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Abstract

Multi-omics data analysis have received much attention in recent years due to their potential for use in clinical
practice, primarily for the development of personalized medicine. One of possible ways of processing multi-omics
data is integrative clustering - finding coherent groups of samples based on data of different types. This study
focuses on application of four approaches of integrative clustering: ADC, multi-source ABC, CEC and weighted
similarity-based clustering. The purpose of the study is to illustrate the application of methods on simulated
data with a known and pronounced cluster structure, and also to apply methods to search for structure in
real experimental data. In the latter case, an integrative analysis of two types of omics data was performed -
transcriptomic and proteomic data. The ability of the selected methods to determine the true cluster structure
in simulation data is demonstrated. Using real data as an example, multi-source ABC and weighted similarity-
based clustering methods were able to detect a biologically meaningful structure that was not found during
single-source analysis.

Keywords: integrative clustering, weighted similarity-based clustering, CEC, ADC, multi-source ABC,
hierarchical clustering.
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1 Introduction

Advances of recent years in the quantitative analysis of biological samples, such as sequencing and mass spec-
trometry, have enabled researchers to collect high dimensional omics data of different types from the same set
of biological samples. The number of the molecular features in high dimensional omics data is much higher
than the sample number. Such data have enormous potential for clinical use and therefore are subject to
comprehensive analysis. Multi-omics data include the data generated from genome, proteome, transcriptome,
metabolome and epigenome, as well as lipidome, phosphoproteome and glycol-proteome analysis [1]. Macro-
and micro molecules, such as genes, RNA, proteins, lipids and other metabolites, collaborate in cells to perform
complex biological processes, therefore integrative analysis of multiple omics data types may reveal systems-level
insights.

Integrative analysis of clinical or biological data can facilitate more personalized treatment of patients.
Analyzing multi-omics profiles can help to address such questions as disease subtyping and classification, iden-
tification of diagnostic biomarkers and driver genes for diseases. Such a heterogeneous disease as cancer is the
most common object of study using an integrative multi-omics approach. This is due to the fact that different
subtypes of cancer, on the one hand, are characterized by different survival rates and prognosis of response to
therapy, and on the other hand, they differ significantly from each other in the molecular processes occurring in
the cancer cell. For example, four subtypes of Glioblastoma with different survival outcomes were identified with
help of the Pathway Recognition Algorithm using Data Integration on Genomic Models (PARADIGM), using
gene expression and copy number data [2]. An entirely new subtype of prostate cancer with extremely poor
survival outcome was identified with usage of a nonparametric Bayesian model for integrating patient-specific
gene expression and copy number variation data [3]. The given examples of clinically significant discoveries,
which were made using integrative analysis of multi-omics data, indicate the importance of improving integrated
analysis methods and finding new, more reliable and effective ones.

One of the ways to analyze multiple-source high dimentional data is clustering - finding coherent groups of
samples in the data, such that samples within a group are similar, and samples in different groups are dissimilar.
Clustering is a highly researched computational problem, investigated by multiple scientific communities [4].
Integrative cluster analysis is especially relevant for processing multi-omics data: it can help to reduce the effect
of experimental and biological noise in the data and to reveal different cellular aspects, such as effects manifest
at the genomic and epigenomic levels [4].

The simplest way of searching for clusters in multi-omics data is concatenating all omics matrices and
application of single-omics clustering to the resulting matrix. This method increases the dimensionality of the
data, therefore low-rank approximation of the resulting matrix can be applicable [5]. This approach is often
termed as the early integration. The low-rank assumption is used for low-dimensional representation of the
original data, which is used to identify clusters of samples.

In late integration, each omics is clustered separately using a single-source clustering algorithm and the
clustering solutions are integrated to obtain a single clustering solution. This approach is also called ensemble
clustering. The advantage of late integration lies in that any clustering algorithm can be used for each omics,
which makes possible usage of algorithms that are known to work well on a particular omics only. Method
of consensus clustering is widely used to combine multiple clustering solutions. This method uses different
resampling schemes to simulate perturbations of the original data set, so as to assess the stability of the
clustering results with respect to sampling variability. The underlying assumption is that the more stable
the results are with respect to the simulated perturbations, the more these results are to be trusted [6]. The
clustering algorithm of choice is then applied to each of the perturbed data sets from each data source, and
the consensus matrix is built, which stores, for each pair of samples, the proportion of clustering runs in which
two items are clustered together. The consensus matrix can be used as a visualization tool to help assess the
composition and number of clusters [6].

Consensus clustering is used in such multi-source clustering technique as aggregating bundles of clusters
[7], which implies resampling from each data set separately and usage of resulting clustering solutions to build
consensus matrix. On the other hand, cluster of cluster assignments (COCA) methodology computes a binary
matrix of n by c dimensionality, where n is a number of samples and c is a sum of numbers of clusters in each
omics data. This binary matrix, indicating whether a sample belong to a certain cluster in a certain data source,
is then used as an input into consensus clustering [8].

A special class of multi-omics data clustering algorithms is the class of similarity based methods. The
shortcoming of the late integration approach, described above, is that due to clustering of samples using data
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sets separately, concordant but weak signals may be vanished during the initial clustering. Similarity-based
approach implies data integration before clustering procedure, which helps to make use of weak but concordant
structures in different data sources.

Technology of the similarity network fusion (SNF) performs integration of data of different type by con-
structing networks of samples or patients for each available data type and then fusing these into one network
that represents the full spectrum of underlying data. Fusion is performed by iterative updating these networks
to increase their similarity until they converge to a single network, which is then partitioned using clustering
algorithm [9]. The method of Neighborhood based Multi-Omics clustering (NEMO) implies building of inter-
sample relative similarity matrix for each omics data set, which expresses the similarity between samples i and
j relative to i’s k nearest neighbors and to j’s k nearest neighbors [10]. Since different omics have different data
distributions, the relative similarity is more comparable between omics than the original similarity matrix. As
in SNF approach, all relative similarity matrix are integrated into one matrix and that network is clustered.

Similarity-based clustering gives possibility to weight the importance of the different types of information.
The weighted similarity-based approach was developed to solve the problem of discovering compounds that are
similar with respect to structure and induced activity [11]. The integrative clustering of compounds uses the
weighted average of similarity matrices as an input.

Integration of data at similarity level also can be accompanied by dimensionality reduction. For example,
regularized multiple kernel learning for dimensionality reduction (rMKL-LPP) method uses dimensionality
reduction, such that similarities between neighboring samples is maintained in lower dimension [12]. By this
approach samples are projected into a lower dimensional, integrated subspace where they can be analyzed
further. Group of similarity-based methods, together with methods that use statistical modeling of the data, is
often referred to as intermediate integration.

Figure 1 schematically illustrates the multi-source data clustering approaches, described above.

1.1 Research question and organization of the report

The aim of the study is to illustrate application of methods of multi-source clustering to two omics data sets:
transcriptomic and proteomic data from the radiation experiment. In order to investigate the performance of
the multi-source clustering algorithms on the data with a well-known and pronounced clustering structure, the
simulated data were used. In order to compare performance of methods of different types with each other,
the work considers early integration (aggregated data clustering), intermediate integration (weighted similarity-
based clustering), late integration (integration of clustering solutions using complementary ensemble clustering)
and late integration with usage of consensus clustering (integration of clustering solutions using aggregated
bundles of clusters) methods.

The report is organized as follows: section 2 is devoted to description of data for both experimental and
simulated data sets. Section 3 provides details about methodology, which was used in the project. Sections 4
and 5 presents the results obtained for both real and simulated data. A brief discussion on software used in
the project is given in section 6. Societal relevance, ethical thinking and stakeholder awareness are subjects of
discussion in section 7. Section 8 includes discussion of results obtained, notes about limitation of the research,
description of prospects for further research and the conclusion.
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Figure 1: Framework of multi-source data clustering.
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2 Data

Two sources of data were used for the analysis in this research project. First source is a simulated data, which
were generated specifically for the purpose of illustration and investigation of the performance of clustering
techniques. Second source of data is a radiation experiment in which newborn male mice were exposed to
ionizing radiation.

2.1 Simulated data

Two data matrices were created, matrix X and matrix Y. Both matrices have 30 columns, corresponding to
30 samples. Number of rows, corresponding to the number of observations, is equal to 1000 in matrix X and
3000 in matrix Y. In the context of multi-omics data, rows may correspond to biological features such as genes,
proteins, etc. In matrix X observations are correlated such that 30 samples form 6 groups of 5 samples in each
group. In matrix Y samples form 3 groups including 15, 10 and 5 samples. Each group of samples was generated
in the following way:

Gi ∼ Nm(µ,Σ), (1)

where Nm(µ,Σ) denotes the multivariate normal distribution, Gi denotes a matrix, containing values of
features for all samples in group i, m is a number of samples in the group i, µ is a vector of zeroes of length m,
Σ is a covariance matrix with m rows and m columns:

Σ =


1 0.75 0.75 0.75 0.75

0.75 1 0.75 0.75 0.75
0.75 0.75 1 0.75 0.75
0.75 0.75 0.75 1 0.75
0/75 0.75 0.75 0.75 1

 . (2)

Structure of matrices X and Y is shown in equations 3 and 4.

X =


x1,1 . x1,30

. . .

. xij .

. . .
x1000,1 . x1000,30

 . (3)

Y =


y1,1 . y1,30
. . .
. yij .
. . .

y3000,1 . y3000,30

 . (4)

Matrix X was generated using following algorithm:

1. Create covariance matrix with 5 rows and 5 columns, value of 1 on diagonal and 0.75 in all other cells.

2. Create a vector of zeros of length 5. This vector will be further used as a vector of mean values.

3. Sample 1000 vectors of random values from multivariate normal distribution with a vector of mean values
from p. 2 and correlation matrix from p. 1. This results in a matrix of 1000 rows and 5 columns.

