
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Vector Symbolic Architectures: Foundations and Applications to the Embedding of Words
and Databases

Senn Robyns
Scriptie ingediend tot het behalen van de graad van master in de informatica

2023
2024

PROMOTOR :

Prof. dr. Stijn VANSUMMEREN

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Vector Symbolic Architectures: Foundations and Applications to the Embedding of Words
and Databases

Senn Robyns
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Stijn VANSUMMEREN

Acknowledgements

This thesis marks the culmination of my master’s journey, and its completion would not have
been possible without the support and contributions of several individuals.

First, I would like to express a sincere thank you to my promotor, prof. dr. Stijn Vansummeren.
His guidance, expertise, and continuous support throughout this research process have been
invaluable. From suggesting this fascinating topic to providing insightful feedback during our
weekly meetings, his mentorship was a key part in shaping my research and this thesis.

Second, I would like to thank the Redwood Center for Theoretical Neuroscience and Berkeley
Wireless Research Center at UC Berkeley for providing a comprehensive curriculum on VSAs.
This program was essential as it provided me with great foundational knowledge about the topic,
serving as a strong base upon which I could build my research.

I am also grateful for the professors and assistants of the faculty of Computer Science at UHasselt,
with a special thanks to the departments of AI and Data Management. The knowledge and skills
I have acquired during my time here provided a strong foundation for this research. I would also
like to thank the faculty of Statistics and Data Science for allowing me to take supplementary
courses on the theoretical aspects of statistics and data science next to my Computer Science
degree.

Lastly, I am incredibly thankful for the support and encouragement I received from my friends
and family throughout this intensive journey. They provided me with a constant source of
motivation and strength, allowing me to focus on my academic pursuits.

1

2

Samenvatting

Deze masterproef verkent Vector Symbolic Architectures (VSAs), een veelbelovend domein bin-
nen artificiële intelligentie (AI) dat de kloof tussen de symbolische en connectionistische paradigma’s
wil overbruggen. Traditioneel domineerden deze twee paradigma’s het AI-onderzoek. Symbol-
ische AI, ook bekend als Good Old-Fashioned AI (GOFAI), blinkt uit in kennis representatie
en redeneren door symbolen en hun onderlinge relaties te manipuleren. Deze aanpak is echter
minder geschikt voor het omgaan met onzekerheid en het leren van ambiguë data. Connection-
istische modellen, zoals artificiële neurale netwerken, daarentegen, verwerken informatie op een
gedistribueerde manier, waardoor ze beter in staat zijn om te leren van grote datasets en om
te gaan met onzekerheid. Echter worstelen deze met het efficiënt representeren en verwerken
van complexe, hiërarchische structuren. VSAs bieden een alternatief door mechanismen te in-
troduceren om symbolische informatie te coderen en te manipuleren binnen een gedistribueerde
representatie.

Een gedistribueerde representatie slaat informatie op door deze te verspreiden over een groot
aantal componenten, in tegenstelling tot lokale representaties waar elk concept een eigen, uniek
element heeft.

Figure 1: Examples of One-hot encodings vs. Distributed representations over a vocab-
ulary of size n. 1

We illustreren dit aan de hand van de representaties in figuur 1 waar deze representaties woorden
encoderen over een vocabulary van grootte n. Een mogelijke representatie is het gebruik van
een one-hot encoding die aan elk woord een unieke vector toekent waarbij de lengte van deze
vectoren dus gelijk zijn aan de vocabulary size n. Slechts één positie in de vector is ”hot”
(1), de rest is nul. Dit is een symbolische, duidelijke codering, maar mist de mogelijkheid om
nuances in de relaties tussen woorden (similariteit) weer te geven. Bovendien leidt dit tot zeer
hoog-dimensionale, sparse vectoren bij grote vocabularies.

Neurale netwerken streven naar gedistribueerde representaties, waarbij woorden worden gerep-
resenteerd als dichtere, kortere vectoren met (reële) getallen. Woorden met een vergelijkbare

1https://blog.materialis.ai/distributed-representations-of-atoms.html

3

4

betekenis (zoals ”dokter” en ”ziekenhuis”) hebben dan ’dichtere’ representaties in deze vec-
torruimte. De nabijheid wordt gemeten met similariteits- of afstandsmaten zoals dot-product,
Euclidean distance of Cosine similarity. Het doel is om representaties te creëren waarbij vergeli-
jkbare concepten een hogere similariteit of kleinere afstand hebben.

Echter hebben traditionele connectionistische modellen moeite met het representeren van com-
plexe, hiërarchische structuren. VSAs pakken dit probleem aan door mechanismen te introduc-
eren die symbolische structuren en redeneringen mogelijk maken binnen een connectionistisch
framework. Dit maakt VSAs een interessante kandidaat voor Neuro-Symbolic AI (NeSy), dat
streeft naar een integratie van de leercapaciteiten van connectionistische modellen met de rede-
neerkracht van symbolische AI.

Introductie tot Vector Symbolic Architectures

VSAs maken gebruik van hoog-dimensionale vectoren, genaamd hypervectors (HV), om infor-
matie op een gedistribueerde manier te representeren. Deze HVs hebben duizenden componen-
ten (dimensionaliteit) en maken gebruik van de quasi-orthogonaliteits eigenschap die zegt dat
willekeurig gekozen vectoren in zulke hoog-dimensionale ruimtes bijna orthogonaal, en dus dis-
similar, aan elkaar zijn. Deze willekeurige keuze duid op de sampling van de componenten van
een HV, die gebeurd volgens een op voorhand bepaalde distributie.

Ik wil hier even verduidelijken dat de componenten van een HV refereren naar de individuele
waardes voor iedere dimensie van een HV. De 4 key componenten van een VSA-architectuur
verwijzen naar naar conceptuele definities omtrent de invulling van een VSA-architectuur, dit
zijn dus 2 verschillende defenities rondom componenten en de context is dus belangrijk indien
we over dit concept rapporteren.

Een typische VSA-architectuur bestaat uit 4 belangrijke componenten. Voor we deze com-
ponenten in meer detail bekijken is het belangrijk om hier aan te halen dat er verschillende
VSA modellen bestaan. Deze modellen implementeren allemaal de 4 key componenten, hun
belangrijkste verschil is de sampling distributie die gebruikt wordt voor de componenten van
de HVs. Hierdoor hebben de verschillende modellen ook enkele verschillen op vlak van de in-
vulling en implementatie. We focussen in deze samenvatting op het Binary Splatter Codes (BSC)
model dat zijn componenten selecteert van een Bernouilli distributie en dus binaire componenten
heeft.

De 4 key componenten van een VSA-architectuur zijn de volgende:

• Similarity Measures: VSAs representeren concepten als HVs. Om de relatie tussen deze
HVs te bepalen en hun similariteit te kwantificeren, gebruiken VSAs similariteits measures.

Populaire measures zijn dot product, cosine similarity en Hamming similarity. Waarbij
de Hamming similarity de measure is die gebruikt wordt in het BSC model, deze telt het
aantal componenten dat overeenkomt in twee binaire HVs en normaliseert deze door dit
te delen door het aantal componenten of dimensies. Zoals eerder vermeld hangt de keuze
van een specifieke similarity measure af van het gekozen VSA-model.

• Atomic HVs: Atomic HVs vormen de basisbouwstenen van representaties in VSAs. Ze
representeren de kernconcepten van een probleem, zonder enige vooraf gedefinieerde associ-
aties. Deze atomic HVs worden willekeurig gegenereerd volgens een bepaalde op voorhand
gedefinieerde distributie, zodat ze quasi-orthogonaal zijn aan elkaar. De verdeling van de
similariteit tussen random HVs voor het BSC model wordt gevisualiseerd in Figuur 2. We
observeren dat hoe hoger de dimensionaliteit van de HVs, hoe meer de similariteit gecon-
centreerd is rond de waarde 0.5. Dit impliceert dat de kans op het genereren van dissimilar
HVs sterk toeneemt naarmate de dimensionaliteit toeneemt.

