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Abstract

Analysis of single-cell sequencing data, in particular cell abundance data, involves issues regarding

compositionality. Cell composition data contains only relative information due to limited throughput.

Therefore an increase in one cell type might also be reflected in other cell types. This makes esti-

mating causal disease effects in cell composition data rather complicated, especially in the presence

of confounders. Using a case study, presented by Perez et al. [16], involving cell composition data

of lupus patients from European and Asian ancestry, different methodologies are evaluated. Methods

include Wilcoxon Rank Sum Test and LinDA, two methods commonly used in microbiome studies.

They are compared with a method that is developed for the analysis of cell composition data, called

voomCLR. Both LinDA and voomCLR start from an ordinary linear regression model with counts

transformed using the Centered Log-Ratio (CLR) transformation. Both methods involve a correction

on the effect size to account for compositionality. VoomCLR takes into account additional variability

and uses weighted least squares using heteroscedasticity weights. Methods from the causal inference

framework are evaluated as well, including inverse probability weighting and standardization. The

performance of all methods is assessed and compared using nonparametric and parametric simulation

studies. These simulation studies attempt to reflect the compositional nature of cell composition data

and include confounding. Both LinDA and voomCLR seem to be the best performing methods for

this kind of data, with comparable performance. Both methods do seem to control the FDR. However,

voomCLR turns out to be more conservative than LinDA, resulting in a lower sensitivity. The final

analysis of the original case study is performed using LinDA. According to this method, there seems

to be an effect of lupus disease on the abundance of cell types cM and Prolif.
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1 Introduction

1.1 Background

Single-cell RNA-sequencing (scRNA-seq) data is a technology that is used in many biological studies

to evaluate gene expression in hundreds of cells simultaneously. These cells are extracted from tissue

or blood samples and exist in various types and states.

The technology behind scRNA-seq has advanced over the years. The first generation used plate-based

methods with high sensitivity but limited cell throughput. Second-generation methods employed mi-

crofluidics and microparticles, increasing throughput but requiring substantial investment. However,

they faced limitations in cell selection due to the microfluidic device’s cell-size constraints. The third

generation introduced combinatorial barcoding, i.e. multiple rounds of barcoding, which avoids phys-

ical cell partitioning and expensive equipment, making scRNA-seq suitable for long-term studies and

clinical samples.

Compared to bulk RNA sequencing, which measures the average gene expression across the entire cell

population, scRNA-seq is able to examine gene expression at the single-cell level, providing insights

into cellular responses to drug treatments and identifying relevant genes. Its clinical relevance lies in

understanding disease mechanisms and predicting treatment responses [3].

To assess differences in cell type composition data, cell type labels need to be assigned to each cell.

When analyzing these data, it is important to take into account the compositionality of the data. An-

alyzing cell composition data involves examining a count matrix with N rows representing samples (or

patients in the context of the case study from Perez et al. [16] discussed in this thesis) and P columns

corresponding to different cell types. A critical challenge in this context is the compositionality of the

data.

Compositional data exist within a simplex, where a data point can be represented by a real vector

with positive components that sum to a constant [15]:

SP =

{
x = [x1, . . . , xP ] ∈ RP |xi ≥ 0, i = 1, . . . , P ;

P∑
i=1

xi = κ

}

with P equal to 11 in this case study and κ an arbitrary constant.

As a result, we observe relative abundance information for cell types rather than absolute abundance.

In scRNA-seq, we only observe relative information due to limited throughput, i.e. the constant κ is

arbitrary [14].

The compositional nature of the data has implications for interpretation. As the abundance of one

cell type increases, it becomes easier to sample from that type, while other cell types become less

accessible. This can create a misleading impression of changes in absolute abundance, potentially

leading to more false discoveries.

To address this, our methodology needs to consider compositional effects. Specific statistical methods

that consider the data’s composition can help achieve accurate results.

To address compositionality, one approach is to transform the cell counts. Let Yip be the random

variable representing the observed cell counts for cell type p ∈ {1, . . . , P} in sample i ∈ {1, . . . , n}.
One transformation proposed by Aitchison is the Centered Log-Ratio (CLR) transformation [8]. These

CLR-transformed counts are defined by:

Zip = log
Yip(

P∏
p=1

Yip

)1/P
= log

Yip

exp( 1
P

P∑
p=1

log Yip)

. (1)
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The CLR transformation thus involves the logarithm of the cell counts Yip divided by the geometric

mean in the corresponding sample. To prevent issues with zero counts, a pseudo-count of 0.5 is

added to each count before transformation. This is done very often in microbiome studies [12]. This

transformation allows us to move the counts out of the compositional simplex space, while maintaining

distances; the Aitchison distance between x and y equals the Euclidean distance between the CLR-

transformed counts with the Euclidean distance between samples Yi and Yj defined as:

de(Yi,Yj) =

√√√√ P∑
p=1

(Yip − Yjp)2. (2)

Nevertheless, the CLR transformation still has a constraint: the sum of the transformed components

is 0 by definition (see Appendix B.1 for a mathematical derivation).

However, by transforming the counts to the real space, metrics like the Euclidean distance become

meaningful, while for untransformed counts they are misleading [17].

In addition to the issue of compositionality, overdispersion is also a concern in this type of count

data. Overdispersion is caused by both biological variation and technical variation [7].

On the other hand, if one is interested in estimating causal effects, one should also take into ac-

count confounding [13]. In the context of this case study, we are interested in the effect of lupus

disease on the cell composition, correcting for confounding of age and ancestry (see Figure 1).

Figure 1: DAG case study. We aim for the estimation of a causal effect of disease status on cell type

abundance, accounting for confounding effects from age and ancestry.

Say Xip is the outcome of interest, which corresponds to the (absolute) abundance of cell type p in

subject i, and A is a dichotomous exposure variable, which corresponds to lupus disease. In causal

inference one uses the terminology of counterfactual outcomes or potential outcomes for Xa=1
ip and

Xa=0
ip . They represent the outcome Xip under exposure a = 1 and a = 0, respectively (or in this

case study for lupus patients and healthy controls, respectively). Only one of these counterfactuals

is observed for each individual, namely the one corresponding to the actual exposure experienced by

this individual. A causal effect of the exposure on the individual’s outcome exists when Xa=0
ip ̸= Xa=1

ip

for the individual. In general, identifying individual causal effects is not possible, so one often looks

at aggregated causal effects, i.e. the average causal effect in a population of individuals. An average

causal effect of the exposure A on the outcome Xp is present if E(Xa=1
p ) ̸= E(Xa=0

p ) in the population

of interest, with Xp the absolute count of cell type p in the population. The null hypothesis of no

average disease effect in causal inference is formulated like this:{
H0 : E(Xa=1

p )− E(Xa=0
p ) = 0

H1 : E(Xa=1
p )− E(Xa=0

p ) ̸= 0
. (3)

The expression E(Xa=1
p ) − E(Xa=0

p ) is referred to as an effect measure, more specifically the av-

erage treatment effect (ATE), with treatment being the disease. What we actually estimate is

E(Xp|A = 1) − E(Xp|A = 0), which is referred to as an association measure. The associational
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difference is estimated by the difference between the mean outcomes in the observations with A = 1

and A = 0, respectively.

In randomized experiments, due to the presence of exchangeability, one can infer the expected coun-

terfactual outcome under exposure in the population (E(Xa=1
p )) because it is equal to the expected

outcome in the exposed (E(Xp|A = 1)). In randomized experiments we can say that association equals

causation.

However, not always do we get to analyze a randomized experiment. Very often we need to ana-

lyze observational studies, like in this case study. To make causal interpretations in observational

studies, there are three identifiability conditions that need to be satisfied:

1. Consistency

2. Exchangeability

3. Positivity

Consistency means that there only exists one type of the exposure, there don’t exist multiple versions.

We need a well-defined definition of the exposure we want to investigate and this should correspond to

the exposure in the observed data. As the exposure in this case is the lupus disease, and this disease

is known to exist in multiple forms and states [23], we can not be sure this assumption is not violated.

We could assume that the different versions of the lupus disease result in the same potential outcome.

With the identifiability condition of (conditional) exchangeability, we assume that (within levels of

confounders), the exposed and unexposed subjects are exchangeable. This means that the distribution

of each of the potential outcomes would be the same in both exposure groups, within subgroups of

the covariates L (i.e. age and ancestry). This gives the ability to look at the distribution of Za=1
p in

the lupus patients (conditional on covariates).

The identifiability condition of positivity assumes that in each level and combination of the vari-

ables (that are used to achieve exchangeability), both exposed and unexposed individuals are present.

Each individual should in fact be able to experience every level of exposure, which is in this case the

lupus disease. This condition is likely to be satisfied in this setting where the only confounders (assum-

ably) are age and ancestry, and although in the data the diseased patients were typically older, this

does not mean that younger individuals can’t develop lupus. Violations of the positivity assumption

are random in this case, not structural, due to limited sample size [13].

If the distribution of other variables differs between the exposed groups (so between lupus patients

and healthy controls), and these variables are confounders, they also need to be adjusted for in the

analysis. Two popular methods from the causal inference framework are explored in this thesis to deal

with these confounders: inverse probability weighting [22] and standardization [19].

1.2 Research question

The purpose of this thesis is to evaluate the performance of different methodologies for analysis of

compositional data, focusing on scRNA-seq data. The aim is to identify whether or not existing

methodologies are able to deal with the issue of compositionality and to account for confounding.

This in order to infer causal effects of the exposure on the cell type composition, where exposure

in this case study corresponds to lupus disease. The goal is to assess the performance of methods

borrowed from the analysis of microbiome data, including the Wilcoxon Rank Sum test [11] and

LinDA [12], as well as a new method developed specifically for the analysis of cell type composition
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data, called voomCLR [1].

We aim to investigate which methods are appropriate for identifying a (causal) disease effect. Causal

in this setting means that any difference in (absolute) cell type abundance between healthy and lupus

patients is due to the disease status. For this purpose we investigate the presence of and account for

confounding, relying on a case study provided by Perez et al. [16]. As already indicated by Perez et al.,

but also investigated in this thesis during data exploration, age and ancestry are both considered as

confounders. The aforementioned methods will also be compared with some well-known methods from

the causal inference field, namely inverse probability weighting and standardization (or G-formula)

[13].

1.3 Societal relevance and stakeholder awareness

Before the development of scRNA-seq, high-throughput sequencing techniques focused on extracting

RNA from a tissue sample consisting of multiple cell types, i.e. bulk sequencing. The sequencing li-

brary in this context represents a population of cells. Now however, we are able to sequence individual

cells and the sequencing library represents a single cell. This enables studying the transcriptome of

different cells within the same tissue type. This technology is particularly useful in studying cancer

immunology and the dissection of tumor heterogeneity. Tumors and the stromal component of tumors

(i.e. connective tissue, blood vessels, inflammatory cells [9]), are a composition of different cancer cells

developed from different genomic events (i.e. clones, tumor heterogeneity) and a mixture of cancer

cells and immune cells [25].

Fields like immunology and oncology benefit from scRNA-seq by gaining a deeper understanding of

cellular dynamics and interactions in order to develop effective treatments and improve patient out-

comes [6].

Given the issue of compositionality and confounding, investigating which statistical methods are ap-

propriate for analyzing scRNA-sequencing data will benefit future practices. To take advantage of

this cutting-edge technology it is important to make appropriate choices regarding the analysis of such

data.

1.4 Ethical considerations

The simulation studies conducted in this thesis use data from a case study presented by Perez et

al.. This case study involves public data from both lupus patients and healthy controls. From all

participants, informed consent was obtained [16].

2 Data

The analysis will be conducted on a case study presented by Perez et al. [16] considering healthy

and diseased individuals of European or Asian ancestry. The disease being studied is Systemic Lupus

Erythematosus (SLE), but will be referred to as ’lupus’ in what follows. SLE is the most common type

of lupus. It is a chronic autoimmune disease that comes with unpredictable disease flares and remis-

sions. In autoimmune diseases the immune system does not recognize the difference between viruses,

bacteria, germs etc. and your own healthy tissues. This leads to the immune system attacking and

destroying your healthy tissue. During a flare, there is an increase in disease activity in one or more

organ systems, caused by inflammation. The patients experience a return of the symptoms they have

experienced before or develop new symptoms. Symptoms vary from fever to painful, swollen joints,

an increase in fatigue, rashes, sores or ulcers in the mouth or nose and general swelling in the legs.

There are no treatments to cure lupus, but there are treatments to manage the symptoms [23].

The original data contains 355 samples, from which 348 are of European or Asian ancestry. From
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each patient peripheral blood mononuclear cells (PBMCs) were isolated. Following the analysis of

Perez et al., we will only consider the samples from Asian or European ancestry, removing 7 samples

from Hispanic and African American ancestry. Because of replicates in the data, these 348 remaining

samples originate from 256 unique individuals. This means there are in total 92 replicates, originating

from 68 individuals. 49 of these individuals appear twice, 14 individuals appear 3 times and 5 indi-

viduals appear 4 times. Among the samples, 145 samples are from healthy controls and 203 are from

lupus patients. Lupus patients occur in 3 different groups: Managed, Flare and Treated. Samples in

the Managed group belong to lupus patients whose symptoms are under control, so patients that are

not in an active disease flare. The samples belonging to the Flare group belong to lupus patients that

are in an active disease flare. For some of these patients there are also samples that belong to the

Treated group, which are samples post-flare treatment.

This data set was pre-processed by my external promotor Koen Van den Berge. We use the cell type

labels from the original publication, which considered 11 cell types, resulting in a count matrix with

for each sample the observed number of cells for each cell type. Besides information on cell type, an-

cestry and disease status, also information on other variables is available. An extensive list of all the

variables and their description is shown in Appendix A. The variables of interest during the analysis

are the disease status (also referred to as SLE status), age and ancestry.

Frozen PBMCs were profiled in 23 pools across 4 processing batches. In the first batch, only healthy

samples are included (see Appendix C.1). Within this batch there is one individual that has 2 repli-

cates in this same batch. As one of these replicates had a total cell count of only 3, this sample is

removed in further analysis.

In batch 2 and batch 4, both Healthy and Managed samples are included, whereas in batch 3 all groups

are represented. All Flare and Treated samples consequently are only represented in batch 3.

There are also samples that were age and ancestry matched between batch 2 and batch 4 (26) and

between batch 3 and batch 4 (4). These samples come from the same individuals.

By observing the ages of the different individuals in the data (so by not taking into account replicates),

it came to the surface that there are two lupus patients in the data (1130 1130 and 1772 1772) that

appear multiple times but with different ages in different samples. The age from these individuals is

different across different batches, meaning that they have observations in multiple batches and that

their age in each batch is different. Other replicates occur either in separate batches (with the same

age of the patient) or within the same batch. As from the publication it was not clear how to interpret

these replicates (biological or technical replicates), in the simulation study and further analysis was

opted to work with only one replicate for each individual. This sample was chosen based on the sample

with the most information content, meaning in this context the largest total cell count. I am aware

of the loss of information, but this choice was made upon uncertainty about the source of replication.

Also, for the purpose of simulation studies it is important to simulate realistic data, which can be

achieved also without the replicates in the data.
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3 Methodology

3.1 Hypothesis

Before conducting any test, it is important to know what hypothesis we want to test. In the context

of cell composition analysis, we want to test the hypothesis of equal cell composition between groups.

Since we have more than one cell type, we actually perform more than one hypothesis test. For each

cell type in the data, we want to test the following hypothesis:{
H0 : µp,healthy = µp,lupus

H1 : µp,healthy ̸= µp,lupus

(4)

where µp,healthy = E(Xp|A = 0) and µp,lupus = E(Xp|A = 1) indicate the expected absolute count

of cell type p in healthy controls and lupus patients, respectively. However, as already mentioned

before in the introduction of this section, we only observe relative abundances. Therefore testing the

null hypothesis of equal absolute abundance might be too optimistic and not really feasible. Also the

presence of confounding makes it difficult to test a marginal hypothesis. These are things to keep in

mind when performing tests and interpreting results.

3.1.1 Multiple hypothesis testing

Since multiple hypotheses are tested (one for each cell type, which means in this case study 11 hy-

potheses), there is need for multiplicity correction to control the false discovery rate (FDR). The FDR

is defined as the expected proportion of false positives among the positive findings [2]. The correction

that is used in further analysis, is the p-value correction of Benjamini-Hochberg.

3.2 Wilcoxon rank sum test

The Wilcoxon rank sum test (also called Mann-Whitney U test) is a nonparametric test that is often

used in microbiome studies to identify differentially abundant taxa [11]. Since microbiome studies also

deal with compositional data, it might be a good idea to see how this method performs on scRNA-seq

data. In the context of microbiome, this test is performed on normalized counts, for example total

sum scaled (TSS) normalized counts. This normalization divides the counts by the total sum of counts

in the corresponding sample. For this thesis, both TSS normalized counts and CLR counts will be

used for comparison. The Wilcoxon test tests the null hypothesis that the two populations have the

same distribution. If this null hypothesis is rejected, there is evidence that the distribution of one

population is different. In fact, the null hypothesis can be formulated as:

H0 : P (Xp,lupus < Xp,healthy) =
1

2
(5)

where Xp,lupus and Xp,healthy represent either the TSS or the CLR-transformed counts of cell type p in

the lupus and healthy population, respectively. The Wilcoxon rank sum test is used to compare two

groups of independent samples. In this case study, this method compares the samples from healthy

controls with the samples from lupus patients. Instead of looking at the values of the counts or relative

abundances itself, this method uses ranks.

Advantages of this method are that it is less sensitive for outliers since it ranks the values and does not

look at individual values. Another advantage is that it makes no distributional assumptions. Disadvan-

tages on the other hand are the fact that this method does not take into account the compositionality

and is not designed to account for confounders.
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3.3 Linear regression

Ordinary linear regression with the CLR-transformed counts as outcome is one of the methods under

evaluation. The model is formulated as follows:

Zip = β0 + β1L1i + β2pL2i + β3p ·Ai + εip (6)

with

• Zip, the CLR-transformed count of the the observed (relative) abundance count from cell type

p in sample i

• L1i, the age from sample i

• L2i, the ancestry from sample i =

{
1, if sample i belongs to patient of European ancestry

0, if sample i belongs to patient of Asian ancestry

• Ai, the SLE status from sample i =

{
1, if sample i belongs to lupus patient

0, otherwise

• εip, the error term, assumed to be normally distributed with mean zero and constant variance.

Two methods will be evaluated that use an extension of the same linear model.

3.3.1 LinDA

LinDA, or linear models for differential abundance analysis, is a method that is developed for the

analysis of microbiome compositional data. Essentially this method requires fitting linear regression

models on the CLR-transformed data, applying a bias correction to account for compositional effects

[12].

This method can also be applied on scRNA-seq cell type abundance data. After transforming the

data using the CLR transformation, linear regression models are fitted using the CLR-transformed

abundance data as the response (as in equation (6)). This means that we can use the flexibility of

linear models to include confounders as covariates in the model.

The effect of interest is the effect of the disease status, so the parameter β3p. Actually, we want to

estimate the effect of the disease status on the absolute count rather than on the CLR-transformed

abundance. The estimate β̂3p of β3p is biased with respect to the effect sizes one would obtain based

on the absolute abundances (see Appendix B.2). That is why linDA uses a bias correction approach

that is based on the mode of the effect size across all cell types. The bias correction makes use of

the assumption that most cell types are not differentially abundant by substracting the mode of the

regression coefficients. That means that we estimate the effect of disease on the absolute abundance

of each cell type by

α̂3p = β̂3p − β̃3 (7)

with β̃3 equal to the estimate of the mode of the β̂3p coefficients. We can now test the null hypotheses

H0,p : α3p = 0 with α3p the effect size of disease on the absolute abundance of cell type p.

Before we can perform this hypothesis test, we need an estimator of the variance of α̂3p to construct

a test statistic. The variance of α̂3p can be estimated by:

̂Var(α̂3p) = V̂ar(β̂3p) + V̂ar(β̃3)− 2Ĉov(β̂3p, β̃3) ≈ V̂ar(β̂3p) (8)

since Zhou et al. argue that V̂ar(β̂3p) dominates V̂ar(β̃3) and Ĉov(β̂3p, β̃3) as n, P → ∞ under mild

conditions. V̂ar(β̂3p) is the OLS variance, that we now define as σ̂2
3p.

LinDA ultimately uses the studentized statistic

Tp =
α̂3p

σ̂3p
. (9)
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This statistic is asymptotically normal, but for small samples, the t-distribution provides a better

approximation to the sampling distribution of Tp. The p-value for testing H0,p is defined as

pp = 2Fn−4(−|Tp|) (10)

where Fn−4 denotes the cumulative distribution function of a t-distribution with n-d-2 degrees of

freedom, with d=2 the number of covariates to adjust for.