4. Repeat previous action 5 times, which gives 5 different matrices of the same dimensionality and with same
correlation between columns.

5. Combine six matrices into one by columns.

Matrix Y was generated using the same algorithm, except that it requires separate generation of three vectors
of means and three correlation matrices of different dimensionality. In matrix Y, the first 15 columns represent
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Figure 2: Color scheme of simulated data: matrix X (left) and matrix Y (right).

samples of the first cluster, columns from 16 to 25 - second cluster, and the last five columns represent samples
belonging to the last cluster.

Characteristics of matrices X and Y are summarized in Table 1. Code for data simulation can be found in
Appendix.

Table 1: Characteristics of simulated data matrices.

Rows Columns Groups of clustered samples Coefficient of correlation
Matrix X 1000 30 6 0.75
Matrix Y 3000 30 3 0.75

Generated matrices X and Y are shown schematically on Figure 2.

Similarity matrices of X and Y are visualized on Figure 3. In this setting, similarity matrix is a square matrix
with 30 rows and 30 columns, representing 30 samples in the data sets. A score at intersection of the ith row
and the jth column expresses the similarity between samples i and j (details are explained in the Methodology
section). On Figure 3 one can clearly observe grouping of samples, whereby samples from the same group are
characterized with higher similarity. Six non-overlapping blocks on the left heat map on Figure 3 represent six
clusters in matrix X and three blocks on the right heat map correspond to three clusters in matrix Y.

2.2 Radiation data

Experimental data, used in the project, were generated by the Belgian Nuclear Research Centre [13] in a multi
omics radiation study in which newborn male mice were exposed to 2 Gy Gamma radiation immediately after
their birth. Mothers of these mice were treated with two different diets: a rich in folic acid (FA) diet and a
standard diet. Tissues of brain of mice, such as cortex and hippocampus, were extracted at day 11 and day 17
after exposure.

Distribution of animals between groups regarding day of tissue selection, radiation exposure status and diet
of mother is shown in the Table 2. Mothers of animals in groups FA+, Radiation+ and FA+, Radiation−
received the folic acid-rich diet, while mothers of animals in groups FA−, Radiation+ and FA−, Radiation−
did not. Animals in groups FA+, Radiation+ and FA−, Radiation+ were exposed to ionizing radiation, while
animals in groups FA+, Radiation− and FA−, Radiation− were not. In total there were 31 samples of cortex
and 32 samples of hippocampus collected.

Each sample was a subject to transcriptomic and proteomic analysis. Cortex data include information on
3102 proteins and 18380 genes. Hippocampus data include information on 3011 proteins and 18329 genes.
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Figure 3: Color-coded heat maps of similarity matrices X (left) and Y (right).

Table 2: Distribution of animals between groups.

Day 11 Day 17 Day 11 Day 17
Cortex Hippocampus

FA+, Radiation+ 4 4 4 4
FA+, Radiation− 3 4 4 4
FA−, Radiation+ 4 5 4 5
FA−, Radiation− 4 3 4 3

The data are stored in a matrix format with rows indicating the features and columns indicating the samples.
Structure of data is shown in equation 5. Let Xk,ij denote the measurement of the jth feature, j = 1, ...,mk,
for the ith sample, i = 1, ..., n, where n and m denote number of samples and number of features respectively,
k=1 for proteins data and k=2 for gene expression data.

Xk =


xk,11 . xk,1n

. . .

. xk,ij .

. . .
xk,mk1 . xk,mkn

 . (5)

Different days of tissue collection, type of analysis and region of brain are given in separate matrices, which
results in 8 data files. Information on treatment status of mothers and exposure of animals to radiation is given
in 4 (separately for two days and two brain regions) additional data matrices. For illustrative purposes, only
result of analysis for two settings are presented in this report: cortex data, day 11 and hippocampus data, day
11.

Similarity matrices of radiation data of two experimental settings - cortex, day 11 and hippocampus, day 11
- are presented on Figures 4 and 5 respectively. It can be clearly observed, that, in contrast with heat maps for
simulated data (Figure 3), there is no obvious grouping of samples and the signal in general is much weaker.
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Figure 4: Color-coded heat maps of similarity matrices of gene expression (left) and proteins (right) data,
cortex, day 11.

Figure 5: Color-coded heat maps of similarity matrices of gene expression (left) and proteins (right) data,
hippocampus, day 11.
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3 Methodology

The aim of integrative clustering is to cluster samples using two or more data sources. As a reference, single-
source clustering was also performed in this project. The simplest way of integrative clustering, applied to
radiation data, is the clustering on merged data (aggregated data clustering). Ensemble clustering approach,
which implies aggregation of single-source clustering solutions in order to produce an overall clustering struc-
ture, was also used (methods of ABC, multi-source ABC and complementary ensemble clustering). Method of
weighted similarity-based clustering combines data of two or more sources at the level of similarity matrices and
assign a weight to each similarity matrix (corresponding to each data source). Hierarchical clustering is used in
this work to find groups in the data, due to its popularity and advantages, described in further sections. This
method results in a dendrogram which can be cut at any point to obtain a number of clusters in a range from
1 to N , where N is a number of samples in the data. Optimal number of clusters was defined using the ’gap’
method, based on minimizing the within-cluster dispersion.

3.1 Cluster analysis of single-source data

3.1.1 Similarity matrix

Similarity matrix is a matrix which contains information about pairwise similarity between observations/samples
[14]. Cells of matrix contain scores, measuring how similar a pair of samples are to each other. Number of
rows and columns in similarity matrix is equal to number of observations. The smaller the value of the score,
the greater the similarity. Euclidean distance was used in this research project as a measure of similarity of
samples. Euclidean distance between observations or samples i and i′, for which p features are measured, is
defined as follows [14]:

dii′ =
√
Σj(xij − xi′j)2, (6)

where dii′ is the Euclidean distance between samples i and i′ and j=1,2,...,p. The values of Euclidean
distance between ith and i′th samples are located in the similarity matrix at the intersection of the ith column
and the i′th row.

3.1.2 Hierarchical clustering

Hierarchical clustering is a technique for grouping observations or samples based on the pairwise similarities
between them [14]. Agglomerative hierarchical clustering is a hierarchical clustering procedure, which starts
from considering each sample as its own cluster. At each step of the procedure the pair of most similar clusters
is defined and these two clusters are fused. After that the pairwise similarities among remaining clusters are
calculated. The algorithm is repeated until only one cluster remains. Similarity of clusters in this project was
measured by the average linkage: in clusters A and B the average of all pairwise similarities was calculated and
these values were used to assess similarity between clusters A and B.

One way to present results of Hierarchical clustering is a dendrogram —a graphical representation of clus-
tering solution, depicted as an upside-down tree. An example of a dendrogram is shown on Figure 6, which
illustrates the result of cluster analysis of cortex gene expression data, collected at day 11. Samples are in-
dicated by four colors on the Figure, which corresponds to four clusters in the data. All samples, belonging
to mice whose mothers received folic acid, are grouped into cluster (colored in blue) and thus separated from
other animals. On a dendrogram each observation is represented as a leaf. Leaves fuse with each other such
that there are N − 1 points of fusion, where N is a number of observations. By agglomerative hierarchical
clustering, observations group together starting from the bottom of the dendrogram and points of fusion are
located at different heights. The height of fusion indicates how similar clusters or observations are. The most
similar samples fuse at the lowest part of dendrogram, whereas clusters or samples that fuse close to the top of
the dendrogram are less similar.

Number of clusters on a dendrogram is defined by height, at which horizontal cut is being made. 3-clusters
and 6-clusters structure of matrix X are shown on Figure 7. It is observed that samples which are grouped
together in 6-cluster structure remain in one cluster when K=3. This illustrates the hierarchical assumption:
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Figure 6: Dendrogram and 4-clusters structure of gene expression analysis data for cortex samples, collected at
day 11.

Figure 7: 3-clusters and 6-clusters structure of matrix X.

for any values H and h of height of fusion on a dendrogram, such that h < H, clusters obtained by cutting a
dendrogram at height h are always nested within clusters, obtained by cutting at H.

3.1.3 Single-source ABC clustering

The aggregating bundles of clusters (ABC) is an iterative procedure, developed for analysis of gene expression
data [7]. Method is based on aggregating results obtained from an ensemble of randomly resampled data (both
samples and features). Assume that data are organized as a matrix X = [xij ], such that i = 1, ..., N , and
j = 1, ..., F where N is number of samples and F is number of features. A weight ωj is assigned to jth feature:

ωj =
1

Rj + c
, (7)

where Rj is the rank of the variance of jth feature and c is such that the 0.01F features with the highest variance
have a combined probability of 0.2 of being selected. At each of 1000 iterations a random sample of 100 features
was selected using weighted random sampling and N samples were selected with replacement, discarding any
replicate samples. Selected samples and features form a matrix which is used as an input into the hierarchical
clustering procedure with Ward’s linkage [15]. For a given value of k on each iteration each selected sample is
assigned to a cluster from range 1, ..., k and an incidence matrix is set up. Incidence matrix, in this context, is a
square matrix where one row and one column correspond to each sample. The entry Iii′ is equal to 1 if samples
i and i′ belong to the same cluster, and 0 otherwise. After 1000 iterations, all incidence matrices are summed
up and divided by number of times two objects were selected simultaneously. The resulting similarity matrix
is then transformed into dissimilarity matrix, expressing the number of times the samples were not clustered
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together. This dissimilarity matrix is taken as an input for a clustering algorithm.