• Fundamentele operaties: VSAs gebruiken drie fundamentele operaties om complexe
representaties te creëren en te manipuleren:

5

Figure 2: Histogram van normalized hamming similarity tussen random BSC HV en 10
000 andere random gegenereerde HVs.

– Bundling: Combineert meerdere HVs tot één enkele HV. De resulterende HV behoudt
een hoge similariteit met elk van de input HVs, waardoor het geschikt is om sets of
collecties te representeren.

Omdat de bundling operatie typisch gëımplementeerd wordt aan de hand van een
sommatie van de componenten stellen we de bundle voor als volgt:

s “ x ` y ` z

Waar x, y en z de input HVs voorstellen en s de resultaat of bundled HV is. Merk
op dat ieder van de input HVs een hoge, en gelijkaardige similariteit heeft aan de
resulterende HV op die manier vat de resulterende HV s de informatie van de input
HVs samen.

– Binding: Creëert een associatie tussen twee HVs, deze associatie van 2 HVs is vergeli-
jkbaar met het creëren van een key-value paar. De resulterende HV is dissimilar aan
de originele HVs, maar behoudt wel informatie over de structuur van de associatie.
Dit maakt het mogelijk om bijvoorbeeld relaties tussen objecten te representeren. We
stellen de binding operatie voor als volgt:

r “ k l v

De resulterende, gebonden HV r is dissimilar met zijn input HVs k en v. Toch
behoudt het een ander soort similariteit, genaamd gestructureerde similariteit. Dit
betekent dat twee gebonden HVs alleen similar zijn als zowel hun key HVs als hun
value HVs similar zijn. We illustreren dit met een voorbeeld; als we een andere
binding r1 “ k1 l v1 creëren, dan is r alleen similar aan r1 als k similar is aan k1 en
v similar is aan v1.

– Permutatie: Deze operatie werkt op een enkele input HV en herschikt de componenten
van deze HV. Dit kan gebruikt worden om ordinale informatie te representeren. Deze
operatie wordt niet gebruikt in onze toepassingen, we refereren voor extra info naar
de thesistekst.

• Item memory: De item memory slaat alle atomic HVs op en koppelt ze aan hun bijbe-
horende concepten. De item memory is essentieel voor het ’opschonen’ van HVs die ruis

6

bevatten door de combinatie van bundling en binding. Dit ’opschonen’ gebeurt door de
meest gelijkende atomic HV in de item memory te selecteren.

Door deze bouwstenen te combineren, kunnen VSAs een breed scala aan symbolische informatie
representeren en manipuleren, van eenvoudige concepten tot complexe structuren.

Ik verwijs hier ook naar de thesistekst in hoofdstuk 2 voor een meer gedetailleerd overzicht van
de operaties alsook een experimenteel onderzoek naar de eigenschappen van deze operaties en
hun capaciteit om informatie voor te stellen.

Nu we een begrip hebben van wat een VSA is gaan we de praktische toepasbaarheid van VSAs
onderzoeken in twee concrete use-cases. Namelijk het genereren van betekenisvolle word em-
beddings aan de hand van een verzameling van documenten, alsook het encoderen van tabulaire
datasets om deze vervolgens te queryen.

Word Embeddings met VSAs

Voor het genereren van de word embeddings ontwikkelden we een nieuwe VSA-gebaseerde meth-
ode. Deze methode is gebaseerd op het principe van word-document co-occurrence, wat inhoudt
dat woorden die vaak samen in dezelfde documenten voorkomen, semantisch gerelateerd zijn en
dus vergelijkbare vectorrepresentaties zouden moeten hebben.

Het leerproces van de VSA word embeddings is als volgt:

• Initialisatie:
Elke document in de corpus krijgt een unieke, willekeurig gegenereerde atomic HV. Voor
elk woord in de vocabulaire wordt een ”lege” HV gëınitialiseerd.

• Coderen van semantische similariteit door bundling:
Voor elk woord in een document wordt de HV van het document ”gebundeld” met de HV
van het woord. Dit proces wordt herhaald voor alle documenten in de corpus. Woorden
die frequent voorkomen in dezelfde documenten zullen dus vergelijkbare HVs accumuleren,
waardoor hun semantisch verwantschap wordt vastgelegd.

• Normalisatie (optioneel):
Na het doorlopen van de corpus kunnen de HVs van de woorden worden genormaliseerd
om de consistentie te waarborgen en te voldoen aan de eigenschappen van het gekozen
VSA-model.

We kunnen dit algoritme conceptueel inbeelden als het verplaatsen van woord HVs in een hoog-
dimensionale ruimte. De document HVs fungeren als ankerpunten in deze ruimte, en de woord
HVs worden dichter bij de document HVs geplaatst waarin ze voorkomen. Woorden die vaak in
dezelfde documenten voorkomen, zullen dus dichter bij elkaar in de ruimte terechtkomen.

We verwijzen naar de thesistekst in hoofdstuk 3 voor meer details over het algoritme zoals de
gëımplementeerde GPU-optimalisaties alsook een analyse omtrent een optimale dimensionaliteit
van onze HVs.

Om de effectiviteit van deze VSA-gebaseerde methode te evalueren werden experimenten uit-
gevoerd met behulp van de WikiText-103 dataset. Deze dataset bestaat uit een verzameling van
kwaliteitsvolle en aanbevolen Wikipedia artikels, van deze dataset gebruiken we een willekeurige
subset van 10.000 documenten wegens computationele redenen. We pre-processen deze docu-
menten door een binaire co-occurrence matrix op te stellen, deze heeft voor ieder document
een vector, waarbij de index van een woord op 1 staat indien dit woord voorkomt in dit docu-
ment.

Een initiële analyse van de geleerde word embeddings toont aan dat de VSA learning methode in
staat is om semantische relaties tussen woorden te coderen. Woorden die semantisch gerelateerd
zijn, zoals ”film” en ”acteur”, hebben inderdaad vergelijkbare HVs, zoals we kunnen zien in
Figuur 3.

7

Figure 3: Plot van 15 meest similar woorden in vergelijking met de ’movie’ HV uit al
onze VSA-based geleerde embeddings.

Voor het formeel evalueren van onze word embeddings maken we gebruik van de WordSim353
dataset. Deze evaluatiedataset bevat human-assigned similarity scores voor woordparen, we
vergelijken deze met de similarities van de geleerde VSA-embeddings. Om dit te formaliseren
berekenen we de correlatie tussen de human-assigned en de geleerde similarities, een hoge cor-
relatie duidt aan dat de geleerde semantische relatie overeenkomen met die van de evaluatie
dataset. Verder vergelijken we de prestatie van onze VSA geleerde embeddings met Latent Se-
mantic Analysis (LSA), een state of the art leermethode voor word embeddings op basis van
term-document matrices.

De resultaten van de experimenten, te zien in de eerste rij van tabel 1, toonden aan dat de VSA-
embeddings een lagere correlatie behalen met de menselijke beoordelingen in de WordSim353
dataset dan de LSA methode. We concludeerden hier dat state of the art methodes zoals LSA
beter generaliseren door de ruis uit dataset te filteren om zo de significante semantische relaties
uit de term-document matrix te halen. Echter merken we op dat in deze tabel de score op
de validatie dataset van de VSA-embeddings en de originele embeddings identiek zijn. We
valideerden dit door te kijken naar de correlatie van de similariteiten tussen de woord paren
van de geleerde embeddings met die van de originele term-document matrix. Deze correlatie
bedraagt 0.982 wat suggereert dat de VSA-methode wel nauwkeurig de aanwezige semantische
relaties in de originele data kan vastleggen maar dus geen ruis wegfiltert.

