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Abstract

In geostatistical data involving human subjects, privacy is a major concern. Various techniques,

such as randomly perturbing the locations, known as geomasking, have been used to protect

individual privacy while maintaining substantial spatial associations. However, geomasking has

been shown to result in biased estimates and poor spatial predictions. In response, several

methods have been proposed to account for positional uncertainty in a geostastitical model. In

this thesis, we reviewed the methods that address geomasking and focused on evaluating the

comprehensive and user-friendly R package, GeoAdjust. Through a case study and simulation

studies, we demonstrated its performance in various scenarios.

We applied GeoAdjust to analyze the geomasked Philippines Demographic and Health Survey

and found some interesting results. Subsequently, we subjected GeoAdjust to a simulation

study. We simulated different data under multiple scenarios, such as varying sample sizes,

different displacement radii, and combinations of different magnitudes of spatial and nugget

variance. We used parameter estimate bias and predictive performance for comparison. The

results indicated that GeoAdjust had the best performance in terms of covariance parameter bias

when the sample size and displacement were large, and the spatial variance was relatively larger

than the nugget variance. Similarly, predictions were found to be the best in these scenarios,

particularly in terms of the uncertainties associated with the predictions.

Based on these results, we provided guidance and careful considerations for the usage of R

package, GeoAdjust. Our evaluation of the method offers insights into the impacts of geomasking

which are useful for future applications and development of new methods.
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Chapter 1

Introduction

In recent decades, the integration of geographic information systems (GIS) and advanced spatial

statistical techniques has facilitated more accurate mapping of disease distributions, identification

of environmental risk factors, representation of economic activity, quantification of species

abundance, and many other applications (Pfeiffer et al., 2008, Redding and Rossi-Hansberg,

2017, White et al., 2010). This integration has been pivotal in addressing complex spatial

phenomena and supporting evidence-based decision-making across disciplines. Furthermore,

there has been an exponential growth in spatial data, particularly at smaller resolutions, such as

geostatistical data (Gelfand and Banerjee, 2017). For example, GPS geo-tagged data collected

by government agencies, social media companies, and academic institutions are now widely

available.

However, while it is crucial for geostatistical data to be available and accessible to researchers,

analysts, policymakers, and the general public, it is equally important to maintain the privacy of

the subjects in the data (Burgert et al., 2013). Several methods have been developed to protect

the privacy of subjects in geostatistical data, with the most common being geographical masking

through random perturbation or geomasking. Geomasking involves intentionally repositioning

the original locations within a certain region around the original point (Armstrong et al.,

1999). One popular method of geomasking is displacing the points within a circular region with

equal probabilities, known as uniform geomasking. In this thesis, we focused on this type of

geomasking. Uniform geomasking has been used in various applications such as in health surveys

(Burgert et al., 2013), social media data like Twitter (Gao et al., 2019), and administrative data

like 911 emergency phone calls (Allshouse et al., 2010).

Standard methods for geostatistical analysis, such as methods under model-based geostatistics

(Diggle et al., 1998), often assume that the locations are collected accurately (Diggle et al.,

2003, Diggle and Giorgi, 2019). With geomasking, location errors are introduced intentionally

by displacing the true locations, which propagates through the analysis. Multiple studies have

demonstrated that such location errors generally lead to biased model parameter estimates and

poor spatial predictions (Gabrosek and Cressie, 2002, Jacquez, 2012, Goldberg and Cockburn,

2012, Kinnee et al., 2020). It has been theoretically illustrated that uniform geomasking

significantly disrupts the spatial structure of the data, particularly affecting the covariance
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parameters, which are inherently based on the distances between the locations (Fronterrè et al.,

2018). This disruption can severely compromise the integrity of spatial analyses, making it

challenging to draw accurate conclusions. The problem is further compounded as the degree of

displacement increases, leading to more significant distortion of spatial relationships in the data.

Additionally, factors such as sample sizes and the amount of variation may also contribute to

this issue. While geomasking is crucial for protecting privacy, it poses a substantial challenge

for maintaining the utility of spatial data.

A number of researchers have proposed methods to address general location errors in spatial

data analysis (Gabrosek and Cressie, 2002, Cressie and Kornak, 2003). However, only a few

have directly tackled the specific problem of geomasking. The first to propose an approach

within a model-based geostatistics framework was Fanshawe and Diggle (2011). Their method,

while pioneering, was significantly hampered by its enormous computational burden, which

prevented further explorations and practical applications. A few years later, Fronterrè et al.

(2018) addressed these limitations by refining the approach of Fanshawe and Diggle (2011).

They developed methods that were more computationally feasible while still providing accurate

spatial analyses. In a Bayesian paradigm, Wilson and Wakefield (2021) proposed a method for

addressing geomasking. However, similar to the approach by Fanshawe and Diggle (2011), their

method was also very slow. Recently, Altay, Paige, Riebler, and Fuglstad (2023) improved upon

the method of Wilson and Wakefield (2021) and developed an R package, GeoAdjust, to enhance

its computational efficiency and usability.

With this background, we reviewed the current methods available in the literature that address

geomasking, focusing on the recent R package, GeoAdjust. We evaluated the performance

of GeoAdjust using both real and simulated data. Specifically, it was used to analyze the

geomasked Philippines Demographic and Health Survey (DHS). However, due to the absence of

true data, we could not fully confirm the accuracy of the model estimates and the predictions. To

address this, we conducted a simulation study, exploring various simulated data scenarios under

different conditions. The developers of GeoAdjust previously conducted a limited simulation

study that focused solely on the impact of the displacement radius, leaving many aspects

of GeoAdjust’s performance yet to be investigated. For instance, it was still unclear how

the number of sample locations or the magnitude of spatial variation in the data affects its

performance. Understanding these factors is crucial because location errors propagated through

geomasking can lead to a loss of information, potentially requiring specific scenarios for optimal

usability. Our analyses aim to provide comprehensive guidance on the effective usage of GeoAdjust.

The results offer insights into the strengths and weaknesses of this approach, highlighting areas

for potential improvement and future research.

We organized this thesis into several chapters. We began with the standard inferences under

model-based geostatistics which served as the foundation for the subsequent chapters (Chapter

2). In Chapter 3, geomasking was introduced and its effects were explored particularly on how

it complicates the inferences along with a review and presentation of all available methods for

making inferences with a geomasked spatial data. We then presented the case study and the
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simulation study, covering motivations, methodologies employed, and key findings (Chapters 4,

5). Finally, we concluded this thesis with a discussion of the results and its implications, and

potential extensions of our research (Chapter 6).

1.1 Relevance, Stakeholders, and Ethics

Many spatial datasets contain crucial information relevant to various fields. For instance, the

dataset from the Philippines Demographic and Health Survey (DHS) includes information on

household income, HIV status, violence against women and children, and many more. Due to

the sensitive nature of these information, methods like geomasking have been developed and

used multiple times to safeguard the spatial confidentiality of these data. However, information

from sources like the Philippines DHS also play a crucial role in analyzing spatial trends for

more effective programs and policies. Therefore, balancing privacy protection and information

preservation is of prime importance.

In this thesis, our goal was to the review available methods that address geomasking, with a focus

on GeoAdjust, aiming to provide insights to future researchers of geomasked data and, on the

other hand, to data owners who perform geomasking in spatial data. Our results revealed certain

scenarios that were optimal for the application of GeoAdjust on geomasked data. We found

that GeoAdjust had smaller parameter bias and better spatial predictions when the geomasked

data had larger displacement, more sample locations, and greater spatial variation. These

findings provide valuable guidance for future users of GeoAdjust and researchers interested in

improving and developing new methods. Alternatively, data owners, particularly privacy and

ethical committees, can also use our results when applying geomasking to spatial datasets. For

example, we have highlighted the necessity for larger sample locations and spatial variation.

As such, when dealing with spatial data that needs to be geomasked, it might be beneficial

to use smaller displacement whenever possible to limit the destruction of spatial associations,

especially when working with smaller sample sizes and spatial variation.

In terms of the ethical standards, we analyzed a national household survey with a large number

of respondents. All necessary documentary requirements were completed to access the datasets.

The DHS program implemented essential data privacy measures, such as anonymization, before

releasing the data to the public and provided guidelines on its use. We fully adhered to these

guidelines and followed the intended purpose of the data. The data were used solely for academic

purposes. Additionally, we ensured that ethical standards were maintained throughout the

research process. This approach not only respected the privacy of the respondents but also

upheld the integrity of the research. Our adherence to these protocols ensured the reliability

and ethical soundness of our findings.

In general, this thesis contributes to the growing body of knowledge on spatial data privacy

and aims to support researchers, analysts, and policymakers in making informed decisions when

handling geomasked data.
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Chapter 2

Overview of Model-based

Geostatistics Methods

Suppose measurements, y(x1), y(x2), ..., y(xn), of a variable Y from a finite set of different

locations, x1, x2,..., xn, over a study region A are obtained. It is often assumed that these

measurements are partial realizations of an underlying random process, S(x), continuously

spanning the region A. This set of measurements is commonly referred as geostatistical data.

Based on this data, it is of interest to make a generalization of the characteristics of the process

of the variable of study and to predict the measurements at unsampled locations.

In model-based geostatistics, a stochastic model is constructed to depict the underlying process

S(x). The most common and tractable way to model it is by assuming that S(x) is a Gaussian

process or specifically as a Gaussian random field (GRF). A Gaussian process is defined such

that the joint probability distribution of the variable measurements sampled over the finite set

of locations follows a multivariate normal distribution. In addition, it is often assumed that the

covariance matrix of the multivariate normal distribution is stationary and isotropic. That is,

the variance is assumed constant and the correlation between S(x) and S(x′) only depends on

the distance between x and x′. This correlation is defined by a symmetric correlation function

ρ(d), where d is the distance. Most common correlation functions are under the Matérn family.

The Matérn correlation function is defined as follows:

ρ(d;ϕ, κ) = 2κ−1Γ(κ)−1(d/ϕ)κKκ(d/ϕ) (2.1)

where ϕ > 0 and κ > 0 are the parameters and Kκ(·) is a modified Bessel function. The

parameter ϕ controls the rate on how quickly the spatial correlation decays to zero as spatial

distance increases while the parameter κ is a smoothness parameter that is related to the number

of times the function is differentiable. A special case of the Matérn correlation function is the

exponential correlation function, when κ = 0.5. In this thesis, the majority of the assumed

correlation functions were of this type. The exponential correlation function is given by:

ρ(d;ϕ) = exp(−d/ϕ) : d ≥ 0 (2.2)
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In the following sections, we outlined an overview of the methods for model-based statistics,

starting with the likelihood-based inference and followed by Bayesian inference. These theories

formed the foundation of the methods discussed in the subsequent chapter. The content was

based on the books by Diggle and Giorgi (2019) and Moraga (2019). For a more detailed

explanation of these methods, please refer to these references.

2.1 Likelihood-based Inference

To perform inference to draw conclusions from the data, the study variable is modelled with

the following specifications:

Y (xi) = µ+ S(xi) + Zi : i = 1, ..., n (2.3)

where Y (xi) are the observations at locations xi, µ is the intercept, and S(xi) and Zi are the

residual information, for n locations. S(xi) represents the spatially correlated residual variation.