Due to weighted random sampling of features, less informative features are less likely to be selected. Infor-
mative features are favored to be included into clustering at each step. Randomness of samples selection leads
to increasing of diversity of clustering solutions and reduces dependence among clusters defined at different
iterations.

3.2 Integrative clustering

In this section we present several methods of integrative multi-source clustering that were applied in this thesis
in order to find structure in the data.

3.2.1 Aggregated data clustering

Under this approach two data sets were merged into one by rows with subsequent analysis of the single re-
sulting matrix by applying hierarchical clustering with Euclidean distance and average linkage. The approach
is described in [16] and implies computation of ensemble clusters of the merged data. For simplification, the
algorithm was modified such that the merged data set itself was used as an input to final clustering procedure,
which results in only one clustering solution instead of an ensemble of them. Two main limitations of this
approach are increasing of the dimensionality of the data and ignoring of the different distributions of values in
different omics.

In case with simulated data, merging of matrices results in a data set with 30 columns and 4000 rows, which
represent 30 observations and 4000 features, of which 1000 come from matrix X and 3000 come from matrix Y.
In case of radiation experiment, proteomic and gene expression data for the same day (11 or 17) were aggregated
together, since these data come from the same animals.

3.2.2 Weighted similarity-based clustering

This method, introduces by Perualila-Nan et al. [11], combines similarity matrices and assigns weights to them,
producing a weighted similarity matrix, which can be further a subject to a clustering algorithm. A remarkable
feature of this approach is the possibility to change weights gradually, thus observing the effect of each data
source on clustering structure.

For M data sources, the weighted similarity matrix SW
N for N samples is given by

SW
N =

M∑
m=1

ωmSm
N , (8)

0 ≤ ωm ≤ 1, (9)

M∑
m=1

ωm = 1, (10)

where Sm
N is the similarity matrix for the mth data source, m = 1, ...,M and ωm is the weight associated with

the mth source. A weight, assigned to a data source, is a number between 0 and 1. The sum of the weights
must be equal to 1. Matrix SW

N is used as an input for hierarchical clustering procedure.

Weighted summation of similarity matrices is illustrated on Figure 8. Two color-coded heat maps at the top
of the Figure 8 (a, b) represent similarity matrices of simulated data sets X and Y. Clustering of samples can
be clearly seen: six groups of samples in matrix X and three groups in matrix Y are characterized by a high
degree of similarity. Three heat maps at the bottom of Figure 8 (c, d, e) depict a weighted sum of similarity
matrices X and Y, with weights of 0.25, 0.5 and 0.75 assigned to similarity matrix X. It can be observed that
after summation the similarity between samples which are grouped together both in X and Y remained high.
On the other side, similarity of samples which were grouped only in matrix Y depends on a weight, assigned
to matrices X and Y. When a weight of similarity matrix Y decreases, similarity between these samples in the
weighted similarity matrix also goes down.
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(a) (b)

(c) (d) (e)

Figure 8: (a, b) - similarity matrices X and Y. (c, d, e) - summation of similarity matrices X and Y with weight
of 0.25 (c), 0.5 (d) and 0.75 (e) assigned to data source X.

In this project only weighted combinations of two matrices were considered, in other words, M in equations
8 and 10 is equal to 2. Equation 8 takes the form:

SW
N = ω1S

1
N + ω2S

2
N . (11)

If M = 2, a weight of 0 assigned to the first data source means that the second data source has weight of 1.
In this case the second data source is the only one data source which clustering is based on.

In case of radiation experiment data, one of these two matrices contains proteomic data and the other - gene
expression data. In case of simulated data, weighted combination of matrices X and Y was considered.

3.2.3 Complementary ensemble clustering

The complementary ensemble clustering approach (CEC) is introduced by Fodeh et al. [16]. In this method
clustering algorithm is applied to a weighted linear combination of the coassociation matrices obtained from
separate ensemble clustering of different data sources.

Each data matrix first is taken as an input to the iterative hierarchical clustering procedure. Let T denote
a number of iterations and t = 1, 2, ..., T . T must be specified as a parameter for the clustering procedure, as
well as number of clusters K to cut the dendrogram in. Let n denote number of data sources and i = 1, 2..., n.
For each iteration of the ensemble, the number of features is randomly set between (m/2) and (m− 1), where
m is the total number of features that are randomly sampled. At every iteration a binary incidence matrix is
set up. All the resulting incidence matrices for data source i are aggregated into the coassociation Si as follows:
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S
(t+1)
i = S

(t)
i + C

(t)
i C

(t)T
i , (12)

where the matrix product C
(t)
i C

(t)T
i is a binary 0/1 matrix, also called an incidence matrix, that indicates

whether a pair of objects belongs to the same cluster during the tth iteration of the ensemble.

The resulting final coassociation matrix Si again is taken as an input to the hierarchical clustering procedure
resulting in a final clustering solution for the data source i.

CEC approach combines the coassociation matrices of ensemble clusters from different data sources into
one aggregate coassociation matrix that is subsequently used for obtaining the consensus clusterings. The joint
coassociation matrix is computed by adding the coassociation matrices of the different data sources by following
way:

Scombined = α1S1 + α2S2 + ....+ αnSn, (13)

where α is a parameter that governs the weight of each data source. Applying hierarchical clustering
algorithm to the combined coassociation matrix Scombined yields the final clusters.

Method was applied to integrate proteomic and gene expression data for each day (day 11 or day 17) and
for each brain region (cortex or hippocampus).

3.2.4 Multi-source ABC clustering

ABCmethod, described in section 3.1.3, can be adapted to incorporate two or more data sets [7]. On each of 1000
iterations a subsets including 100 features were selected from each data set to apply clustering algorithm. As was
described in section 3.1.3, each iteration for each data source results in an incidence matrix. The difference from
single-source ABC method is that these incidence matrices are summed up not only over number of iterations,
but also over number of data sources. This results in a single similarity matrix, which, after transforming into
dissimilarity matrix, is used as an input into a clustering algorithm. In this project only two sources were used:
proteomic and gene expression data for radiation experiment (separately for day 11 and day 17 and for two
brain regions), or X and Y matrices for simulated data.

3.3 The Gap statistic

For estimating the number of clusters the ‘gap’ method was used, as proposed by Tibshirani et al. [17]. Let
dii′ denote the Euclidean distance between samples i and i′, as shown in equation 6. let also Cr denote the
indices of samples in cluster r, such that the sum of the squared pairwise distances for all samples in cluster r
is defined as follows:

Dr =
∑

i,i′∈Cr

d2ii′ . (14)

Estimate of the optimal number of clusters is the value of k, which maximizes the following statistic:

Gapn(k) = En[log(Wk)]− log(Wk), (15)

where Wk is the pooled within-cluster sum of squares around the cluster mean and nr denotes the number
of samples in cluster r.

Wk =

k∑
r=1

1

2nr
Dr. (16)

En[log(Wk)] denotes expectation of log(Wk) under sample size of n from the reference distribution - a
uniform distribution over a box aligned with the principal components of the data. For each value of k 100
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Monte Carlo samples were generated from this distribution and for each sample log(Wk) was computed. Average
of these values is an estimate of E[log(Wk)]. The standard deviation of 100 Monte Carlo replicates of log(Wk)
is denoted by sdk. Preferable number of clusters is equal to smallest k such that

Gap(k) ≥ Gap(k + 1)− sk+1, (17)

where
sk = sdk

√
1 + 1/100, (18)

sdk =

√√√√ 1

100

100∑
i=1

(log(Wk)i − log(Wk)). (19)
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4 Application of the methods to the simulated data

Figure 9 illustrates the dendrograms of simulated data matrices X and Y. By simulation, data matrix X includes
6 clusters of samples and data matrix Y includes 3 clusters, which are highlighted by colors on the Figure. It
can be observed that samples in each data matrix fuse into clusters at the same height, which implies the same
within-cluster similarity of samples.

Figure 9: Dendrograms of simulated data matrices X (left) and Y (right).

Application of the ’gap’ method to the simulated data resulted in values of optimal number of clusters K,
given in Table 3. Value of K for matrices X and Y corresponds to grouping structure of samples, determined
by simulation.

Table 3: Definition of the optimal number of clusters in simulated data with the ’gap’ method.

Data set K
Matrix X 6
Matrix Y 3
Merged matrices X and Y 3

4.1 Weighted similarity-based clustering

Formula 8 for weighted similarity matrix SW
N in this setting takes the form:

SW
30 = ωXSX

30 + ωY S
Y
30, (20)

where ωX and ωY denotes weights, and SX
30 and SY

30 - similarity matrices of X and Y respectively.

Figure 10 shows, how clustering of simulated data changes when a weight of similarity matrix X (ωX in
equation 20) changes from 0 to 1 with step 0.1. Each row represent the clustering solution for a certain value of
weight. Three colors on the Figure highlight three different clusters. The row ’Only Y’ on Figure 10 corresponds
to situation of weight of 0 assigned to matrix X and weight of 1 by matrix Y. This implies clustering based on
data source Y only. It can be observed, that clustering on line ’Only Y’ is exactly the same as on the right
dendrogram on Figure 9: first 15 samples belong to the first cluster (colored in brown), samples 16 to 25 form
the second cluster, colored in red, and the last five sample belong to a yellow-colored cluster. This structure
is maintained with increasing weight of matrix X from 0 to 0.9. Clustering changes only when weight of X
is larger, than 0.9 (upper row on Figure 10). This change of structure is shown explicitly on Figure 11. It is
shown, that the 3-clusters structure of integrated data is still preserved as it is in matrix Y until the weight of
matrix X reaches value of 0.93. On the left dendrogram (Figure 11) first three groups of samples in data set X
cluster together, which corresponds to the first cluster of data set Y. Fourth and fifth groups of samples from X
form the second cluster of Y, and the last group of X coincide with the last group in Y. For values of weight of
X equal to 0.93 and higher, the 3-clusters structure of matrix X, which is determined by random sampling from
normal distribution during data generation, affects integrated clustering: clustering on the right dendrogram
does not coincide with clustering in data set Y.
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Figure 10: Clustering of simulated data with gradual changing weight of X. The colors denote the cluster
membership of the sample per clustering solution.