Word pair VSA LSA Term-document matrix

Pearson correlation

(binary term-docume-
nt matrix)

0.284 0.366 0.284

Pearson correlation

(tf-idf term-document
matrix)

0.345 0.374 0.389

Table 1: Tabel noteert de Pearson correlatie tussen de geleerde similarities en de human-
assigned similarities voor alle woord paren in de WordSim353 dataset. Voor compleetheid
noteren we ook de correlatie tussen de similarities voor de woord paren van de vectoren
in de originele term-document matrices en die van de human-assigned scores.

Deze laatste observatie leidt tot de hypothese dat we mogelijks de geleerde VSA-embeddings
kunnen verbeteren door de semantische relaties die aanwezig zijn in de originele term-document
matrix, waar we van leren, te verbeteren.

Om deze hypothese te bevestigen, hebben we een extra experiment uitgevoerd op dezelfde
verzameling documenten, maar nu met term frequency – inverse document frequency (TF-IDF)-
vectorisatie van de gegevens in onze term-document matrix. De waardes binnen de matrix zijn

8

nu TF-IDF-scores in plaats van simpele binaire co-occurrence waardes. Deze TF-IDF-waarden
hebben als doel beter het belang van termen binnen de documenten te vergelijken met die van
de term over het hele corpus van documenten, wat leidt tot verbeterde semantische embedding
in onze oorspronkelijke term-document matrix.

Zoals we kunnen zien in de tweede rij van tabel 1, valideren we onze hypothese aangezien de
score op de evaluatie dataset voor VSA-embeddings sterk stijgt van 0.284 naar 0.345.

We concluderen dus dat de VSA-gebaseerde methode een veelbelovende aanpak is voor het
creëren van word embeddings. De experimenten bevestigen dat VSAs in staat zijn om betekenisvolle
semantische relaties tussen woorden te coderen. Verder leerden we dat de kwaliteit van de VSA
embeddings sterk afhankelijk is van de kwaliteit van de input data. Toekomstig onderzoek zou
zich dus kunnen richten op het verder verbeteren van de semantische relatie die aanwezig is in
de input term-document matrix.

VSA Databases

In de tweede praktische toepassing van VSAs zullen we onderzoeken hoe we HVs en VSA-
operaties kunnen gebruiken om tabulaire gegevens te encoderen, op te slaan en deze vervolgens
ook te queryen. Onze benadering heeft dus als doel de principes en eigenschappen van VSAs
te benutten om een robuuste en efficiënte methode voor het omgaan met tabulaire gegevens te
creëren.

Het is belangrijk op te merken dat we voor dit verkennende experiment aannemen dat de set van
attribuutwaarden voor een gegeven attribuut in onze database geen inherente similarity structure
heeft. Zo streven we ernaar dat de similarity tussen de HV-codering van twee database records
evenredig is aan het aantal identieke attribuutwaarden dat ze delen over alle kolommen. We
zullen daarom enkel gebruik maken van categorieke attributen, en dus geen gebruik maken met
numerieke of ordinale attributen zoals leeftijd.

Conceptueel idee

Eerst observeren we dat een record conceptueel kan worden gezien als een set of verzameling van
key-value pairs, waarbij de sleutel de attribuut- of kolom naam is en de waarde de waarde van
dat record voor dat attribuut is. Als we deze conceptuele weergave van een record combineren
met de bundle en bind VSA-operaties zoals eerder gedefinieerd, kunnen we de records in tabel
2 als volgt coderen:

record attribute 1 attribute 2 attribute 3
record 1 value 1 value 2 value 3
record 2 value 4 value 5 value 6

Table 2: Voorbeeld van 2 records, dewelke ieder 3 attributen hebben, uit een tabulaire
dataset of database.

Geëncodeerd als volgt:
r1 “ pa1 l v1q ` pa2 l v2q ` pa3 l v3q

r2 “ pa1 l v4q ` pa2 l v5q ` pa3 l v6q

Herinner dat de bundling operatie (`) gebruikt werd om conceptueel sets van HVs weer te geven,
en de binding operatie (l) om associaties te creëren tussen HVs of key-value pairs.

Architectuur van de VSADB

Gebruik makend van dit idee creëren we de VSA Database (VSADB) bestaande uit de volgende
belangrijke componenten.

9

Kolomrepresentatie:
Elke kolom in de database wordt gerepresenteerd door een unieke atomic HV en een codebook.
De atomic HV dient als identifier voor de kolomnaam, terwijl de codebook een mapping bijhoudt
tussen attribuutwaarden en hun corresponderende HVs. Deze codebooks zijn dus dictionaries die
gebruik maken van hashing om zo een waarde te kunnen linken aan zijn atomic HV representatie,
waarbij we deze in ’constante’ tijd op te kunnen vragen dankzij hashing.

Record encodering:
Records of rijen in de database worden gecodeerd als HVs door de volgende stappen te vol-
gen:

1. Initialiseren van attribuutwaarde HVs: Voor elk attribuut in de rij wordt de correspon-
derende HV opgehaald uit het codebook van de betreffende kolom.

2. Binding: De atomic HV van elke kolom wordt gebonden aan de HV van de attribuutwaarde,
waardoor een unieke HV ontstaat voor elk attribute-value pair.

3. Bundling: De resulterende attribute-value HVs worden gebundeld om een enkele HV te
vormen die de gehele rij representeert. Dit resulteert in het conceptuele idee dat we eerder
besproken hebben rondom het encoderen van records als HVs.

4. Normalisatie: De gebundelde HV wordt genormaliseerd om consistentie te waarborgen en
te voldoen aan de eigenschappen van het gekozen VSA-model.

Opslag:
De genormaliseerde record HVs worden vervolgens opgeslagen in de VSADB. Voor dit exper-
iment werd een codebook gebruikt als opslag-structuur, maar andere methoden, zoals gespe-
cialiseerde vector databases, zijn ook mogelijk. De codebook linkt het id van het record in de
originele database aan zijn geëncodeerde HV, zodat snelle opvraging aan de hand van deze ids
kan gebeuren.

Queryen van de VSADB

De VSADB ondersteunt similariteitsgebaseerde zoekopdrachten door middel van query HVs. Een
query HV wordt geconstrueerd op dezelfde manier als een record HV, door attribuutwaarden
te binden aan kolom HVs en deze resulterende gebonden HVs te bundelen. Het query proces
bestaat dus uit de volgende stappen.

1. Creëren van de query HV:
De gebruiker specificeert de gewenste attribuutwaarden voor de zoekopdracht, en de query
HV wordt geconstrueerd op identiek dezelfde manier als een record geëncodeerd wordt,
echter worden alleen de attribute-value pairs gebundled die gematched moeten worden
volgens de query. Een voorbeeld volgt in de sectie over de experimenten.

2. Similarity Search:
De query HV wordt vergeleken met alle opgeslagen rij HVs met behulp van een similarity
measure, zoals cosinus similariteit of Hamming similariteit afhankelijk van het model dat
gebruikt wordt.

3. Ophalen van de meest similar records:
De records met de hoogste similarity scores worden opgehaald en aan de gebruiker gepre-
senteerd.

Merk op dat het queryen van de VSADB aan de hand van een query HV eigenlijk neerkomt op
een nearest-neighbor search met de geëncodeerde database records.

Experimenten en Resultaten

Om de prestaties van de VSADB te evalueren, werden experimenten uitgevoerd met een dataset
van persoonsgegevens. De dataset bevatte attributen zoals voornaam, achternaam, stad, staat

10

(provincie) en geslacht. Deze dataset werd uitgebreid met 10 000 willekeurig gegenereerde records
om de schaal en complexiteit te verhogen. De originele kleine dataset die nog niet uitgebreid is
wordt weergegeven in tabel 3

index fname lname city state gender
0 John Doe Riverside NJ M
1 Jack McGinnis Philadelphia PA M
2 John Repici Riverside NJ M
3 Stephen Tyler Sioux Falls SD M
4 John Blankman Sioux Falls SD M
5 Joan Anne Denver CO F
6 Jack Repici Riverside NJ M
7 Lilly Repici Philadelphia PA F

Table 3: Kleine real-world tabulaire dataset die gebruikt en ook uitgebreid werd met
random records in the experiment. Random gegenereerde records hebben een random
fname en lname string, een random gesampelde stad met bijhorende staat en een random
gesampelde gender.

