on Machine Learning.

BIBLIOGRAPHY 69

Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning
Research. PMLR, July 2020, pp. 6765–6774. url: https://proceedings.mlr.
press/v119/marx20a.html.

[Meh+20] Johannes Mehrer et al. “Individual differences among deep neural network mod-
els”. In: Nature Communications 11 (Nov. 2020). doi: 10.1038/s41467-020-
19632-w.

[RAS20] Andrinandrasana David Rasamoelina, Fouzia Adjailia, and Peter Sinčák. “A Re-
view of Activation Function for Artificial Neural Network”. In: 2020 IEEE 18th
World Symposium on Applied Machine Intelligence and Informatics (SAMI). 2020,
pp. 281–286. doi: 10.1109/SAMI48414.2020.9108717.

[SSA20] Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. “ACTIVATION FUNC-
TIONS IN NEURAL NETWORKS”. In: International Journal of Engineering
Applied Sciences and Technology 04 (May 2020), pp. 310–316. doi: 10.33564/
IJEAST.2020.v04i12.054.

[UJ20] Muhammad Uzair and Noreen Jamil. “Effects of Hidden Layers on the Efficiency of
Neural networks”. In: 2020 IEEE 23rd International Multitopic Conference (IN-
MIC) (2020), pp. 1–6. url: https://api.semanticscholar.org/CorpusID:
231682198.

[AZA21] Talal A. A. Abdullah, Mohd Soperi Mohd Zahid, and Waleed Ali. “A Review of
Interpretable ML in Healthcare: Taxonomy, Applications, Challenges, and Future
Directions”. In: Symmetry 13.12 (Dec. 2021), p. 2439. issn: 2073-8994. doi: 10.
3390/sym13122439. url: http://dx.doi.org/10.3390/sym13122439.

[BN21] Sarat Moka Benoit Liquet and Yoni Nazarathy. Mathematical Engineering of Deep
Learning. CHAPMAN and HALL CRC, 2021.

[DAm21] Alexander D’Amour. “Revisiting Rashomon: A Comment on “The Two Cultures””.
In: Observational Studies 7.1 (2021), pp. 59–63. issn: 2767-3324. doi: 10.1353/
obs.2021.0022. url: http://dx.doi.org/10.1353/obs.2021.0022.

[RB21] Atiq ur Rehman and Samir Brahim Belhaouari. “Unsupervised outlier detection
in multidimensional data”. In: Journal of Big Data 8.1 (June 2021). issn: 2196-
1115. doi: 10.1186/s40537-021-00469-z. url: http://dx.doi.org/10.1186/
s40537-021-00469-z.

[BRB22] Emily Black, Manish Raghavan, and Solon Barocas. “Model Multiplicity: Op-
portunities, Concerns, and Solutions”. In: 2022 ACM Conference on Fairness,
Accountability, and Transparency. FAccT ’22. ACM, June 2022. doi: 10.1145/
3531146.3533149. url: http://dx.doi.org/10.1145/3531146.3533149.

[Oli+22] Leonardo Ferreira de Oliveira et al. “Path and future of artificial intelligence in the
field of justice: a systematic literature review and a research agenda”. In: SN Social
Sciences 2.9 (Aug. 2022). issn: 2662-9283. doi: 10.1007/s43545-022-00482-w.
url: http://dx.doi.org/10.1007/s43545-022-00482-w.

[Van22] Frank Van Reeth. Computer graphics Cursustekst. Universiteit Hasselt, Faculteit
Wetenschappen, 2022.

[Wan+22] Zijie J. Wang et al. “TimberTrek: Exploring and Curating Sparse Decision Trees
with Interactive Visualization”. In: 2022 IEEE Visualization and Visual Analytics
(VIS). 2022, pp. 60–64. doi: 10.1109/VIS54862.2022.00021.

[Far+23] Michael Mayowa Farayola et al. “Fairness of AI in Predicting the Risk of Re-
cidivism: Review and Phase Mapping of AI Fairness Techniques”. In: Proceed-
ings of the 18th International Conference on Availability, Reliability and Security.
ARES 2023. ACM, Aug. 2023. doi: 10.1145/3600160.3605033. url: http:
//dx.doi.org/10.1145/3600160.3605033.

[FW23] Raymond Fok and Daniel S. Weld. In Search of Verifiability: Explanations Rarely
Enable Complementary Performance in AI-Advised Decision Making. 2023. doi:
10.48550/ARXIV.2305.07722. url: https://arxiv.org/abs/2305.07722.

[Lar23] Retno Larasati. “Trust and Explanation in Artificial Intelligence Systems: A Health-
care Application in Disease Detection and Preliminary Diagnosis”. In: (2023). doi:
10.21954/OU.RO.00015ACA. url: https://oro.open.ac.uk/id/eprint/88778.

70 BIBLIOGRAPHY

[RHN23] Arjun Roy, Jan Horstmann, and Eirini Ntoutsi. Multi-dimensional discrimination
in Law and Machine Learning – A comparative overview. 2023. doi: 10.48550/
ARXIV.2302.05995. url: https://arxiv.org/abs/2302.05995.

[Tha+24] Panissara Thanapol et al. “Round-Based Mechanism and Job Packing with Model-
Similarity-Based Policy for Scheduling DL Training in GPU Cluster”. In: Applied
Sciences 14 (Mar. 2024), p. 2349. doi: 10.3390/app14062349.

[UL24] Shahadat Uddin and Haohui Lu. “Dataset meta-level and statistical features affect
machine learning performance”. In: Scientific Reports 14.1 (Jan. 2024). issn: 2045-
2322. doi: 10.1038/s41598-024-51825-x. url: http://dx.doi.org/10.1038/
s41598-024-51825-x.