Figure 11: Change in clustering of integrated data when weight of similarity matrix X changes from 0.92 (left)
to 0.93 (right).

As can be seen on Figure 10, the 3-clusters structure of weighted integrated data is quite stable and is
predominantly determined by clustering in matrix Y. The stability of the 3-clusters structure of integrated data
with increasing weight of data source X is due to the strength of intragroup correlation of samples in matrix Y.
It is illustrated on Figure 12. The graph shows how the maximal weight of X, at which 3-clusters structure is
preserved as it is in Y, depends on intragroup correlation in Y. As it was expected, lower intragroup correlation
in Y leads to lower stability of 3-clusters structure of integrated data when the weight of similarity matrix X
increases. As has been shown previously, at correlation value of 0.75 the structure is preserved until weight of
X reaches a value as high as 0.93. In a contrast, correlation of 0.1 decreases maximal possible weight of X to
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approximately 0.6, as can be seen on Figure 12.

Figure 12: Dependency between the intragroup correlation in matrix Y and maximal weiht of X, at which
clustering structure of integrated data is preserved.

4.2 ABC clustering

Single-source clustering solution for simulated data, obtained using ABC method, is represented on Figure 13.

Groups of samples are identified in data set X as they are determined by simulation. There are six clusters
of five samples in each and equal height of fusion, which implies equal intragroup similarity.

Clustering solution for the Y data set also coincides with the true structure in data: there are three clusters,
including 15, 10 and 5 samples. However, the fusion height is clearly uneven: the biggest cluster, which includes
15 samples, has the lowest point, while the smallest cluster has the highest point of fusion. This result is
invariably repeated in different runs of the procedure and therefore cannot be explained by random fluctuation.

4.3 Multi-source ABC clustering

Multi-source clustering solution for number of clusters K=3 and K=6 is presented on Figure 14. It can be
observed, that grouping of samples in integrative clustering into six clusters correspond to grouping in data set

Figure 13: Clustering solution for simulated data by ABC approach: clustering in data set X (left) and Y
(right).
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Figure 14: 3-clusters (left) and 6-clusters (right) structure for simulated data by multi-source ABC approach.

X. When value of K changes from 6 to 3, first 3 groups cluster together and groups 4 and 5 form the second
cluster. This 3-clusters structure fully corresponds to the structure in the Y data set.
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5 Application of the methods to the radiation experiment data

Samples in radiation experiment data consist of four groups, depending on day of tissue selection (11 or 17) and
region of brain, where tissue was taken from (cortex or hippocampus). Animals in each of these four groups
can be further subdivided by four, with regard to whether they were exposed to radiation or not, and whether
their mothers received a diet, rich of folic acid. In the following, ’Folic acid +’ denotes the group of animals
whose mothers were fed a folic acid-rich diet, and ’Folic acid -’ denotes the group of animals whose mothers
were fed a standard diet. ’Radiation +’ denotes the group of animals, that have been exposed to radiation, and
’Radiation -’ denotes intact animals. Identification numbers (ID) of all animals are given in Table 4.

Table 4: Groups of animals with regard to radiation status and treatment of mother.

Radiation+ Radiation−
Cortex, day 11

Folic acid + 26, 28, 33, 34 30, 32, 36
Folic acid - 1, 2, 6, 8 3, 4, 9, 11

Cortex, day 17
Folic acid + 39, 40, 43, 44 38, 45, 46, 48
Folic acid - 18, 19, 20, 23, 24 13, 15, 21

Hippocampus, day 11
Folic acid + 74, 76, 81, 82 78, 80, 83, 84
Folic acid - 50, 53, 54, 56 51, 52, 57, 59

Hippocampus, day 17
Folic acid + 87, 88, 91, 92 86, 93, 94, 96
Folic acid - 65, 66, 68, 71, 72 63, 69, 61

Table 5 presents the results of application of the ’gap’ method to radiation data to define the optimal number
of clusters K. The obtained results indicate K=1 for all data sets, as well as for all merged data. This value of
K implies no clustering in the data. Since optimal value of K can not be defined for these data, the number of
groups of animals in the experiment will be used as a number of clusters in further analysis. One can suppose
that clustering of animals may be due to their radiation exposure status. Groups of mice whose mothers received
or not received a folic acid-rich diet may also form clusters. Finally, both of these divisions can simultaneously
lead to clustering of animals. Based on these considerations, a values of K equal to 2 and 4 were used in the
subsequent analysis.

Table 5: Definition of the optimal number of clusters in radiation data with the ’gap’ method.

Data set K
Cortex, day 11

Gene expression data 1
Proteins data 1
Merged gene expression and proteins data 1

Cortex, day 17
Gene expression data 1
Proteins data 1
Merged gene expression and proteins data 1

Hippocampus, day 11
Gene expression data 1
Proteins data 1
Merged gene expression and proteins data 1

Hippocampus, day 17
Gene expression data 1
Proteins data 1
Merged gene expression and proteins data 1

In this report only result of analysis for two settings are presented: cortex data, day 11 and hippocampus
data, day 11.
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5.1 Gene expression and proteomic data from cortex samples collected at day 11

Hierarchical clustering of gene expression and proteomic data obtained from cortex samples, collected at day
11 after exposure of mice to radiation, is presented on Figure 15. The samples on the Figure are indicated by
the numbers of the animals from which they were taken. The animal numbers in the Figure correspond to the
identification numbers in the Table 4. Clusters of samples are highlighted by different colors. It can be observed,
that the 2-clusters structure, identified in gene expression data (Figure 15 (a)), perfectly reflects the difference
in folic acid treatment status of mothers of mice. All samples from the group ’Folic acid +’ are clustered in one
cluster, while all animals from the group ’Folic acid -’ form the second cluster. In the proteomic data one of
the two clusters includes only two samples, with ID 30 and 34, (Figure 15 (b)), which obviously do not exhaust
any group of experimental animals. However, both samples belong to the same group ’Folic acid +’.

(a) K=2, gene expression data (b) K=2, proteomic data

(c) K=4, gene expression data (d) K=4, proteomic data

Figure 15: Single-source hierarchical clustering in gene expression and proteomic data for cortex samples, day
11.

In 4-clusters structure of the gene expression data all samples, obtained from animals of group ’Folic acid +’
still form a separate cluster and all remaining samples are divided by three clusters (Figure 15 (c)). Clustering
solution for proteomic data with K=4 does not match neither treatment nor radiation status of animals.

5.1.1 ABC and multi-source ABC methods

Single-source ABC clustering solutions for cortex data, day 11, are presented on Figure 16. This result differs
from the simple (non-consensus) hierarchical single-source clustering, discussed in the previous section. For
a number of clusters K=2 clustering in gene expression and proteomic data do not display any reflection of
treatment or radiation exposure status of animals (Figure 16 (a,b)). However, two samples, which form separate
cluster in proteomic data, both belong to the ’Folic acid +’ group. These are again the samples with ID 30 and
34.

For K=4, single-source ABC clustering of gene expression data does not show any meaningful structure
(Figure 16 (c)). However, in proteomic data (Figure 16 (d)) two out of four defined clusters include only
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(a) K=2, gene expression data (b) K=2, proteomic data

(c) K=4, gene expression data (d) K=4, proteomic data

Figure 16: ABC method applied to gene expression and proteomic data for cortex samples, day 11.

samples from group ’Folic acid +’, third cluster includes only samples from group ’Folic acid -’ and the fourth
cluster includes one (ID 26) sample from the ’Folic acid +’ group and six samples from the ’Folic acid -’ group.

Multi-source ABC clustering of cortex data, day 11, is shown on Figure 17. Results for K=4 are close to a
true reflection of the division of animals by maternal diet status (Figure 17, (b)). There are two clusters defined,
which include only samples from the ’Folic acid -’ group, one cluster which includes only samples from the ’Folic
acid +’ group and one cluster, which includes one sample from the ’Folic acid -’ group and three samples from
the ’Folic acid +’ group.

For both single-source and multi-source ABC clustering, there is no connection between clustering structure
and radiation status observed.

5.1.2 Aggregated data clustering

Aggregation scheme and dimensionality of resulting matrices are shown in the Table 6.

Table 6: Aggregating of radiation experiment cortex data.

Dimension Value
Number of samples 15
Number of proteomic features 3102
Number of gene expression features 18380
Total number of features 21482

Clustering of the aggregated gene expression and proteomic data is shown on Figure 18. For number of
clusters K=2 there are two samples, ID 1 and 3, which form the separate cluster and both belong to the group
’Folic acid -’ (Figure 18, (a)). These two samples also form the separate cluster in the 4-clusters structure
(Figure 18, (b)).
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Figure 17: Multi-source ABC method applied to data for cortex samples, day 11, with K=2 (left) and K=4
(right).

Figure 18: Aggregated data clustering for cortex samples collected at day 11 with K=2 (left) and K=4 (right).
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Figure 19: Weighted similarity-based clustering in cortex data, day 11.