For instance, due to omitted important explanatory variables that have spatial trends. While,

Zi, also called the nugget effect, represents the spatially uncorrelated residual variation that

is often interpreted as either the spatial variation that is at play at smaller distance than

the minimum observed distance in the data or as measurement error. It is assumed that

Zi is normally distributed with zero mean and variance τ2. On the other hand, S(xi) has

variance σ2 and correlation function as presented before. As follows, the correlation between two

observations, corr(Y (xi), Y (xj)) = σ2ρ(d)/(τ2+σ2), which approaches σ2/(τ2+σ2) as distance

d approaches zero. In essence, this formulation of a geostatistical model extends standard

regression models to accommodate spatial correlation in the data.

The model presented above can also be specified as a joint probability distribution,

[Y, S; θ] = [S; θ][Y |S; θ] (2.4)

where [S; θ] refers to the process model and is the probabibility distribution of S given a set of

unknown parameters θ, and [Y |S; θ] refers to the data model and is the probability distribution

of the data, Y , conditional on S, given θ. This specification is a hierarchical model, in which the

distribution of an observable set of variables, Y , is specified conditionally on an unobservable

or latent process S. A class of linear geostatistical models, like 2.3, is obtained by assuming

that conditional on S, Y (xi) are mutually independent variables with Gaussian conditional

distributions,

[Y (xi)|S; θ] ∼ N(µ+ S(xi), τ
2) (2.5)

Now, to make inference, maximum likelihood estimation is often done to estimate the parameters

θ. A likelihood function is defined, that is the joint probability distribution of the data considered

as a function of the parameters θ. It is given by,

L(θ) = [Y ; θ] =

∫
[Y, S; θ][S; θ]dS (2.6)
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This is the joint distribution specified in 2.4 evaluated over the distribution of the latent

process S given parameters θ. Often, a log transformation of the likelihood function is done

for mathematical convenience. Maximizing the likelihood or the log-likelihood function yields

point estimates of the parameters θ, and correspondingly, computation of the information matrix

results in the standard errors of the parameters.

In the case that the outcome of the study is not continuous, i.e. a count or a binomial outcome,

the geostatistical model can be extended with the corresponding link function. However, this

complicates the likelihood function making it intractable necessitating methods like Laplace

approximation or Monte Carlo maximum likelihood.

2.2 Bayesian Inference

In likelihood-based inferences, as discussed in the previous section, the parameters θ are assumed

to be unknown fixed constants. In a Bayesian approach, inference is based on the posterior

distribution, which is the distribution of the unobserved quantities in the model, conditional

on the data observed. The standard linear geostatistical model is expressed as a Bayesian

hierarchical model.

Y |S, θ ∼ π(Y |S, θ) (2.7)

S|θ ∼ N(µ(θ), Q(θ)−1) (2.8)

θ ∼ π(θ) (2.9)

The first line of the hierarchical model represents the data model or the observation layer, the

second line represents the latent layer, and the third line is for the prior distribution of the

hyperparameters which represents any apriori belief for the hyperparameters. For the latent

process S, µ(θ) and Q(θ) are the mean and precision matrix, respectively. With this, the

posterior distribution of all the unknown quantities is defined as,

π(S, θ|Y ) =
π(Y |S, θ)π(S|θ)π(θ)

π(Y )
(2.10)

π(S, θ|Y ) ∝ π(Y |S, θ)π(S|θ)π(θ) (2.11)

Often, derivation of this posterior distribution involves difficult and high-dimensional integrals

that have no closed-form solutions. Markov chain Monte Carlo (MCMC) methods have been

traditionally used for solving this problem implemented in software programs like WinBUGS or

JAGS. MCMC methods have revolutionized statistical practice by enabling Bayesian inference

for complex models. However, they are computationally intensive and often struggle with

convergence issues.

Integrated nested Laplace approximation (INLA) is a computationally efficient alternative to

MCMC for approximate Bayesian inference in latent Gaussian models like geostatistical models.

INLA combines analytical approximations and numerical integration to approximate the marginal
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posterior distributions of all the parameters, including both S and θ. For a more detailed

explanation about INLA for spatial models, the paper by Blangiardo et al. (2013) provided

more information about it and how it could be implemented using R-INLA.

2.3 Stochastic Partial Differential Equations (SPDE)

In geostatistical models, the precision matrix Q is often not sparse, leading to computational

challenges. As the number of sample locations increases, the dimension of Q also grows. One of

the ways developed to circumvent this issue is the use of stochastic partial differential equations

(SPDE). As previously mentioned, one of the assumptions for modelling geostatistical data is

that there is a GRF over the study region. Whittle (1963) demonstrated that a GRF with a

Matérn covariance matrix can be represented as a solution to a continuous domain SPDE. An

approximate solution to the SPDE can be obtained using the Finite Element method, which

divides the spatial domain A into non-intersecting triangles, creating a triangulated mesh with

n nodes and n basis functions. Basis functions ψk(·) are defined as piecewise linear functions

on each triangle, equal to 1 at vertex k and 0 at the other vertices. Then, the continuously

indexed Gaussian field S(x) is represented as a discretely indexed Gaussian Markov random

field (GMRF) using the finite basis functions defined on the triangulated mesh.

S(x) ≈
n∑
i

ψk(x)xk (2.12)

Since the continuous GRF is approximated using a discrete, sparse GMRF, there is a huge

computational gain. Typically, the SPDE approach is employed together with INLA. Several

considerations should be noted in using this approach such as the specification of the triangular

mesh for the study region. The paper of Righetto et al. (2020) provided some points and

guidance on how to select an optimal mesh.
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Chapter 3

Geomasking and Review of Methods

for Inference in the Presence of

Geomasking

In the following texts, the primary problem of interest was discussed in detail. Additionally, its

impact on the inferences presented in the previous chapter was examined, highlighting how it

complicates these inferences. Methods to address this problem were also presented, along with

a quick evaluation of their advantages and disadvantages.

3.1 Geomasking

In recent years, there has been a surge in data containing geospatial information, which benefits

research by providing a better understanding through the incorporation of location data. However,

these advancements have raised numerous concerns about data security, privacy, and protection.

Both the public and federal, state, and local government organizations worry that geospatial

information could be exploited by attackers, potentially compromising critical infrastructures

and the security and privacy of individuals, properties, and systems (Bertino et al., 2008). For

instance, health records or health surveys that include GIS information contain crucial details

such as disease status, medications, and personal information about the patients or respondents.

This has prompted researchers and data collectors to implement strategies to protect the subjects

of their data collection processes.

One of most common ways employed to preserve confidentiality is geographical masking or

geomasking. Armstrong et al. (1999) compiled and developed methods that fall under the

general class of geomasking. Geomasking involves altering the true locations in the data such

as by changing the scale of the coordinates or rotating the locations around a pivot point.

However, the most common method is through point aggregation and random perturbation.

Point aggregation involves aggregating all locations within a sufficiently large geographical

area to a single location. While, random perturbation involves displacing the original location

randomly over a specific region. It has been noted that the latter method has the best balance

of location confidentiality and information preservation (Armstrong et al., 1999).
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Figure 3.1: Mechanism of uniform geomasking

To apply random perturbation, often the region of displacement is a circle with the original

location as the center and with a pre-specified radius, δ. Then, the original location is displaced

using a random angle (0 to 2π) and a random distance (0 to δ). This technique is commonly

called as uniform geomasking as the probabilities to be displaced over the region are equal.

Shown in Figure 3.1 is the mechanism of uniform geomasking. The true locations x∗ are denoted

by the red dots while the geomasked locations x are denoted by the blue dots. On the left, the

individual displacement of x∗ to x is demonstrated, while the right shows the x∗ and the x for

the whole study region.

There are some other extensions of uniform geomasking and Zandbergen et al. (2014) had

reviewed these techniques and its implementation. For example, Gaussian geomasking wherein

the displacement probabilities are Gaussian distributed, or donut geomasking wherein the region

is composed of two concentric circles like a donut. But for convenience, uniform geomasking

and methods accounting for it are the subject of this thesis as it is the most studied and is the

most common technique used in practice such as in the case study to be presented in the later

chapter.

3.2 Inferences with Geomasked Spatial Data

In essence, (uniform) geomasked spatial data are spatial data with location errors. That means

that locations xi in the models specified in 2.3 are not the true locations. The good thing,

however, contrary to pure location error, the procedure on how the location error was introduced

is typically known and provided with geomasked spatial data. Several studies have illustrated

that ignoring location errors, in general, lead to incorrect inferences and poor spatial predictions.

It has been shown that it yields to biased mean such as disease rates (Goldberg and Cockburn,

2012), covariate effects such as exposure effects (Kinnee et al., 2020), and spatial covariance

parameters (Gabrosek and Cressie, 2002).

Moreover, there have been studies as well that have documented similar effects of geomasking
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(Fronterrè et al., 2018, Arbia et al., 2023). In particular, it has been demonstrated, both

theoretically and through a simulation study, that (uniform) geomasking disrupts the spatial

structure in the data (Fronterrè et al., 2018) resulting to biased covariance parameter estimates.

Specifically, spatial variance σ2 tends to be underestimated and spatial range ϕ to be overestimated.

While nugget variance τ2 tends to be overestimated due to an artificial nugget effect resulting

from the reduction in the spatial structure. In contrast, the mean µ is not affected by geomasking

as it does not depend on the distances. In addition, it has been noted that the effects of

geomasking tend to be dependent on the ratio of displacement δ and true spatial range ϕ.

Predictions are noted to be inaccurate and imprecise as a result of incorrect model estimates.

Location error, or geomasking in particular, in geostatistics has been mentioned occasionally,

but it hasn’t been fully integrated into spatial statistical analysis. This problem was first

addressed by Gabrosek and Cressie (2002) through adjusting the standard kriging equations for

spatial predictions, and later by Cressie and Kornak (2003) with a more general approach with

adjustments for the mean component of the model.

The first to study and proposed a method in a model-based geostatistics framework were

Fanshawe and Diggle (2011). They have extended the model in 2.4 incorporating that the

true locations X∗ were not the ones observed but the displaced locations X. Correspondingly,

the model was written as,

[Y, S,X,X∗] = [Y |S,X,X∗] = [Y |S,X∗; θ, δ][S|X∗; θ, δ][X∗|X; θ, δ][X; θ, δ] (3.1)

with the same model parameters θ and new parameter δ related to distribution of the location

error. This new model proposed by Fanshawe and Diggle was just the same model as the

standard geostatistical model but with a layered latent effect composed of the process model S

and a location error model X∗. Then, the likelihood function was defined as follows,

L(θ, δ) =

∫∫
[Y, S,X,X∗; θ, δ]dSdX∗

=

∫∫
[Y |S,X∗; θ, δ][S|X∗; θ, δ][X∗|X; θ, δ][X; θ, δ]dSdX∗

∝
∫∫

[Y |S,X∗; θ, δ][S|X∗; θ, δ][X∗|X; θ, δ]dSdX∗

(3.2)

as X does not depend on any of the parameters. Fanshawe and Diggle evaluated the likelihood

using Monte Carlo integration and maximized it using Nealder-Mead algorithm. Once the point

estimates and standard errors were generated, inference and spatial predictions followed.