De experimenten toonden aan dat de VSADB in staat is om database rijen efficiënt te encoderen
als HVs en accurate resultaten terug te geven voor zowel point- als partial match queries. Point-
queries specificeren waarden voor alle attributen, terwijl partial match queries waardes voor een
subset van attributen specificeren.

We geven een voorbeeld van een partial match query uit onze experimenten. Het doel van deze
query is het identificeren van all de leden van de Repici familie die in Riverside wonen.

Ter verduidelijking overlopen we nog even de stappen voor het construeren en uitvoeren van
deze query:

1. Creëren van de Query HV:

• Opvragen van de input HVs: Verkrijg de atomaire attribute- of kolom-HVs voor
’lname’ en ’city’, en de value-HVs voor ’Repici’ en ’Riverside’, uit hun respectieve
kolom codebooks.

• Binding van de attribute-HVs: Bind elk attribuut zijn atomaire HV met de bijbe-
horende value-HV.

• Bundling van de HVs: Bundle de resulterende attribuut-value pair HVs om een enkele
query-HV te vormen.

• De resulterende query-HV wordt dus geconstrueerd als:

q “ lname l repici ` city l riverside

2. Uitvoeren van de NN search:
Gebruik de gebundelde query-HV q om een NN search uit te voeren op de record-HVs die
zijn opgeslagen in het codebook van onze VSADB.

Het resultaat van deze query, oftewel de top 10 meest similar database HVs worden weergeven
in tabel 4

Als we kijken naar de resultaten merken we op dat we de 2 relevante records inderdaad iden-
tificeren. Maar we merken ook op dat er onder de 10 meest similar records, records zijn die
gedeeltelijk overeenkomen met onze query HV. Dit zijn records die ofwel Repici als achternaam
hebben of in Riverside wonen. Als we naar de genormaliseerde hamming-similarities van deze
volledige en gedeeltelijke matches met onze query HV kijken, merken we dat de similarity voor
de volledige matches, zoals verwacht, aanzienlijk hoger is dan de andere. Maar we kunnen ook

11

fname lname city state gender Normalized
Hamming Similarity

Jack Repici Riverside NJ M 0.695

John Repici Riverside NJ M 0.689

wpmrlq pnthyi Riverside CA M 0.598
Lilly Repici Philadelphia PA F 0.597
John Doe Riverside NJ M 0.592

gnumfw ilbywx Orem UT M 0.519
xopccc fxgopl Colorado Springs CO F 0.518
lfkaha wbutxq Sioux Falls SD F 0.518
nlntid vuljpm Reno NV F 0.518
zcudtl mxbtnf Albuquerque NM F 0.517

Table 4: 10 meest similar records uit de VSADB voor de NN search met de query Hv
voor de Repici familieleden die in Riverside wonen, we rapporteren ook de normalized
hamming similarities met deze query HV voor ieder record HV.

opmerken dat de similarity voor de gedeeltelijke matches ook aanzienlijk hoger is dan die voor
records die helemaal niet overeenkomen.

Gebaseerd op deze resultaten kunnen we nu de volgende interessante vraag stellen: Kunnen
we een similarity threshold definiëren die ervoor zou zorgen dat we alleen de relevante records
ophalen, en dus niet records die slechts gedeeltelijk of zelfs helemaal niet overeenkomen met onze
query HV?

Om deze vraag te beantwoorden werd een theoretische analyse uitgevoerd om deze threshold
value te bepalen voor het filteren van zoekresultaten. Deze threshold value zorgt ervoor dat
alleen rijen met een voldoende hoge similariteit worden gëıdentificeerd, waardoor false positives
worden geminimaliseerd. Voor een in-depth theoretische analyse van deze threshold value alsook
de parameters die de accuraatheid ervan bepalen refereren we naar de thesistekst.

We vermelden hier wel dat de experimenten bevestigden dat de threshold value effectief is in
het optimaliseren van de precisie van de zoekresultaten, terwijl de hoge recall behouden blijft.
Bijvoorbeeld, voor onze voorbeeld query en zijn parameters, identificeerden we een threshold
value van 0.653. Indien we deze toepassen op onze resultaten zien we dat we inderdaad enkel
de 2 relevante records zullen bijhouden en dus een perfecte accuraatheid bekomen voor onze
query.

Verder is er ook onderzoek gedaan naar een optimale dimensionaliteit. Dit leidde tot de con-
clusie dat we voor een beperkte dimensionaliteit van 1500, records die tot wel 20 (categorieke)
attributen bevatten kunnen encoderen waarbij we deze ook kunnen queryen met een perfecte
precisie, recall en dus ook accuraatheid. Merk op dat dit misschien een hoge dimensionaliteit
lijkt, echter voor VSA applicaties ligt de dimensionaliteit typisch rond de 10 000. We merken
hier ook op dat we met het BSC model werken die binaire componenten heeft, een record wordt
dus efficiënt geëncodeerd in slechts 1500 bits.

Merk op dat aangezien onze records die 5 string values bevatten, dus met slechts 1500 bits
efficiënt geëncodeerd kunnen worden. Dit betekent dat we de 10 007 records zelf, in principe in
slechts 1.9MB kunnen encoderen en opslaan. Er moeten hier echter wel enkele kanttekeningen
gemaakt worden rond welke data we moeten bijhouden om deze efficiënte encoderingen te kunnen
decoderen. Een mogelijkheid is om de originele records bij te houden met een referentie naar
hun geëncodeerde versie aan de hand van hun index, dit is de methode die wij toepasten in de
experimenten. Het decoderen kan dan rechtstreeks gebeuren door de indices van de resulterende
records van onze similarity based search met onze query HV te gebruiken om de bijhorende
originele records op te vragen. Merk op dat bij deze variant de VSADB gebruikt wordt als een
extensie van de tabulaire dataset die querying op basis van de encoderingen toelaat. We moeten
hier namelijk de volledige originele dataset blijven opslaan om de originele records op te vragen

12

gegeven de resultaten van de query. Maar we kunnen ook enkel de attribuut of kolom codebooks
bijhouden die de mapping van de attribute values naar hun HVs bevat, en dan de resulterende
records van een query decoderen aan de hand van de unbinding operatie om zo het opslag-gebruik
mogelijks te minimaliseren. Voor een gedetailleerde uitleg van beide mogelijkheden alsook het
decoderen van een record aan de hand van de unbinding operatie refereren we opnieuw naar de
thesistekst.

Conclusie

We concluderen dat onze VSADB implementatie efficiënte encoderingen van tabulaire records
toelaat en daarbij accurate similarity based querying ondersteund aan de hand van een threshold
value waarvoor we een theoretische formule afgeleid hebben.

Belangrijk is om te benadrukken dat de huidige implementatie van de VSADB zeker geen ver-
vanging is voor een volledig database systeem. Het bied echter wel een sterke basis voor verder
onderzoek waarbij er dus nog vele mogelijkheden zijn tot verbetering en uitbreidingen:

• Ondersteuning voor geavanceerde queries: De VSADB ondersteunt momenteel alleen
point- en partial match queries. Meer complexe queries, zoals joins of aggregaties, worden
nog niet ondersteund.

• Aanname van dissimilariteit: De huidige implementatie gaat ervan uit dat er geen
inherente similariteit is tussen de waarden binnen een kolom. Dit betekent dat de VSADB
vooralsnog alleen geschikt is voor categorieke data, en niet voor numerieke of ordinale data.

Conclusie

We hebben met het onderzoek in de masterthesis de veelbelovende mogelijkheden van VSAs
verkend en verduidelijkt. We hebben de basisprincipes van VSAs belicht en hun vermogen
om symbolische informatie te representeren en te manipuleren in een gedistribueerde context
gedemonstreerd. Door middel van experimenten hebben we de eigenschappen van VSAs on-
derzocht en twee concrete toepassingen geanalyseerd: het genereren van betekenisvolle word
embeddings en het encoderen en queryen van tabulaire data.