3.3.2 voomCLR

Similar to linDA, voomCLR uses CLR transformations for fitting linear models and applies bias cor-

rection to the effect sizes. However, this method extends this approach in several ways [1].

Counts typically have a mean-variance relationship, but even after the CLR transformation the vari-

ance is a function of the mean, meaning that the cell type counts are still heteroscedastic post-

transformation. Compositional transformations are thus not variance-stabilizing. VoomCLR uses

heteroscedasticity weights by building on the limma-voom framework from Law et al. [5] to account

for counts’ mean-variance structure. Where in the limma-voom framework the mean-variance trend

is estimated using a loess curve, voomCLR allows to calculate weights analytically using the Delta

method [10]

Var(f(X)) = Var(X) · f ′(E(X))2,

assuming either a Poisson distribution, although this might be too restrictive, or a negative binomial

distribution. This is useful because we only have a limited number of cell types, which leads to un-

certain empirical estimation of the mean-variance trend. Applying these heteroscedasticity weights,

linear models are fitted using weighted least squares. This is thus the first extension to the linDA ap-

proach; using heteroscedasticity weights to apply weighted least squares when fitting the linear models

for each cell type.

Whereas linDA assumes that the uncertainty on the bias term is negligible as compared to the uncer-

tainty of the (uncorrected) effect size, voomCLR also accounts for the sampling variability involved

in estimating the bias correction term by adopting a bootstrapping approach. This uncertainty exists

because in cell type composition analysis the number of cell types is typically limited, so you can not

properly rely on the assumption that is made in equation (8) for statistical inference. Therefore a so-

lution is to adopt a non-parametric bootstrap procedure for each (linear combination of) parameter(s)

of interest, say β3p, by resampling β̂3p across p with replacement. For each bootstrap sample b the

mode β̌3b is calculated, which is an estimate for the bias in that bootstrap sample. The variance σ2
bias

of the bias term β̃3 is approximated by

V̂ar(β̃3) =
1

B − 1

B∑
b=1

(β̌3b − β̄3)
2

with β̄3 = 1
B

B∑
b=1

β̌3b and B the number of bootstrap samples.

This term is added to the denominator of the moderated t-statistic from limma. Moderated t-test

statistics are generated using empirical Bayes for shrinking linear model residual variances towards a

common value across cell types. The moderated t-statistic is calculated as follows:

Tp =
α̂3p

σ̃2
limma + σ̂2

bias

(11)

where σ̃2
limma is the squared standard error obtained with empirical Bayes. The p-value is calculated

as follows:

pp = 2 ∗ Fdf.residual+df.prior(−|Tp|) (12)
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where Fdf.residual+df.prior denotes the cumulative distribution function of a t-distribution with degrees

of freedom the sum of the residual degrees of freedom (n-4) and the prior degrees of freedom obtained

using empirical Bayes.

To summarize, both linDA and voomCLR fit linear models on CLR-transformed counts and apply

bias correction on the effect sizes. LinDA applies ordinary least squares to fit these linear models,

while voomCLR applies weighted least squares, with weights the inverse of observation-level variances

that can be estimated analytically. Additionally voomCLR also accounts for uncertainty on the bias

correction by applying a bootstrap approach to generate a moderated t-statistic.

3.4 Causal inference

This section includes two methods that are often used in the causal inference framework, aiming at

the estimation of average treatment effects. Before introducing these methods, let us first formalize

the identifiability conditions mentioned before. Note that in what follows, the outcome for which

we are estimating a causal treatment effect is the CLR-transformed count of the observed (relative)

abundance count Yip for cell type p in sample i, denoted as Zip. More formally, the average treatment

effect of interest is

ATE = E(Za=1
p )− E(Za=0

p ) (13)

with E(Za=1
p ) and E(Za=0

p ) the expected CLR-transformed count of cell type p in the lupus population

and healthy population, respectively.

• Consistency

Consistency requires that the potential outcome for exposure is equal to the outcome when

exposed, i.e.

E(Za=1
p ) = E(Za=1

p |A = 1) = E(Zp|A = 1). (14)

• Exchangeability

Exchangeability means that the counterfactual outcome and the actual exposure are independent,

i.e. Za
p ⊥⊥ A for all a. Under exchangeability we have

E(Za
p |A = 1) = E(Za

p |A = 0) = E(Za
p ). (15)

When the exposure is assigned randomly, which particular group received the treatment is irrel-

evant for the value of E(Zp|A = 1) and E(Zp|A = 0). However, in an observational study like

this case study, the exposure is not assigned randomly and often influenced by other covariates

or confounders. A more relaxed assumption is conditional exchangeability, where the counterfac-

tual outcome in a level of L, with L the confounders, and the actual exposure are independent,

i.e. Za
p ⊥⊥ A|L for all a. Under conditional exchangeability we can write

E(Za
p |A = 1, L) = E(Za

p |A = 0, L) = E(Za
p |L). (16)

• Positivity

The positivity assumption requires that each exposure is observed in each observed stratum l of

L, i.e.

P (A = a|L = l) > 0, for all l with P (L = l) ̸= 0 in population of interest. (17)

That means that under the assumption of consistency and conditional exchangeability, one can write

E(Za
p |L = l) = E(Zp|A = a, L = l). (18)

An estimate for a causal difference (or ATE) can only be obtained under positivity, additional to

the assumptions of consistency and conditional exchangeability, since one needs to estimate both

E(Za=1
p |L = l) and E(Za=0

p |L = l). If the positivity assumption is violated, these conditional means

are not well-defined [13].
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3.4.1 Inverse probability weighting [13]

With inverse probability weighting (IPW), a pseudo-population is created in which each individual

is represented in both exposure groups (i.e. healthy controls and lupus patients). This eliminates

the effect of confounding in the sense that the exposure and the confounders become statistically

independent in the pseudo-population (i.e. L ⊥⊥ A). This method relies on the condition that exposed

individuals in L = l, had they been healthy, would have had the same expected outcome as those in

L = l that actually are healthy, i.e. conditional exchangeability Za
p ⊥⊥ A|L.

IPW uses inverse probability weights, calculated as 1
f(A|L) where f(A|L) represents the probability

distribution of belonging to exposure A (in our case lupus disease), given the covariates L (i.e. age

and ancestry). Because one of the covariates is continuous, we have to resort to modeling, so these

weights are obtained using logistic regression [22]:

logit(P (Ai = 1|Li)) = α0 + α1L1i + α2L2i. (19)

For each stratum in L (so for each combination of age and ancestry), one obtains estimates for

P̂ (A = 1|L). Each individual is weighted using the inverse of the probability that they are exposed,

given their covariates.

In the pseudo-population, created by the estimated inverse probability weights, the difference Ê(Zp|A =

1)− Ê(Zp|A = 0) is computed for each cell type p. If there indeed is no confounding for the effect of

A in the pseudo-population and the model for P (A = 1|L) is correct, association implies causation.

In that case an unbiased estimator of the associational difference E(Zp|A = 1)− E(Zp|A = 0) in the

pseudo-population is also an unbiased estimator of the causal difference E(Za=1
p )− E(Za=0

p ).

To estimate the causal difference, one fits the following marginal structural mean model:

E(Za
p ) = β0p + β1pa. (20)

Under the assumptions made, a consistent estimator for β1p = E(Za=1
p ) − E(Za=0

p ) can be obtained

by a consistent estimator θ̂1 from the IP-weighted associational model:

E
[
I(A=a)Zp

f(A|L)

]
E
[
I(A=a)
f(A|L)

] = θ0p + θ1pA. (21)

Parameter estimates are obtained using weighted least squares with individuals weighted by their

estimated (nonstabilized) inverse probability weights:

Ŵ1 =
1

P̂ (A = 1|L)
and Ŵ0 =

1

1− P̂ (A = 1|L)
. (22)

Nonstabilized weights are opted because we are using a saturated model; we can not make the marginal

structural mean model more complex than it is due to the fact that we have a binary exposure and

no other covariates. We thus estimate two parameters to estimate two quantities (E(Za=0
p ) and

E(Za=1
p ) − E(Za=0

p )). Statistical superiority (i.e. narrower 95% confidence intervals) of stabilized

weights (where P (A = a) is included in the numerator) only occurs when the (IP weighted) model is

not saturated. In case of nonstabilized weights, the mean of the weights should be equal to 2, as this

approach creates a pseudo-population twice the size of the original population.

The ATE can now be estimated as

θ̂1p =
Ê
[
I(A=1)Zp

P (A=1|L)

]
Ê
[

I(A=1)
P (A=1|L)

] − Ê
[
I(A=0)Zp

P (A=0|L)

]
Ê
[

I(A=0)
P (A=0|L)

] (23)

under the assumption that in the generated pseudo-population there are no confounders, the model

for f(A|L) is correct and under the assumption of positivity.
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Under positivity, E
[
I(A=a)
f(A|L)

]
= 1 and θ̂1p is an (asymptotically) unbiased estimator of E

[
I(A=1)Zp

P (A=1|L)

]
−

E
[
I(A=0)Zp

P (A=0|L)

]
. Under the assumption of conditional exchangeability and consistency, θ̂1p is therefore

an unbiased estimate of the ATE E(Za=1
p )− E(Za=0

p ), i.e. β1p.

The variance of θ̂1p is estimated using a robust variance estimator [22] (or alternatively using non-

parametric bootstrap).

3.4.2 Standardization [13]

An alternative for inverse probability weighting is standardization. The standardized mean for expo-

sure a is calculated as ∑
l

E(Zp|A = a, L = l)P (L = l). (24)

When L is continuous, this sum is replaced by an integral and P (L = l) is replaced by the probability

density function fL(l).

Under the assumption of conditional exchangeability and consistency we have

E(Zp|A = a, L = l) = E(Za
p |L = l). (25)

E(Zp|A = a, L = l) is only well-defined when P (A = a|L = l) > 0 for each l with P (L = l) ̸= 0, i.e.

under the assumption of positivitiy.

Under these assumptions, the standardized mean is a consistent estimator of the expected outcome

if everyone had been diseased (E(Za=1
p )). Analogously in healthy controls, the standardized mean

outcome in the healthy controls is a consistent estimator of the expected outcome if everyone had

been healthy (E(Za=0
p )).

To compute the standardized mean outcome in the lupus patients (or in the healthy controls), we

require two things: the conditional means in each stratum l of the confounders L E(Zp|A = a, L = l)

and weights as the prevalence of each value l in the study population P (L = l). We have to resort to

modeling since we have a continuous covariate and therefore more strata than observations in our study.

To obtain parametric estimates for the conditional mean, a linear regression model is fitted for the

mean outcome with disease A and all confounders (age and ancestry) in L included as covariates. Es-

sentially the same model as in equation (6) is fitted. Then we obtain an estimate Ê(Zp|A = a, L = l)

for each combination of values A and L and therefore for each of the individuals in the study popula-

tion.

Estimating P (L = l) nonparametrically from the data by dividing the number of individuals in the

strata defined by L = l by the total number of individuals in the population is not feasible due to the

high number of strata. However, P (L = l) does not need to be estimated explicitly. We only need to

estimate E(Zp|A = a, L = l) for the l value of each individual i in the study and then compute the

average

θ̂ap =
1

n

n∑
i=1

Ê(Zip|Ai = a, Li) (26)

since the weighted mean
∑

l E(Zp|A = a, L = l)P (L = l) can also be written as the double expectation

E(E(Zp|A = a, L)).

The ATE is estimated by

θ̂p = θ̂1p − θ̂0p =
1

n

n∑
i=1

Ê(Zip|Ai = 1, Li)−
1

n

n∑
i=1

Ê(Zip|Ai = 0, Li). (27)
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The standard error of θ̂p is calculated analytically using a robust standard error [19].

P-values can be obtained using this test statistic:

Tp =
θ̂p√

Var(θ̂p)
∼ tn−2 (28)

to test the null hypothesis θp = 0 of no average treatment effect for cell type p.

3.5 Simulation

To assess the performance of the different methods, a nonparametric and a parametric simulation

study was set up reflecting the data of the case study. The advantage of using a simulation study is

that one knows the truth; i.e. one knows in which cell types there is a difference in the abundance

caused by the disease state.

3.5.1 Nonparametric simulation

The goal of the nonparametric simulation is to sample observations from available data, without mak-

ing any assumptions about the distribution. The simulated data should reflect a difference in the

distribution of ancestries and in the distribution of age. The two groups under comparison should be

comparable, had both groups been healthy, conditional on the age and ancestry. For this purpose, the

simulation uses only healthy observations, as these are assumed to be comparable conditional on the

confounders. After introducing a disease effect on the count of some of the cell types in the second

group, we can identify the average disease effect for each cell type. Introducing a disease effect is

referred to as introducing a signal.

Two groups (n=45 each) are sampled to represent the healthy controls (group 1) and the lupus

patients (group 2). The effect size of interest is the disease effect. During simulation, it is important

to know for which of the cell types there is a disease effect. At the same time, we have to take into

account confounding. The first step is to create two groups that only differ in the distribution of age

and ancestry. After these groups are created, a signal in the second group is introduced. In randomly

sampled cell types, the cell counts are replaced with the cell count of another cell type from the same

observation.

The first step consists of first creating two groups with equal age distribution and the same ratio

of Europeans and Asians, followed by exchanging observations between the two groups to create the

imbalance. More formally, the data is divided in different strata defined by the age and ancestry.

These strata are determined by quantiles of age within each ancestry (see Table 1).

Table 1: Age categories per ancestry based on quantiles in healthy population.

Ancestry Quantiles

(0% - 20% - 40% - 60% - 80% - 100%)

Asian ancestry 21.0 - 26.6 - 31.2 - 48.8 - 59.8 - 74.0

European ancestry 23.0 - 26.0 - 29.0 - 33.0 - 42.2 - 75.0

From each stratum (i.e. quantile), the observations are randomly split into the two groups. In this

way, the age distribution should be approximately the same and the ratio of Asians and Europeans is

exactly the same.

To incorporate the confounding nature of the original data in the simulated data, some manipula-

tions are done on the obtained split. A certain number of samples are exchanged between the two
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groups. Essentially some of the older observations in the first group are exchanged with some of the

younger observations in the second group, from which 2/3 of the older observations belong to Asian

samples and 1/3 to European samples. This to create an imbalance between the age distributions and

the ratio of the ancestries, without consistently having only older Asians in the second group. One

disadvantage is that also the Europeans end up imbalanced. This is not the case in the original data.

After these manipulations, the only difference in cell composition between the groups are caused

by the confounders. A disease effect is simulated by introducing a signal in some of the cell types.

This signal is introduced in the second group, which is meant to represent the group of lupus patients.

A signal is obtained by replacing the cell count of one cell type with the cell count of another cell

type within the same sample [1]. For this purpose a sampling distribution is generated to sample pairs

(p, q) of cell types, in which p should be the cell type in which a signal should be introduced, and q

the cell type from which the count will be used to replace the original count. In other words, after

signal introduction in cell type p, Y ′
ip is equal to Yiq with Y ′

ip the count of cell type p in sample i after

introduction of disease effect and Yiq the count of cell type q in sample i that is used as replacement.

This sampling distribution is based on the Euclidean distances between the cell type count vectors

from CLR-transformed counts. We want to make sure that replacing a count will indeed introduce

signal, but at the same time that this signal is realistic (i.e. the count of a rare cell type should not be

replaced by the highest count and vice versa). That is why the probabilities are calculated inversely

proportional to the Euclidean distance:

P (p, q) =
1/Euclidean distance(p,q)∑K

k 1/Euclidean distance(pk, qk)
(29)

with K the total number of pairs (p, q), which is equal to 55. Say we want to simulate a disease effect

in three cell types, then three pairs of cell types are sampled in each iteration.

As replacing one count will lead to a change in the total sum of counts in each sample, a compo-

sitional correction is applied to maintain the total counts. This compositional correction is based on

the relative proportion of each cell type using weights. To avoid this problem, we could also swap the

cell counts of cell types p and q, leaving the total count constant and introducing signal to two cell

types at once. However, this does not simulate the reality of compositionality, where other cell types

need to compensate for changes in one cell type.

This compositional correction is applied as follows. After replacing a cell count, the difference di
in the total sum count is calculated for each sample i. di is equal to the difference between the original

count of cell type p and the cell count of the replacement cell type q in sample i:

di = Y ′
ip − Yip = Yiq − Yip. (30)

For each other cell type, weights are calculated based on their proportion in the sample (based on the

original total count). Say Ni is the total sum of the cell counts from sample i (before replacing the

cell count). The proportion Rik of cell type k in sample i is then defined as

Rik =
Yik

Ni
. (31)

The weights Wik for each cell type k (with k ̸= p) are calculated as

Wik =
Rik

11∑
j ̸=p

Rij

. (32)

To apply the compositional correction, one subtracts Wik ∗ di from the original count. This ensures

that the total sum remains the same and that the other cell types compensate for the change in abun-

dance proportional to their relative abundance.
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The choice for applying a compositional correction is made because the purpose is to simulate data

as realistic as possible. As already mentioned in the context of compositional data, when one cell

type increases (or decreases) in abundance, other cell types compensate for this since we only obtain

relative information. By keeping the sum constant, we simulate that from each observation the same

number of information is sampled. By applying the compositional correction, we simulate the change

that other cell types undergo when another cell type increases or decreases.

3.5.2 Parametric simulation

In parametric simulation, there are more options to make the simulation more flexible. For instance,

we can vary the number of samples and the number of cell types studied. The scenarios used in the

simulations are shown in Table 2 (although more options are possible).

Table 2: Different simulation scenarios used in parametric simulation. All scenarios are compared with

and without accounting for confounding. Scenario A corresponds to the settings in the nonparametric

simulation.

Scenario Number of observations (n) Number of cell types (P) Number of differential cell types (k)

A 90 11 3

B 90 11 6

C 90 30 6

D 20 11 3

In each iteration, the first half of the n observations corresponds to the group of healthy controls

and the second half corresponds to the group of lupus patients. Cell counts Yip are sampled for each

observation i and cell type p using a multinomial distribution. The outline of this procedure is shown

in Figure 2.
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Figure 2: Parametric simulation framework. * Some values for β.k are set to zero or multiplied by

-1 at random to ensure that not all cell types have an effect size different from zero and allow both

increasing and decreasing effect sizes. For β3k a fixed number of values is set equal to zero to control

the number of cell types with a disease effect.

The age (L1i) and ancestry (L2i) distributions between both groups are simulated as close as possible

to the original data. For the age distribution of both groups, a mixture of gamma distributions is used

with different values of the parameters in each group (for a comparison of the original data with a

simulated data set see Appendix B.4). The ancestries are sampled with different sampling probabilities

of European and Asian ancestries between the two groups to simulate an imbalance of the ancestries

between groups. For more details on the choice of parameters, see Appendix B.3.

Cell counts are sampled from a multinomial distribution with probabilities depending on the age

(L1i), ancestry (L2i) and group (Ai) of the corresponding individual. For each individual the library

size Ni is sampled from a Poisson distribution with parameter λ equal to the mean library size of the

original data. The mean of the confounding effect of age is smaller because this value needs to be

multiplied by the age (L1i). To make sure the effect of age does not explode, this value is chosen to

be much smaller.

Note that the signal cell types are now defined as those that have β3p different from zero.

3.5.3 Assessment of methodologies in simulation study

In both the nonparametric and the parametric simulation study, the aforementioned methodologies

are evaluated on the simulated data. To assess their performance, 250 iterations are used to simulate

the data as mentioned before. In each simulation, all methods are performed using functions created

in R (see Appendix E), both accounting for confounders and not accounting for them. For each method

both the raw p-value and the adjusted p-values are stored.

Confidence intervals are computed on confidence levels of 90%, 95% and 99% (except for Wilcoxon).

For the parametric simulation also the coverage of these confidence intervals is estimated, to evaluate

how often the confidence interval includes the true parameter.
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The performance of each method is assessed using different criteria. For each iteration (i.e. simu-

lated data set) and for different values of the significance level α, the true positive proportion (TPP)

and false discovery proportion (FDP) are calculated, defined as

TPPi =
# True positives

# Truly differential cell types
(33)

and

FDPi =
# False positives

# Positives
(34)

respectively. Positives are defined as cell types whose null hypothesis is rejected. True positives are

therefore the rejections from cell types that are truly differential between lupus patients and healthy

controls. False discoveries on the other hand are hypotheses that are rejected for cell types that are

in fact not differential between lupus patients and healthy controls.

After 250 iterations, the sensitivity and false discovery rate (FDR) are estimated by taking the average

of the TPP and FDP, respectively:

Sensitivity =
1

250

250∑
i=1

TPPi (35)

and

FDR =
1

250

250∑
i=1

FDPi. (36)

ROC curves are generated using the raw p-values and the functionality of iCOBRA [20].

Another interesting feature to evaluate the performance is looking at the top k cell types, sorted

by significance, and see if this matches the truth (i.e. the cell types for which there is truly a disease

effect).