Extending the model for geomasked spatial data, since the distribution on how the location error

is introduced and the parameter δ is known, δ can be removed in the model as a parameter to

be estimated. Consequently, for geomasked spatial data, the model can be written as,

[Y, S,X,X∗] = [Y |S,X∗; θ][S|X∗; θ, δ][X∗|X; θ][X; θ] (3.3)

and the likelihood function as,
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L(θ) =

∫∫
[Y |S,X∗; θ][S|X∗; θ][X∗|X; θ][X; θ]dSdX∗

∝
∫∫

[Y |S,X∗; θ][S|X∗; θ][X∗|X; θ]dSdX∗
(3.4)

The main downside of this method was its computational burden. In the evaluation of the

likelihood, Monte Carlo integration was done, where B samples were drawn from [X∗|X; θ, δ]

resulting to the approximation of the likelihood,

L(θ, δ) ≈ 1

B
[Y |X∗

(b); θ] (3.5)

entailing a computation time of O(B × n3). Inverting matrices to compute the standard errors

compounded the computational burden of the method.

Fronterrè et al. (2018) revisited and improved the work of Fanshawe and Diggle (2011) through

the use of composite likelihood approach. To overcome the computational limits of the previous

method, they approximated the likelihood in 3.4 by pairwise likelihood contributions. The

resulting approximation was achieved by considering each pair of bivariate densities as independent,

resulting in

logL(θ) ≈ logL(θ)CL =

n−1∑
i=1

n∑
j=i+1

log[Yi, Yj ; θ]

=
n−1∑
i=1

n∑
j=i+1

log

∫ ∞

0
[Yi, Yj |D∗

ij ][D
∗
ij |dij ]dU∗

ij

(3.6)

where D∗
ij are the distances after geomasking is applied and dij are the true distances. They

have approximated that the conditional distribution of D∗
ij given the true distances follows a

Rice distribution with parameters dij and δ/
√
6. More detailed explanation of the composite

likelihood approach for geostatistical models are written in the works of Varin et al. (2011),

Bevilacqua and Gaetan (2015), and Stein et al. (2004). This approximation necessitated the

integration of only n(n− 1)/2 univariate integrals, significantly speeding up the process. They

have further used a quasi Monte Carlo method to enhance the computational speed of the

method. From a simulation study, they concluded that their composite likelihood approach

results in substantially smaller root mean square errors for parameter estimates compared to

standard geostatistical modelling that ignores geomasking.

In a Bayesian framework, the first to evaluate this problem and proposed a method were done by

Wilson and Wakefield (2021). They have extended the hierarchical Bayesian model, specifically

by factorizing the posterior distribution into marginal posteriors of θ and the geomasked (observed)

locations X. The distribution was specified as follows,

π(θ|Y,X,X∗) ∝ π(Y |X, θ)π(θ) (3.7)

π(X|Y,X∗, θ) ∝ π(Y |X, θ)π(X|X∗) (3.8)
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where X are the geomasked locations while X∗ are the true locations, and π(X|X∗) is the

geomasking distribution. They have employed an INLA within MCMC procedure in an effort

to make the computations faster. The procedure involved employing MCMC to sample the true

locations, followed by the application of INLA for inference based on these true locations. More

details on the approach are presented in their paper and the paper of Gómez-Rubio and Rue

(2018). Still, this approach proved to be relatively slow, taking 52 hours to run a single scenario

with 1000 iterations for 398 locations.

In summary, these were all the methods available, except for the next one to be presented

below, that were developed to deal with geomasked spatial data. As mentioned, the method of

Fanshawe and Diggle (2011), which was in a likelihood framework, and Wilson and Wakefield

(2021), in a Bayesian framework, were noted with computational burden. However, the method

proposed by Fronterrè et al. (2018) was incomplete in that it does not provide standard errors for

the parameter estimates, thus rendering it unable to make predictions. In addition, the method

of Fanshawe and Diggle (2011) and Fronterrè et al. (2018) only allowed Gaussian outcomes.

Lastly, there were no packages available in R for all of these methods, which restricts their

usability for the public.

3.2.1 GeoAdjust Package

Recently, Altay, Paige, Riebler, and Fuglstad (2023) developed a method improving the previous

works on geomasking, focusing on the Demographic and Health Survey (DHS) data. More

details were presented about DHS in the case study in the next chapter. They developed

and published an R package called GeoAdjust, designed to implement empirical Bayesian

geostatistical inference under geomasking (Altay et al., 2024). In their model, they started

with defining the likelihood of the individual observations in geomasked spatial data. That is,

π(Y,X|S, θ) =
∫
π(Y,X,X∗|S, θ)dX∗

=

∫
π(Y |S, θ)π(X|X∗)π(X∗)dX∗

(3.9)

This two-dimensional integral was then approximated numerically using quadratures. Numerical

integration was done by placing an integration point in the geomasked location X, and then

placing more rings of points around X. Hence,∫
π(Y |S, θ)π(X|X∗)π(X∗)dX∗ =

∫
π(Y |S, θ)d[π(X|X∗)π(X∗)]

≈
J1∑
j=1

mij∑
k=1

λijkπ(yi|S, θ)
(3.10)

where

λijk ∝
∫
π(X|X∗)π(X∗)dX∗ (3.11)

with mij denoting the total number of integration points for observation i ring j and J i the

total number of rings for observation i. At each integration point, there was a corresponding
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Figure 3.2: Illustration of the integration points by GeoAdjust. Figure obtained from Altay,

Paige, Riebler, and Fuglstad (2023).

weight λijk, where the
∑

ij

∑
ijk λijk = 1 for each observation i. If the displacement distance was

within the boundary of the region, the weights were adjusted accordingly by creating secondary

integration regions for areas near the boundary, each with an associated 10x10 grid of integration

points. The assignment of integration points is depicted in Figure 3.2.

They had mi1 set to 1 and mij set to 15 for the subsequent rings. In other words, after the

single integration point at X, 15 integrations points were built for the next rings surrounding X.

Since GeoAdjust was developed to analyze a DHS data, the maximum displacement radius was

set to either 2km (urban clusters) or 10km (rural clusters). For 2km, 5 rings were built while for

10km, 10 rings were built. The technical derivation of the numerical integration procedure was

presented in the appendix of the paper of Altay et al. (2022). Users can set the displacement

radius on their own but it is currently limited to the multiples of the current displacement rule

by DHS. Setting the displacement radius to 0km results in a standard geostatistical model with

only a single integration point at X, without the succeeding rings of points around it.

In addition to the numerical integration of the likelihood, GeoAdjust utilized an SPDE approach

for the estimation of S and used penalized complexity priors. PC priors are alternative for ad

hoc reference priors which are better in terms of inference and avoidance of overfitting (Simpson

et al., 2017). These PC priors are defined as probability statements reflecting prior information

on the parameters. GeoAdjust implemented the PC priors developed by Fuglstad et al., 2019

for Gaussian random fields.

P (σ > σ0) = ασ P (τ > τ0) = ατ P (ϕ < ϕ0) = αϕ (3.12)

The default priors were σ0 = τ0 = 1, ασ = ατ = 0.05, and αϕ = 0.5. It was recommended for ϕ0
to be 1/4 of the maximum distance.

GeoAdjust also leveraged on the computational power of Template Model Builder (TMB). TMB

(Kristensen et al., 2015) is an R package designed for fast implementation of models with
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complex non-linear latent effects. It is typically used in complex spatio-temporal models such

as state-space models in ecology (Albertsen et al., 2015, Auger-Méthé et al., 2017). In detail,

for GeoAdjust, TMB was used to produce marginal maximum a posteriori (MMAP) estimates of

fixed effects θ. The marginal posterior of θ was specified as,

π(θ|Y ) =

∫
π(Y |S, θ)π(S|θ)π(θ)dS

=

∫
exp(logπ(Y |S, θ) + logπ(S|θ) + logπ(θ))dS

=

∫
exp(−f(θ, S))

Then TMB was used to integrate out S, and autodifferentiate to maximize and to take a Laplace

approximation of the posterior. Inference for random effects S then occured through empirical

Bayes estimation by maximization of f(θ̂, S) conditioned on parameter estimates θ̂. As such,

posterior distributions of the covariance parameters were not generated. TMB is similar to INLA

as both are approximation procedures. However, the model being used here can’t be fitted using

INLA. For more technical explanation, Osgood-Zimmerman and Wakefield (2023) reviewed and

explained the procedure done by TMB and compared it to INLA.

By adopting the likelihood approximation, TMB implementation, and SPDE approach, GeoAdjust

was noted to be very fast compared to its predecessors. It addressed the limitation of the

previously presented methods, as it can perform inferences for continuous, binomial, and count

outcomes. Predictions could also be generated. The authors of GeoAdjust have applied it on

a real data and subjected it to a simulation study and found that it results to more accurate

parameter estimates and enhanced predictive power especially when the displacement was large.
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Chapter 4

Case Study: The Philippines

Demographic and Health Survey

This thesis was primarily inspired by the Demographic and Health Survey (DHS) Program,

which is predominantly conducted in developing countries. DHS are nationally representative

household surveys that have been conducted in over 85 countries worldwide since 1984, allowing

for comparability across different nations. The survey contains crucial data on child mortality,

nutrition, antenatal care coverage, maternal mortality, family planning, domestic violence, and

access to clean water and sanitation facilities, with some of these serving as key indicators for

the Sustainable Development Goals (The DHS Program, 2024). A range of robust observational

data analysis methods have been employed using the DHS data, including cross-sectional designs,

repeated cross-sectional designs, spatial and multilevel analyses, intra-household designs, and

cross-comparative analyses (Corsi et al., 2012).

In the past decade, alongside with the different information collected in DHS, GPS locations of

the respondents were also recorded. This enabled researchers to analyze respondent locations

spatially, allowing them to identify geographical patterns associated with specific demographic

and health outcomes and programs (Burgert et al., 2013). But to protect the survey respondents,

DHS datasets are disclosed to the public with a geomasked GPS data. As a case study to

illustrate the use of GeoAdjust, we used the latest Philippines DHS as a subject for analysis.

4.1 Data Description

The Philippines National Demographic and Health Survey (NDHS) started in 1968 and is

conducted every 5 years. The most recent survey round is the 2022 NDHS and is the seventh

DHS conducted in the country in collaboration with the DHS Program (Philippine Statistics

Authority and ICF, 2022). The collection of GPS data for NDHS started in the 2003 version.

The 2022 NDHS survey was conducted following a two-stage stratified sampling scheme that

was representative of the entire country, the 17 administrative regions, and both urban and

rural areas. In the first stage, a systematic selection of primary sampling units (PSUs) were

distributed by province and highly urbanized cities. In the second stage, a systematic random

sampling method was used to select an equal number of either 22 or 29 housing units from each
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sampled PSU.

For the GPS data included with the NDHS, Burgert et al. (2013) elaborated on the methodology

used. Initially, all data originating from the same PSU were aggregated to a single point

coordinate, which was the centroid of the PSU. Subsequently, depending on whether the PSU

was classified as a rural or urban cluster, the coordinates underwent geomasking. Urban clusters

were displaced by a distance of up to 2km (0-2 km), while rural clusters were displaced by up to

5km (0-5 km). Additionally, a further randomly selected 1% of rural clusters were displaced by

a distance of up to 10km (0-10 km). The displaced locations were made sure to remain inside

the boundaries of the region of interest. In the 2022 NDHS, there were 1247 PSUs or clusters,

comprising of 505 urban clusters and 742 rural clusters (Philippine Statistics Authority and

ICF, 2023).