5.1.3 Weighted similarity-based clustering

In this approach the weighted similarity matrix was calculated by assigning weights to similarity matrices of the
gene expression data set and the proteins data set. Figure 19 illustrates how clustering changes when a weight
of similarity matrix of proteins data set changes from 0 to 1 when K=4. It can be observed the stable grouping
of samples with regard to the folic acid-treatment status of mothers. This grouping is largely preserved over
all range of weights, assigned to similarity matrices. Pair of samples 1 and 3, as well as pair 30 and 34, cluster
together into a separate cluster, and fuse with other samples only when a weight of the gene expression data
reaches value of 0.7.

5.1.4 Complementary ensemble clustering

Results of application of the complementary ensemble clustering method to the radiation data from cortex, day
11, are presented on Figure 20. In case of partition by 4 clusters, all samples from animals, whose mothers
received a folic acid-rich diet, are grouped together into one cluster (this cluster is highlighted by blue on the
Figure 20). Samples from the ’Folic acid -’ group are distributed between remaining three clusters. In case
of partition by 2 clusters, samples 1 and 3 form the separate cluster, which is consistent with results of other
methods application. For bothK=2 andK=4 there is no influence of radiation exposure status on the clustering
structure observed.

5.2 Gene expression and proteomic data from hippocampus samples collected at
day 11

Hierarchical clustering of gene expression and proteomic data obtained from hippocampus samples, collected at
day 11 after exposure of mice to radiation, is presented on Figure 21. The samples on the Figure are indicated
by the numbers of the animals from which they were taken. The animal numbers on the Figure 21 correspond to
the identification numbers in the Table 4. Clusters of samples are highlighted by different colors. Single-source
clustering solution for proteomic data (Figure 21, (b)) for K=2 implies a separate cluster for four samples (ID
50, 54, 57 and 51), all of which belong to the ’Folic acid -’ group. Grouping of animals by folic acid treatment
of mothers is captured by a single-source clustering of proteomic data with K=4 (Figure 21, (d)): two clusters,
highlighted by green and blue, include all samples from the group ’Folic acid +’ and two cluster, highlighted by
red and black, include all samples from the group ’Folic acid -’.
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Figure 20: CEC for cortex samples collected at day 11 with K=2 (left) and K=4 (right).

(a) K=2, gene expression data (b) K=2, proteomic data

(c) K=4, gene expression data (d) K=4, proteomic data

Figure 21: Single-source hierarchical clustering in gene expression and proteomic data for hippocampus samples,
day 11.

5.2.1 ABC and multi-source ABC methods

For K=2 the single-source ABC clustering of the gene expression data coincide with solution, obtained by
single-source simple (non-consensus) hierarchical clustering (Figure 22, (a)). In both solutions, there is only one
sample (ID 54), allocated to a separate cluster. However, ABC clustering for K=2 and K=4 does not reflect
grouping of animals, neither with regard to treatment, nor to radiation status.
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(a) K=2, gene expression data (b) K=2, proteomic data

(c) K=4, gene expression data (d) K=4, proteomic data

Figure 22: ABC method applied to gene expression and proteomic data for hippocampus samples, day 11.

Multi-source ABC clustering forK=2 andK=4 is shown on Figure 23. The dendrogram on the left, on which
two clusters are highlighted, display exact division of samples with regard to treatment status of mothers. All
animals, whose mothers received folic acid-rich diet, are gathered in a cluster highlighted by red. This structure
is not preserved with K=2 (dendrogram on the right of Figure 23). Three out of four clusters include samples
obtained from animals with different folic acid-treatment and radiation status. Only one cluster, colored in
black, includes samples from the same treatment group (’Folic acid -’).

5.2.2 Aggregated data clustering

Aggregation scheme and dimensionality of resulting matrices are shown in the Table 7.

Table 7: Aggregating of radiation experiment hippocampus data.

Dimension Value
Number of samples 16
Number of proteomic features 3011
Number of gene expression features 18329
Total number of features 21340

Clustering of the merged gene expression and proteomic data is shown on Figure 24. Two clusters, presented
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Figure 23: Multi-source ABC method applied to data for hippocampus samples, day 11, with K=2 (left) and
K=4 (right).

Figure 24: Aggregated data clustering for hippocampus samples collected at day 11 with K=2 (left) and K=4
(right).

on the left dendrogram, do not capture grouping of experimental animals by design. However, cluster colored
by black includes samples of the same treatment group. Better reflection of grouping of animals is obtained for
K=4: all animals, whose mothers received a folic acid-rich diet, are group together into a cluster, highlighted
by blue. Animals, whose mothers received usual diet, are distributed between remaining three clusters (black,
red and green).

5.2.3 Weighted similarity-based clustering

Weights are assigned to similarity matrices of the gene expression data set and the proteins data set with further
summation of similarity matrices. Figure 25 illustrates change of clustering when a weight of similarity matrix
of proteins data set changes from 0 to 1 with K=4. It can be observed, that integrative clustering differs from
a single-source clustering only when assigned weights are not lower than 0.3 (or no higher that 0.7). Structure,
reflecting treatment status of animals, can be observed on line ’0.3+0.7’ which implies following expression for
the weighted similarity matrix SW

16 :

SW
16 = 0.3SGE

16 + 0.7SProteins
16 , (21)

where SGE
16 denotes a similarity matrix of the gene expression data, SProteins

16 denotes a similarity matrix of
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Figure 25: Weighted similarity-based clustering in hippocampus data, day 11.

the proteins data and the index ’16’ refers to a number of samples. In clustering solution for these weights all
samples from the group ’Folic acid +’ are gathered into one cluster, colored in red. Samples from the group
’Folic acid -’ are distributed between remaining three clusters, colored in yellow, orange and white. For another
values of weights no meaningful clustering structure can be observed.

5.2.4 Complementary ensemble clustering

Results of application of the complementary ensemble clustering method to the radiation data from hippocam-
pus, day 11, are presented on Figure 26. As can be observed on the dendrogram, the sample with ID 54 fuses
with others samples at large value of height, which indicates low similarity of this sample to all the others. This
result is consistent with single-source clustering solutions for gene expression data and with weighted similarity-
based clustering solution where a weight, assigned to the gene expression data, is equal to 0.3 or higher. For
K=2 the sample 54 form the separate cluster, while all the remaining samples belong to the second cluster.
For K=4 sample 54 remains the single sample in the separate cluster. Neither influence of radiation status of
animals, nor of diet of mothers, can be noticed in this clustering structure.
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Figure 26: CEC for hippocampus samples collected at day 11 with K=2 (left) and K=4 (right).
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6 Software

The analysis was conducted with the R software (version 4.3.3). Function Gap from the package clusterGe-
nomics (verision 1.0) was used to define optimal number of clusters in the data sets. Cluster analysis was
performed with usage of functions from the package IntClust (version 0.1.0): ADC (aggregated data cluster-
ing), ABC.SingleInMultiple (single-source ABC clustering), CEC (complementary ensemble clustering), Cluster
(single-source clustering), M ABC (multi-source ABC clustering) and WeightedClust (weighted similarity-based
clustering). Listed fuctions may take as an input both the data itself and similarity matrices of the data sets.
Functions ClusterPlot and ComparePlot from the package IntClust were used for visualization of results of
cluster analysis.

While using the listed above functions from the IntClust package for cluster analysis, a few bugs were
discovered. When working with function WeightClust, an error occurs when trying to set list of different weight
combinations for the data sets consisting of a number of values other than ten. List of ten values is set by
default.

According to the documentation, the output of the function ABC is a list of two elements: the resulting
distance matrix and the resulting clustering structure. However, in practice the output of the function is a
single matrix, consisting of numbers of clusters, which each sample was assigned to on each iteration. This
output should be further processed to obtain a final clustering picture. In this project the output of the ABC
function was further used as an input into the Cluster function.
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7 Ethical thinking, societal relevance and stakeholder awareness

This research project does not include work with biological materials or experimental work with animals.
Therefore, ethical considerations regarding these areas of research work are not applicable to this project. The
study also does not involve working with personal data. The confidentiality of data used in the work was strictly
maintained and was never compromised.

Only licensed and open-source software was used in the project. All methods of data analysis that were used
in the work were published in peer-reviewed publications of the relevant field. The cluster analysis methods
used are relevant, modern and known in the scientific community.

Modern approaches to the analysis of biological materials make it possible to obtain different types of omics
data from one sample in one experiment. The demand for the accurate and efficient approaches to the analysis
of multi-omics data is high and it can be assumed that it will remain high in the near future. The results of the
integrative clustering methodology application presented in this report demonstrate the variety of approaches
to this problem, as well as the advantages and disadvantages of individual methods. The work also touches on
the question of the influence of folic acid content in the mother’s diet on the proteome and transcriptome of
the offspring. This issue, although it has been studied for a long time, does not lose relevance and remains the
topic of many scientific works [18], [19].

The results of the study will be reported and defended at an open meeting. The results will be separately
reported to the organization providing the data —the Belgian Nuclear Research Centre (SCK CEN), which is
the main stakeholder. SCK CEN, which is located in Mol, Belgium, is a global leader in the field of nuclear
research and innovations.
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8 Discussion and conclusion

8.1 Discussion

Simulated data sets were used in this project in order to test the performance of selected methodology. Results
of application of the ’gap’ method to the simulated data correspond to the true underlying clustering structure
in matrices X and Y. In the real experimental data, the ’gap’ method defined no clustering structure (K=1 in
all settings) both in single-source and aggregated data. Further cluster analysis of radiation data confirmed the
absence of a strongly expressed clustering structure. Thus, the results obtained confirm the feasibility of using
the ’gap’ statistic to determine the optimal number of clusters in high-dimensional data.