4 Software

In Table 3 a list of the most important functions in R [18] (and the used version) is shown for each

method discussed in this section.

Table 3: Most important R functions used. The version of R used is R 4.3.1.

Method Function Package Version

Wilcoxon wilcox.test stats 4.3.1

Linear regression lm stats 4.3.1

voomCLR voomCLR voomCLR 0.99.24

linDA linda MicrobiomeStat 1.2

IPW ipwpoint ipw 1.2.1

svyglm ipw 1.2.1

Standardization glm stats 4.3.1

stdGlm stdReg 3.4.1
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5 Results

5.1 Data exploration

Before setting up a simulation study and conducting any analysis, it is useful to start with some data

exploration. There are 145 samples from healthy individuals and 203 from lupus patients. They orig-

inate from 98 and 158 unique individuals respectively. As already mentioned in the data description

(chapter 2) only one sample for each individual is included for further analysis. That is why for the

data exploration, only those samples will be used in the exploration.

Age is considered to be an important confounder in this case study. On the one hand, age has

been shown to influence the blood cell type composition [21]. On the other hand, the lupus patients

in the data are generally older. The observed ages in the data range from 20 to 83 years. As shown

in Figure 3, the ages are not uniformly distributed. The average age in this case study is 41 years.

However, here it becomes already clear that the lupus patients are on average older (44 years) than

the healthy controls (37 years).

Figure 3: The distribution of the age of the individuals. The overall mean age is 41 years (indicated

in red). The mean age from the healthy controls is 37 years (indicated in green). The mean age from

the lupus patients is 44 years (indicated in blue).

To further investigate the association between age and disease, the boxplots in Figure 4 show the

distribution of age for each disease status. Since for the analysis only one observation per individual

is used, the age is represented for each individual rather than for each sample.
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(a) (b)

Figure 4: Age per disease status in all individuals (left) and per ancestry (right). Lupus patients are

typically older.

It is striking that the lupus patients in the data are typically older (Figure 4a). If you make a

distinction between the ancestries (Figure 4b), this difference seems more obvious in the European

patients. However, we do have to note that from the 107 Asian individuals only 24 are healthy. On

the other hand, the European individuals are balanced as there are 74 healthy individuals and 75

lupus patients. An overview of these numbers are presented in Table 4. By this observation, one can

consider ancestry as a confounder as well; if you observe a healthy individual it is more likely from

European ancestry. The original paper compares frequencies of cell types for each ancestry separately.

Table 4: Distribution of disease status per ancestry.

Asian European Total

SLE 83 (77.57%) 75 (50.34%) 158

Healthy 24 (22.43%) 74 (49.66%) 98

Total 107 (100%) 149 (100%) 256

Investigating the role of age and ancestry on the cell composition is more complicated, because of the

compositional characteristic of the data. If age or ancestry has influence on the absolute abundance

of one cell type, this can also be reflected in the other cell types.
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Figure 5: Shannon index for each individual in function of age.

Figure 5 shows the Shannon index for each individual’s sample in function of age. The Shannon index

is a way to measure the diversity of cell types in a sample. The higher the value of the Shannon index,

the higher the diversity of cell types in a particular sample. The lower this index, the lower the diver-

sity [4]. There does not seem to be a trend in this diversity over age. However, as from literature it is

known that age does influence the immune cell composition, this will be considered as a confounder [21].

Now it is time to investigate what really is of interest; the cell type composition across different

disease statuses.
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5.1.1 Relative abundance

As we only observe relative abundances with scRNA-seq data, it is a logical choice to look at relative

abundances of cell types. The relative abundance is defined as the observed count from a cell type

divided by the total count observed in the corresponding sample.

Figure 6: Boxplots for each cell type for different disease status per ancestry. The red dots indicate

the mean for each cell type.

In Figure 6 the relative abundance for each cell type is shown, comparing the SLE observations with

the healthy controls for each ancestry separately. The means for each cell type are indicated by a

red dot. There seems to be a difference in relative abundance for cM and T4 in both ancestries. The

difference in relative abundance of T4 between SLE patients and healthy controls seems to be larger

in observations from Asian ancestry than from European ancestry. Also in the ncM cells there seems

to be a difference in relative abundance. The B cell type appears to have a wider range in Asian SLE

patients than in healthy Asian observations. The NK cells don’t seem to differ in relative abundance

between SLE observations and healthy controls.

The relative abundances of Progen, PB, pDC, Prolif and cDC are very small, regardless of the disease

status. However, as this figure shows the relative abundance, it is not clear from this scale whether

or not there is a difference in this relative abundance for these rare cell types. Figure 20 in Appendix

C.2 shows only these cell types with the relative abundance on a smaller scale.

In the Asian ancestry, there seems to be only a difference in relative abundance in Prolif cells. In

European ancestry however, there do seems to be a difference as well in pDC and cDC cells.

This gives an indication that there might also be differences in cell composition between ancestries.

Figure 7 can be used for an exploratory comparison between immune cell compositions of different

ancestries. The average relative abundance for each cell type are shown for each ancestry-SLE status

combination.
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Figure 7: Mean relative abundance per ancestry and disease status.

If we compare the healthy Asians with the healthy Europeans, the largest difference seems to be in

the relative abundance of T4 and cM. However, also in the B, NK, ncM and cDC cells there seems to

be a minor difference between the ancestries. Although it is not visible because of the small relative

abundance, the average relative abundance from the PB cells is twice that of the European ancestry.

For the pDC cell type it is the other way around. The Prolif cell type seems to have different average

relative abundance as well between lupus patients and healthy controls for both ancestries.

In the SLE patients, the difference in the relative abundance of B is somewhat larger between the

ancestries. The largest difference seems again to be for T4, but also for T8 there is a larger difference

in SLE patients than for healthy patients. The average relative abundance of cM seems not to be

different between the two ancestries in SLE patients.

In summary, we observe differences in relative abundance of the cM celltype between healthy and

diseased patients for both ancestries. For the B cell type we observe differences as well between

healthy and diseased patients, although it might be subtle. We also observe a difference between the

diseased patients of different ancestry. In the T8 cell type we observe a difference in relative abundance

between lupus patients from different ancestry and between healthy controls and lupus patients from

Asian ancestry. The most remarkable cell type however seems to be T4. Both between the ancestries

as between lupus patients and healthy controls there seems to be a difference in relative abundance.

5.1.2 CLR-transformed counts

Because the relative abundance can be misleading in terms of interpretation due to compositionality,

it might be better to investigate the CLR-transformed counts. Figure 8 shows the CLR-transformed

count per cell type for each individual. In Figure 8a the healthy control samples are shown and in

Figure 8b the lupus samples are shown.
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(a) Healthy observations (b) SLE observations

Figure 8: Individuals’ CLR-transformed counts for each cell type for healthy controls (left) and for

SLE patients (right).

It seems that among the lupus samples there is more variability in the CLR count for each cell type

than for healthy observations. In the Prolif cell type for instance we notice that the CLR counts in the

healthy observations are never above zero, while in the SLE observations there are samples that have

a CLR count above zero. This means that for the healthy controls, the Prolif cell type is observed less

than the geometric mean in each sample, while in SLE observations this is not always the case.

Figure 9 shows another representation of the CLR counts per cell type, but now separate for each

ancestry. The red dots indicate the mean CLR count for each disease status in the corresponding cell

type.

Figure 9: Boxplots for CLR-transformed counts from each cell type for different disease status per

ancestry. The red dots indicate the mean for each cell type.

According to this figure it seems that the CLR-transformed counts from the Progen cell type are

different between lupus patients and healthy controls, at least for Asian ancestry. Also the T4 cells

seem to only show differences in the Asian samples. In the pDC cell type on the other hand, the

difference seems to be more obvious in the European ancestry. In both ancestries there seems to be a
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difference in the CLR-transformed counts of Prolif, ncM and cM cells. The B cell type seems to show

differences in the range of the CLR-transformed counts. Although the mean in the Asian ancestry

seems to be the same, there is a difference in the mean CLR-transformed count in European samples.

5.1.3 PCA on compositional data

PCA is a very common way to visualize data. However, in the context of compositional data the

CLR-transformed counts should be used in order to make Euclidean distances meaningful.

Figure 10 shows a scree plot, indicating the explained variance by each principal component. The first

two principal components explain 42% of the variance. Ideally, we would show the first four, maybe

even five principal components, but unfortunately this is not possible.

Figure 10: Scree plot for PCoA. The first two principal components only explain 42% of the variance.

Figure 11 shows the scores from the first two principal components. There seems to be more or less a

separation in the second dimension between the healthy controls and the lupus patients. The samples

from different ancestries are more scattered through the plot.

Figure 11: Scores from first two principal components.
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5.2 Simulation study

5.2.1 Nonparametric simulation

Figure 12 shows the overall performance of the different methodologies in terms of false positive rate

(FPR) (or 1-specificity) and true positive rate (TPR) (or sensitivity) [24]. Figure 12a shows the

performance of the procedures when they account for confounding of age and ancestry. In Figure 12b

the methods did not take into account confounding. Although it might not be clear, the curves from

linear regression (lm), inverse probability weighting (ipw) and standardization (std) overlap in the

latter.

(a) Accounting for confounding (b) Not accounting for confounding

Figure 12: ROC curves after 250 iterations of nonparametric simulation with 3 differential cell types.

The small difference between linear regression (lm), inverse probability weighting (ipw) and standard-

ization (std) is not there anymore when no confounders are included; their curves overlap.

Table 5 displays the proportion of iterations where the three cell types with the smallest p-values

were the actual signal cell types. In each iteration the methods were evaluated both accounting for

confounding (a) and not accounting for confounding (b).

Table 5: The proportion of simulations where the top 3 cell types according to the method matched

the truth. Row a shows the performance when the methods account for confounding and row b shows

the performance when the methods do not account for confounding.

Wilcoxon (TSS) Wilcoxon (CLR) voomCLR linDA Linear regression IPW Standardization

a 0.516 0.524 0.788 0.812 0.548 0.516 0.540

b 0.516 0.524 0.744 0.752 0.540 0.540 0.540

To check whether the methods control the FDR and have good sensitivity, Figure 13a and Figure 13b

show the estimated FDR and sensitivity over 250 iterations, respectively.
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(a) FDR (b) Sensitivity

Figure 13: Estimated FDR and sensitivity over 250 iterations for each method. The circles indicate

the threshold for controlling the FDR on significance level α = 0.01, 0.05 and 0.1. * Indicate the setting

without accounting for confounding.

Both LinDA and voomCLR estimate the bias of the effect sizes in the model for the CLR-transformed

counts. The mean of the bias over the 250 iterations is shown in Table 6 for both methods. For the

distribution of the bias values, see Appendix C.3.

Table 6: Mean (sd) of the bias of the effect sizes based on the CLR transformed counts according to

linDA and voomCLR.

linDA voomCLR

a -0.00854 (0.544) -0.00421 (0.379)

b -0.0121 (0.548) -0.00636 (0.379)

5.2.2 Parametric simulation

Figure 14 and 15 show the overall performance of the different methodologies in terms of false positive

rate (FPR) and true positive rate (TPR) in different settings for the parametric simulation. These

settings are described in Table 2. The left panels show the results when the procedures account for

confounding of age and ancestry. In the right panels, the procedures did not account for confounding.

Again, in the latter the curves for linear regression, inverse probability weighting and standardization

overlap.
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(a) A: Accounting for confounding (b) A: Not accounting for confounding

(c) B: Accounting for confounding (d) B: Not accounting for confounding

Figure 14: ROC curves after 250 simulations in parametric setting A (top) and B (bottom). Without

accounting for confounders, the curves for linear regression (lm), inverse probability weighting (ipw)

and standardization (std) overlap.
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(a) C: Accounting for confounding (b) C: Not accounting for confounding

(c) D: Accounting for confounding (d) D: Not accounting for confounding

Figure 15: ROC curves after 250 simulations in parametric setting C (top) and D (bottom). Without

accounting for confounders, the curves for linear regression (lm), inverse probability weighting (ipw)

and standardization (std) overlap.

In each situation, voomCLR and linDA outperform the other methods.

Table 7 shows the proportion of iterations where the top k according to the smallest p-value were

the actual signal cell types. In each iteration and for each setting, the methods were evaluated both

accounting for confounding and not accounting for confounding (indicated by ’*’).
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Table 7: The proportion of simulations where the top k cell types according to the method matched

the truth.

Wilcoxon (TSS) Wilcoxon (CLR) voomCLR linDA Linear regression IPW Standardization

A 0.212 0.288 0.772 0.816 0.380 0.340 0.376

A* 0.212 0.288 0.540 0.576 0.280 0.280 0.280

B 0.096 0.136 0.512 0.620 0.212 0.188 0.212

B* 0.096 0.136 0.328 0.360 0.156 0.156 0.156

C 0.088 0.124 0.424 0.404 0.196 0.148 0.192

C* 0.088 0.124 0.188 0.196 0.132 0.132 0.132

D 0.168 0.232 0.636 0.628 0.368 0.288 0.368

D* 0.168 0.232 0.416 0.432 0.256 0.260 0.260

To investigate which methods control the FDR, Figure 16 shows the estimated FDR for each method

in each setting over 250 iterations.

(a) Setting A (b) Setting B

(c) Setting C (d) Setting D

Figure 16: Estimated FDR over 250 iterations for each method. The circles indicate the threshold

for controlling the FDR on significance level α = 0.01, 0.05 and 0.1. * Indicate the setting without

accounting for confounding.

Figure 17 shows the estimated sensitivity over 250 iterations for each method for different values of

the significance level.
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(a) Setting A (b) Setting B

(c) Setting C (d) Setting D

Figure 17: Estimated sensitivity over 250 iterations for each method on significance levels α =

0.01, 0.05 and 0.1. * Indicate the setting without accounting for confounding.

For each setting, the mean (and standard deviation) of the bias estimates from linDA and voomCLR

are shown in Table 8. For the distribution of these estimates, see Appendix C.4.

Table 8: Mean (sd) of the bias of the effect sizes based on the CLR transformed counts according to

linDA and voomCLR. * Indicate the setting without accounting for confounding.

linDA voomCLR

A -0.00579 (0.215) -0.00427 (0.149)

A* -0.00683 (0.219) -0.00502 (0.152)

B -0.0137 (0.332) -0.00982 (0.232)

B* -0.0163 (0.338) -0.0118 (0.234)

C -0.0179 (0.164) -0.0119 (0.112)

C* -0.0204 (0.168) -0.0144 (0.117)

D -0.0258 (0.269) -0.0187 (0.185)

D* -0.0239 (0.274) -0.0185 (0.189)

In the parametric simulation, the true value of the disease effect is known. Figure 18 shows the

proportion of simulations for which the effect size was included in the corresponding confidence interval

for each cell type. The circles indicate the proportion one expects to see for the given confidence level.
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(a) Setting A (b) Setting B

(c) Setting C (d) Setting D

Figure 18: Coverage percentage of confidence intervals with confidence levels 90%, 95% and 99%. The

points represent the percentage of coverage for a certain cell type over iterations for a given method.

The circles indicate the expected level of coverage for the given confidence level.

Note that linDA calculates fold change estimates on the log2 scale, while the true effect is generated

on the log fold change scale. The confidence intervals for the coefficients from linDA were therefore

transformed to the log scale.

5.3 Implementation case study

It seems that linDA performs slightly better than voomCLR in terms of sensitivity, while still con-

trolling the FDR. The case study is therefore analyzed using linDA. The results are shown in Table 9.

However, because the performance of these methods is comparable, the results according to voomCLR

can be found in Appendix C.5.
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Table 9: Results analysis case study data with linDA. The estimates are shown in both log2 scale,

which is given by linDA automatically, and the log scale. The cell types in bold are the ones that are

found to be significant on the significance level α of 5%.

log2FoldChange SE logFoldChange pvalue padj

cM 1.072 0.090 0.743 2.861e-26 3.147e-25

Prolif 1.203 0.125 0.834 5.347e-19 2.941e-18

ncM 0.874 0.113 0.606 2.724e-13 9.989e-13

T8 0.510 0.098 0.353 4.211e-7 1.158e-6

pDC -0.262 0.121 -0.181 3.100e-2 6.800e-2

T4 -0.185 0.097 -0.128 5.700e-2 1.040e-1

cDC 0.194 0.117 0.134 9.900e-2 1.560e-1

B -0.112 0.176 -0.077 5.270e-1 6.440e-1

Progen 0.112 0.161 0.077 4.880e-1 6.440e-1

PB 0.085 0.192 0.059 6.560e-1 7.220e-1

NK -0.031 0.135 -0.022 8.180e-1 8.180e-1

6 Discussion

6.1 Results

The results show that voomCLR and linDA outperform the other methods in terms of true positive

rate while controlling the false positive rate. This is visible from the ROC curves from both the non-

parametric and parametric simulations. Both methods seem to perform equally well, at least in terms

of the FDR. They both seem to control the FDR where the other methods did not control the FDR

at all. However, in the setting where the number of differential cell types is about half of the total

number of cell types (setting B), only voomCLR seems to control the FDR, even without accounting

for confounders. In setting C, where the number of cell types is larger, both methods have a higher

FDR compared to other settings. In this setting however, all methods have comparable sensitivity.

In the nonparametric simulations, the difference in performance between when the methods account

for confounding and when they don’t, seems not to be that large. In the parametric simulations on the

other hand there seems to be a larger difference in performance. Wilcoxon does not take into account

confounding, so this methods’ performance remains the same. The other methods however perform

better when they take the confounders into account. In the parametric simulation, Wilcoxon with

TSS normalized counts seemed to be the least performing method, while this is not the case in the

nonparametric simulation. A possible explanation could be that the confounding in the original data,

that is used for the nonparametric simulations, does not have that much effect, compared to the signal

of the disease that is introduced. In the parametric simulation on the other hand, we can control the

level of confounding, and this effect seems to be stronger than in the nonparametric setting. Since

the TSS transformed counts suffer from the issue of compositionality and Wilcoxon does not take into

account other covariates, this method might fail to distinguish these effects from each other. Using

the CLR counts shows slight improvements, but this method still performs poorly in comparison with

linDA and voomCLR.

While accounting for confounding, there is a small difference in the performance of linear regression,

IPW and standardization, which is not there anymore when the methods do not take into account

the confounders. In fact, the only difference between these methods when no confounders are taken

into account, is the standard error. Both IPW and standardization use a robust standard error, while

linear regression does not. Their parameter estimates are exactly the same. Therefore, the difference
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in performance is minimal. These methods do seem to perform better than Wilcoxon, although the

difference in performance vanishes when these methods don’t take into account confounders.

If we would compare the methods in terms of the ability to identify the top k differential cell types,

in every setting voomCLR and linDA perform much better than all other methods, even without

accounting for confounding. In all settings without accounting for confounding, the linear regression,

ipw and standardization seem to perform equally poor as the Wilcoxon using CLR transformed counts.

In terms of coverage of confidence intervals, voomCLR performs the best over all simulation settings,

even without accounting for confounding. When voomCLR accounts for confounders, the coverage of

the confidence intervals corresponds to the expected coverage for the given confidence levels. It even

exceeds the desired coverage percentage. This might be an indication that this method is somewhat

too conservative with too wide confidence intervals. For linDA, the estimated coverage percentage

matches the desired confidence levels, except for setting B, where the number of cell types that are

truly differential is about half of the total cell types. This can be explained because of the assumption

that is made in both linDA and voomCLR. They both use the assumption that the majority of the cell

types is not differential to estimate a bias correction on the effect size. That assumption is violated

in this case.

In summary, it seems that both linDA and voomCLR are suitable to identify cell types with a sig-

nificant disease effect. In all simulation settings, voomCLR controls the FDR on various levels of

significance. In most settings linDA also shows control of the FDR, although this seems more of an

issue when the number of truly differential cell types gets larger. In terms of sensitivity, linDA shows

better performance. If interest lies in identifying as much cell types as possible, linDA is preferred. If

it is more important that not too many cell types are identified, voomCLR might be preferred. The

choice of the best method therefore depends on the research question.

The data from the case study is analyzed with linDA. The results show that these 4 cell types are

significantly differential between lupus patients and healthy controls on the 5% level of significance;

cM, Prolif, ncM and T8. The first two cell types were also identified as differential in the original

paper [16]. For comparison, the results according to voomCLR are shown in Appendix C.5. According

to voomCLR, cM and prolif are the only significant cell types.

6.2 Possible drawbacks

It is possible that the signal that is introduced in the nonparametric simulation to emulate a disease

effect is not realistic and too strong compared to the confounding effect. This might lead to unrealistic

signals where the minimum count in one group exceeds the maximum in the other (or vice versa). One

could think of more realistic ways to introduce a signal (e.g. add or subtract a constant proportional

to the relative abundance of a cell type).