We hebben voorstellen gedaan rond algoritmes en architecturen voor het genereren van word
embeddings en, het encoderen en queryen van tabulaire data. We hebben hierbij de kwaliteiten
en eventuele tekortkomingen onderzocht en geverifieerd aan de hand van onderbouwde, exper-
mimentele analyses.

Ondanks de gëıdentificeerde tekortkomingen van deze implementaties, bieden de experimentele
en kritische analyses een sterke basis voor eventuele uitbreidingen of een verdere verkenning van
de praktische toepassing van Vector Symbolic Architectures.

Contents

1 Introduction 15

2 Introduction to Vector Symbolic Architectures (VSAs) 17
2.1 Motivation: Why VSAs? . 17
2.2 Core principles / Building Blocks of VSAs . 18

2.2.1 Similarity Measures . 19
2.2.2 Atomic HVs . 20
2.2.3 Fundamental Operations . 21

2.3 A Glimpse into VSA Models . 28
2.4 Conclusion . 30

3 Word Embeddings 31
3.1 VSA-based Word Embeddings . 32
3.2 Experiments . 33

3.2.1 Dataset . 33
3.2.2 Training . 35
3.2.3 Initial Observations . 39
3.2.4 Evaluation . 40
3.2.5 Results . 41

3.3 Conclusion . 42
3.4 Considerations . 44

4 VSA Database 47
4.1 Architecture . 47

4.1.1 Conceptual Idea of Representing Database Records 47
4.1.2 Column Representation . 48
4.1.3 Encoding Rows . 48
4.1.4 Querying our Database . 49

4.2 Experiments . 50
4.2.1 Dataset . 50
4.2.2 Encoding of Data . 51
4.2.3 Analysis . 51

4.3 Mathematical Analysis . 54
4.3.1 Atomic BSC HV’s Similarity . 54
4.3.2 Bundle Similarity . 54
4.3.3 Similarity threshold . 56

4.4 Experiment Review . 57
4.5 Conclusion . 61

5 Conclusion 65

13

14 CONTENTS

Chapter 1

Introduction

Artificial Intelligence (AI) research has historically been characterized by two predominant
paradigms, namely the symbolic paradigm and the connectionist paradigm. [1]

Symbolic AI, also known as Good Old-Fashioned AI (GOFAI), is based on the representation of
information through symbols and their interrelations. It aims to enable problem-solving through
the manipulation and exploration of these symbols and relationships. This paradigm stems from
the ideas behind logic-based reasoning and is typically explored through logic programming [2].
This paradigm thus excels at knowledge exploration using logical inference and rule-based sys-
tems.

However, this also reveals its major flaw, namely the inability to handle uncertainty and learn
from ambiguous data due to its reliance on explicit symbol/knowledge manipulation. Another
drawback, with respect to achieving brain-like computing, is their reliance on highly reliable
hardware [3]. Unlike the brain, which can tolerate and recover from minor errors, even small
computational errors in symbolic systems can lead to catastrophic failures.

In contrast, the connectionist paradigm, characterized by artificial neural networks, processes
information in a distributed manner across interconnected units (neurons), reflecting a more
brain-like computation style. While the connectionist paradigm experienced a new burst of in-
terest with the introduction of Deep Learning models and applications like ChatGPT, recent
attention has shifted towards exploring alternative approaches. This shift is motivated by the
limitations of traditional connectionist models. A common problem with these models is that
they often struggle with structured and hierarchical data, leading to challenges in capturing
nuanced relationships and patterns within some datasets mainly due to their incapability in
handling complex structures and learning elaborate data representations. A more recent prob-
lem lies in the fact that these traditional connectionist architectures often pose significant energy
demands [4]. This high energy consumption underscores the need for more efficient computa-
tional approaches. Moreover, with the rise of stream-based data processing in dynamic and
uncertain environments, where AI systems must adapt and perform robustly, energy-efficient
solutions become imperative.

Vector Symbolic Architectures (VSAs), also known as Hyperdimensional Computing (HDC), offer
a promising alternative to address these challenges. They use distributed representations in high-
dimensional vector spaces to encode and manipulate symbolic information in an efficient and
robust manner [5]. VSAs thus enable the use of structured, symbolic-like representation of data
within connectionist paradigms, aiming to bridge the gap with symbolic approaches.

15

16 CHAPTER 1. INTRODUCTION

Thesis Objective

The objective in this thesis is to explore the capabilities and limitations of VSAs in the context
of AI in general, and machine learning in particular. By means of two use cases targeting textual
data and tabular data respectively, this thesis seeks to experimentally investigate the strengths
and limitations of VSAs and their potential as a viable alternative or companion to existing AI
solutions in these domains.

Chapter 2

Introduction to Vector Symbolic
Architectures (VSAs)

2.1 Motivation: Why VSAs?

As mentioned in the Introduction, connectionist models, primarily artificial neural networks,
excel at handling the uncertainty that stems from learning from large amounts of data. This
capability can be attributed to the use of distributed representations [6].

Distributed representations encompass a holistic approach to encoding information by distribut-
ing it across a large number of interconnected units or neurons. This contrasts with local repre-
sentations, like one-hot encoding, where each concept is represented by a single active unit, and
symbolic discrete representations, like records with specific fields, where information is stored in
predefined, isolated memory locations using bit patterns.

Example: Representing Words as Vectors

Figure 2.1: Examples of One-hot encodings vs. Distributed representations over a
vocabulary of size n. 1

To illustrate this, let us consider the representation of words in text documents. One-hot en-
coding offers a simple approach: each word is assigned a unique vector with a length equal to
the vocabulary size. Only one position in the vector is ”hot” (set to 1), while the rest are zeros.
While this method provides a symbolic-like, distinct encoding for each word, it lacks the abil-
ity to capture nuanced relationships between words (similarity). Additionally, it leads to very
high-dimensional, sparse representations for large vocabularies.

1https://blog.materialis.ai/distributed-representations-of-atoms.html

17

18 CHAPTER 2. INTRODUCTION TO VECTOR SYMBOLIC ARCHITECTURES (VSAS)

Neural networks aim to compute distributed representations, where words are represented as
denser, shorter vectors of (real) numbers. In this scheme, words with similar meanings (like
”cat” and ”dog”) would have ’closer’ representations in this fixed-dimension vector space. Where
closeness is defined by a vector similarity- or distance measure like the dot-product, euclidean- or
cosine distance/similarity. We aim to create distributed representations such that representations
of similar concepts have a higher similarity or lower distance.

This distributed manner of representing information (and computing on such representations)
has several advantages [5]:

• Robustness to Noise and Errors: Distributing information across many units makes the
representation robust to noise and errors. Even if some units are corrupted or malfunc-
tioning, the overall representation can still retain its meaning and be used for inference [7].

• Graceful Degradation: Distributed representations exhibit graceful degradation, meaning
that the performance of the system degrades gradually as the representation becomes
increasingly corrupted [8]. This property is crucial for real-world applications where noise
and uncertainty are inevitable.

• Generalization: Distributed representations facilitate generalization, allowing the system
to recognize and respond to novel inputs that are similar to previously encountered ones [8,
6]. This ability is essential for learning and adaptation in dynamic environments.

• Representation of Similarity: Distributed representations can capture and represent the
similarity between concepts and objects [9]. Similar concepts will have similar represen-
tations, allowing the system to leverage this similarity for tasks like classification and
analogy-making.

These properties make artificial neural networks well-suited for applications where we need to
learn from noisy and incomplete data, generalize to new situations, and perform in the presence
of errors.