Two approaches of multi-source data clustering were illustrated using the simulated data sets: weighted
similarity-based clustering and Multi-source ABC clustering. Single-source ABC method also was applied,
which resulted in correct classification of all samples both in X and Y data sets. Both weighted similarity-based
and multi-source ABC methods identified the true underlying 3-clusters structure of the integrated simulated
data. However, when a weight, assigned to the X data source using weighted similarity-based method, is higher
than 0.92, the integrative clustering structure changes to incorrect. In case of zero weight assigned to the matrix
Y, clustering of integrated data coincide with single-source clustering in X, which is expected.

The feasibility and usefulness of integrative analysis is clearly shown on the example of radiation experi-
ment data for hippocampus, day 11. When analyzing the proteomic and gene expression data separately, no
meaningful clustering structure was found. However, when the multi-source ABC method was applied to these
data with parameter K=2, samples were divided by two clusters in full accordance with treatment status of
mothers: all samples belonging to the ’Folic acid -’group are assigned to the first cluster, and all samples from
the ’Folic acid +’ group are assigned to the second cluster. Another example of finding meaningful structure
in the integrated data, which was not detected in the single-source data analysis, is the results of weighted
similarity-based clustering of data sets from hippocampus, day 11. For value of K=4 and weight of 0.3 assigned
to gene expression data, clustering solution involves grouping all samples from animals, whose mothers received
folic acid-rich diet, into one separate cluster. These results make weighted similarity-based and multi-source
ABC clustering techniques the best performers among approaches that have been tried on the hippocampus,
day 11 data set.

From the dendrograms in Figures 18 and 24 it can be seen that clustering solutions for aggregated data
(ADC method) are shifted towards proteomic data single-source clustering. This result is counter-intuitive,
since the size of proteomic data is almost 6 times smaller than the size of gene expression data. Clustering
solution for concatenated data for obvious reasons is expected to be biased toward the omics with the most
numerous features. However, the observed shift towards proteomic data source can be explained by difference
in measurement scale and differences in variability in proteomic and transcriptomic data. It can be assumed
that the results of the analysis with the ADC approach will be more objective if a step of data standardization
is introduced after merging the two matrices.

The results obtained illustrate that simple hierarchical clustering may outperform the consensus-based en-
semble approach. Using simple non-ensemble hierarchical clustering analysis, a cluster structure was identified
in the cortex data, day 11, separating animals whose mothers received a folic acid-rich diet from all other
animals. These animals are grouped in one cluster both when K=2 and when K=4. However, single-source
ABC approach, applied to these data, failed to separate animals depending on treatment status of mothers.
This structure was also not found by multi-source ABC method and by ADC method. CEC approach made it
possible to distinguish animals from the ’Folic acid +’ into a separate group, but only for K=4. This structure
was also defined by the weighted similarity-based approach, but only when a weight, assigned to gene expression
data, is 0.9 or higher.

For the sake of simplicity, this project ignores the possibility of animals belonging to the same litter. A
group of animals from the same litter is likely to have less variability in proteomic and transcriptomic features
compared to the overall variability. This can cause animals from the same litter to cluster together [21]. It can
be observed, that some pairs of samples are often clustered together regardless of the method used and of the
omics data type. For example, samples 30 and 34 in cortex data, day 11, always belong to the same cluster and
often form the separate cluster with only two members. The similarity of these samples is most pronounced
in the results of the ADC approach, where the point of fusion of samples 30 and 34 is far lower than points
of fusion of all the other samples. Although the belonging of animals to one litter or another, as well as the
protocol for randomizing animals into groups, are unknown, looking at these results it can be assumed that
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animals with ID 30 and 34, as well as some other pairs of animals, are related.

8.2 Limitations and future research

One of possible drawbacks of the study is using of only one clustering technique - hierarchical clustering. It was
shown in the literature, that a method of integrated clustering, which uses several algorithms of clustering to
identify clusters which are robust against the choice of clustering algorithms, outperforms existing approaches
in identifying known subtypes of breast cancer [20].

One of possible ways to improve the clustering algorithm is to add a step of introducing noise into data.
In order to discover reliable groups of samples, one may estimate how often each pair of samples is grouped
together when data are perturbed, for example, by adding Gaussian noise [20].

All data sets used in this work contained no missing data and the applied method require full data for correct
performance. However, in real experimental settings, often for some samples or patients only a subset of the
omics features is available. Solutions, which imply using only those samples with all omics features measured,
have obvious disadvantages, as well as usage of imputation techniques. At the same time, it is crucial to be able
to analyze partial data because of high cost of experiments and the unequal cost for acquiring data for different
omics.

8.3 Conclusion

Based on simulations, it is shown that methods of weighted similarity-based clustering and multi-source ABC
clustering are able to recover the true integrative clustering of samples. In real experimental data (hippocampus,
day 17), joint analysis of multiple omics data with these two methods allowed the separation of samples from
animals whose mothers consumed a diet rich in folic acid from those whose mothers did not. This information
was only available at the integrative level, whereas at the single-source level no grouping of samples according to
maternal folic acid treatment status was observed. However, in other experimental settings integrative clustering
analysis by the selected methods did not provide new information not available at the single-source level.
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Appendix

library(clusterGenomics)
library(IntClust)

###################### Generation of data ######################

# XDAT.A
n <- 1000 # No. of features
nvar=5
R <- matrix(c(1, 0.75,0.75,0.75,0.75,

0.75,1,0.75,0.75,0.75,
0.75,0.75,1,0.75,0.75,
0.75,0.75,0.75,1,0.75,
0.75,0.75,0.75,0.75,1),
nrow = nvar, ncol = nvar, byrow = TRUE)

dim(R)
mu <- rep(0,nvar)
x.dat1<-mvtnorm::rmvnorm(n, mean = mu, sigma = R)
dim(x.dat1)
cor(x.dat1)
x.dat2<-mvtnorm::rmvnorm(n, mean = mu, sigma = R)
x.dat3<-mvtnorm::rmvnorm(n, mean = mu, sigma = R)
x.dat4<-mvtnorm::rmvnorm(n, mean = mu, sigma = R)
x.dat5<-mvtnorm::rmvnorm(n, mean = mu, sigma = R)
x.dat6<-mvtnorm::rmvnorm(n, mean = mu, sigma = R)
xdat.a<-cbind(x.dat1,x.dat2,x.dat3,x.dat4,x.dat5,x.dat6)
sample_names <- paste0("sample_", rep(1:30))
colnames(xdat.a) <- sample_names # Changing the names samples/subject ID
dim(xdat.a) # should be a 1000X30 matrix
cor(xdat.a)
print(head(xdat.a))

# YDAT.A
n <- 3000 # Number of features
nvar=15
vec<-rep(0.75,nvar)
vec
R<-matrix(rep(vec,nvar),nvar,nvar)
dim(R)
for(i in 1:nvar)
{
R[i,i]<-1
}
diag(R)
R[1,]
R[2,]



mu <- rep(0,nvar)
y.dat1<-mvtnorm::rmvnorm(n, mean = mu, sigma = R)
dim(y.dat1)
cor(y.dat1)

nvar=10
vec<-rep(0.75,nvar)
vec
R<-matrix(rep(vec,nvar),nvar,nvar)
dim(R)
for(i in 1:nvar)
{
R[i,i]<-1
}
diag(R)
R[1,]
R[2,]
mu <- rep(0,nvar)
y.dat2<-mvtnorm::rmvnorm(n, mean = mu, sigma = R)
dim(y.dat2)
cor(y.dat2)

nvar=5
vec<-rep(0.75,nvar)
vec
R<-matrix(rep(vec,nvar),nvar,nvar)
dim(R)
for(i in 1:nvar)
{
R[i,i]<-1
}
diag(R)
R[1,]
R[2,]
mu <- rep(0,nvar)
y.dat3<-mvtnorm::rmvnorm(n, mean = mu, sigma = R)
dim(y.dat3)
cor(y.dat3)

ydat.a<-cbind(y.dat1,y.dat2,y.dat3) # should be a 3000X30 matrix
sample_names <- paste0("sample_", rep(1:30))
colnames(ydat.a) <- sample_names
dim(ydat.a) # should be a 1000X30 matrix
cor(ydat.a)
print(head(ydat.a))

# Integrated data



xydat.a = rbind(xdat.a, ydat.a)
#-------------------------------------------------------------------------------------------------------------------------
------#
# Visualization

# (a) xdat.a
# Image plot
random.data = t(xdat.a)
image(c(1:dim(random.data)[1]),c(1:dim(random.data)[2]),random.data,
ylab="features",xlab="samples")
# 3D
persp(c(1:dim(t(random.data))[2]), c(1:dim(t(random.data))[1]), random.data, theta = 325, phi
= 15, col = "yellow3", xlab = "Samples", ylab = "Features", zlab = " ")

# (b) ydat.a
# Image plot
random.data = t(ydat.a)
image(c(1:dim(random.data)[1]),c(1:dim(random.data)[2]),random.data,
ylab="features",xlab="samples")
# 3D
persp(c(1:dim(t(random.data))[2]), c(1:dim(t(random.data))[1]), random.data, theta = 325, phi
= 15, col = "yellow3", xlab = "Samples", ylab = "Features", zlab = " ")