During parametric simulation, the parameter settings were chosen arbitrarily. Perhaps other val-

ues could simulate a more realistic setting. However, an attempt was done to make sure that during

the simulation there was not one cell type that was dominating all the others in terms of the multino-

mial probabilities. However, it is possible that the effect sizes might still not be realistic, so reviewing

the literature on realistic effect sizes or asking advice from experts in the field might be useful.

It is important to think about the consequences if one of the identifiability conditions is violated

before making causal interpretations. As mentioned before, in the original data it is possible that the

consistency assumption is violated, since the disease exists in multiple forms. There is no guarantee

that the different states and types result in the same potential outcome, i.e. cell composition. This
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assumption is important in both inverse probability weighting and standardization to be able to inter-

pret an associational effect as a causal effect. The same holds for (conditional) exchangeability. This

assumption is satisfied in the nonparametric simulation study, since we only worked with the healthy

population. These observations should be exchangeable. Another condition that is important is the

positivity, which ensures unbiased estimates for the causal effect. This assumption was not violated

either in the simulation studies and in the original data, except for random violations due to limited

sample size.

Another issue is that voomCLR might be too conservative. It has been shown to be a good method

in terms of FDR, but the confidence intervals can be wide because of the additional uncertainty that

is taken into account. This method however looks promising.

6.3 Further research

There are still topics that need further investigation. For instance, now we only investigate main ef-

fects. It might also be interesting to explore interaction effects and assess heterogeneity in the disease

effect. From the data exploration it already seemed there are differences in disease effects between

ancestries.

Additionally, we could leverage more information based on the replicates that were now left out

of the analysis, if we could figure out how they are obtained. Another option is to investigate the

different disease groups and investigate differences among lupus patients.

The causal inference methods seemed not to perform that well using the CLR-transformed counts

as outcome. To combine the causal inference field with the compositional data analysis, it might be

insightful to come up with solutions to combine both frameworks in order to come up with causal

effect estimators that can handle compositionality. Perhaps we could introduce the bias correction in

some way in the inverse probability weighting procedure. For future research purposes, it is advised

to investigate further the effects of violations of these conditions by implementing these violations in

the simulation framework.

Regarding the CLR-transformed counts, it might also be useful to investigate other approaches to

deal with zero counts, as these do occur in cell composition data. Including a pseudo-count is rather

arbitrary and perhaps a more robust approach can do a better job.

7 Conclusion

It has been shown that it is important to take into account compositionality. Methods like voomCLR

and linDA that make adjustments to deal with the issues related to compositionality clearly showed

better performance in terms of identifying significant results. Although the overall performance of

both methods is very similar, linDA seems to be less conservative than voomCLR. However, it still

remains a challenge to interpret the obtained coefficients as causal effects, as these methods include

confounders in their model formulation. Interpretation is therefore not marginal but conditional. A

suggestion for further research is therefore to look into the causal inference framework in combination

with compositional data analysis.
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A Data description

Table 10: Description of variables and their values. The range of values is considered without one

replicate sample with ID IGTB1906 IGTB1906:dmx count AHCM2CDMXX YE 0831 that is left out

of the analysis due to small total cell count.

Variable name Description Values

patient Unique ID for each sample (n=347) 1004 1004:dmx YE 7-13, 1014 1014:dmx YE 7-13,...

group The group the patient belongs to Flare, Healthy, Managed, Treated

batch cov Pool ID from sample (n=23) dmx YE 7-13, dmx YS-JY-22 pool5, dmx YS-JY-20 pool4,...

ind cov Unique ID for each individual (n=256) 1004 1004, 1014 1014, ..., FLARE001, FLARE004, ...

Processing Cohort Batch ID from sample (n=4) 1,2,3,4

L3 1 Binary indicator if sample belongs to the cohort of cases and controls 0,1

that are age matched and equal in number of cases

of Asian and European ancestry in processing batch 4

and their replicates in other batches.

Processing batch 4 refers to the L3 cohort samples

within processing batch 4 only.

Age Age of the patient (in years) [20,83]

Sex Sex of the patient Female, Male

pop cov Ancestry of the patient European, Asian

SLE status Disease status of the patient Healthy, SLE

B Observed absolute count B cells [0, 1801]

NK Observed absolute count NK cells [0, 1474]

Progen Observed absolute count Progen cells [0, 13]

Prolif Observed absolute count Prolif cells [0, 176]

T4 Observed absolute count T4 cells [87, 5303]

T8 Observed absolute count T8 cells [86, 2243]

cDC Observed absolute count cDC cells [0, 211]

cM Observed absolute count cM cells [1, 2835]

ncM Observed absolute count ncM cells [0, 752]

pDC Observed absolute count pDC cells [0, 72]

PB Observed absolute count PB cells [0, 38]

B Methodology

B.1 Derivation sum CLR counts

P∑
p=1

clr(Yip)
(1)
=

P∑
p=1

log
Yip

exp( 1
P

P∑
k=1

log(Yik))

=

P∑
p=1

(
log(Yip)− log

(
exp(

1

P

P∑
k=1

log(Yik))

))

=

P∑
p=1

(
log(Yip)−

(
1

P

P∑
k=1

log(Yik)

))

=

P∑
p=1

log(Yip)− P
1

P

P∑
k=1

log(Yik)

= 0

B.2 Bias effect size based on CLR (linDA)

Say the (unobserved) absolute counts from sample i are annotated as Xip for cell type p and the

observed ’relative’ abundances are annotated as Yip for cell type p.

Assume a multinomial distribution for the cell composition from sample i: Yip ∼ Mult(Ni,
Xip

P∑
p=1

Xip

)

1Supplementary materials Perez et al. [16].
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with Ni =
P∑

p=1
Yip. This implies that E(Yip) = Ni · Xip

P∑
p=1

Xip

or E

 Yip

P∑
p=1

Yip

 =
Xip

P∑
p=1

Xip

.

Under this assumption, we can write

log

 Yip

P∑
p=1

Yip

 = log

 Xip

P∑
p=1

Xip

+ eip (37)

The interest is the effect of disease on the absolute abundance of cell types. In case we would observe

absolute abundances, we would fit the following log-linear model:

log(Xip) = αpui + β0p + β1pX1i + β2pX2i + εip (38)

with

• ui = SLE status =

{
1, if sample i belongs to lupus patient

0, else

• X1i = Age from sample i

• X2i = Ancestry =

{
1, if sample i belongs to patient of European ancestry

0, if sample i belongs to patient of Asian ancestry

• εip the error term, assumed to be normally distributed with constant variance.

We are only interested in the parameter αp, the effect of the disease on the absolute abundance of cell

type p. In fact, we are testing the null hypotheses H0,p : αp = 0 versus the alternative H1,p : αp ̸= 0,

which corresponds to the hypotheses in (4).

The linear model for the CLR-transformed counts satisfies the following linear model:

clr(Yip) : = log

 Yip

(
P∏

p=1
Yip)1/P

 = log

 Yip

P∑
k=1

Yik

− 1

P

P∑
j=1

log

 Yij

P∑
k=1

Yik


= log(Xip) + eip −

1

P

P∑
p=1

log(Xip)−
1

P

P∑
p=1

eip

= ui(αp − ᾱ) + (β0p − β̄0) + (β1p − β̄1)X1i + (β2p − β̄2)X2i + ε̃ip − ε̄p

where ᾱ = 1
P

P∑
p=1

αp, β̄j =
1
P

P∑
p=1

βjp (j=0,1,2) and ε̄p = 1
P

P∑
p=1

ε̃ip and ε̃ip = ei + εip.

The estimator for αp based on the CLR-transformed data is biased with the bias term being ᾱ.

In many applications, it is reasonable to assume that there is only a small portion of differential cell

types (most αp = 0). Denote α̃p as an unbiased estimate for αp − ᾱ. The mode of α̃p is expected to

be close to −ᾱ.

One estimates αp by the bias-corrected estimator α̂p = α̃p + α̃, with −α̃ the estimate for the mode of

α̃p. In fact, we make sure that we shift the obtained estimate such that the mode becomes zero [12].

B.3 Parameters parametric simulation

Table 11 shows the parameters used to simulate a dataset with an age and ancestry for each individual.
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Table 11: Parameter settings used to simulate age and ancestry distribution per group. Age is sampled

using a mixture of gamma distributions. Ancestry is sampled using a binomial distribution.

Age Group 1 Group 2

Probability weights 0.7, 0.3 0.55, 0.45

α 30, 65 35, 55

β 1,1 1,1

Ancestry Group 1 Group 2

Asian 0.25 0.55

European 0.75 0.45

B.4 Parametric simulation age distribution

In Figure 19 you can see that the simulated distribution looks similar to the original data.2

(a) Overall age distribution original data (b) Age distribution original data per disease

state

(c) Overall age distribution simulated data (d) Age distribution simulated data per disease

state

Figure 19: Age distribution in original data (top) versus in simulated data (bottom).

2set.seed(1234) was used to generate this figure
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C Results

C.1 Data exploration batches

Table 12: Distribution of SLE patients and healthy controls in each batch. Batch 1 only contains

healthy individuals. The distribution between healthy and SLE is more or less evenly distributed in

batches 3 and 4.

Batch Healthy SLE

1 48 0

2 36 124

3 17 27

4 44 52

C.2 Data exploration: rare cell types

Figure 20: Relative abundance for rare cell types compared between lupus patients and healthy controls

for different ancestries.
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C.3 Nonparametric simulation bias

(a)

Figure 21: Distribution of bias terms from voomCLR and linDA in the simulations when accounting

for confounders and without accounting for them.
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C.4 Parametric simulation bias

(a) Setting A: n=90, P=11, k=3 (b) Setting B: n=90, P=11, k=6

(c) Setting C: n=90, P=30, k=6 (d) Setting D: n=20, P=11, k=3

Figure 22: Distribution of bias terms from voomCLR and linDA in the simulations when accounting

for confounders and without accounting for them.
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C.5 Implementation case study (voomCLR)

Table 13: Results voomCLR implementation on case study. The cell types in bold are the cell types

that are significant on the 5% significance level.

logFC t P.Value adj.P.Val

Prolif 0.851 3.343 9.384e-4 1.032e-2

cM 0.753 3.059 2.435e-3 1.340e-2

ncM 0.606 2.416 1.630e-2 5.978e-2

T8 0.362 1.459 1.457e-1 4.007e-1

pDC -0.193 -0.765 4.447e-1 9.293e-1

cDC 0.145 0.579 5.630e-1 9.293e-1

T4 -0.128 -0.520 6.038e-1 9.293e-1

B -0.068 -0.253 8.002e-1 9.293e-1

Progen 0.067 0.253 8.006e-1 9.293e-1

PB 0.054 0.196 8.449e-1 9.293e-1

NK -0.019 -0.074 9.414e-1 9.414e-1
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D R code data exploration

1 ############################## Data ##########################

2 data <- readRDS("230705_popCountsWide_individualBatchID.rds")

3 data$Age <- as.numeric(paste(data$Age))

4 celltypes <- colnames(data[,c(11:21)])

5

6 # Eurazia

7 eurazia <- data %>% filter(pop_cov %in% c("Asian","European"))

8 eurazia$pop_cov <- eurazia$pop_cov[drop=T]

9

10 # Replicates Eurazians

11 eurazia$totalcounts <- rowSums(eurazia[,c(11:21)])

12 patients <- eurazia %>% group_by(ind_cov) %>% filter(totalcounts==max(totalcounts))

13 patients <- patients$patient

14

15 eurazians.duplicates.rm <- as.data.frame(eurazia %>% filter(patient %in% patients))

16 healthy.eurazians.duplicates.rm <- as.data.frame(eurazians.duplicates.rm %>% filter(SLE_status=="Healthy"))

17 healthy.eurazians.duplicates.rm$SLE_status <- healthy.eurazians.duplicates.rm$SLE_status[drop=T]

18

19 eurazians.duplicates.rm.clr <- eurazians.duplicates.rm

20 eurazians.duplicates.rm.ra <- eurazians.duplicates.rm

21 # CLR

22 geomMean <- exp(rowMeans(log(eurazians.duplicates.rm.clr[,c(11:21)]+0.5)))

23 CLR <- log((eurazians.duplicates.rm.clr[,c(11:21)]+0.5)/geomMean)

24 eurazians.duplicates.rm.clr[,c(11:21)] <- CLR

25 # RA

26 eurazians.duplicates.rm.ra[,c(11:21)] <- t(microbiome::transform(t(eurazians.duplicates.rm[,c(11:21)]),

27 "compositional"))

28

29 ############# Exploration ##############

30 n.samples <- nrow(eurazia)

31 n.patients <- length(unique(eurazia$ind_cov))

32

33 table(eurazia$Processing_Cohort, eurazia$SLE_status)

34

35 # Be aware that there are replicates of some patients!

36 n.SLE <- sum(eurazia$SLE_status=="SLE")

37 n.healthy <- sum(eurazia$SLE_status!="SLE")

38

39 SLE <- eurazia %>% filter(SLE_status=="SLE")

40 n.SLE.ind <- length(unique(SLE$ind_cov))

41 healthy <- eurazia %>% filter(SLE_status!="SLE")

42 n.healthy.ind <- length(unique(healthy$ind_cov))

43

44 replicates.eurazia <- table(eurazia$ind_cov)[table(eurazia$ind_cov)>1]

45

46 sum(replicates.eurazia==2)

47 sum(replicates.eurazia==3)

48 sum(replicates.eurazia==4)

49 replicated.individuals <- names(replicates.eurazia)

50

51 n.diff.batches <- rep(0, length(replicated.individuals))

52 for (i in 1:length(replicated.individuals)){

53 batches <- eurazia$Processing_Cohort[eurazia$ind_cov == replicated.individuals[i]]

54 n.diff.batches[i] <- length(unique(batches))

55 }
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56

57 #################### Exploration of age ###################################

58 eurazia$Age <- as.numeric(paste(eurazia$Age))

59 range(eurazia$Age)

60

61 df <- eurazia %>% group_by(ind_cov) %>% summarise(Age = unique(Age), SLE_status = unique(SLE_status),

62 Sex=unique(Sex), Ancestry=unique(pop_cov))

63 age.table <- table(df$ind_cov,df$Age)

64 which(rowSums(age.table)>1)

65 df$Age[df$ind_cov %in% names(which(rowSums(age.table)>1))]

66

67 # 1130_1130

68 eurazia$Processing_Cohort[eurazia$ind_cov%in% names(which(rowSums(age.table)>1))[1]]

69 eurazia$Age[eurazia$ind_cov%in% names(which(rowSums(age.table)>1))[1]]

70 # measured in batches 2 (age=27),3 (age=29),3 (age=29)

71

72 # 1772_1772

73 eurazia$Processing_Cohort[eurazia$ind_cov%in% names(which(rowSums(age.table)>1))[2]]

74 eurazia$Age[eurazia$ind_cov%in% names(which(rowSums(age.table)>1))[2]]

75 # Measured in batches 3 (age=21) and 4 (age=20)

76

77

78 mean_age <- mean(eurazians.duplicates.rm$Age)

79 mean_sle <- mean(eurazians.duplicates.rm$Age[eurazians.duplicates.rm$SLE_status=="SLE"])

80 mean_healthy <- mean(eurazians.duplicates.rm$Age[eurazians.duplicates.rm$SLE_status!="SLE"])

81 central_values <- data.frame(Mean_Age = c("Total population", "Lupus patients", "Healthy controls"),

82 value=c(mean_age, mean_sle, mean_healthy))

83

84 # Histogram age

85 ggplot(eurazians.duplicates.rm.clr, aes(Age)) + geom_histogram(binwidth = 1) +

86 geom_vline(data = central_values, aes(xintercept = value, color = Mean_Age), linewidth = 1) +

87 theme_bw(base_size=15) + labs(col="Average age", x="Age (year)")

88

89 # Boxplots age

90 ggplot(eurazians.duplicates.rm.clr, aes(x=SLE_status,y= Age)) +

91 geom_boxplot(aes(fill=SLE_status), show.legend=F) +

92 facet_wrap(~pop_cov) + theme_bw(base_size=15) +

93 theme(text=element_text(size=18))+labs(x="SLE status",y="Age (year)")

94

95 ggplot(eurazians.duplicates.rm.clr, aes(x=SLE_status, y= Age)) +

96 geom_boxplot(aes(fill=SLE_status), show.legend=F) +

97 theme_bw(base_size=15) + theme(text=element_text(size=18))+

98 labs(x="SLE status",y="Age (year)")

99

100

101 # Sort cell types according to median ra

102 median <- colMedians(as.matrix(eurazians.duplicates.rm.ra[,c(11:21)]))

103 sorted.celltypes <- names(sort(median))

104 sorted.data <- eurazians.duplicates.rm[,-c(11:22)]

105 sorted.data <- cbind(sorted.data, eurazians.duplicates.rm.ra[,sorted.celltypes])

106 sorted.data.clr <- eurazians.duplicates.rm.clr[,-c(11:22)]

107 sorted.data.clr <- cbind(sorted.data.clr, eurazians.duplicates.rm.clr[,sorted.celltypes])

108

109 # Plot clr count per cell type

110 # Only SLE

111 matplot(t(sorted.data.clr[sorted.data.clr$SLE_status=="SLE",c(11:21)]), type="l", xaxt='n',

112 ylab="CLR transformed count", xlab="Cell type", ylim=c(-5.5,4.5))

113 axis(side=1,at=1:11,labels=sorted.celltypes, cex.axis=0.8)
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114 title("SLE observations")

115

116 # Only for healthy patients

117 matplot(t(sorted.data.clr[sorted.data.clr$SLE_status!="SLE",c(11:21)]), type="l", xaxt='n',

118 ylab="CLR transformed count", xlab="Cell type", ylim=c(-5.5,4.5))

119 axis(side=1,at=1:11,labels=sorted.celltypes, cex.axis=0.8)

120 title("Healthy observations")

121

122

123 # Boxplots clr counts

124 asian.european <- sorted.data.clr %>% pivot_longer(cols=all_of(sorted.celltypes))

125 ggplot(asian.european, aes(x = factor(name, levels = sorted.celltypes), y=value, fill=SLE_status)) +

126 geom_boxplot() +

127 labs(x="Cell type", y="CLR transformed count",

128 title="CLR transformed counts for each cell type per disease status per ancestry") +

129 theme(text=element_text(size=10)) +

130 facet_wrap(~pop_cov) +

131 stat_summary(fun = mean, geom = "point", position = position_dodge(width = 0.8),

132 size = 1.5, color = "red",shape = 18) +

133 theme_bw(base_size=15)

134

135 # Boxplots RA

136 asian.european <- sorted.data %>% pivot_longer(cols=all_of(sorted.celltypes))

137 ggplot(asian.european, aes(x = factor(name, levels = sorted.celltypes), y=value, fill=SLE_status)) +

138 geom_boxplot() +

139 labs(x="Cell type", y="Relative Abundance",

140 title="Relative abundance for each cell type per disease status per ancestry") +

141 theme(text=element_text(size=10)) +

142 facet_wrap(~pop_cov) +

143 stat_summary(fun = mean, geom = "point", position = position_dodge(width = 0.8),

144 size = 1.5, color = "red",shape = 18) +

145 theme_bw(base_size=15)

146

147 # Rare celltypes

148 rare_celltypes <- c("Progen", "PB", "pDC", "Prolif", "cDC")

149 rare <- asian.european %>% filter(name %in% rare_celltypes)

150 ggplot(rare, aes(x=factor(name, levels=rare_celltypes), y=value, fill=SLE_status)) +

151 geom_boxplot() +

152 labs(x="Cell type", y="Relative abundance",

153 title="Relative abundance of each cell type per disease status per ancestry") +

154 theme(text=element_text(size=10)) +

155 facet_wrap(~pop_cov) +

156 stat_summary(fun = mean, geom = "point", position = position_dodge(width = 0.8),

157 size = 1, color = "red",shape = 18) + ylim(c(0,0.02)) + theme_bw(base_size=15)

158

159

160 # Shannon index over age

161 div <- microbiome::diversity(as.matrix(t(eurazians.duplicates.rm[,c(11:21)])))

162 div.data <- data.frame(inv.simpson = div$inverse_simpson,

163 simpson = 1/div$inverse_simpson,

164 shannon = div$shannon,

165 gini = div$gini_simpson,

166 age=eurazians.duplicates.rm$Age,

167 sle = eurazians.duplicates.rm$SLE_status)

168 ggplot(div.data, aes(x=age, y=shannon, col=sle)) +

169 geom_point() + geom_smooth(method="loess",se=F)+

170 theme_bw(base_size=15) +

171 theme(text=element_text(size=18))+
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172 labs(y="Shannon", x="Age (year)", col="Disease status")

173

174 # Average relative abundance

175 summary_with_sle <- asian.european %>% group_by(pop_cov, name, SLE_status) %>% summarize(mean=mean(value))