However, artificial neural networks still have difficulties with representing and learning from
large-scale, complex, hierarchical, and compositional structures. These shortcomings of both
paradigms raised interest in Neuro-Symbolic AI (NeSy), which aims to obtain a best-of-both-
worlds: the key goal in NeSy research “is the integration of two fundamental cognitive abili-
ties: the ability to learn from the environment, and the ability to reason from what has been
learned” [10].

One particular possibility to integrate these capabilities is to incorporate symbolic structure and
symbolic reasoning in connectionist models. VSAs are one concrete proposal in this respect,
they introduce mechanisms to encode and manipulate symbolic information within a distributed
representation.

2.2 Core principles / Building Blocks of VSAs

When creating distributed representation we aim to distribute the information we want to rep-
resent over all components. Individual components of a vector do usually not have a predefined
meaning as opposed to symbolic representations, although NN’s can assign implicitly learned
features to components. This leads to a structural difference between a symbolic and a dis-
tributed representation; in the latter the state of an individual component or vector dimension
does not convey useful information without knowing the state of the other components.

Distributed representations as a model for representing and computing on information does come
with several challenges, as discussed in the Superposition catastrophe [11], Fodor and Pylyshyn
criticisms of connectionism [12] and Challenges of language modeling by connectionist represen-
tations posed by Jackendoff [13]. Most of the criticism boils down to the fact that conventional
connectionist representations struggle to represent hierarchical compositional structures effec-
tively and efficiently. For example representing (simple) fixed length sentences like ”Mary likes

2.2. CORE PRINCIPLES / BUILDING BLOCKS OF VSAS 19

John” vs. ”John likes Mary” using tuples or sequences, or representing documents by means
of large sets. The problem becomes even more eminent when we try to represent more com-
plex sentence or document structures by means of recursive structures, trees or graphs. From
these examples we conclude that information about the arrangement and/or order of multiple
elements within these structures can be lost due to the nature of the classical superposition
of vectors used in standard distributed representations [5]. VSAs address these challenges by
introducing operations that exploit the probabilistic properties of vectors in high-dimensional-
spaces. These properties enable VSAs to capture the richness of symbolic representations while
maintaining the advantages of distributed representations, paving the way for more efficient and
robust information processing.

The fundamental building block of VSAs is the high-dimensional vector, also known as a hyper-
vector (HV). These vectors typically have thousands of dimensions, allowing us to depend on
the near-orthogonality property. This property states that in high-dimensional spaces, randomly
chosen vectors are nearly orthogonal, and thus dissimilar to each other. This is a crucial part of
VSAs since most of its theory relies on it.

We state that a Vector Symbolic Architecture typically consists of the following core elements:

• A Similarity Measure: Because we work with vectors to represent concepts, both simple
and complex, we need some similarity measure that allows us to compare them and quantify
their relatedness.

• Hypervectors (HVs): We typically start by creating a set of atomic HVs, representing
the most basic concepts of our problem. These atomic vectors typically don’t inherently
contain a form of association, as with symbolic representations, they each represent a
unique, dissimilar concept and thus are ’randomly’ generated.

• A set of fundamental operations called bundling, binding, and possibly a permutation
operation. These operations provide building blocks for creating complex representations
from simple ones (atomic HVs) by combining and associating information contained in
HVs. They thus allow us to manipulate these representations and reason over them.

• An item memory that stores the atomic HVs and associates them to their respective
concepts. It is an essential part of the ”clean-up” procedure which retrieves the closest
atomic HV(s), using a similarity measure, from a set of noisy representations generated by
applying the fundamental operations. It thus allows for the comparison of more complex,
composite HVs to the basic concepts they encompass in our original problem space.

We refer to a VSA model as a specific implementation of a Vector Symbolic Architecture. A VSA
model thus always contains and builds upon, the 4 core elements mentioned previously. More
specifically, it dictates the implementation of the fundamental operations, the similarity measure,
and how we create random (atomic) HVs such that they are quasi-orthogonal or dissimilar.

For the remainder of this section we give a general overview of each of these core elements of a
VSA. We clarify our general overview by giving the implementation details for one of the most
straightforward VSA models called Binary Spatter Codes (BSC). Finally, we close this chapter
by giving an overview of the implementation details of 2 other VSA models called Multiply-Add-
Permute (MAP) and Holographic Reduced Representations (HRR).

We will denote HVs using bold lowercase letters, e.g., x,y, z, examplehv.

2.2.1 Similarity Measures

In order to evaluate the properties and capabilities of VSAs we need a function that enables us
to measure the similarity between 2 HVs. Because HVs are vectors we can use standard vector
similarity measures, of which the most popular is the dot product or, its normalized version,
cosine similarity.

20 CHAPTER 2. INTRODUCTION TO VECTOR SYMBOLIC ARCHITECTURES (VSAS)

Specifically, recall that the dot product is defined as:

δdotpx,yq “

D
ÿ

i

xiyi

It’s normalized version, the cosine similarity is defined as:

δcospx,yq “
δdotpx,yq

}x}2}y}2

However, some models like BSC use a specialized similarity measure, allowing for more suitable
and efficient measures. Since BSC use binary components we can get a more efficient operation
by using the (normalized) Hamming distance, or get the (normalized) Hamming similarity by
taking its additive complement.

The Hamming similarity is defined by the number of components that two input vectors agree
on:

δhampx,yq “

D
ÿ

i

1txi “ yiu

We can normalize this similarity measure, restricting the range to [0, 1] as follows:

δham normpx,yq “
δhampx,yq

D

For the remainder of this thesis we will denote the similarity measure adopted by a VSA model as
the bivariate function δpq. While implementation details may differ per model, the core principles
discussed in the remainder of the thesis hold true regardless of these variations. The most
important being the concentration of measure phenomenon, stating that a randomly generated
HV will, with high probability, have a similarity to other randomly generated HVs that is close
to the absolute zero. Where this absolute zero value depends on the similarity measure used by
the model. For example, it is 0 for models that use cosine similarity, as can be seen in figure 2.2.
The absolute zero value for the BSC model is 0.5 if the normalized hamming similarity is used,
as can be seen in figure 2.3. We observe that the shape of the similarity distribution is similar,
irrespective of the model used, yet the absolute zero value may differ.

2.2.2 Atomic HVs

Before we begin representing more complex relations and structures, we typically start by gen-
erating a set of atomic HVs. Their purpose is to represent the core elements of our problem
without encapsulating any elaborate connections or structures. Typically these atomic HVs don’t
contain any form of association between each other. They serve as the building blocks where-
upon more complex representations are constructed using the fundamental operations revealed
in subsection 2.2.3.

We typically create these random, dissimilar, HVs by drawing their elements from some pre-
defined distribution. For example, the BSC model generates a random HV by selecting for each
dimension an element of t0, 1u, and thus uses a Bernoulli distribution to generate the vector’s
components.

The key difference with typical connectionist representations is the fixed (high-)dimension of
each atomic HV. The random HV generation process, using a carefully designed distribution
to pick the HV’s components, allows us to create new, dissimilar, vectors on the fly without
needing to increase the dimensionality along the way. We can confirm this by taking another
look at figure 2.3. From this figure we also observe that that an increase of the dimensionality
D, leads to an exponential increase in the amount of quasi-orthogonal vectors.

2.2. CORE PRINCIPLES / BUILDING BLOCKS OF VSAS 21

Figure 2.2: Histogram of Cosine similarity between a random MAP HV and all other,
randomly generated atomic HVs in item memory (10 000 in total)

Figure 2.3: Histogram of normalized hamming similarity between a random BSC HV
and all other, randomly generated atomic HVs in item memory (10 000 in total)

2.2.3 Fundamental Operations

VSAs provide a set of fundamental operations that allow us to manipulate and reason using the
atomic HVs.

Bundling
This operation combines multiple HVs into a single HV, while preserving similarity between the
resultant HV and each of its inputs. It is typically implemented using some form of element-wise
addition. This is why we will denote it as follows:

s “ x ` y ` z

22 CHAPTER 2. INTRODUCTION TO VECTOR SYMBOLIC ARCHITECTURES (VSAS)

Where x, y and z are the input HVs and s is the resultant or bundled HV.