Figure 4.1: Location of Metro Manila in the Philippines (PhilAtlas, 2024)

Due to the geographical complexity of the Philippines as it is an archipelago, only the National

Capital Region (NCR) or Metro Manila was considered as the study region. Metro Manila is

the country’s political and economic epicenter, and is composed of 16 cities and 1 municipality

(Porio et al., 2019). For the 2022 NDHS, 126 clusters were sampled in Metro Manila, all of

which were urban and displaced by up to 2km. The outcome analyzed in this case study was the

distance, in minutes, to the nearest health facility. There have been several studies illustrating

that longer distance times to nearest health facility are related to worse health outcomes (Kelly

et al., 2016). Especially in Metro Manila, a highly dense region, this outcome is of importance.

At the same time, this outcome was chosen as it was anticipated that the observations would

exhibit spatial correlation. It is important that the variable of study has substantial spatial

correlation to ensure the validity of geostatistical models (Diggle and Giorgi, 2019).
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Figure 4.2: Locations of the samples

4.2 Methods

The data and the shapefiles needed for the analysis were provided by the DHS Program. The

GPS data and the study area boundaries were prepared using QGIS. In the data, the distance

time to the nearest facility were given per each respondent in the survey. There were an average

of 22 respondents for each of the 126 cluster locations. However, due to the limitations of the

model to be used in the later part, only allowing single observation per location, the distance

times were aggregated for each of the cluster locations. It should be noted that aggregation

may result in a loss of information, such as the variation between the respondents. There are

available techniques that handle inferences for aggregated spatial data but this was beyond

the scope of this analysis. The outcome to be modeled was the natural log transformed mean

distance time.

After the data and shapefiles were cleaned and prepared, statistical analysis proceeded as follows.

Firstly, exploratory data analysis was done. The samples were plotted and tested for spatial

correlation. Test for residual spatial correlation was done using empirical variogram (Diggle

and Giorgi, 2019). In brief, the test involved a Monte Carlo strategy to simulate empirical

variograms under spatial independence and assessed if the variogram from the data was inside

the envelope of the simulated empirical variograms. The number of simulations were set to 1000

and distance bins were set to different values to check consistency. Afterwards, model fittings

were performed. Two hierarchical Bayesian models were fitted: one assuming the locations

were correct, and another incorporating the geomasked locations. In the ensuing texts, the first

model was called as the ‘naive’ model while the second model was called as ‘GeoAdjust’ model.

The naive model was defined similar to a standard geostatistical model.

Y (xi)|S; θ ∼ N(µ+ S(xi), τ
2) (4.1)
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where Y is the log mean distance time (in minutes) to the nearest facility at locations x for

i = 1, ..., n and µ is the overall mean. While S represents the residual information capturing

the spatial variation assumed to follow a multivariate normal distribution with an exponential

correlation function and variance, σ2. The remaining unstructured variation are described by

τ2. Similarly, the GeoAdjust model had similar form with an addition of another latent effect

introduced by geomasking.

Y (xi)|S,X,X∗; θ, δ ∼ N(µ+ S(xi), τ
2) X|X∗; δ ∼ π(X|X∗) (4.2)

where X are the geomasked locations and X∗ are the true (unobserved) locations, with π(X|X∗)

as the geomasking distribution where δ set to 2km. The priors for both model covariance

parameters were PC priors and a flat prior was used for µ. A triangulated mesh was then

constructed for the the SPDE approach. Different PC prior specifications and meshes were

done for sensitivity analysis.

Both models were then fitted in TMB using GeoAdjust. As noted in the previous chapter, a 0km

displacement radius results to the standard geostatistical model. Predictions and uncertainty

around this predictions for both model were produced and visualized graphically.

4.3 Results

The locations of the cluster samples are presented in Figure 4.2. Figure 4.3 indicates that

according to the residual spatial correlation test there was substantial spatial correlation in the

data. However, this result should be interpreted taking into consideration that the locations

were geomasked. It is highly probable that the true spatial correlation was much higher.

Figure 4.3: Results for test of residual spatial correlation
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Results for the two fitted models are shown in Table 4.1. For this data with 126 locations, all

of the models ran less than a minute. As mentioned in the previous chapter, since the overall

mean µ was not dependent on the distance, both the naive and GeoAdjust model estimated

it similarly. The differences from the two models arose in the estimates for the covariance

parameters. In particular, the GeoAdjust model had a smaller estimate for the spatial variance

σ2 and a bigger estimate for the nugget variance τ2 than the naive model. For spatial range ϕ,

the GeoAdjust model had bigger estimates than the naive model.

Parameter Naive GeoAdjust

µ 2.6022 (2.49, 2.71) 2.5966 (2.48, 2.71)

σ2 0.0351 0.0289

ϕ 4.7818 6.2253

τ2 0.1109 0.1196

Time elapsed (in sec) 16.69 42.14

Table 4.1: Parameter estimates for the Naive and GeoAdjust model

From the parameter estimates of the two models, predictions for the whole study region were

made with the corresponding standard deviations. Figure 4.4 presents the comparison of the

values for the two models. The prediction maps of the models seemed similar but the map from

the GeoAdjust model was smoother. This can be explained by the difference in the estimates

for spatial range. The primary distinction in the model predictions seemed to be the level of

uncertainty. The GeoAdjust model generated more precise estimates, with higher precision

evident in the sample location points. Notably, areas in the southeast of the region appeared

to have the longest travel times to the nearest facility compared to other areas.

The results presented above cannot be confirmed as accurate since only the geomasked dataset

was available. Assuming that the results of GeoAdjust were indeed the true values of the

parameters, it seemed counterintuitive to observe smaller spatial variance and larger nugget

variance when geomasking was considered. However, it appeared that geomasking in this

particular dataset might have affected the spatial range only. Nonetheless, these results warranted

further scrutiny.
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Figure 4.4: Predictions of the naive (right) and GeoAdjust (left) model
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Chapter 5

Simulation Study

Previously, GeoAdjust was demonstrated using a case study, specifically the Philippines DHS. It

was observed that there were some differences when GeoAdjust was implemented compared to a

standard geostatistical analysis ignoring location error. In this chapter, a simulation study was

conducted to determine the performance of GeoAdjust and the scenarios where it is applied

best. Altay et al. (2022) performed a simulation study to demonstrate the performance of

GeoAdjust under a standard DHS displacement procedure, where data points were displaced by

2km, 5km, or 10km. Their general findings indicated that GeoAdjust performed better when

the displacement was less than the true spatial range. If the displacement exceeded the true

spatial range, the spatial correlation was entirely destroyed. They also found that it performed

better in larger displacement settings. In this simulation study, these results were extended

in more detail. Instead of considering multiple displacement radii present in the data, only a

single displacement was focused on. Several combinations of spatial variance (sill) and nugget

variance (nugget) were also considered, and the impact of sample sizes was examined. Lastly,

the performance was measured in terms of both parameter estimation and predictions.

5.1 Simulation Set up

Using the parameter estimates from the case study results, several simulation settings were

established. The mean parameter µ was set to 2.5 and the spatial range ϕ was set to 8 km to

accommodate larger displacements. The spatial variance (sill) σ2 and nugget variance (nugget)

τ2 were varied, with values set to either 0.2 or 0.02. This created four combinations of sill and

nugget values. Sample sizes were chosen based on those in the case study, with values of 75, 125,

and 250 locations. For the displacement radius, both the original 2km and a larger 6km were

selected. Combining all these parameter settings resulted in a total of 24 simulation scenarios.

The following steps were the summary of the simulation study:

1. Data generation: Generate 3,000 + n locations (X∗) over an area randomly. The n

locations will be used as sample locations (X∗) and the 3,000 locations will be used as

prediction locations (X̃). Then, simulate the outcome Y given the locations (X∗ or X̃)

and the parameter settings.
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2. Geomasking: Apply uniform geomasking to X∗, by randomly displacing over a circular

region given displacement parameter, to have the geomasked locations (X).

3. Analysis: Perform an analysis using the naive model and by GeoAdjust. Generate

predictions for the X̃ using the models.

4. Parameter estimate measure: Compute parameter bias and relative bias.

5. Prediction measure: Compute prediction root mean squared error (RMSE) and continuous

ranked probability score (CRPS).

For data generation, n referred to the different sample size settings. These steps were done

100 times for the 24 settings for a total of 2400 runs. To save computational time, parallel

runs were implemented using the Flemish Supercomputer Center (VSC, Vlaams Supercomputer

Centrum). It took a total of approximately 4 days to complete all of the runs.

Bias and relative bias were used as measurement for the the parameter estimates of the models.

Bias for any parameter θ is

= θ̂ − θ0 (5.1)

where θ̂ is the model’s estimate and θ0 is the true value. While, relative bias on the other hand

is,

=
θ̂ − θ0
θ0

(5.2)

Predictive performance was measured using root mean square error (RMSE),

RMSE =

√√√√ 1

3000

3000∑
i=1

(yi − ŷi)2 (5.3)

However, RMSE does not consider the uncertainty around the predictions and may lead to

incorrect comparison results. Hence, continuous ranked probability score (CRPS) was also

used as a predictive measure. CRPS can be used to compare observations and predictions

accounting for the uncertainty (Matheson and Winkler, 1976). The CRPS for observation y is

a score function that compares the Cumulative Distribution Function (CDF) of the prediction

distribution (F ) with the degenerate CDF of the observation (1[u ≥ y]) (Moraga, 2023). It is

given by,

CRPS(F, y) =

∫ ∞

−∞
(F (u)− 1[u ≥ y])2du (5.4)

CRPS simplifies to mean absolute error (MAE) when the predicted distribution is a single point

estimate rather than a full distribution. The mean CRPS for all 3000 prediction locations was

computed and was used to compare the results. For all of the measures, namely bias, relative

bias, RMSE, and CRPS, 0 was the perfect score. Thus, a smaller or value close to 0 signified

better performance. Since in each 24 settings, 100 simulated data were analyzed using two

models, pairwise comparisons were made. Specifically, pairwise bias ratio for the parameters

and pairwise differences for the RMSE and CRPS were computed for each of the 100 runs.

Bias ratio =
biasGeoAdjust

biasnaive
(5.5)
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RMSE difference = RMSEGeoAdjust − RMSEnaive (5.6)

CRPS difference = CRPSGeoAdjust − CRPSnaive (5.7)

5.2 Results

As shown in the additional figures for the simulation study in Appendix B, the parameter

estimates from the naive analysis generally aligned with the theory described by Fronterrè et al.

(2018) regarding the effects of geomasking. Specifically, the relative bias for the mean parameter

µ across different simulation settings was close to zero. However, the estimates for the covariance

parameters showed some discrepancies: the spatial variance σ2 tended to be underestimated,

the nugget variance τ2 was overestimated, and the spatial range ϕ was also overestimated, on

average, all in line with the theoretical expectations.