176 df_SLE <- data.frame(Celltype=unique(summary_with_sle$name),

177 Asian_healthy = summary_with_sle %>% filter(pop_cov=="Asian" & SLE_status == "Healthy") %>%

178 ungroup() %>% select(mean),

179 European_healthy = summary_with_sle %>% filter(pop_cov=="European" & SLE_status == "Healthy") %>%

180 ungroup() %>% select(mean),

181 Asian_sle = summary_with_sle %>% filter(pop_cov=="Asian" & SLE_status != "Healthy") %>%

182 ungroup() %>% select(mean),

183 European_sle = summary_with_sle %>% filter(pop_cov=="European" & SLE_status != "Healthy") %>%

184 ungroup() %>% select(mean))

185 colnames(df_SLE) <- c("Celltype", "Asian healthy", "European healthy", "Asian sle", "European sle" )

186

187 # Barplot

188 summary_with_sle$celltype <- factor(summary_with_sle$name, levels=unique(asian.european$name))

189 ggplot(summary_with_sle, aes(x=pop_cov, y=mean, fill=celltype)) +

190 geom_bar(stat="identity") + facet_wrap(~SLE_status) +

191 labs(x="Region", y="Mean relative abundance", fill="Cell type") + theme_bw(base_size=15) +

192 theme(text=element_text(size=15))

193

194 ggplot(summary_with_sle, aes(x=SLE_status, y=mean, fill=celltype)) +

195 geom_bar(stat="identity") +

196 facet_wrap(~pop_cov)+

197 labs(x="SLE status", y="Mean relative abundance", fill="Cell type") +

198 theme_bw(base_size=15) +

199 theme(text=element_text(size=15))

200

201 # PCoA

202 library(compositions)

203 x <- acomp(eurazians.duplicates.rm[,c(11:21)])

204 pcx <- princomp(x)

205 fviz_eig(pcx, col.var="blue",addlabels=T)

206 scores <- data.frame(pcx$scores)

207 scores$group <- eurazians.duplicates.rm$SLE_status

208 scores$ancestry <- eurazians.duplicates.rm$pop_cov

209 ggplot(scores, aes(x=Comp.1, y=Comp.2, col=group, shape=ancestry)) +

210 geom_point() +

211 theme_bw(base_size=15) +

212 labs(x="PC1 (24.2%)",y="PC2 (17.8%)")

E R code simulation

1 library(readr)

2 library(ggplot2)

3 library(tidyverse)

4 library(MicroBioMap)

5 library(microbiome)

6 library(phyloseq)

7 library(ggpubr)

8 library(factoextra)

9 library(FactoMineR)

10 library(limma)

49



Master thesis: Causal analysis of immune cell composition in SLE disease - Amber Huybrechts

11 library(voomCLR)

12 library(compositions)

13 library(iCOBRA)

14 library(DiscriMiner)

15 library(survey)

16 library(boot)

17 library(stdReg2)

18 library(ipw)

19 library(stdReg)

20 library(bmixture)

21

22 ####################### Data ##########################

23 data <- readRDS("230705_popCountsWide_individualBatchID.rds")

24 data$Age <- as.numeric(paste(data$Age))

25 celltypes <- colnames(data[,c(11:21)])

26

27 ############################ Eurazia #####################################

28 eurazia <- data %>% filter(pop_cov %in% c("Asian","European"))

29 eurazia$pop_cov <- eurazia$pop_cov[drop=T]

30

31 # Replicates Eurazians

32 eurazia$totalcounts <- rowSums(eurazia[,c(11:21)])

33 patients <- eurazia %>% group_by(ind_cov) %>% filter(totalcounts==max(totalcounts))

34 patients <- patients$patient

35 eurazians.duplicates.rm <- as.data.frame(eurazia %>% filter(patient %in% patients))

36 healthy.eurazians.duplicates.rm <- as.data.frame(eurazians.duplicates.rm %>% filter(SLE_status=="Healthy"))

37 healthy.eurazians.duplicates.rm$SLE_status <- healthy.eurazians.duplicates.rm$SLE_status[drop=T]

38

39 ###################### Sampling distribution for cell type pairs ################

40 # CLR transformed vector for each cell type

41 geomMean <- exp(rowMeans(log(healthy.europeans.duplicates.rm[,c(11:21)]+0.5)))

42 counts.clr <- log((healthy.eurazians.duplicates.rm[,c(11:21)]+0.5)/geomMean)

43

44 euclidean_dist <- function(x, y) sqrt(sum((x - y)^2))

45 pairs <- c(1:(factorial(11)/factorial(9)))

46 names <- rep("NA", length(pairs))

47 index <- 1

48 for (i in 1:11){

49 p <- celltypes[i]

50 q.candidates <- c(1:11)[-i]

51 for (j in q.candidates){

52 q <- celltypes[j]

53 pairs[index] <- euclidean_dist(counts.clr[,i], counts.clr[,j])

54 names[index] <- paste0(p, ",",q)

55 index <- index + 1

56 }

57 }

58

59 inverse <- 1/pairs

60 sampling.probabilities.pq <- data.frame(Pair=names, Probability=(inverse/sum(inverse)),

61 Euclid.dist=pairs)

62

63 ######################### Functions ######################

64 sampling.pairs <- function(k, candidates = sampling.probabilities.pq$Pair,

65 probabilities = sampling.probabilities.pq$Probability){

66 # Sample pairs (p,q) using a sampling distribution

67

68 pairs <- signal.celltype <- replacement.celltype <- rep("NA",k)

50



Master thesis: Causal analysis of immune cell composition in SLE disease - Amber Huybrechts

69

70 for (i in 1:k){

71 pairs[i] <- sample(candidates, 1, prob=probabilities)

72 signal.celltype[i] <- as.vector(unlist(data.frame(strsplit(pairs[i],","))[1,]))

73 replacement.celltype[i] <- as.vector(unlist(data.frame(strsplit(pairs[i],","))[2,]))

74 # Once a signal was introduced,make sure this cell type can no longer be sampled

75 # as replacement cell type (or signal cell type)

76 remaining.candidates <- !grepl(paste0("\\b",signal.celltype[i],"\\b"), candidates)

77 candidates <- candidates[remaining.candidates]

78 probabilities <- probabilities[remaining.candidates]

79 }

80 return(data.frame(signal=signal.celltype, replacement=replacement.celltype))

81 }

82

83 comp.corr <- function(data.new, data.old, k, nr.of.celltypes=11){

84 # Introduce signal in group 2 (data.old) - dimensions are rows of cell types, columns of samples

85

86 pairs <- sampling.pairs(k)

87 signal.celltype <- pairs$signal

88 replacement.celltype <- pairs$replacement

89

90 for (i in 1:k){

91 data.new[rownames(data.new)==signal.celltype[i]] <-

92 data.old[rownames(data.old)==replacement.celltype[i]]

93

94 # To remain the total counts in group 2 I will now calculate the spillover counts

95 d <- data.new[rownames(data.new)==signal.celltype[i]] -

96 data.old[rownames(data.old)==signal.celltype[i]]

97

98 # For each cell type and each sample we need to estimate the weight

99 proportions <- matrix(0, nrow=ncol(data.old), ncol=nr.of.celltypes)

100 for (j in 1:nr.of.celltypes){

101 proportions[,j] <- data.old[j,]/colSums(data.old)

102 }

103 weights <- matrix(0, nrow=ncol(data.old), ncol=(nr.of.celltypes-1))

104 # Only calculate the weights for the cell types that need compositional correction

105 celltype.nr <- c(1:nr.of.celltypes)[rownames(data.new)!=signal.celltype[i]]

106 for (iter in 1:(nr.of.celltypes-1)){

107 weights[,iter] <- proportions[,celltype.nr[iter]]/rowSums(proportions[,celltype.nr])

108 }

109 # Apply compositional correction to all cell counts (except where we introduced the signal)

110 c <- -weights * d

111 data.new[rownames(data.new)!=signal.celltype[i]] <-

112 data.new[rownames(data.new)!=signal.celltype[i]] + t(c)

113 data.old <- data.new

114 }

115 return (list(data.old, signal.celltype, replacement.celltype))}

116

117 ################## Simulation of confounded data set #################

118 sample.age <- function(data=healthy.europeans, swap.pct=0.3){

119 # sample groups of equal size with the same age distribution

120 n <- nrow(data)

121 n1 <- n2 <- floor(n/2)

122

123 group1 <- group2 <- meta1 <- meta2 <- data.frame()

124 group1age <- group2age <- c()

125

126 quantiles <- quantile(data$Age,probs=seq(0,1,0.2))
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127 data$age.cat <- cut(data$Age, breaks = quantiles, include.lowest = TRUE)

128

129 # From each category, we sample the same amount of observations in both groups

130 for (cat in levels(data$age.cat)){

131 healthy.cat <- data %>% filter(age.cat == cat)

132 n.cat <- nrow(healthy.cat)

133 n1.cat <- n2.cat <- floor(n.cat/2)

134 index.cat <- sample(1:n.cat, n1.cat+n2.cat)

135

136 group1 <- rbind(group1, healthy.cat[index.cat[1:n1.cat], c(11:21)])

137 group2 <- rbind(group2, healthy.cat[index.cat[(n1.cat+1):(n1.cat+n2.cat)], c(11:21)])

138

139 meta1 <- rbind(meta1, healthy.cat[index.cat[1:n1.cat], -c(11:21)])

140 meta2 <- rbind(meta2, healthy.cat[index.cat[(n1.cat+1):(n1.cat+n2.cat)], -c(11:21)])

141

142 group1age <- c(group1age, meta1$Age)

143 group2age <- c(group2age, meta2$Age)

144 }

145 group1 <- t(group1)

146 group2 <- t(group2)

147 return (list(group1, group2, data.frame(mean.1 = mean(group1age), mean.2=mean(group2age)), meta1, meta2))

148 }

149

150 sample.groups <- function(data=healthy.eurazians.duplicates.rm, swap.pct=0.3){

151 # This functions split the data in 2 groups of equal size

152 n <- nrow(data)

153 n1 <- n2 <- floor(n/2)

154

155 group1 <- group2 <- meta1 <- meta2 <- data.frame()

156 group1ancestry <- group2ancestry <- group1age <- group2age <- c()

157

158 # For each ancestry sample groups with similar age distribution

159 for (ancestry in levels(data$pop_cov)){

160 subset <- data %>% filter(pop_cov == ancestry)

161 groups <- sample.age(subset, swap.pct)

162 group1 <- rbind(group1, t(groups[[1]]))

163 group2 <- rbind(group2, t(groups[[2]]))

164 stats <- groups[[3]]

165 meta1 <- rbind(meta1,groups[[4]])

166 meta2 <- rbind(meta2,groups[[5]])

167 }

168

169 group1 <- as.data.frame(cbind(group1, meta1))

170 group2 <- as.data.frame(cbind(group2, meta2))

171

172 # Create an imbalance in both the age and the ancestry by replacing swap.pct of the oldest in group1

173 # with the youngest from group2 but keep in mind that we want to have an imbalance as well in the

174 # asian distribution between groups so 2/3 of the oldest from group 1

175 # will come from the europeans and the rest from the asians, to not create a systematic difference

176 # in the interaction between age and ancestry

177 nr.of.swap <- ceiling(swap.pct*nrow(group1))

178 nr.of.swap2 <- floor(nr.of.swap/3)

179 nr.of.swap1 <- 2*nr.of.swap2

180 youngest.asian <- (group2 %>% filter(pop_cov=="Asian") %>% arrange(Age))[1:nr.of.swap2,]

181 oldest.asian <- (group1 %>% filter(pop_cov=="Asian") %>% arrange(-Age))[1:nr.of.swap1,]

182 youngest.european <- (group2 %>% filter(pop_cov=="European") %>% arrange(Age))[1:nr.of.swap1,]

183 oldest.european <- (group1 %>% filter(pop_cov=="European") %>% arrange(-Age))[1:nr.of.swap2,]

184
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185 group1[group1$patient %in% oldest.asian$patient,] <- youngest.european

186 group1[group1$patient %in% oldest.european$patient,] <- youngest.asian

187 group2[group2$patient %in% youngest.asian$patient,] <- oldest.european

188 group2[group2$patient %in% youngest.european$patient,] <- oldest.asian

189

190 meta1 <- group1[,-c(1:11)]

191 meta2 <- group2[,-c(1:11)]

192

193 group1age <- meta1$Age

194 group2age <- meta2$Age

195 group1ancestry <- meta1$pop_cov

196 group2ancestry <- meta2$pop_cov

197

198 return (list(t(group1[,c(1:11)]), t(group2[,c(1:11)]),

199 data.frame(European1=round(mean(group1ancestry=="European")*100,2),

200 Asian1=round(mean(group1ancestry=="Asian")*100,2),

201 European2=round(mean(group2ancestry=="European")*100,2),

202 Asian2=round(mean(group2ancestry=="Asian")*100,2)),

203 meta1, meta2))

204 }

205

206

207 .getMode <- function(beta, n){

208 suppressMessages(mode <- modeest::mlv(sqrt(n) * beta,

209 method = "meanshift", kernel = "gaussian")/sqrt(n))

210 return(mode)

211 }

212

213 voom <- function(data, variables=c("group","age","ancestry"), adjustment="BH",

214 meta, meanvar = "analytical", distr="NB"){

215 # Function to run voomCLR with or without accounting for variables

216 group <- meta$group

217 age <- meta$age

218 ancestry <- meta$ancestry

219 n <- ncol(data)

220

221 formula_str <- paste(variables, collapse = " + ")

222 formula <- as.formula(paste("~", formula_str))

223 design <- model.matrix(formula)

224 v <- voomCLR(counts = data,

225 design = design,

226 plot = F,

227 varCalc = meanvar,

228 varDistribution = distr,

229 span = 0.8)

230 fit <- lmFit(v, design)

231 fit <- eBayes(fit)

232

233 # The bias is estimated by the mode of the coefficients (or the shift to get the coefficients to 0)

234 bias <- apply(fit$coefficients, 2, function(x){

235 .getMode(x, n=n)

236 })

237 # We are interested in the coefficients for the group/disease status (+1 for the intercept)

238 coef.group <- which(variables=="group")+1

239 tt <- topTableBC(fit, coef=coef.group, n=Inf, adjust.method = adjustment, sort.by="none",

240 bootstrap="nonparametric")

241 return(list(tt, bias,fit$df.residual, fit$df.prior))

242 }
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243

244 linDA <- function(data, variables=c("group","age","ancestry"), meta, adjustment="BH"){

245 # Function to run linDA with and without accounting for variables

246 meta <- meta %>% select(all_of(variables))

247 formula_str <- paste(variables, collapse = " + ")

248 lindaRes <- MicrobiomeStat::linda(feature.dat = data, # rows features, cols samples

249 meta.dat = meta,

250 formula = paste("~",formula_str),

251 feature.dat.type = 'count',

252 adaptive=TRUE,

253 zero.handling = 'pseudo-count',

254 p.adj.method=adjustment)

255 return(list(lindaRes$output$group, lindaRes$bias))

256 }

257

258 linear.regression <- function(data, variables=c("group","age","ancestry"), adjustment="BH",

259 celltypes=colnames(eurazia[,c(11:21)])){

260 # Requires CLR counts; run ordinary least squares with or without correcting for additional variables

261 formula_str <- paste(variables, collapse = " + ")

262

263 coef <- se <- t <- p.val <- c()

264 fits <- list()

265

266 for (celltype in celltypes){

267 formula <- as.formula(paste("data[[celltype]]~", formula_str))

268 fit <- lm(formula, data=data)

269 fits[[length(fits)+1]] <- fit

270 s <- summary(fit)

271 group.coef <- s$coefficients[grepl("group", rownames(s$coefficients))]

272 coef <- c(coef, group.coef[1])

273 se <- c(se, group.coef[2])

274 t <- c(t, group.coef[3])

275 p.val <- c(p.val, group.coef[4])

276 }

277 pval <- p.adjust(p.val, method=adjustment)

278 names(pval) <- celltypes

279 return(list(fits, data.frame(coef, se, t, pval, raw.p=p.val)))

280 }

281

282 inverse.probability.weighting <- function(data, variables=c("group","age","ancestry"), adjustment="BH",

283 celltypes=colnames(eurazia[,c(11:21)]), stabilized=F){

284 # Requires CLR counts and columns of the variables of interest in the data

285

286 # Calculate the inverse probability weights (depending on the variables we want to correct for)

287 if (stabilized){

288 if ("age" %in% variables){

289 if ("ancestry" %in% variables){

290 inverse.p <- ipwpoint(exposure=group,family="binomial",link="logit",numerator=~1,

291 denominator=~age+ancestry, data=data)

292 }

293 else{inverse.p <- ipwpoint(exposure=group,family="binomial",link="logit",numerator=~1,

294 denominator=~age, data=data)}

295 } else if("ancestry" %in% variables){

296 inverse.p <- ipwpoint(exposure=group,family="binomial",link="logit",numerator=~1,

297 denominator=~ancestry, data=data)

298 }else{

299 inverse.p <- ipwpoint(exposure=group,family="binomial",link="logit",numerator=~1,

300 denominator=~1, data=data)
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301

302 }} else {

303 if ("age" %in% variables){

304 if ("ancestry" %in% variables){

305 inverse.p <- ipwpoint(exposure=group,family="binomial",link="logit",

306 denominator=~age+ancestry, data=data)

307 }

308 else{inverse.p <- ipwpoint(exposure=group,family="binomial",link="logit",

309 denominator=~age, data=data)}

310 } else if("ancestry" %in% variables){

311 inverse.p <- ipwpoint(exposure=group,family="binomial",link="logit",

312 denominator=~ancestry, data=data)

313 }else{

314 inverse.p <- ipwpoint(exposure=group,family="binomial",link="logit",

315 denominator=~1, data=data)

316 }

317 }

318

319 data$sw <- inverse.p$ipw.weights

320

321 p.val.ipw <- coef.per.celltype <- se.per.celltype <- t.per.celltype <- c()

322 fits <- list()

323

324 for (celltype in celltypes){

325 subset <- data[,c(celltype, "group","sw")]

326 colnames(subset)[1] <- "celltype"

327

328 # Marginal Structural Model

329 msm <- (svyglm(celltype ~ group, design = svydesign(~1, weights = ~ sw, data = subset)))

330 # Keep the fits to make confidence interval for the desired alpha level

331 fits[[length(fits)+1]] <- msm

332 s <- summary(msm)

333

334 coef.per.celltype <- c(coef.per.celltype, s$coefficients[2,1])

335 se.per.celltype <- c(se.per.celltype, s$coefficients[2,2])

336 t.per.celltype <- c(t.per.celltype, s$coefficients[2,3])

337 p.val.ipw <- c(p.val.ipw, s$coefficients[2,4])

338 }

339 raw.p.ipw <- p.val.ipw

340 p.val.ipw <- p.adjust(p.val.ipw, method=adjustment)

341 names(p.val.ipw) <- celltypes

342

343 return(list(data.frame(coef.per.celltype, se.per.celltype, t.per.celltype, p.val.ipw, raw.p=raw.p.ipw), fits))

344 }

345

346 standardization <- function(data, variables, celltypes=colnames(eurazia[,c(11:21)])){

347 # Requires CLR counts and columns of the variables of interest in the data

348

349 coef <- se <- pval <- c()

350 fits <- rds <- list()

351

352 formula_str <- paste(variables, collapse = " + ")

353 for (celltype in celltypes){

354 formula <- as.formula(paste("data[[celltype]]~", formula_str))

355 fit1 <-glm(formula, family="gaussian", data=data)

356 fit.std <- stdGlm(fit=fit1, data=data, X="group")

357 rds[[length(rds)+1]] <- rd <- summary(fit.std, contrast="difference", reference=0)

358 fits[[length(fits)+1]] <- fit.std
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359

360 coef <- c(coef, rd$est.table[2,1])

361 se <- c(se, rd$est.table[2,2])

362

363 pval <- c(pval, 2*pt(abs(rd$est.table[2,1]/rd$est.table[2,2]),df=nrow(data)-2, lower.tail=F))

364 deviance <- rd[["input"]][["fit"]][["deviance"]]

365 }

366 raw.p <- pval

367 adj.p <- p.adjust(pval, method="BH")

368 names(coef) <- celltypes

369 return (list(data.frame(coef, se, raw.p,adj.p), fits, deviance, rds))

370 }

371

372 evaluation <- function(signal.celltypes, nr.of.signal, tt, wilcox.TSS.pval,

373 wilcox.clr.pval, lindaRes, ipw.pval, pval.standardization,

374 pval.lm, alpha=0.05){

375 # signal.celltypes: vector of signal cell types

376 # nr.of.signal: k (number of signal cell types)

377 # tt: topTable result from voomCLR (unsorted)

378 # wilcox.TSS.pval/wilcox.clr.pval: vector of adjusted pvalues from each cell type from wilcoxon test

379 # lindaRes: output table linDA (unsorted)

380 # ipw.pval: vector of adjusted pvalues inverse probability weighting

381 # pval.standardization: vector of adjusted pvalues standardization

382 # lm.pval: adjusted pvalues linear regression

383 # alpha: nominal level

384

385 # First check if there are NAs -> replace by 1 (not significant)

386 wilcox.TSS.pval[is.na(wilcox.TSS.pval)] <- wilcox.clr.pval[is.na(wilcox.clr.pval)] <-

387 ipw.pval[is.na(ipw.pval)] <- pval.lm[is.na(pval.lm)] <- 1

388 ####################### voomCLR ####################################

389 # Are the signal introduced cell types in the top k list of (significant) celltypes?