We make a few important notes about this operation:

• After creating the bundled vector it might be necessary to apply a model-specific normal-
ization function fpq denoted as:

s “ fpx ` y ` zq

This might be necessary to preserve the type of the components in the resultant HV to
allow for further computations. BSC for example uses the thresholded sum to retain the
binary components of the resultant vector as can be seen in Figure 2.4a. A policy for
breaking ties is necessary when an even amount of HVs in bundled, it is most common to
randomly assign a value from t0, 1u to a tied component; see Figure 2.4b.

Dimension 1 2 3 4 ... D
x 1 1 0 1 0
y 0 1 0 0 1
z 0 1 1 0 1

` p“ sq 1 3 1 1 2
fpsq 0 1 0 0 1

(a) Uneven amount of
bundled HVs, no tie-breaking

policy needed

Dimension 1 2 3 4 ... D
x 1 1 0 1 0
y 0 1 0 0 1

` p“ sq 1 2 0 1 1
fpsq 0 1 0 1 0

(b) Even amount of bundled
HVs, random tie-breaking

policy used for dimensions 1,
4 and D

Figure 2.4: Examples of bundling BSC HVs

• An important property of the bundling operation is that the resultant HV s is equally
similar to its input HVs, yet this similarity decreases with the amount of inputs HVs.
We can investigate the interaction between the dimension of the HVs and the size of the
bundled HV on the similarity with its input HVs in figure 2.5. Here we observe that the
similarity between the input HVs and the resultant bundle HV seems insensitive to the
dimensionality of the HVs, yet the standard deviation of this similarity is dependent on the
dimensionality. When we combine this with the results from figure 2.3 where we observe
that the similarity between random HVs is more concentrated around the absolute zero for
larger dimensionalities we can conclude that in higher dimensions, bundled representations
maintain a more distinct separation from random vectors, allowing us to more reliably
recognize input HVs.

Using this insight we define the bundling capacity as follows: The percentage of input
HVs that have a greater similarity with the resultant, bundled HV, than any non-input
atomic HV in item memory. Our previous conclusions suggest that a higher dimensionality
would allow for a greater bundling capacity. To confirm this hypothesis and validate the
effectiveness of this definition, we conducted an experiment.

In this experiment, we varied both the dimensionality of the atomic HVs and the size of
the bundled HV to observe their effect on the bundling capacity. For each dimension we
begin by generating an item memory of 10 000 atomic HVs. Within each dimensionality
setting, we explore different bundle sizes (S) by randomly selecting S atomic HVs from
item memory as input HVs for the bundle. Lastly, we calculate the bundle capacity by
taking the percentage of input HVs that are among the top S most similar HVs from item
memory to the bundled HV. We repeated this experiment, as well as all other experiments
in this section, over 10 batches, meaning we repeated the experiment over the different
dimensionalities 10 times.

Our results, depicted in figure 2.6, clearly demonstrate the relationship between dimen-
sionality, bundling size, and bundling capacity stated earlier. We thus confirm that larger
dimensionalities lead to greater bundling capacities.

2.2. CORE PRINCIPLES / BUILDING BLOCKS OF VSAS 23

Figure 2.5: Similarity of bundled HV to one of its input HVs for several dimensionalities
and bundle sizes. No intermediate normalization, only after all input HVs have been
bundled. Experiment repeated over 10 batches, standard deviation reported by bands.

As seen in figure 2.6, the standard deviation of similarity between a bundled HV and its
input components decreases with dimensionality.

Figure 2.6: Bundle capacity of non-normalized bundle HV for several dimensionalities
and bundle sizes. Capacity is referred to as the percentage of input HVs that have a
greater similarity to bundle HV than all non-input HVs in item memory. Experiment
repeated over 10 batches, standard deviation reported by bands.

We also theoretically confirmed these experimental observations about the bundling oper-
ation in section 4.3. We did this by quantifying the expected value and the variance of the
similarity between the resulting HV s and any of its input HVs.

• A natural consequence of the resultant HV being equally similar is that the bundling

24 CHAPTER 2. INTRODUCTION TO VECTOR SYMBOLIC ARCHITECTURES (VSAS)

operation is commutative and associative. Another way to see this is that bundling is a
component-wise sum, where summation is a commutative operation. This thus means that
the order of the input vectors in the bundling operation does not change the resultant HV;

s “ x ` y ` z “ x ` z ` y “ ¨ ¨ ¨ “ z ` y ` x

Yet it is important to notice that when combined with a normalization it is no longer
associative;

fpfpx ` yq ` zq ‰ fpx ` fpy ` zqq

This implies that normalization introduces some kind of ’noise’; i.e. repeatedly normalizing
after bundling (we refer to this as sequentially bundling) leads to a fade-away effect of
similarity between the bundled HV and earlier inputs. The effect of normalization after
bundling on the similarity of input HVs to the bundle HV can be seen in figure 2.7. We
can clearly see that normalizing has a significant impact on the similarity between input
HVs bundled before the normalization compared to those bundled afterwards. When we
take a closer look at the data in figure 2.7 we can conclude that the similarity between
the sequentially bundled HV and its first input is non-distinguishable from a random
HV in item memory after as little as 6 normalizations. As a result normalizing after
a bundling operation also greatly impacts the bundling capacity because the similarity
between input HVs and the bundled HV after normalization will fade away. From our
experiments depicted in figure 2.8 we observe that for a dimensionality of 8192 we can
successfully retrieve around 6 input HVs (averaged over 10 experiment batches) from a
bundled HV of size 100, we observe the same amount for a bundle size of 200. Moreover,
from our experiment data we observe that for sequentially normalized bundles with a
bundle size larger than 10, between 5 and 8 input HVs can be correctly retrieved. This
confirms our results in figure 2.7 where we concluded that the similarity between the first
input HV and the sequentially bundled HV is non-distinguishable from a random HV in
item memory after 6 normalizations, with a negligible effect of the dimensionality used.

When and if a normalization is needed should thus be taken into careful consideration
when designing a VSA system. As a rule of thumb one should postpone normalizing a
bundled HV for as long as possible. Whether this is achievable, is application dependent.

Figure 2.7: Fade-away of similarity of first input HV of bundle over growing bundle size,
for several dimensionalities. Normalization applied after each new input HV is added:
fpfp...fpfpx1 ` x2q ` x3q ` ...q ` xnq. We refer to this type of bundling as sequentially
(normalized) bundling since we normalize the resultant HV after each bundle with a new
input HV. Experiment repeated over 10 batches, standard deviation reported by bands.

2.2. CORE PRINCIPLES / BUILDING BLOCKS OF VSAS 25

Figure 2.8: Bundle capacity of sequentially normalized bundle HV for several dimension-
alities and bundle sizes. Capacity is referred to as the percentage of input HVs that have
a greater similarity to bundle HV than all non-input HVs in item memory. Experiment
repeated over 10 batches, standard deviation reported by bands.

Bundling thus allows us to represent complex concepts and set-like structures by combining
simpler ones. For example, we can represent the concept of ”a red apple” by bundling the
atomic HVs for ”red” and ”apple”, or on a larger scale, represent documents by bundling the
atomic HVs of the words appearing in the document.

Binding
Due to the associative and commutative nature of the bundling operation we lose ordinal, hier-
archical, and structural information. Consider for example the following setup where we try to
represent a fruit basket:

fb “ pred ` appleq ` pyellow ` bananaq “ pyellow ` appleq ` pred ` bananaq

Despite the different orderings, the resulting bundled HV for the fruit basket remains the same.
There is thus no method to discern the original ordering or hierarchical structure of the elements
within the bundled HV. This means the bundling operation on its own cannot be used to reliably
encode tuples, sequences, or other kinds of ordered and hierarchical information.