Figures 5.1, 5.2, 5.3, and 5.4 present the pairwise bias ratio for the model parameters across all

settings. As anticipated, the mean parameter µ was consistently estimated correctly by both

methods, with bias ratios in all settings very close to 1, indicating similar bias. However, the

results for the covariance parameters differed notably between the methods. For the spatial

variance σ2, the bias was generally smaller when using GeoAdjust compared to the naive

approach. This improvement was more pronounced as the sample size increased, and especially

when the displacement radius was set to 6km. The enhanced performance of GeoAdjust over the

naive method was particularly evident in scenarios where the true spatial variance was greater

than or equal to the true nugget variance. Similarly, for the nugget variance parameter τ2,

GeoAdjust showed better performance as the sample size increased and the displacement radius

was set to 6km. This improvement was also more noticeable when the true spatial variance

was greater than or equal to the nugget variance. Although a similar trend was observed

for the spatial range parameter ϕ, there were exceptions. Specifically, in instances where the

displacement radius was set to 2km, the naive method sometimes outperformed GeoAdjust.

Additionally, when comparing the bias ratios for the three covariance parameters, GeoAdjust

demonstrated better performance than the naive method for both the nugget variance τ2 and

the spatial range ϕ. For instance, with a true spatial variance of 0.2, a nugget variance of 0.02,

250 sample locations, and a 6km displacement, the median bias for τ2 and ϕ using GeoAdjust

was nearly half that of the naive method. Under the same conditions, GeoAdjust had a median

bias for the spatial variance σ2 of about 75% of the naive method’s bias. These results indicated

that using GeoAdjust led to clearer improvements in the estimation of nugget variance and

spatial range compared to spatial variance.

In terms of predictive performance, pairwise differences in RMSE and CRPS revealed similar

distinctions between the naive method and GeoAdjust. For RMSE, a noticeable difference

between the two methods emerged only when the true spatial variance was significantly greater

than the true nugget variance. Conversely, when CRPS was used as the measure of predictive

performance, GeoAdjust consistently outperformed the naive method. Larger sample sizes and a

displacement radius of 6km yielded better predictive scores, especially when the spatial variance
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was greater than or equal to the nugget variance.

Computational times were recorded for all the runs, with longer times noted for GeoAdjust,

especially when the sample size increased and the displacement radius was 6km. Spatial variance

and nugget variance had no noticeable effects on computational time. This was expected

since the method constructs integration points for each sample location and its surroundings,

depending on the displacement size and the number of locations. The difference in run times

between GeoAdjust and the naive method was not recorded to be greater than 500 seconds,

supporting that the method was relatively fast compared to previous methods developed for

geomasking. It was also observed that among the 2400 runs, 3 runs failed. These failures

occurred in scenarios where the sample size was 75 locations.

These results indicated that while GeoAdjust generally provided better estimates for the covariance

parameters and better predictions, its performance varied depending on the number of sample

locations, size of the displacement, and the relative magnitudes of the spatial and nugget

variances.
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Figure 5.1: Pairwise bias ratio for the µ parameter

Figure 5.2: Pairwise bias ratio for the σ2 parameter
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Figure 5.3: Pairwise bias ratio for the ϕ parameter

Figure 5.4: Pairwise bias ratio for the τ2 parameter
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Figure 5.5: Pairwise RMSE difference

Figure 5.6: Pairwise CRPS difference
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Chapter 6

Discussion and Conclusion

Geographical masking through random perturbation over a circular region has been shown to

lead to biased parameter estimates and poor spatial predictions. In this thesis, we reviewed

methods designed to address the geomasking problem, providing a brief evaluation of each,

with a particular focus on GeoAdjust developed by Altay, Paige, Riebler, and Fuglstad (2023).

We implemented GeoAdjust on the Philippines DHS dataset and compared the results with

those from a naive model. Although differences were observed, the true data were unknown,

prompting a simulation study to evaluate performance. Various scenarios were created to assess

the flexibility and effectiveness of GeoAdjust. Simulation results indicated that GeoAdjust

performed better with a sample size of approximately 250 locations, a displacement of 6km, and

a larger spatial variance. In this chapter, we presented possible justifications and limitations of

these results, together with guidance and suggestions for future work.

To begin with, we found in both the case study and simulation study that the overall mean µ

was estimated similarly by GeoAdjust and by the naive model that ignores location error. This

indicated that µ was unaffected by geomasking, aligning with the theory (Fronterrè et al., 2018).

Since µ did not depend on the distances, introducing error in the locations did not impact µ. In

practice, the focus is often not only on µ but also on the effects of various covariates. Although

this study did not explicitly model covariate effects, the results for µ suggest that geomasking

primarily affects distance-based covariates. Indeed, a study on raster-based covariates found that

the strength of the association of spatially-structured covariates was attenuated by geomasking,

thereby affecting prediction performance as well (Altay et al., 2024). However, whether GeoAdjust

can estimate covariate effects correctly at different scenarios remained to be seen.

In terms of covariance parameters, we obtained a range of results and observations from our

analyses. Consistent with the findings of Altay et al. (2024), we found that larger displacements

led to better covariance parameter estimates with GeoAdjust. Specifically, a 6km displacement

compared to a 2km displacement yielded better bias ratios against the naive model. This can

be attributed to the fact that larger displacements cause more significant disruption in spatial

associations, allowing GeoAdjust to recover more effectively. On the other hand, with smaller

displacements like 2km, the disruption is less pronounced, which resulted in estimates that were

closer to those of the naive model. We also observed that larger sample sizes were optimal,
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with 250 sample locations producing the smallest biases for the parameter estimates. This

made sense because the model included a layered latent effect, which introduced more noise

and required more information for a statistical signal to be detected. This layered latent effect

was similar to the mechanism of preferential sampling in spatial models. In spatial data with

preferential samples, Diggle et al. (2010) noted that a larger sample size is needed compared

to random samples due to these latent effects. We considered extending the maximum sample

size to 500, but most of the runs failed. The crashes may have been caused by computational

burden or other factors, possibly including the high density of points in a small area leading

to overlapping geomasking regions, which may had further distorted the spatial structure. It

prevented us from evaluating the performances for sample locations above 250. This could be

a potential extension of the simulation study to determine whether increasing the sample size

continuously improves the results or if there is an optimal sample size. Our current analyses

showed that improvements in some parameter estimates continued to increase with sample size,

while others plateaued at a certain point. Another interesting area to explore is the impact

of sampling design, such as the consideration of adaptive sampling (Chipeta et al., 2016). In

the current case study and simulation study, the sample locations were randomly generated.

Applying adaptive sampling could potentially improve the estimates and predictions, especially

given the application of geomasking in the data.

The relative magnitude of spatial variance compared to nugget variance was found to impact

the performance of GeoAdjust. We observed that GeoAdjust performed better in parameter

estimation when the true spatial variance was greater than or equal to the true nugget variance.

In contrast, only small improvements were seen when the nugget variance exceeded the spatial

variance. This outcome was expected since the effects of geomasking are heavily related to the

spatial component of the data. With more spatial variation, geomasking causes more distortion,

requiring GeoAdjust to recover more information. However, the actual magnitudes of these

variances are typically unknown beforehand, as was the case in the Philippines DHS where only

the geomasked data were available. This raises the question of whether using GeoAdjust will be

beneficial. To address this, it is advisable to first check for substantial spatial correlation in the

data, as suggested by Diggle and Giorgi (2019). Even if the spatial correlation is weak, as in our

case study where the p-value was not highly significant, we still observed some improvement,

albeit small, in estimates when the spatial variance was much smaller than the nugget variance

in the simulation study. Therefore, our recommendation is to apply GeoAdjust whenever there

is substantial spatial structure in the data.

In spatial analysis, it is common that the interest is more on the effects of certain covariates

and prediction maps, and less on covariance parameters itself (Diggle et al., 2003). Hence,

our simulation study highlighted results on the predictions as well. Similar scenarios were

found to be optimal for better spatial predictions by GeoAdjust, which were larger sample size,

displacement, and spatial variance. Interestingly, however, we found that when RMSE was used

to compare the predictive performances, the separations between the naive and GeoAdjust were

not that clear. In other words, the point estimates of the predictions by both models were

almost similar. But when uncertainty around the point estimates was taken into consideration,
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through the use of CRPS as comparison, it was more vivid that GeoAdjust had better predictive

performance.

One missing scenario in the simulation study was varying the spatial range. We kept it fixed

at 8km to ensure it was larger than the 2km and 6km displacements, preventing the complete

loss of spatial structure. Recent papers had suggested that the impact of spatial range was

closely related to the displacement radius (Fronterrè et al., 2018, Altay et al., 2022), which

was why we fixed the spatial range and varied the displacement radius. It is recommended to

investigate whether parameter inferences and spatial predictions are affected by a smaller or

larger spatial range. Additionally, exploring mesh size could be valuable and should be included

in a simulation study. It should be noted that finer meshes lead to heavier computational

burden. Prior sensitivity analysis can also be conducted, as there were concerns about potential

overfitting towards the base model with PC priors (Bakka et al., 2018).

Overall, the results from the case study and simulation study pointed to the superiority of

GeoAdjust against the naive when geomasking was introduced in the data. The best scenarios

for GeoAdjust were data with larger sample sizes, larger displacements, and larger spatial

variance. Most of these scenarios were not explored before by the authors of the method.

Therefore, analysts of geomasked data should consider the sample size, displacement, and if

possible spatial variation of the data before applying GeoAdjust. Additionally, spatial data

owners who wish to apply geomasking should exercise caution. Our results indicated that to

recover as much spatial information as possible, the optimal scenarios were necessary.

In the current literature, we found that GeoAdjust was the better and faster option, but also

there were other fast techniques like the composite likelihood approach proposed by Fronterrè et

al. (2018). The composite likelihood approach was limited to point estimates of the parameters

and did not have an associated R package. Future development by the authors could provide

more options for analyzing geomasked data. Additionally, new methods can be developed to

address some of the weaknesses of GeoAdjust. GeoAdjust was designed for DHS datasets,

which meant it is constrained to the DHS displacement procedure only. Researchers can use

our findings to develop these new methods. Beyond the displacement over a circular region

considered in this thesis and by the methods presented, various other forms of geomasking are

also applied in the real world. Significant research gaps still exist, presenting opportunities for

further investigation.