390 sorted.tt <- tt %>% arrange(adj.P.Val)

391 top.k.match.voomclr <- ifelse(sum(signal.celltypes

392 %in% rownames(sorted.tt)[1:nr.of.signal])==nr.of.signal, T,F)

393 nr.significant.celltypes.voomclr <- sum(tt$adj.P.Val<alpha)

394 nr.TP.findings.voomclr <- sum(rownames(tt)[tt$adj.P.Val<alpha] %in% signal.celltypes)

395 nr.FP.findings.voomclr <- nr.significant.celltypes.voomclr - nr.TP.findings.voomclr

396

397 ######################### Wilcoxon #########################

398 sorted.by.significance.TSS <- sort(wilcox.TSS.pval)

399 top.k.match.wilcox.TSS <- ifelse(sum(signal.celltypes %in%

400 names(sorted.by.significance.TSS)[1:nr.of.signal])==nr.of.signal, T,F)

401 nr.significant.celltypes.wilcox.TSS <- sum(wilcox.TSS.pval<alpha)

402 nr.TP.findings.wilcox.TSS <- sum(names(sorted.by.significance.TSS[sorted.by.significance.TSS<alpha]

403 %in% signal.celltypes)

404 nr.FP.findings.wilcox.TSS <- nr.significant.celltypes.wilcox.TSS - nr.TP.findings.wilcox.TSS

405

406 sorted.by.significance.clr <- sort(wilcox.clr.pval)

407 top.k.match.wilcox.clr <- ifelse(sum(signal.celltypes

408 %in% names(sorted.by.significance.clr)[1:nr.of.signal])==nr.of.signal, T,F)

409 nr.significant.celltypes.wilcox.clr <- sum(wilcox.clr.pval<alpha)

410 nr.TP.findings.wilcox.clr <- sum(names(sorted.by.significance.clr)[sorted.by.significance.clr<alpha]

411 %in% signal.celltypes)

412 nr.FP.findings.wilcox.clr <- nr.significant.celltypes.wilcox.clr - nr.TP.findings.wilcox.clr

413

414 ####################### linDA ##############################

415 sorted.linda <- lindaRes %>% arrange(padj)

416 top.k.match.linda <- ifelse(sum(signal.celltypes
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417 %in% rownames(sorted.linda)[1:nr.of.signal])==nr.of.signal, T,F)

418 nr.significant.celltypes.linda <- sum(lindaRes$padj < alpha)

419 nr.TP.findings.linda <- sum(rownames(lindaRes)[lindaRes$padj<alpha] %in% signal.celltypes)

420 nr.FP.findings.linda <- nr.significant.celltypes.linda - nr.TP.findings.linda

421

422 ###################### Inverse probability weighting ################################

423 sorted.by.significance.ipw <- sort(ipw.pval)

424 top.k.match.ipw <- ifelse(sum(signal.celltypes

425 %in% names(sorted.by.significance.ipw)[1:nr.of.signal])==nr.of.signal, T,F)

426 nr.significant.celltypes.ipw <- sum(ipw.pval<alpha)

427 nr.TP.findings.ipw <- sum(names(ipw.pval)[ipw.pval<alpha] %in% signal.celltypes)

428 nr.FP.findings.ipw <- nr.significant.celltypes.ipw - nr.TP.findings.ipw

429

430 ###################### Standardization ################################

431 sorted.by.significance.std <- sort(pval.standardization)

432 top.k.match.std <- ifelse(sum(signal.celltypes

433 %in% names(sorted.by.significance.std)[1:nr.of.signal])==nr.of.signal, T,F)

434 nr.significant.celltypes.std <- sum(pval.standardization<alpha)

435 nr.TP.findings.std <- sum(names(pval.standardization)[pval.standardization<alpha]

436 %in% signal.celltypes)

437 nr.FP.findings.std <- nr.significant.celltypes.std - nr.TP.findings.std

438

439 ################### Linear regression ###############################

440 sorted.by.significance.lm <- sort(pval.lm)

441 top.k.match.lm <- ifelse(sum(signal.celltypes

442 %in% names(sorted.by.significance.lm)[1:nr.of.signal])==nr.of.signal, T,F)

443 nr.significant.celltypes.lm <- sum(pval.lm<alpha)

444 nr.TP.findings.lm <- sum(names(pval.lm)[pval.lm<alpha]

445 %in% signal.celltypes)

446 nr.FP.findings.lm <- nr.significant.celltypes.lm - nr.TP.findings.lm

447

448 return (list(data.frame(top.k.match.voomclr, top.k.match.wilcox.TSS,

449 top.k.match.wilcox.clr, top.k.match.linda, top.k.match.lm, top.k.match.ipw,

450 top.k.match.std), data.frame(nr.significant.celltypes.voomclr,

451 nr.significant.celltypes.wilcox.TSS,nr.significant.celltypes.wilcox.clr,

452 nr.significant.celltypes.linda, nr.significant.celltypes.ipw,

453 nr.significant.celltypes.std, nr.significant.celltypes.lm, nr.TP.findings.voomclr,

454 nr.TP.findings.wilcox.TSS, nr.TP.findings.wilcox.clr, nr.TP.findings.linda,

455 nr.TP.findings.ipw, nr.TP.findings.std, nr.TP.findings.lm, nr.FP.findings.voomclr,

456 nr.FP.findings.wilcox.TSS, nr.FP.findings.wilcox.clr, nr.FP.findings.linda,

457 nr.FP.findings.ipw, nr.FP.findings.std, nr.FP.findings.lm)))

458 }

459

460 ######################### Simulation ##############################

461 non.parametric.simulation <- function(data=healthy.eurazians.duplicates.rm, k=3, swap.pct=0.3){

462 # Function to create simulated data set nonparametric

463

464 # Split the data in 2 groups

465 groups <- sample.groups(data=data, swap.pct=swap.pct)

466 group1 <- groups[[1]]

467 group2 <- groups[[2]]

468 meta1 <- groups[[4]]

469 meta2 <- groups[[5]]

470

471 # Introduce signal in group 2

472 data.group2 <- comp.corr(data.new = group2, data.old=group2, k=k)

473

474 group2 <- data.group2[[1]]
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475 p <- data.group2[[2]]

476 q <- data.group2[[3]]

477

478 # Data prep

479 group <- as.factor(c(rep("group1", ncol(group1)), rep("group2", ncol(group2))))

480 age <- c(meta1$Age, meta2$Age)

481 ancestry <- c(meta1$pop_cov, meta2$pop_cov)

482 meta <- data.frame(group, age, ancestry)

483

484 Y <- cbind(group1,group2)

485 rownames(Y) <- celltypes

486 colnames(Y) <- paste0("sample",1:ncol(Y))

487

488 return(list(Y, meta, p, q))

489 }

490

491 parametric.simulation <- function(n=nrow(healthy.eurazians.duplicates.rm), P=11, k=3,

492 og.lib.sizes=rowSums(eurazians.duplicates.rm[,c(11:21)])){

493 # Function to create simulated data set nonparametric

494 # Make sure we are dividing in even groups

495 n <- floor(n/2)*2

496

497 # In each run, simulate cell type composition data

498 # I noticed age has a bimodal structure and I want to model as close as possible to the real data

499 # set.seed(1234)

500 age <- c(ceiling(rmixgamma(n = n/2, weight = c(0.7,0.3), alpha = c(30,65) , beta = c(1,1))),

501 ceiling(rmixgamma(n = n/2, weight = c(0.55,0.45), alpha = c(35,55) , beta = c(1,1))))

502

503 ancestry <- c(sample(c("Asian","European"), size=n/2, prob=c(0.25,0.75), replace=T),

504 sample(c("Asian","European"), size=n/2, prob=c(0.55,0.45), replace=T))

505

506 # Mean/intercept (negative binomial - mixture of poissons)

507 # We don't want a cell type with mean equal to 0 -> otherwise all counts will be zero in every sample

508 mu0 <- rep(0, P)

509 while (! all(mu0!=0)){

510 mu0 <- rnbinom(n=P, size=1/2, mu=400)

511 }

512

513 # Sampling of confounding effects - fold change on log scale

514 beta.age <- beta.ancestry <- rep(0, P)

515 while (all(beta.age==0)){

516 beta.age <- rlnorm(n=P, meanlog = -4, sdlog=0.5) * rbinom(n=P, size=1, prob=0.2) *

517 sample(c(-1,1), size=P, replace=TRUE)

518 }

519

520 while (all(beta.ancestry==0)){

521 beta.ancestry <- rlnorm(n=P, meanlog = -1, sdlog=0.5) * rbinom(n=P, size=1, prob=0.2) *

522 sample(c(-1,1), size=P, replace=TRUE)

523 }

524

525 # Disease effect - fold change on log scale - make sure k cell types get a value different from 0

526 beta <- rlnorm(n=P, meanlog = -1, sdlog=1) * sample(c(rep(1,k), rep(0,P-k)), replace=F) *

527 sample(c(-1,1), size=P, replace=TRUE)

528

529 # Simulate library sizes (not constant - not realistic)

530 sim.lib.sizes <- rpois(n=n, lambda=mean(og.lib.sizes))

531

532 # relative abundance information (observed data in typical experiment)
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533 Y0 <- Y1 <- matrix(NA, nrow=P, ncol=floor(n/2))

534 for (i in 1:(n/2)){

535 mu0.i <- mu0 * exp(beta.age*age[i]+beta.ancestry*(ifelse(ancestry[i]=="Asian",1,0)))

536 rel.ab <- mu0.i/sum(mu0.i)

537 Y0[,i] <- rmultinom(n=1, size=sim.lib.sizes[i], prob=rel.ab)

538

539 mu1.i <- mu0 * exp(beta+beta.age*age[n/2+i]+beta.ancestry*(ifelse(ancestry[n/2+i]=="Asian",1,0)))

540 rel.ab <- mu1.i/sum(mu1.i)

541 Y1[,i] <- rmultinom(n=1, size=sim.lib.sizes[n/2+i], prob=rel.ab)

542 }

543

544 Y <- cbind(Y0, Y1)

545 rownames(Y) <- paste0("celltype",1:P)

546 colnames(Y) <- paste0("sample",1:n)

547 group <- factor(rep(c("group1","group2"), each=n/2))

548 meta <- data.frame(group, age, ancestry)

549

550 signal.celltypes <- rownames(Y)[abs(beta)>0]

551 betas <- data.frame(beta, beta.age, beta.ancestry)

552 return(list(Y, meta, signal.celltypes, betas))}

553

554 simulation.confounding <- function(data=healthy.eurazians.duplicates.rm, k=3, B=250,

555 seed=2001, swap.pct=0.3, adjustment="BH", alpha=c(0.01,0.05,0.1),

556 meanvar="analytical", distr="NB", stabilized=F, sim = "nonparametric", P=11,

557 n=nrow(healthy.eurazians.duplicates.rm),og.lib.sizes=rowSums(eurazians.duplicates.rm[,c(11:21)])){

558

559 set.seed(seed)

560 nr.of.signal <- k

561

562 if (sim == "parametric"){

563 # Define the number of cell types in the data

564 K <- P

565 names <- paste0("celltype",1:P)

566 } else {

567 K <- 11

568 names <- celltypes

569 }

570

571 ######### Initialize vectors and lists to keep track of results from different methods ############

572 # Confounding

573 top.k.match <- bias.voomclr <- bias.linda <- data.frame()

574 signal <- data.stats <- ci.std <- ci.ipw <- ci.lm <- ci.voomclr <- ci.linda <- ci.linda.lfc <-

575 number.findings <- beta <- list()

576

577 coverage.linda <- coverage.voomclr <- coverage.lm <- coverage.ipw <- coverage.std <-

578 coverage.linda.lfc <- matrix(0, nrow=K, ncol=length(alpha))

579

580 wilcox.TSS.pval <- wilcox.clr.pval <- voomclr.pval <- linda.pval <- ipw.pval <- lm.pval <-

581 wilcox.TSS.stat <- wilcox.clr.stat <- voomclr.coef <- voomclr.t <- voomclr.se <-

582 linda.coef <- linda.se <- ipw.coef <- ipw.se <- ipw.t <- standardization.coef <-

583 standardization.se <- adj.p.standardization <- lm.coef <- lm.se <- lm.t <-

584 raw.p.wilcox.TSS <- raw.p.wilcox.clr <- raw.p.voomclr <- raw.p.linda <- raw.p.lm <-

585 raw.p.ipw <- raw.p.standardization <- matrix(NA, nrow=B, ncol=K)

586

587 colnames(wilcox.TSS.pval) <- colnames(wilcox.clr.pval) <- colnames(voomclr.pval) <-

588 colnames(linda.pval) <- colnames(ipw.pval) <- colnames(lm.pval) <-

589 colnames(wilcox.TSS.stat) <- colnames(wilcox.clr.stat) <- colnames(voomclr.coef) <-

590 colnames(voomclr.t) <- colnames(voomclr.se) <- colnames(linda.coef) <-
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591 colnames(linda.se) <- colnames(ipw.coef) <- colnames(ipw.se) <- colnames(ipw.t) <-

592 colnames(standardization.coef) <- colnames(adj.p.standardization) <- colnames(standardization.se) <-

593 colnames(lm.coef) <- colnames(lm.se) <- colnames(lm.t) <- colnames(raw.p.wilcox.TSS) <-

594 colnames(raw.p.wilcox.clr) <- colnames(raw.p.voomclr) <- colnames(raw.p.linda) <-

595 colnames(raw.p.lm) <- colnames(raw.p.ipw) <- colnames(raw.p.standardization) <- names

596

597

598 # Without confounding

599 top.k.match.noconf <- bias.voomclr.noconf <- bias.linda.noconf <- data.frame()

600 ci.std.noconf <- ci.ipw.noconf <- ci.lm.noconf <- ci.voomclr.noconf <-

601 ci.linda.noconf <- ci.linda.noconf.lfc <- number.findings.noconf <- list()

602

603 coverage.linda.noconf <- coverage.linda.noconf.lfc <- coverage.voomclr.noconf <- coverage.lm.noconf <-

604 coverage.ipw.noconf <- coverage.std.noconf <- matrix(0, nrow=K, ncol=length(alpha))

605

606 voomclr.pval.noconf <- linda.pval.noconf <- ipw.pval.noconf <- lm.pval.noconf <-

607 voomclr.coef.noconf <- voomclr.t.noconf <- voomclr.se.noconf <- linda.coef.noconf <- linda.se.noconf <-

608 ipw.coef.noconf <- ipw.se.noconf <- ipw.t.noconf <- standardization.coef.noconf <-

609 standardization.se.noconf <- adj.p.standardization.noconf <- lm.coef.noconf <-

610 lm.se.noconf <- lm.t.noconf <- raw.p.voomclr.noconf <- raw.p.linda.noconf <-

611 raw.p.lm.noconf <- raw.p.ipw.noconf <- raw.p.standardization.noconf <- matrix(NA, nrow=B, ncol=K)

612

613 colnames(voomclr.pval.noconf) <- colnames(linda.pval.noconf) <- colnames(ipw.pval.noconf) <-

614 colnames(lm.pval.noconf) <- colnames(voomclr.coef.noconf) <- colnames(voomclr.t.noconf) <-

615 colnames(voomclr.se.noconf) <- colnames(linda.coef.noconf) <- colnames(linda.se.noconf) <-

616 colnames(ipw.coef.noconf) <- colnames(ipw.se.noconf) <- colnames(ipw.t.noconf) <-

617 colnames(standardization.coef.noconf) <- colnames(adj.p.standardization.noconf) <-

618 colnames(standardization.se.noconf) <- colnames(lm.coef.noconf) <- colnames(lm.se.noconf) <-

619 colnames(lm.t.noconf) <-colnames(raw.p.voomclr.noconf) <- colnames(raw.p.linda.noconf) <-

620 colnames(raw.p.lm.noconf) <- colnames(raw.p.ipw.noconf) <-

621 colnames(raw.p.standardization.noconf) <- names

622

623 for (b in 1:B){

624 number.findings[[b]] <- data.frame()

625 number.findings.noconf[[b]] <- data.frame()

626

627 if (sim == "nonparametric"){

628 simulation <- non.parametric.simulation(data=data, k=k, swap.pct=swap.pct)

629 Y <- simulation[[1]]

630 meta <- simulation[[2]]

631 p <- simulation[[3]]

632 q <- simulation[[4]]

633 betas <- matrix(NA, nrow=11, ncol=3)

634 } else {

635 simulation <- parametric.simulation(n=n, P=P, k=k,

636 og.lib.sizes=og.lib.sizes)

637 Y <- simulation[[1]]

638 meta <- simulation[[2]]

639 p <- simulation[[3]]

640 betas <- simulation[[4]]

641 beta[[b]] <- betas[,1]

642 }

643

644 # Data prep

645 # clr uses geometric mean calculated only with non-zero counts, linDA and voomCLR use pseudocount 0.5

646 # Y.clr <- clr(t(Y))

647 # Calculate clr counts

648 geoMeans <- exp(colMeans(log(Y+0.5)))
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649 Y.clr <- log(t(Y+0.5)/geoMeans)

650 Y.TSS <- as.data.frame(t(Y %>% microbiome::transform(transform="compositional")))

651

652 Y.lm <- as.data.frame(Y.clr)

653 # Make sure group is a binary vector

654 Y.lm$group <- ifelse(meta$group=="group1",0,1)

655 Y.lm$age <- meta$age

656 Y.lm$ancestry <- meta$ancestry

657

658 Y.std <- Y.ipw <- Y.lm

659

660 ############# Wilcoxon ########################################

661 p.values.TSS <- p.values.clr <- c(1:K)

662

663 for (iter in 1:K){

664 wilcox.celltype.TSS <- wilcox.test(x=Y.TSS[meta$group=="group1", iter],

665 y=Y.TSS[meta$group=="group2", iter] )

666 p.values.TSS[iter] <- wilcox.celltype.TSS$p.value

667 wilcox.TSS.stat[b, iter] <- wilcox.celltype.TSS$statistic

668

669 wilcox.celltype.clr <- wilcox.test(x=Y.clr[meta$group=="group1",iter],

670 y=Y.clr[meta$group=="group2",iter] )

671 p.values.clr[iter] <- wilcox.celltype.clr$p.value

672 wilcox.clr.stat[b, iter] <- wilcox.celltype.clr$statistic

673 }

674 raw.p.wilcox.TSS[b,] <- p.values.TSS

675 raw.p.wilcox.clr[b,] <- p.values.clr

676 wilcox.TSS.pval[b,] <- p.adjust(p.values.TSS, method=adjustment)

677 wilcox.clr.pval[b,] <- p.adjust(p.values.clr, method=adjustment)

678

679 ################################ LinDA ##############################

680 # Accounting for confounding

681 lindaRes <- linDA(Y, variables=c("group","age","ancestry"), meta, adjustment)

682 linda.res <- lindaRes[[1]]

683 bias.linda <- rbind(bias.linda, lindaRes[[2]])

684 linda.coef[b,] <- linda.res$log2FoldChange

685 linda.se[b,] <- linda.res$lfcSE

686 linda.pval[b,] <- linda.res$padj

687 raw.p.linda[b,] <- linda.res$pvalue

688

689 # Not accounting for confounding

690 lindaRes.noconf <- linDA(Y, variables=c("group"), meta, adjustment)

691 linda.res.noconf <- lindaRes.noconf[[1]]

692 bias.linda.noconf <- rbind(bias.linda.noconf, lindaRes.noconf[[2]])

693 linda.coef.noconf[b,] <- linda.res.noconf$log2FoldChange

694 linda.se.noconf[b,] <- linda.res.noconf$lfcSE

695 linda.pval.noconf[b,] <- linda.res.noconf$padj

696 raw.p.linda.noconf[b,] <- linda.res.noconf$pvalue

697

698 ################ VoomCLR #######################################

699 # Accounting for confounding

700 voomclr <- voom(Y, variables=c("group","age","ancestry"), adjustment, meta, meanvar, distr)

701 tt <- voomclr[[1]]

702 bias.voomclr <- rbind(bias.voomclr,voomclr[[2]])