# (c) Integrated data
xydat.a = rbind(xdat.a, ydat.a)

####################### Plots of similarity for "Data' section #################

w=WeightedClust(list(t(xdat.a), t(ydat.a)),
type='data',distmeasure=c("euclidean","euclidean"))

image(c(1:dim(w$Dist[[1]])[1]),c(1:dim(w$Dist[[1]])[2]),w$Dist[[1]],col = gray.colors(12),
ylab="samples",xlab="Similarity matrix X")

image(c(1:dim(w$Dist[[2]])[1]),c(1:dim(w$Dist[[2]])[2]),w$Dist[[2]], col =
gray.colors(18),ylab="samples",xlab="Similarity matrix Y")

image(c(1:dim(w$Clust$DistM)[1]),c(1:dim(w$Clust$DistM)[2]),w$Clust$DistM, col =
hcl.colors(100, "terrain"),ylab="samples",xlab="Weighted similarity matrix")

image(c(1:dim(w$Dist[[1]])[1]),c(1:dim(w$Dist[[1]])[2]),0.25*w$Dist[[1]]+0.75*w$Dist[[2]],col =
hcl.colors(100, "terrain"), ylab="samples",xlab="Weighted similarity matrix")

image(c(1:dim(w$Dist[[1]])[1]),c(1:dim(w$Dist[[1]])[2]),0.75*w$Dist[[1]]+0.25*w$Dist[[2]],col =
hcl.colors(100, "terrain"), ylab="samples",xlab="Weighted similarity matrix")



#-------------------------------------------------------------------------------------------------------------------------
------#
############## Gap method ####################
library(clusterGenomics)
gap(t(xydat.a),cl.method='hclust',dist.method='euclidean',linkage='ave',Kmax=15,B=1000)

################ Cluster Analysis of simulated data ##########################

library(readxl); library(dplyr); library(stringr); library(IntClust); library(clusterGenomics)
Colours <-
ColorPalette(colors=c("chocolate","firebrick2","darkgoldenrod2","darkgreen","blue2","darkorc
hid3","deeppink", "grey"),ncols=8)

# (a) xdat.a
xdat.a_clust=Cluster(Data=t(xdat.a), type='data', distmeasure='euclidean')
xdat.a_clust
ClusterPlot(Data1=xdat.a_clust, nrclusters=6,cols=Colours,main="xydat.a",ylim=c(-0.1,10))

# (b) ydat.a
ydat.a_clust=Cluster(Data=t(ydat.a), type='data', distmeasure='euclidean')
plot(ydat.a_clust)
ClusterPlot(Data1=ydat.a_clust, nrclusters=3,cols=Colours,main="xydat.a",ylim=c(-0.1,10))

# Weighted clustering
w=WeightedClust(list(t(xdat.a), t(ydat.a)),
type='data',distmeasure=c("euclidean","euclidean"))
ComparePlot(list(w),nrclusters=3,
cols=Colours,fusionsLog=TRUE,margins=c(8.1,10.1,4.1,4.1),names=c('X','0.9+0.1','0.8+0.2','
0.7+0.3','0.6+0.4','0.5+0.5','0.4+0.6','0.3+0.7','0.2+0.8','0.1+0.9','Y'),
weightclust=F,plottype="new",location=NULL)

plot(w$Clust$Clust, main='weights=0.5')

rrr=DetermineWeight_SimClust(L, type='data',distmeasure=c("euclidean","euclidean"),
nrclusters=c(4,4))

d1=1*w$Dist[[1]]+0*w$Dist[[2]]
W_xy1=Cluster(Data=d1, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy1,nrclusters=3,cols=Colours)

d09=0.99*w$Dist[[1]]+0.01*w$Dist[[2]]
W_xy09=Cluster(Data=d09, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy09,nrclusters=3,cols=Colours)



d08=0.98*w$Dist[[1]]+0.02*w$Dist[[2]]
W_xy08=Cluster(Data=d08, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy08,nrclusters=3,cols=Colours)

d07=0.97*w$Dist[[1]]+0.03*w$Dist[[2]]
W_xy07=Cluster(Data=d07, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy07,nrclusters=3,cols=Colours)

d06=0.96*w$Dist[[1]]+0.04*w$Dist[[2]]
W_xy06=Cluster(Data=d06, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy06,nrclusters=3,cols=Colours)

d05=0.95*w$Dist[[1]]+0.05*w$Dist[[2]]
W_xy05=Cluster(Data=d05, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy05,nrclusters=3,cols=Colours)

d04=0.94*w$Dist[[1]]+0.06*w$Dist[[2]]
W_xy04=Cluster(Data=d04, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy04,nrclusters=3,cols=Colours)

d03=0.93*w$Dist[[1]]+0.07*w$Dist[[2]]
W_xy03=Cluster(Data=d03, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy03,nrclusters=3,cols=Colours)

d02=0.92*w$Dist[[1]]+0.08*w$Dist[[2]]
W_xy02=Cluster(Data=d02, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy02,nrclusters=3,cols=Colours)

d=0.92*w$Dist[[1]]+0.08*w$Dist[[2]]
W_xy=Cluster(Data=d, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy,nrclusters=6,cols=Colours)

d01=0.91*w$Dist[[1]]+0.09*w$Dist[[2]]
W_xy01=Cluster(Data=d01, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy01,nrclusters=3,cols=Colours)

d00=0.4*w$Dist[[1]]+0.6*w$Dist[[2]]
W_xy00=Cluster(Data=d00, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy00,nrclusters=3,cols=Colours)

L=list(W_xy1, W_xy09, W_xy08, W_xy07, W_xy06, W_xy05, W_xy04, W_xy03, W_xy02,
W_xy01, W_xy00)
ComparePlot(L,nrclusters=3, cols=Colours,margins=c(8.1,10.1,4.1,4.1),names=c('Only
X','0.99+0.01','0.98+0.02','0.97+0.03','0.96+0.04','0.95+0.05','0.94+0.06','0.93+0.07','0.92+0.
08','0.91+0.09','0.9+0.1'), weightclust=F,plottype="new",location=NULL)



## Dependence between correlation and weight of fusion
w=WeightedClust(list(t(xdat.a), t(ydat.a)),
type='data',distmeasure=c("euclidean","euclidean"))

d00=0*w$Dist[[1]]+1*w$Dist[[2]]
W_xy00=Cluster(Data=d00, type='dist', distmeasure='euclidean')
ClusterPlot(W_xy00,nrclusters=3,cols=Colours)

## ABC and mABC

X_data_ABC=ABC.SingleInMultiple(data=t(xdat.a),distmeasure="euclidean",
weighting=TRUE,stat="var", gr=c(),bag=TRUE,

numsim=1000,numvar=100,linkage="flexible",
alpha=0.625,NC=6, NC2=NULL, mds=FALSE)

X_data_ABC_clust=Cluster(Data=t(X_data_ABC), type='data', distmeasure='euclidean')
ClusterPlot(Data1=X_data_ABC_clust,
nrclusters=6,cols=Colours,main="ABC",ylim=c(-0.1,10))

ydat.a_ABC=ABC.SingleInMultiple(data=t(ydat.a),distmeasure="euclidean",
weighting=TRUE,stat="var", gr=c(),bag=TRUE,

numsim=1000,numvar=100,linkage="flexible",
alpha=0.625,NC=3, NC2=NULL, mds=FALSE)

ydat.a_ABC_clust=Cluster(Data=t(ydat.a_ABC), type='data', distmeasure='euclidean')
ClusterPlot(Data1=ydat.a_ABC_clust,
nrclusters=3,cols=Colours,main="ABC",ylim=c(-0.1,10))

L=list(t(xdat.a), t(ydat.a))
MABC=M_ABC(List=L,distmeasure=c("euclidean","euclidean"),

weighting=c(TRUE, TRUE),stat="var", gr=c(),bag=TRUE,
numsim=1000,numvar=c(100,100),linkage=c("flexible","flexible"),

alpha=0.625,NC=6, NC2=NULL, mds=FALSE)
ClusterPlot(Data1=MABC, nrclusters=6,cols=Colours,main="ABC",ylim=c(-0.1,10))

############### Reading radiation data for cortex, day 11 ###############
D11_mRNA_data = read.csv("D11_mRNA_Cor_normalized_tmm.csv", row.names = 1,
check.names = FALSE)
D11_Protein_data =read.csv("D11_Protein_Cor_normalized_quant.csv", row.names = 1,
check.names = FALSE)

# Finding optimal number of clusters with help of Gap statistic
res_clust_mRNA11=gap(t(D11_mRNA_data),
cl.method='hclust',dist.method='euclidean',linkage='ave',Kmax=15,B=100)
res_clust_mRNA11



res_clust_prot11=gap(t(D11_Protein_data),
cl.method='hclust',dist.method='euclidean',linkage='ave',Kmax=15,B=100)
res_clust_prot11

################### Cortex day 11 gene expression ###########################

D11Cg<-as.data.frame(D11_mRNA_data)

# Hierarchical clustering in gene expression data

D11Cg_clust=Cluster(Data=t(D11Cg), type='data', distmeasure='euclidean')
ClusterPlot(Data1=D11Cg_clust, nrclusters=4,cols=Colours,main="xydat.a",ylim=c(-0.1,10))

# Single-source ABC method and vizualization

D11Cg_ABC=ABC.SingleInMultiple(data=t(D11Cg),distmeasure="euclidean",
weighting=TRUE,stat="var", gr=c(),bag=TRUE,

numsim=1000,numvar=100,linkage="flexible",
alpha=0.625,NC=4, NC2=NULL, mds=FALSE)

D11Cg_ABC_clust=Cluster(Data=t(D11Cg_ABC), type='data', distmeasure='euclidean')
ClusterPlot(Data1=D11Cg_ABC_clust,
nrclusters=4,cols=Colours,main="ABC",ylim=c(-0.1,10))

######################### Cortex day 11 proteins ##########################

# Reading data

D11Cp<-as.data.frame(D11_Protein_data)