In conclusion, we reviewed current methods for geomasking and selected GeoAdjust for further

analysis. Through a case study and simulation study, we obtained interesting results and

identified scenarios where GeoAdjust performed best. We also provided recommendations and

suggested potential directions for further research. The findings of this research offer valuable

insights into the broader study of geomasking and location error.
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Appendix A

Additional Results for the Case

Study

Figure A.1: Results for test of residual spatial correlation: 11km
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Figure A.2: Results for test of residual spatial correlation: 15km

Parameter
Mesh A Mesh B

Naive GeoAdjust Naive GeoAdjust

µ 2.6022 (2.49, 2.71) 2.5966 (2.48, 2.71) 2.6025 (2.49, 2.71) 2.5968 (2.49, 2.70)

σ2 0.0351 0.0289 0.0348 0.0290

ϕ 4.7818 6.2253 4.8797 6.1042

τ2 0.1109 0.1196 0.1113 0.1164

Time elapsed (in sec) 16.69 42.14 20.77 92.32

Table A.1: Parameter estimates for the Naive and GeoAdjust model with different meshes:

Mesh A (a=1, b=3, c=0.5) and Mesh B (a=1, b=3, c=0.35)

Parameter
Prior A Prior B

Naive GeoAdjust Naive GeoAdjust

µ 2.6022 (2.49, 2.71) 2.5966 (2.48, 2.71) 2.6022 (2.49, 2.71) 2.5966 (2.48, 2.71)

σ2 0.0351 0.0289 0.0351 0.0289

ϕ 4.7818 6.2253 4.7822 6.2196

τ2 0.1109 0.1196 0.1108 0.1196

Time elapsed (in sec) 16.69 42.14 14.38 45.06

Table A.2: Parameter estimates for the Naive and GeoAdjust model under different priors:

Prior A (σ0=τ0=1, ρ0 = 4) and Prior B (σ0=τ0=1.2, ρ0 = 6)
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Appendix B

Additional Results for the

Simulation Study

Figure B.1: Time difference of the two methods (in seconds)
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Figure B.2: Relative bias for µ: Sill=0.2, Nugget=0.02

Figure B.3: Relative bias for µ: Sill=0.02, Nugget=0.2
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Figure B.4: Relative bias for µ: Sill=0.2, Nugget=0.2

Figure B.5: Relative bias for µ: Sill=0.02, Nugget=0.02
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Figure B.6: Relative bias for σ2: Sill=0.2, Nugget=0.02

Figure B.7: Relative bias for σ2: Sill=0.02, Nugget=0.2
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Figure B.8: Relative bias for σ2: Sill=0.2, Nugget=0.2

Figure B.9: Relative bias for σ2: Sill=0.02, Nugget=0.02
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Figure B.10: Relative bias for ϕ: Sill=0.2, Nugget=0.02

Figure B.11: Relative bias for ϕ: Sill=0.02, Nugget=0.2
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Figure B.12: Relative bias for ϕ: Sill=0.2, Nugget=0.2

Figure B.13: Relative bias for ϕ: Sill=0.02, Nugget=0.02
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Figure B.14: Relative bias for τ2: Sill=0.2, Nugget=0.02

Figure B.15: Relative bias for τ2: Sill=0.02, Nugget=0.2
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Figure B.16: Relative bias for τ2: Sill=0.2, Nugget=0.2

Figure B.17: Relative bias for τ2: Sill=0.02, Nugget=0.02
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Figure B.18: RMSE: Sill=0.2, Nugget=0.02

Figure B.19: RMSE: Sill=0.02, Nugget=0.2
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Figure B.20: RMSE: Sill=0.2, Nugget=0.2

Figure B.21: RMSE: Sill=0.02, Nugget=0.02
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Figure B.22: CRPS: Sill=0.2, Nugget=0.02

Figure B.23: CRPS: Sill=0.02, Nugget=0.2
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Figure B.24: CRPS: Sill=0.2, Nugget=0.2

Figure B.25: CRPS: Sill=0.02, Nugget=0.02
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Appendix C

R Codes

#-------------------------------------------------------------------

# CASE STUDY: PHILIPPINES DHS

#-------------------------------------------------------------------

##### Set working directory

rm(list=ls())

setwd("C:/Users/Roel Jude Bagaforo/Documents/Personal Files/Academic

Files/Masters/Thesis/Codes and Outputs/Data")

##### Load libraries

library(tidyverse) # most variable creation here uses tidyverse

library(tidyselect) # used to select variables

library(haven) # used for Haven labelled DHS variables

library(labelled) # used for Haven labelled variable creation

library(expss) # for creating tables with Haven labelled data

library(xlsx) # for exporting to excel

library(sf) # for reading shp files

library(PrevMap) # for standard inferences

library(geoR) # for standard inferences

library(patchwork) #for arranging plots

library(raster) # for calculating distances between the points

library(GeoAdjust) # GeoAdjust package

##### Load the dataset

IRdata <- read_dta("PHIR82FL.dta") #Individual recode data

minhc <- IRdata[c("v001","v002","v483a")] %>% group_by(v001) %>%

summarise(mean_min=mean(v483a), sd_min=sd(v483a), total_women=n())

names(minhc)[names(minhc) == "v001"] <- "clustid" #renaming cluster id

#shapefile

boundaries <- st_read("ncr_map2_projected.shp") #NCR boundaries ncr_map2

boundgeom <- boundaries$geometry %>% fortify() #for plotting

samplelocs <- read.csv("ncr2_clustloc_projected.csv") #NCR cluster locations

names(samplelocs)[names(samplelocs) == "DHSCLUST"] <- "clustid" #rename

#we also want to know the distances between the locations

locsdist <- pointDistance(samplelocs[, c("X", "Y")], lonlat=FALSE)
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range(replace(locsdist,locsdist==0,NA),na.rm=T)/1000

#merge data and shp

gausample <- merge(samplelocs, minhc, by="clustid", all=F)

gausample <- gausample[c("clustid","X","Y","LATNUM","LONGNUM","URBAN_RURA",

"mean_min","total_women")]

gausample$log_min <- log(gausample$mean_min)

# Plot of samples

ggplot() +

geom_sf(data=boundgeom, fill="grey") +

geom_point(data=gausample,aes(X,Y, color=log_min),size=3) +

labs(x = "Longitude", y= "Latitude", color="Log Mean Minutes") +

theme_minimal() + theme(legend.position = "bottom") +

scale_color_gradient(limits=c(1,4))

# spatcorr test

check.spatgau.11 <- spat.corr.diagnostic(log_min~1,

coords = ~I(X/1000) + I(Y/1000),

data=gausample,likelihood = "Gaussian", uvec=seq(0,11,length=12),n.sim=1000,

lse.variogram = T)

check.spatgau.15 <- spat.corr.diagnostic(log_min~1,

coords = ~I(X/1000) + I(Y/1000),

data=gausample,likelihood = "Gaussian", uvec=seq(0,15,length=12),n.sim=1000,

lse.variogram = T)

# GeoAdjust

set.seed(888)

crs_Degrees = "+proj=longlat +datum=WGS84" #the original CRS of the data

crs_KM = "+units=km +proj=utm +zone=51" #target CRS

mesh.s <- meshCountry(admin0= boundaries, max.edge = c(1,3), offset = -.02,

cutoff=0.5, target_crs = crs_KM)

png(filename = "mesh0.5.png", width = 6.27, height = 9.69/2.25, units = "in", res = 300)

plot(mesh.s)

dev.off()

locObs = data.frame(long = gausample$LONGNUM, lat = gausample$LATNUM)

locObs = sf::st_as_sf(locObs, coords=c("long","lat"), crs = crs_Degrees)

#gaussian outcome

system.time(inputDatagau <- prepareInput(response = list(ys=gausample$log_min),

locObs = locObs,

likelihood = 0, jScale = 1, urban = gausample$URBAN_RURA,

mesh.s = mesh.s, adminMap = boundaries, covariateData = NULL,

target_crs = crs_KM))

system.time(gau.naive <- estimateModel(data=inputDatagau, options=list(random=0,

covariates=0),
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priors=list(beta=c(0,100), range=4), USpatial=1,

alphaSpatial=0.05, UNugget=1, alphaNug=0.05, n.sims=1000))

system.time(gau.geoadjust <- estimateModel(data=inputDatagau, options=list(random=1,

covariates=0),

priors=list(beta=c(0,100), range=4), USpatial=1,

alphaSpatial=0.05, UNugget=1, alphaNug=0.05, n.sims=1000))

print(gau.naive$res)

print(gau.geoadjust$res)

# predictions

newlocs <- st_sample(x=boundaries, size=10000, type="regular")

pred.naive <- predRes(obj=gau.naive[["obj"]], predCoords=newlocs/1000,

draws=gau.naive[["draws"]], mesh.s=mesh.s, flag=0, covariateData=NULL)

pred.geoadjust <- predRes(obj=gau.geoadjust[["obj"]], predCoords=newlocs/1000,

draws=gau.geoadjust[["draws"]], mesh.s=mesh.s, flag=0, covariateData=NULL)

plotpred.naive <- as.data.frame(cbind(X=st_coordinates(newlocs)[,1],

Y=st_coordinates(newlocs)[,2],

pred=pred.naive[,1], sd= pred.naive[,3], cv=pred.naive[,1]/pred.naive[,3]*100))

ggplot() +

geom_sf(data=boundgeom, fill="grey") +

geom_point(data=plotpred.naive,aes(X,Y, color=pred)) +

labs(x = "Longitude", y= "Latitude", color="Log Mean Minutes") +

scale_color_gradient(limits=c(2.3,2.9), breaks=c(2.3,2.45,2.60,2.85,2.90)) +

theme_minimal() + theme(legend.position = "bottom")

ggplot() +

geom_sf(data=boundgeom, fill="grey") +

geom_point(data=plotpred.naive,aes(X,Y, color=sd)) +

labs(x = "Longitude", y= "Latitude", color="SD") +

scale_color_gradient(limits=c(0.1,0.22),low="yellow",high="red",

breaks=c(0.1,0.14,0.18,0.22)) +

theme_minimal() + theme(legend.position = "bottom")

plotpred.geoadjust <- as.data.frame(cbind(X=st_coordinates(newlocs)[,1],

Y=st_coordinates(newlocs)[,2],

pred=pred.geoadjust[,1], sd= pred.geoadjust[,3],

cv=pred.geoadjust[,3]/pred.geoadjust[,1]*100))

ggplot() +

geom_sf(data=boundgeom, fill="grey") +

geom_point(data=plotpred.geoadjust,aes(X,Y, color=pred)) +

labs(x = "Longitude", y= "Latitude", color="Log Mean Minutes") +

scale_color_gradient(limits=c(2.3,2.9), breaks=c(2.3,2.45,2.60,2.85,2.90)) +

theme_minimal() + theme(legend.position = "bottom")

ggplot() +
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geom_sf(data=boundgeom, fill="grey") +

geom_point(data=plotpred.geoadjust,aes(X,Y, color=sd)) +

labs(x = "Longitude", y= "Latitude", color="SD") +

scale_color_gradient(limits=c(0.1,0.22),low="yellow",high="red",

breaks=c(0.1,0.14,0.18,0.22)) +

theme_minimal() + theme(legend.position = "bottom")

# mesh sensitivity

mesh.s2 <- meshCountry(admin0= boundaries, max.edge = c(1,3),

offset = -.02,

cutoff=0.35, target_crs = crs_KM)

plot(mesh.s2)

system.time(inputDatagau <- prepareInput(response =

list(ys=gausample$log_min), locObs = locObs,

likelihood = 0, jScale = 1, urban = gausample$URBAN_RURA,

mesh.s = mesh.s2, adminMap = boundaries, covariateData = NULL,

target_crs = crs_KM))

system.time(gau.naive <- estimateModel(data=inputDatagau,

options=list(random=0,covariates=0),

priors=list(beta=c(0,100), range=4), USpatial=1,

alphaSpatial=0.05, UNugget=1, alphaNug=0.05, n.sims=1000))

system.time(gau.geoadjust <- estimateModel(data=inputDatagau,

options=list(random=1,covariates=0),

priors=list(beta=c(0,100), range=4), USpatial=1,

alphaSpatial=0.05, UNugget=1, alphaNug=0.05, n.sims=1000))

print(gau.naive$res)

print(gau.geoadjust$res)