703 raw.p.voomclr[b,] <- tt$P.Value

704 voomclr.pval[b,] <- tt$adj.P.Val

705 voomclr.coef[b,] <- tt$logFC

706 voomclr.t[b,] <- tt$t
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707 voomclr.se[b,] <- voomclr.coef[b,]/voomclr.t[b,]

708 df.resid <- voomclr[[3]]

709 df.prior <- voomclr[[4]]

710

711 # Not accounting for confounding

712 voomclr.noconf <- voom(Y, variables=c("group"), adjustment, meta, meanvar, distr)

713 tt.noconf <- voomclr.noconf[[1]]

714 bias.voomclr.noconf <- rbind(bias.voomclr.noconf, voomclr.noconf[[2]])

715 raw.p.voomclr.noconf[b,] <- tt.noconf$P.Value

716 voomclr.pval.noconf[b,] <- tt.noconf$adj.P.Val

717 voomclr.coef.noconf[b,] <- tt.noconf$logFC

718 voomclr.t.noconf[b,] <- tt.noconf$t

719 voomclr.se.noconf[b,] <- voomclr.coef.noconf[b,]/voomclr.t.noconf[b,]

720 df.resid.noconf <- voomclr.noconf[[3]]

721 df.prior.noconf <- voomclr.noconf[[4]]

722

723 ######################## Linear regression ######################

724 # Accounting for confounders

725 lin.reg <- linear.regression(Y.lm, variables=c("group","age","ancestry"), adjustment, names)

726 lin.reg.fits <- lin.reg[[1]]

727 lm.coef[b,] <- lin.reg[[2]]$coef

728 lm.se[b,] <- lin.reg[[2]]$se

729 lm.t[b,] <- lin.reg[[2]]$t

730 lm.pval[b,] <- lin.reg[[2]]$pval

731 raw.p.lm[b,] <- lin.reg[[2]]$raw.p

732

733 # Not accounting for confounders

734 lin.reg.noconf <- linear.regression(Y.lm, variables=c("group"), adjustment, names)

735 lin.reg.fits.noconf <- lin.reg.noconf[[1]]

736 lm.coef.noconf[b,] <- lin.reg.noconf[[2]]$coef

737 lm.se.noconf[b,] <- lin.reg.noconf[[2]]$se

738 lm.t.noconf[b,] <- lin.reg.noconf[[2]]$t

739 lm.pval.noconf[b,] <- lin.reg.noconf[[2]]$pval

740 raw.p.lm.noconf[b,] <- lin.reg.noconf[[2]]$raw.p

741

742

743 ############### Inverse probability weighting ####################

744 # Accounting for confounding

745 inverse.p <- inverse.probability.weighting(Y.ipw, variables=c("group","age","ancestry"),

746 adjustment, names, stabilized)

747 ipw.coefs <- inverse.p[[1]]

748 ipw.fits <- inverse.p[[2]]

749 ipw.coef[b,] <- ipw.coefs$coef.per.celltype

750 ipw.se[b,] <- ipw.coefs$se.per.celltype

751 ipw.t[b,] <- ipw.coefs$t

752 ipw.pval[b,] <- ipw.coefs$p.val.ipw

753 raw.p.ipw[b,] <- ipw.coefs$raw.p

754

755 # Not accounting for confounding

756 inverse.p.noconf <- inverse.probability.weighting(Y.ipw, variables=c("group"),

757 adjustment, names, stabilized)

758 ipw.coefs.noconf <- inverse.p.noconf[[1]]

759 ipw.fits.noconf <- inverse.p.noconf[[2]]

760 ipw.coef.noconf[b,] <- ipw.coefs.noconf$coef.per.celltype

761 ipw.se.noconf[b,] <- ipw.coefs.noconf$se.per.celltype

762 ipw.t.noconf[b,] <- ipw.coefs.noconf$t

763 ipw.pval.noconf[b,] <- ipw.coefs.noconf$p.val.ipw

764 raw.p.ipw.noconf[b,] <- ipw.coefs.noconf$raw.p
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765

766

767 ############### Standardization ##################################

768 # Accounting for confounding

769 std <- standardization(Y.std, variables=c("group","age","ancestry"), names)

770 standardization.coefs <- std[[1]]

771 standardization.fits <- std[[2]]

772 standardization.deviance <- std[[3]]

773 standardization.coef[b,] <- standardization.coefs$coef

774 standardization.se[b,] <- standardization.coefs$se

775 raw.p.standardization[b,] <- standardization.coefs$raw.p

776 adj.p.standardization[b,] <- standardization.coefs$adj.p

777

778 # Not accounting for confounding

779 std.noconf <- standardization(Y.std, variables=c("group"), names)

780 standardization.coefs.noconf <- std.noconf[[1]]

781 standardization.fits.noconf <- std.noconf[[2]]

782 standardization.deviance.noconf <- std.noconf[[3]]

783 standardization.coef.noconf[b,] <- standardization.coefs.noconf$coef

784 standardization.se.noconf[b,] <- standardization.coefs.noconf$se

785 raw.p.standardization.noconf[b,] <- standardization.coefs.noconf$raw.p

786 adj.p.standardization.noconf[b,] <- standardization.coefs.noconf$adj.p

787

788 signal.celltypes <- p

789 signal[[b]] <- signal.celltypes

790

791 ############ loop over alpha ##############

792 for (iter in seq_along(alpha)){

793 a <- alpha[iter]

794 ############## voomCLR #################

795 ci <- ci.noconf <- data.frame()

796 coverage <- coverage.noconf <- c(1:K)

797 for (i in 1:K){

798 LL <- voomclr.coef[b,i]-qt(1-a/2, df=df.resid[i]+df.prior)*voomclr.se[b,i]

799 UL <- voomclr.coef[b,i]+qt(1-a/2, df=df.resid[i]+df.prior)*voomclr.se[b,i]

800 ci <- rbind(ci, c(LL,UL))

801 coverage[i] <- ifelse(ci[i,1] < betas[i,1] && betas[i,1] < ci[i,2], 1, 0)

802

803 LL <- voomclr.coef.noconf[b,i]-qt(1-a/2, df=df.resid.noconf[i]+df.prior.noconf)*voomclr.se.noconf[b,i]

804 UL <- voomclr.coef.noconf[b,i]+qt(1-a/2, df=df.resid.noconf[i]+df.prior.noconf)*voomclr.se.noconf[b,i]

805 ci.noconf <- rbind(ci.noconf, c(LL,UL))

806 coverage.noconf[i] <- ifelse(ci.noconf[i,1] < betas[i,1] && betas[i,1] < ci.noconf[i,2], 1, 0)

807 }

808 rownames(ci) <- rownames(ci.noconf) <- names

809 colnames(ci) <- colnames(ci.noconf) <- c("lower","upper")

810 ci.voomclr[[length(ci.voomclr)+1]] <- ci

811 ci.voomclr.noconf[[length(ci.voomclr.noconf)+1]] <- ci.noconf

812 coverage.voomclr[,iter] <- coverage.voomclr[,iter] + coverage

813 coverage.voomclr.noconf[,iter] <- coverage.voomclr.noconf[,iter] + coverage.noconf

814

815 ############## linDA #################

816 # LinDA gives estimates on log2FC scale

817 ci <- ci.noconf <- ci.lfc <- ci.noconf.lfc <- data.frame()

818 coverage <- coverage.noconf <- coverage.lfc <- coverage.noconf.lfc <- c(1:K)

819 for (i in 1:K){

820 LL <- linda.coef[b,i]-qt(1-a/2, df=ncol(Y)-4)*linda.se[b,i]

821 UL <- linda.coef[b,i]+qt(1-a/2, df=ncol(Y)-4)*linda.se[b,i]

822 ci <- rbind(ci, c(LL,UL))
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823 coverage[i] <- ifelse(ci[i,1] < betas[i,1] && betas[i,1] < ci[i,2], 1, 0)

824

825 # Convert to log fold change scale

826 LL <- log(2**LL)

827 UL <- log(2**UL)

828 ci.lfc <- rbind(ci.lfc, c(LL,UL))

829 coverage.lfc[i] <- ifelse(ci.lfc[i,1] < betas[i,1] && betas[i,1] < ci.lfc[i,2], 1, 0)

830

831

832 # Without accounting for confounding

833 LL <- linda.coef.noconf[b,i]-qt(1-a/2, df=ncol(Y)-2)*linda.se.noconf[b,i]

834 UL <- linda.coef.noconf[b,i]+qt(1-a/2, df=ncol(Y)-2)*linda.se.noconf[b,i]

835 ci.noconf <- rbind(ci.noconf, c(LL,UL))

836 coverage.noconf[i] <- ifelse(ci.noconf[i,1] < betas[i,1] && betas[i,1] < ci.noconf[i,2], 1, 0)

837

838 # Convert to log fold change scale

839 LL <- log(2**LL)

840 UL <- log(2**UL)

841 ci.noconf.lfc <- rbind(ci.noconf.lfc, c(LL,UL))

842 coverage.noconf.lfc[i] <- ifelse(ci.noconf.lfc[i,1] < betas[i,1] &&

843 betas[i,1] < ci.noconf.lfc[i,2], 1, 0)

844

845 }

846 rownames(ci) <- rownames(ci.noconf) <- rownames(ci.lfc) <- rownames(ci.noconf.lfc) <- names

847 colnames(ci) <- colnames(ci.noconf) <- colnames(ci.lfc) <-

848 colnames(ci.noconf.lfc) <- c("lower","upper")

849 ci.linda[[length(ci.linda)+1]] <- ci

850 ci.linda.noconf[[length(ci.linda.noconf)+1]] <- ci.noconf

851 ci.linda.lfc[[length(ci.linda.lfc)+1]] <- ci.lfc

852 ci.linda.noconf.lfc[[length(ci.linda.noconf.lfc)+1]] <- ci.noconf.lfc

853 coverage.linda[,iter] <- coverage.linda[,iter] + coverage

854 coverage.linda.noconf[,iter] <- coverage.linda.noconf[,iter] + coverage.noconf

855 coverage.linda.lfc[,iter] <- coverage.linda.lfc[,iter] + coverage.lfc

856 coverage.linda.noconf.lfc[,iter] <- coverage.linda.noconf.lfc[,iter] + coverage.noconf.lfc

857

858 ############ Linear regression (ci)############

859 ci <- ci.noconf <- data.frame()

860 coverage <- coverage.noconf <- c(1:K)

861 for (i in 1:K){

862 ci <- rbind(ci,confint(lin.reg.fits[[i]], level=1-a)[rownames(confint(lin.reg.fits[[i]]))=="group",])

863 coverage[i] <- ifelse(ci[i,1] < betas[i,1] && betas[i,1] < ci[i,2], 1, 0)

864

865 ci.noconf <- rbind(ci.noconf,confint(lin.reg.fits.noconf[[i]], level=1-a)

866 [rownames(confint(lin.reg.fits.noconf[[i]]))=="group",])

867 coverage.noconf[i] <- ifelse(ci.noconf[i,1] < betas[i,1] && betas[i,1] < ci.noconf[i,2], 1, 0)

868 }

869 rownames(ci) <- rownames(ci.noconf) <- names

870 colnames(ci) <- colnames(ci.noconf) <- c("lower","upper")

871 ci.lm[[length(ci.lm)+1]] <- ci

872 ci.lm.noconf[[length(ci.lm.noconf)+1]] <- ci.noconf

873 coverage.lm[,iter] <- coverage.lm[,iter] + coverage

874 coverage.lm.noconf[,iter] <- coverage.lm.noconf[,iter] + coverage.noconf

875

876 ###### Inverse probability weighting (ci) ######

877 ci <- ci.noconf <- data.frame()

878 coverage <- coverage.noconf <- c(1:K)

879 for (i in 1:K){

880 ci <- rbind(ci,confint(ipw.fits[[i]], level=1-a)[2,])
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881 coverage[i] <- ifelse(ci[i,1] < betas[i,1] && betas[i,1] < ci[i,2], 1, 0)

882

883 ci.noconf <- rbind(ci.noconf,confint(ipw.fits.noconf[[i]], level=1-a)[2,])

884 coverage.noconf[i] <- ifelse(ci.noconf[i,1] < betas[i,1] && betas[i,1] < ci.noconf[i,2], 1, 0)

885 }

886 rownames(ci) <- rownames(ci.noconf) <- names

887 colnames(ci) <- colnames(ci.noconf) <- c("lower","upper")

888 ci.ipw[[length(ci.ipw)+1]] <- ci

889 ci.ipw.noconf[[length(ci.ipw.noconf)+1]] <- ci.noconf

890 coverage.ipw[,iter] <- coverage.ipw[,iter] + coverage

891 coverage.ipw.noconf[,iter] <- coverage.ipw.noconf[,iter] + coverage.noconf

892

893 ################# Standardization ###############################

894 ci <- ci.noconf <- data.frame()

895 coverage <- coverage.noconf <- c(1:K)

896 for (i in 1:K){

897 summ <- summary(standardization.fits[[i]], CI.type="plain", CI.level=1-a,

898 contrast="difference", reference=0)

899 ci <- rbind(ci, summ$est.table[2,3:4])

900 coverage[i] <- ifelse(ci[i,1] < betas[i,1] && betas[i,1] < ci[i,2], 1, 0)

901

902 summ.noconf <- summary(standardization.fits.noconf[[i]], CI.type="plain", CI.level=1-a,

903 contrast="difference", reference=0)

904 ci.noconf <- rbind(ci.noconf, summ.noconf$est.table[2,3:4])

905 coverage.noconf[i] <- ifelse(ci.noconf[i,1] < betas[i,1] && betas[i,1] < ci.noconf[i,2], 1, 0)

906 }

907 rownames(ci) <- rownames(ci.noconf) <- names

908 colnames(ci) <- colnames(ci.noconf) <- c("lower","upper")

909 ci.std[[length(ci.std)+1]] <- ci

910 ci.std.noconf[[length(ci.std.noconf)+1]] <- ci.noconf

911 coverage.std[,iter] <- coverage.std[,iter] + coverage

912 coverage.std.noconf[,iter] <- coverage.std.noconf[,iter] + coverage.noconf

913

914 ########## Evaluation ################

915

916 eval <- evaluation(signal.celltypes, k, tt, wilcox.TSS.pval[b,], wilcox.clr.pval[b,], linda.res,

917 ipw.pval[b,], adj.p.standardization[b,], lm.pval[b,], alpha=a)

918 eval.noconf <- evaluation(signal.celltypes, k, tt.noconf, wilcox.TSS.pval[b,], wilcox.clr.pval[b,],

919 linda.res.noconf, ipw.pval.noconf[b,], adj.p.standardization.noconf[b,],

920 lm.pval.noconf[b,], alpha=a)

921

922 number.findings[[b]] <- rbind(number.findings[[b]], eval[[2]])

923 number.findings.noconf[[b]] <- rbind(number.findings.noconf[[b]], eval.noconf[[2]])

924 }

925 # We only need to keep the last one as this doesnt change for alpha

926 top.k.match <- rbind(top.k.match, eval[[1]])

927 top.k.match.noconf <- rbind(top.k.match.noconf, eval.noconf[[1]])

928 rownames(number.findings[[b]]) <- rownames(number.findings.noconf[[b]])<- alpha

929 }

930

931 colnames(bias.voomclr) <- names(voomclr[[2]])

932 colnames(bias.voomclr.noconf) <- names(voomclr.noconf[[2]])

933 colnames(bias.linda) <- c("group","age","ancestry")

934 colnames(bias.linda.noconf) <- "group"

935

936 # proportion of runs where the true signal cell types were in the top k

937 prop.top.k <- apply(top.k.match, 2, function(x){sum(x)}/B)

938 prop.top.k.noconf <- apply(top.k.match.noconf, 2, function(x){sum(x)}/B)
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939

940 ###### FDR and sensitivity #######

941 # Accounting for confounding

942 FDR.wilcox.TSS <- FDR.wilcox.clr <- FDR.voomclr <- FDR.linda <- FDR.lm <- FDR.ipw <-

943 FDR.standardization <- data.frame()

944 sensitivity.wilcox.TSS <- sensitivity.wilcox.clr <- sensitivity.voomclr <-

945 sensitivity.linda <- sensitivity.lm <- sensitivity.ipw <-

946 sensitivity.standardization <- data.frame()

947 for (i in 1:B){

948 FDR.wilcox.TSS <- rbind(FDR.wilcox.TSS,

949 number.findings[[i]]$nr.FP.findings.wilcox.TSS/number.findings[[i]]$nr.significant.celltypes.wilcox.TSS)

950 FDR.wilcox.clr <- rbind(FDR.wilcox.clr,

951 number.findings[[i]]$nr.FP.findings.wilcox.clr/number.findings[[i]]$nr.significant.celltypes.wilcox.clr)

952 FDR.voomclr <- rbind(FDR.voomclr,

953 number.findings[[i]]$nr.FP.findings.voomclr/number.findings[[i]]$nr.significant.celltypes.voomclr)

954 FDR.linda <- rbind(FDR.linda,

955 number.findings[[i]]$nr.FP.findings.linda/number.findings[[i]]$nr.significant.celltypes.linda)

956 FDR.lm <- rbind(FDR.lm,

957 number.findings[[i]]$nr.FP.findings.lm/number.findings[[i]]$nr.significant.celltypes.lm)

958 FDR.ipw <- rbind(FDR.ipw,

959 number.findings[[i]]$nr.FP.findings.ipw/number.findings[[i]]$nr.significant.celltypes.ipw)

960 FDR.standardization <- rbind(FDR.standardization,

961 number.findings[[i]]$nr.FP.findings.std/number.findings[[i]]$nr.significant.celltypes.std)

962

963 sensitivity.wilcox.TSS <- rbind(sensitivity.wilcox.TSS,

964 number.findings[[i]]$nr.TP.findings.wilcox.TSS/nr.of.signal)

965 sensitivity.wilcox.clr <- rbind(sensitivity.wilcox.clr,

966 number.findings[[i]]$nr.TP.findings.wilcox.clr/nr.of.signal)

967 sensitivity.voomclr<- rbind(sensitivity.voomclr,

968 number.findings[[i]]$nr.TP.findings.voomclr/nr.of.signal)

969 sensitivity.linda <- rbind(sensitivity.linda,

970 number.findings[[i]]$nr.TP.findings.linda/nr.of.signal)

971 sensitivity.lm <- rbind(sensitivity.lm,

972 number.findings[[i]]$nr.TP.findings.lm/nr.of.signal)

973 sensitivity.ipw <- rbind(sensitivity.ipw,

974 number.findings[[i]]$nr.TP.findings.ipw/nr.of.signal)

975 sensitivity.standardization <- rbind(sensitivity.standardization,

976 number.findings[[i]]$nr.TP.findings.std/nr.of.signal)

977 }

978

979 colnames(FDR.wilcox.TSS) <- colnames(FDR.wilcox.clr)<- colnames(FDR.voomclr) <-

980 colnames(FDR.linda) <- colnames(FDR.lm) <- colnames(FDR.ipw) <- colnames(FDR.standardization) <-

981 colnames(sensitivity.wilcox.TSS) <- colnames(sensitivity.wilcox.clr)<- colnames(sensitivity.voomclr) <-

982 colnames(sensitivity.linda) <- colnames(sensitivity.lm) <- colnames(sensitivity.ipw) <-

983 colnames(sensitivity.standardization)<- alpha

984

985 # Make sure that NAs are set to 0 (no significant cell types in that iteration)

986 FDR.wilcox.TSS[is.na(FDR.wilcox.TSS)] <- FDR.wilcox.clr[is.na(FDR.wilcox.clr)]<-

987 FDR.voomclr[is.na(FDR.voomclr)] <- FDR.linda[is.na(FDR.linda)] <- FDR.lm[(is.na(FDR.lm))] <-

988 FDR.ipw[is.na(FDR.ipw)] <- FDR.standardization[is.na(FDR.standardization)] <- 0

989

990 FDR.wilcox.TSS <- colMeans(FDR.wilcox.TSS)

991 FDR.wilcox.clr <- colMeans(FDR.wilcox.clr)

992 FDR.voomclr <- colMeans(FDR.voomclr)

993 FDR.linda <- colMeans(FDR.linda)

994 FDR.lm <- colMeans(FDR.lm)

995 FDR.ipw <- colMeans(FDR.ipw)

996 FDR.standardization <- colMeans(FDR.standardization)
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997

998 sensitivity.wilcox.TSS <- colMeans(sensitivity.wilcox.TSS)

999 sensitivity.wilcox.clr <- colMeans(sensitivity.wilcox.clr)

1000 sensitivity.voomclr <- colMeans(sensitivity.voomclr)

1001 sensitivity.linda <- colMeans(sensitivity.linda)

1002 sensitivity.lm <- colMeans(sensitivity.lm)