# Hierarchical clustering in proteins data

D11Cp_clust=Cluster(Data=t(D11Cp), type='data', distmeasure='euclidean')
ClusterPlot(Data1=D11Cp_clust, nrclusters=4,cols=Colours,main="xydat.a",ylim=c(-0.1,10))

# Single-source ABC clustering

D11Cp_ABC=ABC.SingleInMultiple(data=t(D11Cp),distmeasure="euclidean",
weighting=TRUE,stat="var", gr=c(),bag=TRUE,

numsim=1000,numvar=100,linkage="flexible",
alpha=0.625,NC=2, NC2=NULL, mds=FALSE)



D11Cp_ABC_clust=Cluster(Data=t(D11Cp_ABC), type='data', distmeasure='euclidean')
ClusterPlot(Data1=D11Cp_ABC_clust,
nrclusters=2,cols=Colours,main="ABC",ylim=c(-0.1,10))

################### Cortex day 11 integrative clustering ####################
L=list(t(D11Cg), t(D11Cp))

#M_ABC method

MABC=M_ABC(List=L,distmeasure=c("euclidean","euclidean"),
weighting=c(TRUE, TRUE),stat="var", gr=c(),bag=TRUE,

numsim=1000,numvar=c(100,100),linkage=c("flexible","flexible"),
alpha=0.625,NC=4, NC2=NULL, mds=FALSE)

ClusterPlot(Data1=MABC, nrclusters=4,cols=Colours,main="ABC",ylim=c(-0.1,10))

#ADC method
D11C_ADC=ADC(L, distmeasure = "euclidean", normalize = FALSE, method = NULL,
clust = "agnes", linkage = "ave", alpha = 0.625)

ClusterPlot(Data1=D11C_ADC, nrclusters=2,cols=Colours,main="ABC",ylim=c(-0.1,10))

# Weighted similarity-based clustering

w=WeightedClust(L, type='data',distmeasure=c("euclidean","euclidean"))
ComparePlot(list(w),nrclusters=4,
cols=Colours,fusionsLog=TRUE,margins=c(8.1,10.1,4.1,4.1),names=c('mRNA
only','0.9+0.1','0.8+0.2','0.7+0.3','0.6+0.4','0.5+0.5','0.4+0.6','0.3+0.7','0.2+0.8','0.1+0.9','prote
ins only'), weightclust=F,plottype="new",location=NULL)

plot(w$Clust$Clust, main='weights=0.5')

# CEC method

CEC_2_10_1=CEC(List=L,distmeasure=c("euclidean","euclidean"),normalize=c(F, F)
,t=100, r=c(100,100), nrclusters=list(seq(2,10,1),seq(2,10,1)),clust="agnes",linkage=
c("ave","ave"),weightclust=0.5)

ClusterPlot(Data1=CEC_2_10_1$Clust, nrclusters=4,cols=Colours,ylim=c(-0.1,10))
ClusterPlot(Data1=CEC_2_10_1$Clust, nrclusters=2,cols=Colours,ylim=c(-0.1,10))

############## Reading data of hippocampus, day 11 ######################



hD11_mRNA_data = read.csv("D11_mRNA_Hippocampus_normalized_tmm.csv",
row.names = 1, check.names = FALSE)
hD11_Protein_data =read.csv("D11_Protein_Hippocampus_normalized_quant.csv",
row.names = 1, check.names = FALSE)

# Finding optimal number of clusters with help of Gap statistic
res_clust_mRNA11=gap(t(hD11_mRNA_data),
cl.method='hclust',dist.method='euclidean',linkage='ave',Kmax=15,B=100)
res_clust_mRNA11

res_clust_prot11=gap(t(hD11_Protein_data),
cl.method='hclust',dist.method='euclidean',linkage='ave',Kmax=15,B=100)
res_clust_prot11

################# Hippocampus day 11 gene expression ########################

D11Hg<-as.data.frame(hD11_mRNA_data)

# Hierarchical clustering

D11Hg_clust=Cluster(Data=t(D11Hg), type='data', distmeasure='euclidean')
ClusterPlot(Data1=D11Hg_clust, nrclusters=4,cols=Colours,main="xydat.a",ylim=c(-0.1,10))

# Single-source ABC clustering

#K=4
hmRNA_11_ABC=ABC.SingleInMultiple(data=t(hD11_mRNA_data),distmeasure="euclidean
",

weighting=TRUE,stat="var", gr=c(),bag=TRUE,
numsim=1000,numvar=100,linkage="flexible",

alpha=0.625,NC=4, NC2=NULL, mds=FALSE)
hmRNA_11_ABC_clust=Cluster(Data=t(hmRNA_11_ABC), type='data',
distmeasure='euclidean')
ClusterPlot(Data1=hmRNA_11_ABC_clust,
nrclusters=4,cols=Colours,main="ABC",ylim=c(-0.1,10))

#K=2
hmRNA_11_ABC=ABC.SingleInMultiple(data=t(hD11_mRNA_data),distmeasure="euclidean
",

weighting=TRUE,stat="var", gr=c(),bag=TRUE,
numsim=1000,numvar=100,linkage="flexible",

alpha=0.625,NC=2, NC2=NULL, mds=FALSE)
hmRNA_11_ABC_clust=Cluster(Data=t(hmRNA_11_ABC), type='data',
distmeasure='euclidean')
ClusterPlot(Data1=hmRNA_11_ABC_clust,
nrclusters=2,cols=Colours,main="ABC",ylim=c(-0.1,10))



########################## Hippocampus day 11 proteins #######################

#Reading data

D11Hp<-as.data.frame(hD11_Protein_data)

# Hierarchical clustering

D11Hp_clust=Cluster(Data=t(D11Hp), type='data', distmeasure='euclidean')
ClusterPlot(Data1=D11Hp_clust, nrclusters=4,cols=Colours,main="xydat.a",ylim=c(-0.1,10))

# Single-source ABC clustering

#K=4
hProtein_11_ABC=ABC.SingleInMultiple(data=t(hD11_Protein_data),distmeasure="euclidea
n",

weighting=TRUE,stat="var", gr=c(),bag=TRUE,
numsim=1000,numvar=100,linkage="flexible",

alpha=0.625,NC=4, NC2=NULL, mds=FALSE)
hProtein_11_ABC_clust=Cluster(Data=t(hProtein_11_ABC), type='data',
distmeasure='euclidean')
ClusterPlot(Data1=hProtein_11_ABC_clust,
nrclusters=4,cols=Colours,main="ABC",ylim=c(-0.1,10))

#K=2
hProtein_11_ABC=ABC.SingleInMultiple(data=t(hD11_Protein_data),distmeasure="euclidea
n",

weighting=TRUE,stat="var", gr=c(),bag=TRUE,
numsim=1000,numvar=100,linkage="flexible",

alpha=0.625,NC=2, NC2=NULL, mds=FALSE)
hProtein_11_ABC_clust=Cluster(Data=t(hProtein_11_ABC), type='data',
distmeasure='euclidean')
ClusterPlot(Data1=hProtein_11_ABC_clust,
nrclusters=2,cols=Colours,main="ABC",ylim=c(-0.1,10))

#################### Hippocampus day 11 integrative ##########################
L=list(t(D11Hg), t(D11Hp))

# M_ABC method

set.seed(33)
MABC=M_ABC(List=L,distmeasure=c("euclidean","euclidean"),

weighting=c(TRUE, TRUE),stat="var", gr=c(),bag=TRUE,
numsim=1000,numvar=c(100,100),linkage=c("flexible","flexible"),

alpha=0.625,NC=2, NC2=NULL, mds=FALSE)



ClusterPlot(Data1=MABC, nrclusters=2,cols=Colours,main="M_ABC",ylim=c(-0.1,10))

set.seed(34)
MABC=M_ABC(List=L,distmeasure=c("euclidean","euclidean"),

weighting=c(TRUE, TRUE),stat="var", gr=c(),bag=TRUE,
numsim=1000,numvar=c(100,100),linkage=c("flexible","flexible"),

alpha=0.625,NC=4, NC2=NULL, mds=FALSE)
ClusterPlot(Data1=MABC, nrclusters=4,cols=Colours,main="M_ABC",ylim=c(-0.1,10))

# ADC method

D11H_ADC=ADC(L, distmeasure = "euclidean", normalize = FALSE, method = NULL,
clust = "agnes", linkage = "ave", alpha = 0.625)

ClusterPlot(Data1=D11H_ADC, nrclusters=4,cols=Colours,main="ABC",ylim=c(-0.1,10))

# Weighted similarity-based clustering

w=WeightedClust(L, type='data',distmeasure=c("euclidean","euclidean"))
ComparePlot(list(w),nrclusters=4,
cols=Colours,fusionsLog=TRUE,margins=c(8.1,10.1,4.1,4.1),names=c('mRNA
only','0.9+0.1','0.8+0.2','0.7+0.3','0.6+0.4','0.5+0.5','0.4+0.6','0.3+0.7','0.2+0.8','0.1+0.9','prote
ins only'), weightclust=F,plottype="new",location=NULL)

plot(w$Clust$Clust, main='weights=0.5')

# CEC method

CEC_2_10_1=CEC(List=L,distmeasure=c("euclidean","euclidean"),normalize=c(F, F)
,t=100, r=c(100,100),

nrclusters=list(seq(2,10,1),seq(2,10,1)),clust="agnes",linkage=
c("ave","ave"),weightclust=0.5)

ClusterPlot(Data1=CEC_2_10_1$Clust, nrclusters=4,cols=Colours,ylim=c(-0.1,10))
ClusterPlot(Data1=CEC_2_10_1$Clust, nrclusters=2,cols=Colours,ylim=c(-0.1,10))
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