# prior sensitivity

system.time(gau.naive <- estimateModel(data=inputDatagau,

options=list(random=0,covariates=0),

priors=list(beta=c(0,100), range=6), USpatial=1.2,

alphaSpatial=0.05, UNugget=1.2, alphaNug=0.05, n.sims=1000))

system.time(gau.geoadjust <- estimateModel(data=inputDatagau,

options=list(random=1,covariates=0),

priors=list(beta=c(0,100), range=6), USpatial=1.2,

alphaSpatial=0.05, UNugget=1.2, alphaNug=0.05, n.sims=1000))

print(gau.naive$res)

print(gau.geoadjust$res)
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#-------------------------------------------------------------------

# SIMULATION STUDY

#-------------------------------------------------------------------

#SIMULATE GEOMASKED DATA OVER THE STUDY REGION

# Empty the environment

rm(list=ls(all=TRUE))

# Load libraries

library("sf") #for shp manipulation

library("geoR") #to simulate GRF

# Load the shapefile/boundary

boundaries <- st_read("ncr_map2_projected.shp") #NCR boundaries ncr_map2

crs_KM = "+units=km +proj=utm +zone=51" #target CRS

boundaries <- st_transform(boundaries, crs=crs_KM)

## Function to simulate data for geomasked sample locations and un-

geomasked prediction locations

sim_geodata <- function(npoints=npoints, mean=mean, sill=sill,

range=range, nugget=nugget, delta=delta){

#set.seed(123)

n <- 3000+npoints

locs <- st_sample(x=boundaries, size=n, type="random")

coords <- st_coordinates(locs)

#set.seed(123)

obs <- grf(n=n, grid=coords, cov.pars=c(sill,range), nugget=nugget,

mean=mean)$data

data <- data.frame(cbind(coords,obs))

data$urbanrural <- "U"

#un-geomasked prediction locations

predlocs <- st_as_sf(data, coords=c("X", "Y"), crs=crs_KM)[(1+npoints):

(n-1),]

#geomasked sample locations

samplelocs <-st_as_sf(data, coords=c("X", "Y"), crs=crs_KM)[1:npoints,]

#function to apply geomasking on the the locations but making sure that

the new locations fall within the study region

displace_within_region <- function(point, polygon=boundaries,

delta=delta) {

while (TRUE) {

# Generate random displacement within max_distance

dx <- runif(1, min=0, max=delta)*cos(runif(1, min = 0, max=2*pi))

dy <- runif(1, min=0, max=delta)*sin(runif(1, min = 0, max=2*pi))

# Displace the point

new_point <- st_coordinates(point) + c(dx, dy)

new_point <- st_point(new_point)
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# Check if the new point is within the polygon

if (st_within(new_point, polygon, sparse=F)) {

return(st_coordinates(new_point))

}

}

}

geomasked_points <- do.call(rbind.data.frame,lapply(samplelocs$geometry,

displace_within_region,

polygon=boundaries, delta=delta))

colnames(geomasked_points) <- c("maskedX", "maskedY")

samplelocs <- cbind(data[1:npoints,], geomasked_points)

samplelocs <-st_as_sf(samplelocs, coords=c("maskedX", "maskedY"),

crs=crs_KM)

#check if samplelocs are inside boundaries

st_within(samplelocs, boundaries, sparse=F)

# return the locs and corresponding data

out <- list(samplelocs=samplelocs, predlocs=predlocs, jScale=delta/2)

return(out)

}

#system.time(trial <- sim_geodata(npoints=250, mean=0.25, sill=0.009,

range=8, nugget=0.001, delta=6))

args = commandArgs(trailingOnly = T)

setting = as.integer(args[1])

npoints = as.integer(args[2])

mean = as.numeric(args[3])

sill = as.numeric(args[4])

range = as.integer(args[5])

nugget = as.numeric(args[6])

delta = as.integer(args[7])

run = as.integer(args[8])

data <- sim_geodata(npoints, mean, sill, range, nugget, delta)

filename_save <- sprintf("/vsc-hard-mounts/leuven-

data/356/vsc35665/roel/spdata_%02d_%03d", setting, run)

save("data", file = sprintf("%s.RData", filename_save))

#ANALYZE THE SIMULATED DATA (NAIVE AND GEOADJUST)

# Empty the environment
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rm(list=ls(all=TRUE))

# Load libraries

library("sf") #for shp manipulation

library("GeoAdjust") #for analysis

library("scoringRules") #for CRPS

# Analyze the data

analyze <- function(data){

jScale <- data$jScale

#build mesh

crs_Degrees = "+proj=longlat +datum=WGS84" #the original CRS of the data

crs_KM = "+units=km +proj=utm +zone=51" #target CRS

boundaries <- st_read("ncr_map2_projected.shp") #NCR boundaries ncr_map2

boundaries <- st_transform(boundaries, crs=crs_KM)

mesh.s <- meshCountry(admin0= boundaries, max.edge = c(1,3), offset =

-.02,

cutoff=0.5, target_crs = crs_KM)

#load data locations

locObs = st_as_sf(st_transform(data$samplelocs$geometry, crs =

crs_Degrees))

#prepare input data, build integration points

inputData <- prepareInput(response = list(ys=data$samplelocs$obs),

locObs = locObs,

likelihood = 0, jScale =

jScale, urban =

data$samplelocs$urbanrural,

mesh.s = mesh.s, adminMap =

boundaries, covariateData =

NULL,

target_crs = crs_KM)

#naive estimation

naive_time<-system.time(naive <- estimateModel(data=inputData,

options=list(random=0,covariates=0),

priors=list(beta=c(0,100),

range=8), USpatial=1,

alphaSpatial=0.05, UNugget=1,

alphaNug=0.05, n.sims=1000))

#geoadjust

geoadjust_time<-system.time(geoadjust <- estimateModel(data=inputData,

options=list(random=1,covariates=0),

priors=list(beta=c(0,100),

range=8), USpatial=1,

alphaSpatial=0.05, UNugget=1,

alphaNug=0.05, n.sims=1000))

#save parameter
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#print(naive$res)[,1:2]

#print(geoadjust$res)[,1:2]

#predictions

pred.naive <- predRes(obj=naive[["obj"]],

predCoords=data$predlocs$geometry,

draws=naive[["draws"]], mesh.s=mesh.s, flag=0,

covariateData=NULL)

pred.geoadjust <- predRes(obj=geoadjust[["obj"]],

predCoords=data$predlocs$geometry,

draws=geoadjust[["draws"]], mesh.s=mesh.s,

flag=0, covariateData=NULL)

#prediction RMSE and mean CRPS

RMSE_naive <- sqrt(sum((data$predlocs$obs-

pred.naive[,1])^2)/length(data$predlocs$obs))

RMSE_geoadjust <- sqrt(sum((data$predlocs$obs-

pred.geoadjust[,1])^2)/length(data$predlocs$obs))

CRPS_naive <- mean(mapply(FUN=crps_norm, y=data$predlocs$obs,

mean=pred.naive[,1], sd=pred.naive[,3]))

CRPS_geoadjust <- mean(mapply(FUN=crps_norm, y=data$predlocs$obs,

mean=pred.geoadjust[,1], sd=pred.geoadjust[,3]))

#return the values

return(list(parameters_naive=print(naive$res)[,1:2],

parameters_geoadjust=print(geoadjust$res)[,1:2],

RMSE_naive=RMSE_naive, CRPS_naive=CRPS_naive,

RMSE_geoadjust=RMSE_geoadjust,

CRPS_geoadjust=CRPS_geoadjust, naive_time=naive_time,

geoadjust_time=geoadjust_time))

}

args = commandArgs(trailingOnly = T)

setting = as.integer(args[1])

npoints = as.integer(args[2])

mean = as.numeric(args[3])

sill = as.numeric(args[4])

range = as.integer(args[5])

nugget = as.numeric(args[6])

delta = as.integer(args[7])

run = as.integer(args[8])

# Load the simulated data

load(sprintf("/vsc-hard-mounts/leuven-

data/356/vsc35665/roel/spdata_%02d_%03d.RData", setting, run))

analysis <- analyze(data)

filename_save <- sprintf("/vsc-hard-mounts/leuven-
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data/356/vsc35665/roel/output_%02d_%03d", setting, run)

save("analysis", file = sprintf("%s.RData", filename_save))

#SUMMARY OF SIMULATION RESULTS

# Empty the environment

rm(list=ls(all=TRUE))

# Change working directory

setwd("C:/Users/Roel Jude Bagaforo/Documents/Personal Files/Academic

Files/Masters/Thesis/Codes and Outputs/Simulation Study")

# Load libraries

library(dplyr)

library(tidyr)

library(ggplot2)

# Load the data and simulation results

sim_data <- readRDS("gen_data_ls.R")

sim_results <- readRDS("analysis_setting1_24_inc2.R")

sim_results <- readRDS("analysis_1_32.R")

# Function to extract parameters from a single run and create a dataframe

extract_parameters <- function(run) {

# Extract parameters from each list

parameters_naive <- run$parameters_naive$estimates

parameters_geoadjust <- run$parameters_geoadjust$estimates

RMSE_naive <- run$RMSE_naive

CRPS_naive <- run$CRPS_naive

RMSE_geoadjust <- run$RMSE_geoadjust

CRPS_geoadjust <- run$CRPS_geoadjust

naive_time <- run$naive_time

geoadjust_time <- run$geoadjust_time

# Create dataframe for parameters

df <- cbind(

range_naive = parameters_naive[1],

sigma2_naive = parameters_naive[2]^2,

tau2_naive = parameters_naive[3]^2,

intercept_naive = parameters_naive[4],

RMSE_naive = RMSE_naive,

CRPS_naive = CRPS_naive,

time_naive = naive_time["elapsed"],

range_geoadjust = parameters_geoadjust[1],

sigma2_geoadjust = parameters_geoadjust[2]^2,

tau2_geoadjust = parameters_geoadjust[3]^2,

intercept_geoadjust = parameters_geoadjust[4],

RMSE_geoadjust = RMSE_geoadjust,

CRPS_geoadjust = CRPS_geoadjust,
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time_geoadjust = geoadjust_time["elapsed"]

)

return(as.data.frame(df))

}

# Apply the function to each run

all_runs_df <- list()

for (i in 1:24) {

for (j in 1:100) {

all_runs_df[[length(all_runs_df) + 1]] <-

extract_parameters(sim_results[[i]][[j]])

}

}

# Make as one dataframe

combined_df <- bind_rows(all_runs_df)

rownames(combined_df) <- NULL

# Add setting variable considering the failed runs

sim_summary_wide <- rbind(combined_df[1:1592, ], NA,

combined_df[1593:2034, ],

NA, combined_df[2035:2119, ], NA,

combined_df[2120:2397, ])

rownames(sim_summary_wide) <- NULL

sim_summary_long <- pivot_longer(sim_summary_wide,

cols = starts_with(c("range", "sigma2",

"tau2", "intercept", "RMSE", "CRPS", "time")),

names_to = c(".value", "method"),

names_sep = "_")

sim_summary_long$setting <- rep(1:24, each=200)