1003 sensitivity.ipw <- colMeans(sensitivity.ipw)

1004 sensitivity.standardization <- colMeans(sensitivity.standardization)

1005

1006 # Not accounting for confounding

1007 FDR.voomclr.noconf <- FDR.linda.noconf <- FDR.lm.noconf <- FDR.ipw.noconf <-

1008 FDR.standardization.noconf <- data.frame()

1009 sensitivity.voomclr.noconf <- sensitivity.linda.noconf <- sensitivity.lm.noconf <-

1010 sensitivity.ipw.noconf <- sensitivity.standardization.noconf <- data.frame()

1011

1012 for (i in 1:B){

1013 FDR.voomclr.noconf <- rbind(FDR.voomclr.noconf,

1014 number.findings.noconf[[i]]$nr.FP.findings.voomclr/number.findings.noconf[[i]]$nr.significant.celltypes.voomclr)

1015 FDR.linda.noconf <- rbind(FDR.linda.noconf,

1016 number.findings.noconf[[i]]$nr.FP.findings.linda/number.findings.noconf[[i]]$nr.significant.celltypes.linda)

1017 FDR.lm.noconf <- rbind(FDR.lm.noconf,

1018 number.findings.noconf[[i]]$nr.FP.findings.lm/number.findings.noconf[[i]]$nr.significant.celltypes.lm)

1019 FDR.ipw.noconf <- rbind(FDR.ipw.noconf,

1020 number.findings.noconf[[i]]$nr.FP.findings.ipw/number.findings.noconf[[i]]$nr.significant.celltypes.ipw)

1021 FDR.standardization.noconf <- rbind(FDR.standardization.noconf,

1022 number.findings.noconf[[i]]$nr.FP.findings.std/number.findings.noconf[[i]]$nr.significant.celltypes.std)

1023

1024 sensitivity.voomclr.noconf <- rbind(sensitivity.voomclr.noconf,

1025 number.findings.noconf[[i]]$nr.TP.findings.voomclr/nr.of.signal)

1026 sensitivity.linda.noconf <- rbind(sensitivity.linda.noconf,

1027 number.findings.noconf[[i]]$nr.TP.findings.linda/nr.of.signal)

1028 sensitivity.lm.noconf <- rbind(sensitivity.lm.noconf,

1029 number.findings.noconf[[i]]$nr.TP.findings.lm/nr.of.signal)

1030 sensitivity.ipw.noconf <- rbind(sensitivity.ipw.noconf,

1031 number.findings.noconf[[i]]$nr.TP.findings.ipw/nr.of.signal)

1032 sensitivity.standardization.noconf <- rbind(sensitivity.standardization.noconf,

1033 number.findings.noconf[[i]]$nr.TP.findings.std/nr.of.signal)

1034 }

1035

1036 colnames(FDR.voomclr.noconf) <- colnames(FDR.linda.noconf) <- colnames(FDR.lm.noconf) <-

1037 colnames(FDR.ipw.noconf) <- colnames(FDR.standardization.noconf) <-

1038 colnames(sensitivity.voomclr.noconf) <- colnames(sensitivity.linda.noconf) <- colnames(sensitivity.lm.noconf) <-

1039 colnames(sensitivity.ipw.noconf) <- colnames(sensitivity.standardization.noconf) <- alpha

1040

1041 FDR.voomclr.noconf[is.na(FDR.voomclr.noconf)] <- FDR.linda.noconf[is.na(FDR.linda.noconf)] <-

1042 FDR.lm.noconf[(is.na(FDR.lm.noconf))] <- FDR.ipw.noconf[is.na(FDR.ipw.noconf)] <-

1043 FDR.standardization.noconf[is.na(FDR.standardization.noconf)] <- 0

1044

1045 FDR.voomclr.noconf <- colMeans(FDR.voomclr.noconf)

1046 FDR.linda.noconf <- colMeans(FDR.linda.noconf)

1047 FDR.lm.noconf <- colMeans(FDR.lm.noconf)

1048 FDR.ipw.noconf <- colMeans(FDR.ipw.noconf)

1049 FDR.standardization.noconf <- colMeans(FDR.standardization.noconf)

1050

1051 sensitivity.voomclr.noconf <- colMeans(sensitivity.voomclr.noconf)

1052 sensitivity.linda.noconf <- colMeans(sensitivity.linda.noconf)

1053 sensitivity.lm.noconf <- colMeans(sensitivity.lm.noconf)

1054 sensitivity.ipw.noconf <- colMeans(sensitivity.ipw.noconf)
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1055 sensitivity.standardization.noconf <- colMeans(sensitivity.standardization.noconf)

1056

1057 return (list(signal, prop.top.k, number.findings,

1058 data.frame(sensitivity.wilcox.TSS, sensitivity.wilcox.clr,

1059 sensitivity.voomclr, sensitivity.linda, sensitivity.lm,

1060 sensitivity.ipw, sensitivity.standardization,

1061 FDR.wilcox.TSS, FDR.wilcox.clr, FDR.voomclr,

1062 FDR.linda, FDR.lm, FDR.ipw, FDR.standardization),

1063 wilcox.TSS.pval, wilcox.clr.pval, wilcox.TSS.stat, wilcox.clr.stat,

1064 voomclr.pval, voomclr.coef, voomclr.t, ci.voomclr, coverage.voomclr, bias.voomclr,

1065 linda.pval, linda.coef,linda.se, ci.linda, coverage.linda, bias.linda,

1066 ipw.pval, ipw.coef, ipw.se, ipw.t, ci.ipw, coverage.ipw,

1067 standardization.coef, adj.p.standardization, ci.std, coverage.std,

1068 lm.pval, lm.coef, lm.se, lm.t, ci.lm, coverage.lm,

1069 raw.p.wilcox.TSS, raw.p.wilcox.clr, raw.p.voomclr, raw.p.linda, raw.p.lm, raw.p.ipw,

1070 raw.p.standardization, prop.top.k.noconf, number.findings.noconf,

1071 data.frame(sensitivity.voomclr.noconf, sensitivity.linda.noconf, sensitivity.lm.noconf,

1072 sensitivity.ipw.noconf, sensitivity.standardization.noconf,FDR.voomclr.noconf,

1073 FDR.linda.noconf, FDR.lm.noconf, FDR.ipw.noconf, FDR.standardization.noconf),

1074 voomclr.pval.noconf, ci.voomclr.noconf, coverage.voomclr.noconf, bias.voomclr.noconf,

1075 linda.pval.noconf, ci.linda.noconf, coverage.linda.noconf, bias.linda.noconf,

1076 ipw.pval.noconf, ci.ipw.noconf, coverage.ipw.noconf,

1077 adj.p.standardization.noconf, ci.std.noconf, coverage.std.noconf,

1078 lm.pval.noconf, ci.lm.noconf, coverage.lm.noconf,

1079 raw.p.voomclr.noconf, raw.p.linda.noconf, raw.p.lm.noconf, raw.p.ipw.noconf,

1080 raw.p.standardization.noconf, beta, voomclr.coef.noconf, linda.coef.noconf, ci.linda.lfc,

1081 coverage.linda.lfc, ci.linda.noconf.lfc, coverage.linda.noconf.lfc

1082 ))

1083 }

1084

1085

1086 ###### Non parametric simulation ########

1087 B <- 250

1088 k=3

1089 nonparam <- simulation.confounding(B=B, k=k, sim="nonparametric", alpha=c(0.01,0.05,0.1))

1090

1091 # Generation of sensitivity and FDR plot

1092 library(reshape2)

1093 colnames(accuracy.noconf) <- sub(".noconf","*",colnames(accuracy.noconf))

1094 accuracy.data <- cbind(accuracy, accuracy.noconf)

1095

1096 accuracy.data$alpha <- rownames(accuracy)

1097

1098 sensitivity_data <- melt(accuracy.data, id.vars = 'alpha',

1099 measure.vars = grep('sensitivity', names(accuracy.data), value = TRUE))

1100 sensitivity_data$alpha <- as.numeric(paste(sensitivity_data$alpha))

1101 sensitivity_data$value <- as.numeric(paste(sensitivity_data$value))

1102 sensitivity_data$variable <- sub("sensitivity.","", sensitivity_data$variable)

1103

1104 fdr_data <- melt(accuracy.data, id.vars = 'alpha',

1105 measure.vars = grep('FDR', names(accuracy.data), value = TRUE))

1106 fdr_data$value <- as.numeric(paste(fdr_data$value))

1107 fdr_data$alpha <- as.numeric(paste(fdr_data$alpha))

1108 fdr_data$variable <- sub("FDR.","", fdr_data$variable)

1109

1110 # FDR

1111 fdr_data <- fdr_data %>% arrange(value)

1112 fdr_data$group <- factor(fdr_data$variable, levels = rev(unique(fdr_data$variable)))
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1113

1114 ggplot(fdr_data, aes(x = alpha, y = value, color = group)) +

1115 geom_line(linewidth=1) +geom_point(aes(x = alpha, y = alpha), size = 4, shape = 21, fill = "white") +

1116 scale_x_continuous(breaks=c(0.01,0.05,0.1))+labs(x="Significance level",y="FDR",col="Method") +

1117 theme_bw(base_size=12)

1118

1119 # Sensitivity

1120 sensitivity_data <- sensitivity_data %>% arrange(value)

1121 sensitivity_data$group <- factor(sensitivity_data$variable, levels = rev(unique(sensitivity_data$variable)))

1122

1123 ggplot(sensitivity_data, aes(x = alpha, y = value, color = group)) + geom_line(linewidth=1) +

1124 scale_x_continuous(breaks=c(0.01,0.05,0.1))+labs(x="Significance level",y="Sensitivity",col="Method") +

1125 theme_bw(base_size=12)

1126

1127 # Bias terms linDA and voomCLR

1128 bias <- data.frame(bias=c(voomclr.bias$groupgroup2, linda.bias$group,

1129 voomclr.bias.noconf$groupgroup2, linda.bias.noconf$group),

1130 method=c(rep(c(rep("voomCLR",B), rep("linDA",B)),2)),

1131 confounding=c(rep("Accounting for confounding",2*B),

1132 rep("Not accounting for confounding",2*B)))

1133

1134 means <- bias %>%

1135 group_by(method,confounding) %>%

1136 summarise(mean = mean(bias), sd=sd(bias))

1137

1138

1139 ggplot(bias, aes(x=bias, col=method)) +

1140 facet_wrap(~confounding) +

1141 geom_density(linewidth=1) +

1142 theme_bw(base_size=15)

1143

1144 # ROC curves

1145 names <- paste(celltypes, rep(1:B, each=11), sep="_")

1146

1147 pval <- data.frame(wilcox.TSS = as.vector(t(raw.p.wilcox.TSS)),

1148 wilcox.clr = as.vector(t(raw.p.wilcox.clr)),

1149 voomclr = as.vector(t(raw.p.voomclr)),

1150 linda = as.vector(t(raw.p.linda)),

1151 lm = as.vector(t(raw.p.lm)),

1152 ipw = as.vector(t(raw.p.ipw)),

1153 std = as.vector(t(raw.p.std)),

1154 row.names=names)

1155

1156 padj <- data.frame(wilcox.TSS=as.vector(t(wilcox.TSS.adj.pval)),

1157 wilcox.clr=as.vector(t(wilcox.clr.adj.pval)),

1158 voomclr=as.vector(t(voomclr.adj.pval)),

1159 linda= as.vector(t(linda.adj.pval)),

1160 lm = as.vector(t(lm.adj.pval)),

1161 ipw=as.vector(t(ipw.adj.pval)),

1162 std=as.vector(t(std.adj.pval)),

1163 row.names=names)

1164

1165 pval.noconf <- data.frame(wilcox.TSS = as.vector(t(raw.p.wilcox.TSS)),

1166 wilcox.clr = as.vector(t(raw.p.wilcox.clr)),

1167 voomclr = as.vector(t(raw.p.voomclr.noconf)),

1168 linda = as.vector(t(raw.p.linda.noconf)),

1169 lm = as.vector(t(raw.p.lm.noconf)),

1170 ipw = as.vector(t(raw.p.ipw.noconf)),
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1171 std = as.vector(t(raw.p.std.noconf)),

1172 row.names=names)

1173

1174 padj.noconf <- data.frame(wilcox.TSS=as.vector(t(wilcox.TSS.adj.pval)),

1175 wilcox.clr=as.vector(t(wilcox.clr.adj.pval)),

1176 voomclr=as.vector(t(voomclr.adj.pval.noconf)),

1177 linda= as.vector(t(linda.adj.pval.noconf)),

1178 lm = as.vector(t(lm.adj.pval.noconf)),

1179 ipw=as.vector(t(ipw.adj.pval.noconf)),

1180 std=as.vector(t(std.adj.pval.noconf)),

1181 row.names=names)

1182

1183 truth <- c()

1184 for (i in 1:B){

1185 index <- which(celltypes%in%signal[[i]])

1186 seq <- rep(0, 11)

1187 seq[index] <- 1

1188 truth <- c(truth, seq)

1189 }

1190 truth=data.frame(status=truth, row.names=names)

1191

1192

1193 cobra <- COBRAData(pval = pval,

1194 padj = padj,

1195 truth = truth)

1196 perf <- calculate_performance(cobra, binary_truth="status")

1197 cobraplot <- prepare_data_for_plot(perf, facetted=F)

1198 plot_roc(cobraplot, title=paste0("Nonparametric simulation\nk=",k))+ylim(c(0.5,1))

1199

1200 cobra.noconf <- COBRAData(pval = pval.noconf,

1201 padj = padj.noconf,

1202 truth = truth)

1203 perf.noconf <- calculate_performance(cobra.noconf, binary_truth="status")

1204 cobraplot.noconf <- prepare_data_for_plot(perf.noconf, facetted=F)

1205 plot_roc(cobraplot.noconf, title=paste0("Nonparametric simulation (no adjustment)\nk=",k))+ylim(c(0.5,1))

1206

1207

1208

1209 ##### Parametric simulation #####

1210 B <- 250

1211

1212 # Setting A

1213 n <- 90

1214 P <- 11

1215 k <- 3

1216 paramA <- simulation.confounding(B=B, sim="parametric", P=P, n=n, k=k, alpha=c(0.01,0.05,0.1))

1217

1218 # # Setting B

1219 n <- 90

1220 P <- 11

1221 k <- 6

1222 paramB <- simulation.confounding(B=B, sim="parametric", P=P, n=n, k=k, alpha=c(0.01,0.05,0.1))

1223

1224 # Setting C

1225 n <- 90

1226 P <- 30

1227 k <- 6

1228 paramC <- simulation.confounding(B=B, sim="parametric", P=P, n=n, k=k, alpha=c(0.01,0.05,0.1))
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1229

1230 # Setting D

1231 n <- 20

1232 P <- 11

1233 k <- 3

1234 paramD <- simulation.confounding(B=B, sim="parametric", P=P, n=n, k=k, alpha=c(0.01,0.05,0.1))

1235

1236 # Coverage

1237 conf.level <- c(0.99,0.95,0.90)

1238

1239 voomclr.coverage.percentage <- voomclr.coverage/B

1240 voomclr.coverage.percentage.noconf <- voomclr.coverage.noconf/B

1241 linda.coverage.percentage <- linda.coverage.lfc/B

1242 linda.coverage.percentage.noconf <- linda.coverage.noconf.lfc/B

1243 lm.coverage.percentage <- lm.coverage/B

1244 lm.coverage.percentage.noconf <- lm.coverage.noconf/B

1245 ipw.coverage.percentage <- ipw.coverage/B

1246 ipw.coverage.percentage.noconf <- ipw.coverage.noconf/B

1247 std.coverage.percentage <- std.coverage/B

1248 std.coverage.percentage.noconf <- std.coverage.noconf/B

1249

1250 rownames(voomclr.coverage.percentage) <- rownames(voomclr.coverage.percentage.noconf) <-

1251 rownames(linda.coverage.percentage) <- rownames(linda.coverage.percentage.noconf) <-

1252 rownames(lm.coverage.percentage) <- rownames(lm.coverage.percentage.noconf) <-

1253 rownames(ipw.coverage.percentage) <- rownames(ipw.coverage.percentage.noconf) <-

1254 rownames(std.coverage.percentage) <- rownames(std.coverage.percentage.noconf) <-

1255 paste("Celltype", 1:nrow(voomclr.coverage))

1256

1257 colnames(voomclr.coverage.percentage) <- colnames(voomclr.coverage.percentage.noconf) <-

1258 colnames(linda.coverage.percentage) <- colnames(linda.coverage.percentage.noconf) <-

1259 colnames(lm.coverage.percentage) <- colnames(lm.coverage.percentage.noconf) <-

1260 colnames(ipw.coverage.percentage) <- colnames(ipw.coverage.percentage.noconf) <-

1261 colnames(std.coverage.percentage) <- colnames(std.coverage.percentage.noconf) <- conf.level

1262

1263 names <- paste("Celltype",1:P,sep="")

1264 coverage <- data.frame(coverage = c(as.vector(voomclr.coverage.percentage),

1265 as.vector(voomclr.coverage.percentage.noconf),

1266 as.vector(linda.coverage.percentage),

1267 as.vector(linda.coverage.percentage.noconf),

1268 as.vector(lm.coverage.percentage),

1269 as.vector(lm.coverage.percentage.noconf),

1270 as.vector(ipw.coverage.percentage),

1271 as.vector(ipw.coverage.percentage.noconf),

1272 as.vector(std.coverage.percentage),

1273 as.vector(std.coverage.percentage.noconf)),

1274 method = c(rep("voomCLR", length(alpha)*P), rep("voomCLR", length(alpha)*P),

1275 rep("linDA", length(alpha)*P), rep("linDA", length(alpha)*P),

1276 rep("Linear regression", length(alpha)*P),rep("Linear regression", length(alpha)*P),

1277 rep("IPW", length(alpha)*P), rep("IPW", length(alpha)*P),

1278 rep("Standardization", length(alpha)*P),rep("Standardization", length(alpha)*P)),

1279 confounding = rep(c(rep("Accounting for confounding",length(alpha)*P),

1280 rep("Not accounting for confounding",length(alpha)*P)), 5),

1281 conf.level = rep(conf.level, 10, each=P),

1282 row.names = paste(names, rep(1:30, each=P), sep="_"))

1283

1284

1285 colors <- c("voomCLR" = "red", "linDA" = "pink",

1286 "Linear regression" = "green",
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1287 "IPW" = "purple",

1288 "Standardization" = "orange")

1289

1290 order <- coverage %>% filter(confounding=="Accounting for confounding") %>% group_by(method) %>%

1291 summarize(mean=mean(coverage)) %>% arrange(-mean)

1292 coverage$group <- factor(coverage$method, levels=order$method)

1293

1294 ggplot(coverage, aes(x=conf.level, y=coverage, color=group)) +

1295 geom_point() +

1296 geom_point(aes(x = conf.level, y = conf.level), size = 4, shape = 21, fill = "white", col="black") +

1297 scale_x_continuous(breaks=conf.level) +

1298 geom_smooth(se=F) +

1299 scale_color_manual(values=colors) +

1300 facet_wrap(~confounding) +

1301 theme_bw(base_size=12) +

1302 labs(title=paste0("Parametric simulation \nP=", P, ",n=", n, ",k=", k),

1303 x="Confidence level", y="Coverage percentage", color="Method") +

1304 lims(y=c(0,1))

F R code implementation case study

1

2 ########## VoomCLR ##########

3 library(limma)

4 library(voomCLR)

5 group <- factor(ifelse(eurazians.duplicates.rm$SLE_status=="SLE",1,0))

6 ancestry <- factor(ifelse(eurazians.duplicates.rm$pop_cov=="European",1,0))

7 age <- eurazians.duplicates.rm$Age

8 design <- model.matrix(~group+ancestry+age)

9 v <- voomCLR(counts = t(eurazians.duplicates.rm[,c(11:21)]),

10 design = design,

11 varCalc = "analytical",

12 varDistribution = "NB",

13 plot = TRUE,

14 span = 0.8)

15 fit <- lmFit(v, design)

16 fit <- eBayes(fit)

17 tt <- topTableBC(fit, coef=2, n=Inf, bootstrap="nonparametric")

18 head(tt)

19

20 ######### linDA ##########

21 linDA <- MicrobiomeStat::linda(feature.dat = t(eurazians.duplicates.rm[,c(11:21)]),

22 meta.dat = eurazians.duplicates.rm[,-c(11:21)],

23 formula = '~SLE_status+Age+pop_cov',

24 feature.dat.type = 'count',

25 adaptive=TRUE,

26 zero.handling = 'pseudo-count',

27 p.adj.method="BH")

28 res <- linDA$output$SLE_statusSLE %>% arrange(padj)

29 lfc <- log(2**(res[["log2FoldChange"]]))

30 names <- rownames(linDA$output$SLE_statusSLE %>% arrange(padj))
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