# Incorporate parameter settings

par_settings <- read.csv("par_settings_summary.csv")

sim_summary <- merge(sim_summary_long, par_settings, by="setting",

all.x=T)

# Calculate relative bias for parameters

sim_summary$intbias <- (sim_summary$intercept-

sim_summary$mean)/sim_summary$mean

sim_summary$rangebias <- (sim_summary$range-

sim_summary$true_range)/sim_summary$true_range

sim_summary$sillbias <- (sim_summary$sigma2-

sim_summary$sill)/sim_summary$sill

sim_summary$nuggetbias <- (sim_summary$tau2-

sim_summary$nugget)/sim_summary$nugget

sim_summary$setting <- ifelse(sim_summary$sill == 0.2 &

sim_summary$nugget == 0.02, 1,

ifelse(sim_summary$sill == 0.02 &

sim_summary$nugget == 0.2, 2,
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ifelse(sim_summary$sill == 0.2 &

sim_summary$nugget == 0.2, 3, 4)))

# Subset the data into four scenarios

# 1 Sill greater than nugget

summary_1 <- sim_summary %>% filter(sill == 0.2 & nugget == 0.02)

# 2 Nugget greater than sill

summary_2 <- sim_summary %>% filter(sill == 0.02 & nugget == 0.2)

# 3 Equal sill and nugget

summary_3 <- sim_summary %>% filter(sill == 0.2 & nugget == 0.2)

# 4 Equal sill and nugget (small)

summary_4 <- sim_summary %>% filter(sill == 0.02 & nugget == 0.02)

### PLOTS

## Parameter bias

# mean

png(filename = "mean1.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_1 %>%

ggplot(aes(fill = method, y = intbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-0.3, 0.3) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" = "Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "mean2.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_2 %>%

ggplot(aes(fill = method, y = intbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-0.2, 0.2) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =
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"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "mean3.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_3 %>%

ggplot(aes(fill = method, y = intbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-0.3, 0.3) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "mean4.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_4 %>%

ggplot(aes(fill = method, y = intbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-0.15, 0.15) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

# sill

png(filename = "sill1.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_1 %>%

ggplot(aes(fill = method, y = sillbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =
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0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-2, 2) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "sill2.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_2 %>%

ggplot(aes(fill = method, y = sillbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-2.5, 4) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "sill3.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_3 %>%

ggplot(aes(fill = method, y = sillbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-2, 2) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")
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dev.off()

png(filename = "sill4.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_4 %>%

ggplot(aes(fill = method, y = sillbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-2, 3) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

# range

png(filename = "range1.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_1 %>%

ggplot(aes(fill = method, y = rangebias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-2.5, 5) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "range2.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_2 %>%

ggplot(aes(fill = method, y = rangebias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +
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stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-10, 30) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "range3.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_3 %>%

ggplot(aes(fill = method, y = rangebias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-5, 10) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "range4.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_4 %>%

ggplot(aes(fill = method, y = rangebias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-5, 10) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()
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# nugget

png(filename = "nugget1.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_1 %>%

ggplot(aes(fill = method, y = nuggetbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-2.5, 7.5) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "nugget2.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_2 %>%

ggplot(aes(fill = method, y = nuggetbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-1, 1) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "nugget3.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_3 %>%

ggplot(aes(fill = method, y = nuggetbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +
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labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-0.8, 1) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "nugget4.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_4 %>%

ggplot(aes(fill = method, y = nuggetbias, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size =

0.8) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "Relative bias",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(-1, 1) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

## Prediction

# RMSE

png(filename = "rmse1.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_1 %>%

ggplot(aes(fill = method, y = RMSE, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "RMSE",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(0.2, 0.45) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "rmse2.png", width = 6.27, height = 9.69/2.25, units =
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"in", res = 300)

summary_2 %>%

ggplot(aes(fill = method, y = RMSE, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "RMSE",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(0.4, 0.5) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "rmse3.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_3 %>%

ggplot(aes(fill = method, y = RMSE, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "RMSE",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(0.45, 0.65) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "rmse4.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_4 %>%

ggplot(aes(fill = method, y = RMSE, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "RMSE",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(0.10, 0.25) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()
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# CRPS

png(filename = "crps1.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_1 %>%

ggplot(aes(fill = method, y = CRPS, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "CRPS",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(0.12, 0.25) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "crps2.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_2 %>%

ggplot(aes(fill = method, y = CRPS, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "CRPS",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(0.25, 0.4) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "crps3.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_3 %>%

ggplot(aes(fill = method, y = CRPS, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "CRPS",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(0.25, 0.45) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =
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"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "crps4.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

summary_4 %>%

ggplot(aes(fill = method, y = CRPS, x = factor(npoints))) +

geom_violin(position = "dodge", alpha = 0.5, trim=F) +

stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

labs(x = "Sample points",y = "CRPS",fill = "Method") +

scale_fill_manual(values = c("naive" = "blue", "geoadjust" =

"orange"), labels = c("Naive", "GeoAdjust")) +

ylim(0.075, 0.15) + facet_wrap(~ delta, scales = "free_x", ncol = 2,

labeller = labeller(delta = c("2" =

"Displacement=2km", "6" =

"Displacement=6km"))) +

theme(legend.position = "bottom")

dev.off()

# Pairwise differences

# Compute pairwise differences and ratios

sim_summary$id <- rep(1:2400, each=2)

sum_pairwise <- pivot_wider(sim_summary,

id_cols = c(id, setting, npoints, delta),

names_from = method,

values_from = c(intbias, rangebias, sillbias,

nuggetbias, RMSE, CRPS, time))

# Pairwise difference

sum_pairwise$int_diff <- sum_pairwise$intbias_geoadjust -

sum_pairwise$intbias_naive

sum_pairwise$sill_diff <- sum_pairwise$sillbias_geoadjust -

sum_pairwise$sillbias_naive

sum_pairwise$range_diff <- sum_pairwise$rangebias_geoadjust -

sum_pairwise$rangebias_naive

sum_pairwise$nugget_diff <- sum_pairwise$nuggetbias_geoadjust -

sum_pairwise$nuggetbias_naive

sum_pairwise$int_ratio <- sum_pairwise$intbias_geoadjust /

sum_pairwise$intbias_naive

sum_pairwise$sill_ratio <- sum_pairwise$sillbias_geoadjust /

sum_pairwise$sillbias_naive

sum_pairwise$range_ratio <- sum_pairwise$rangebias_geoadjust /

sum_pairwise$rangebias_naive

sum_pairwise$nugget_ratio <- sum_pairwise$nuggetbias_geoadjust /
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sum_pairwise$nuggetbias_naive

sum_pairwise$rmse_diff <- sum_pairwise$RMSE_geoadjust -

sum_pairwise$RMSE_naive

sum_pairwise$crps_diff <- sum_pairwise$CRPS_geoadjust -

sum_pairwise$CRPS_naive

sum_pairwise$time_diff <- sum_pairwise$time_geoadjust -

sum_pairwise$time_naive

# plots of pairwise difference

png(filename = "intratio.png", width = 6.27, height = 9.69/2.25, units

= "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = int_ratio, x = factor(npoints))) +

geom_boxplot(position = "dodge") +

# stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

geom_hline(yintercept = 1, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "Bias ratio",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels =

c("2 km", "6 km")) +

ylim(0, 2) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" = "Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "sillratio.png", width = 6.27, height = 9.69/2.25, units

= "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = sill_ratio, x = factor(npoints))) +

geom_boxplot(position = "dodge") +

geom_hline(yintercept = 1, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "Bias ratio",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels =

c("2 km", "6 km")) +

ylim(-0.4, 1.6) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()
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png(filename = "nuggetratio.png", width = 6.27, height = 9.69/2.25,

units = "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = nugget_ratio, x =

factor(npoints))) +

geom_boxplot(position = "dodge") +

# stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

geom_hline(yintercept = 1, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "Bias ratio",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels = c("2 km", "6 km")) +

ylim(-0.4, 1.6) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "rangeratio.png", width = 6.27, height = 9.69/2.25,

units = "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = range_ratio, x =

factor(npoints))) +

geom_boxplot(position = "dodge") +

# stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

geom_hline(yintercept = 1, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "Bias ratio",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels = c("2 km", "6 km")) +

ylim(-0.4, 1.6) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "rmsediff.png", width = 6.27, height = 9.69/2.25, units

= "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = rmse_diff, x = factor(npoints))) +

geom_boxplot(position = "dodge") +

# stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size = 0.8) +
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labs(x = "Sample points",y = "RMSE difference",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels = c("2 km", "6 km")) +

ylim(-0.01, 0.01) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "crpsdiff.png", width = 6.27, height = 9.69/2.25, units

= "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = crps_diff, x = factor(npoints))) +

geom_boxplot(position = "dodge") +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "CRPS difference",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels = c("2 km", "6 km")) +

ylim(-0.01, 0.01) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()

## ratios

png(filename = "intdiff.png", width = 6.27, height = 9.69/2.25, units =

"in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = int_diff, x = factor(npoints))) +

geom_boxplot(position = "dodge") +

# stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten =

2, color = "black", position = position_dodge(width = 0.9)) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "Bias difference",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels = c("2 km", "6 km")) +

ylim(-0.05, 0.05) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "silldiff.png", width = 6.27, height = 9.69/2.25, units
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= "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = sill_diff, x = factor(npoints))) +

geom_boxplot(position = "dodge") +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "Bias difference",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels = c("2 km", "6 km")) +

ylim(-0.1, 0.1) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "nuggetdiff.png", width = 6.27, height = 9.69/2.25,

units = "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = nugget_diff, x =

factor(npoints))) +

geom_boxplot(position = "dodge") +

# stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten

= 2, color = "black", position = position_dodge(width = 0.9)) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "Bias difference",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels = c("2 km", "6 km")) +

ylim(-2.5, 1) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" = "Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "rangediff.png", width = 6.27, height = 9.69/2.25, units

= "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = range_diff, x = factor(npoints))) +

geom_boxplot(position = "dodge") +

# stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten

= 2, color = "black", position = position_dodge(width = 0.9)) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "Bias difference",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels = c("2 km", "6 km")) +

ylim(-0.5, 0.5) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",
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"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()

png(filename = "timediff.png", width = 6.27, height = 9.69/2.25, units

= "in", res = 300)

sum_pairwise %>%

ggplot(aes(fill = factor(delta), y = time_diff, x = factor(npoints))) +

geom_boxplot(position = "dodge") +

# stat_summary(fun = median, geom = "crossbar", width = 0.75, fatten

= 2, color = "black", position = position_dodge(width = 0.9)) +

geom_hline(yintercept = 0, color = "red", linetype = "dashed", size = 0.8) +

labs(x = "Sample points",y = "Time difference (seconds)",fill = "Displacement") +

scale_fill_manual(values = c("2" = "yellow", "6" = "green"), labels = c("2 km", "6 km")) +

ylim(-50, 300) + facet_wrap(~ setting, scales = "free_x", ncol = 2,

labeller = labeller(setting = c("1" =

"Sill=0.2, Nugget=0.02", "2" =

"Sill=0.02, Nugget=0.2",

"3" = "Sill=0.2, Nugget=0.2", "4" =

"Sill=0.02, Nugget=0.02"))) +

theme(legend.position = "bottom")

dev.off()
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