The binding operation therefore aims to create an association, typically between two HVs,
which is why it is often related to creating key-value pairs. Binding is often implemented using
multiplicative operations, but the exact implementation is model-dependent and thus might
differ. We will denote the binding operation as follows:

r “ k l v

The resulting HV r is dissimilar to its inputs, and binding can thus be thought of as a ’random-
izing’ operation. Yet it preserves a different kind of similarity called structured similarity. We
illustrate this by means of an example; if we create another binding r1 “ k1 lv1, then r is similar
to r1 only if k is similar to k1 and v is similar to v1. Moreover, this similarity is represented in
a multiplicative fashion [5], that is the similarity of r to r1 is proportional to the product of the
similarities between k and k1, and v and v1.

For example, if the keys used in the binding operation, k and k1, for creating r and r1 are an
exact match or they simply are same key HV, then the similarity of r to r1 is proportional to
the similarity between the values, v and v1 only.

26 CHAPTER 2. INTRODUCTION TO VECTOR SYMBOLIC ARCHITECTURES (VSAS)

In the BSC model the binding operation is implemented by means of a component-wise XOR
operation, as can be seen in figure 2.9a.

Dimension 1 2 3 4 ... D
k 1 1 0 1 0
v 0 1 0 0 1

XOR (=r) 1 0 0 1 1

(a) Binding of 2 HVs (k and
v) with resulting HV r, often
used to associate a key-value

pair of atomic HVs.

Dimension 1 2 3 4 ... D
r 1 0 0 1 1
k 1 1 0 1 0

XOR (=v) 0 1 0 0 1

(b) Unbinding of vector r
with atomic vector k (key) to

obtain v (value).

Figure 2.9: Examples of binding and unbinding BSC HVs using XOR (self-inverse bind-
ing operation)

Going back to our fruit basket example we can now associate the fruits with their respective
colors and thus retain structural information as follows:

fb “ red l apple ` yellow l banana

Unbinding
Creating associations between HVs using the binding operation would not be very useful if
we did not have a method to recover or identify which HVs are associated with each other.
The unbinding operation is thus designed to recover one of the associated HVs from a bound
representation. Its implementation is highly dependent on the implementation of the binding
operation as the unbinding operation aims to ’undo’ the effect of binding.

Denoting the unbind operation as m, we can recover the value of a key-value bound pair as
follows:

v “ k m pk l vq

In the BSC model, the unbinding operation is the same as the binding operation, making it a
self-inverse operation, as can be seen in figure 2.9b. We note here that the unbinding operation,
just as binding, typically distributes over bundling (additive operation) as they are multiplicative
operations.

However, we run into a problem when we try to recover the yellow fruit from our fruit bas-
ket:

banana « yellow m fb

“ yellow m pred l apple ` yellow l bananaq

“ pyellow m pred l appleqq ` pyellow m pyellow l bananaqq

“ noise ` banana

Thus the result of unbinding a bundled HV of key-value bindings will be similar to the original
atomic HV but not exactly the same. This phenomenon is called crosstalk noise and its impact
depends on both the dimension D of the HVs and the size of the bundle. This emphasizes the
need for a clean-up or item memory. This memory keeps the original set of atomic HVs and
allows us to compare the resultant, possibly noisy, HV of an unbinding operation to them. If we
relate this to our example we would find that banana is most similar to yellow m fb out of all
HVs in item memory, tred,apple,yellow,bananau.

This probing of our item memory is called the clean-up procedure since it enables us to remove
the noise created by combining binding with bundling and find the original bound HV. Thanks
to the concentration of measure phenomenon we know that, even with the introduction of some
noise, the most similar atomic HV in item memory will likely be the correct match.

2.2. CORE PRINCIPLES / BUILDING BLOCKS OF VSAS 27

How much noise is introduced by this bundling of key-value bound HVs can actually be easily
understood. We take a bundle of size n, containing key-value bound atomic HVs and defined as
follows:

r “

n
ÿ

i“1

pki l viq

As mentioned before, the key atomic HVs (ki’s) and value atomic HVs (vi’s) are, by definition,
all randomly generated and thus dissimilar. We can now try to recover the value of the ith bound
key-value pair as follows:

vi « ki m r

“ ki m p

n
ÿ

j“1

kj l vjq (distribute)

“

n
ÿ

j“1

ki m pkj l vjq

“ ki m pki l viq `

n
ÿ

j“1,j‰i

ki m pkj l vjq

“ vi `

n´1
ÿ

noise

These calculations show us that the noise, relative to the value HV, encountered while unbinding
with the key HV from a bundled HV containing key-value bindings is proportional to its size n,
or more precisely n ´ 1. We confirm this result by looking at figure 2.10, where we also notice
the resemblance with figure 2.5. This gives us a useful, and in hindsight intuitive, result stating
that the noise introduced during unbinding a bundle of key-value pairs scales with its size n,
just as the noise of a bundled HV relative to its inputs, scaled with its size n.

Figure 2.10: Average similarity of key-value pair bundles of several sizes to one of their
input HVs, plotted for different dimensionalities. Experiment repeated over 10 batches,
standard deviation reported by bands.

Permutation
VSA literature sometimes includes permutation as an additional operation. We mention it for
the sake of completeness, although it is not frequently used in practical implementations.

28 CHAPTER 2. INTRODUCTION TO VECTOR SYMBOLIC ARCHITECTURES (VSAS)

Permutations can be used to represent ordinal information. This operation is implemented by a
rearrangement of the HV components. We denote the permutation operation with ρ. The result
of a permutation is an HV that is dissimilar to the input HV:

x ff ρpxq

The rearrangement and thus also the permutation can be inverted, denoted by ρ´1. It can also
be repeatedly applied, denoted as ρi, where we apply the permutation i times. This allows the
creation and decoding of sequences as follows:

seq “ ρpxq ` ρ2pyq ` ρ3pzq

We can now extract the second element by applying the inverse permutation twice:

y « ρ´2pseqq “ ρ´1pxq ` y ` ρ1pzq “ noise ` y ` noise

Permutation can for example be used to represent the order of words in a sentence as opposed
to a bag-based approach only utilizing the bundling operation.

By combining these fundamental operations, VSAs can represent a wide range of symbolic,
composite, and hierarchical information.

2.3 A Glimpse into VSA Models

Research into VSAs initially started from the BSC model that we introduced in the previous
section. Throughout the years different models have been proposed, each relying on the same
assumptions and operations, yet with different implementation details. Each VSA model uses
a different representation of HVs, meaning that the distribution from which the components of
the HVs are drawn and thus also their type type differ. These range from binary components „

Bernoullip0, 1, p “ 0.5q, to bipolar „ Bernoullip´1, 1, p “ 0.5q, and unitary „ Normalp0, 1{Dq

components of atomic HVs. As a result, there is also the need to implement model-specific
bundling, binding, and unbinding operations which retain their respective properties mentioned
in subsection 2.2.3. It is important to note that most models have similar characteristics, they all
rely on the concentration of measure phenomenon and retain the properties of the fundamental
operations. But there are several nuances that have to be taken into account like bundle capacity,
speed of computation (complexity of operations), memory usage and available hardware. Just
as with most AI applications there is a trade-off between accuracy (reliable decoding of bundling
and binding) and, time- and space-complexity.

We will now briefly discuss two other models called Multiply-Add-Permute (MAP) [5] and Holo-
graphic Reduced Representations (HRR) [5].

Multiply-Add-Permute (MAP)

• HV Representation: MAP uses bipolar HVs (components drawn from -1, 1 with equal
probability 1

2) for its atomic representations.

• Similarity Measure: Cosine similarity

• Bundling: Element-wise addition, potentially with normalization to maintain bipolar com-
ponents. The normalization is implemented using a binarization to t´1, 1u where ties (0’s)
within the bundled HV are randomly but equally set to either -1 or 1.

• Binding: Element-wise multiplication. Just like BSC this is a simple, efficient and com-
mutative operation since multiplication is commutative.

• Unbinding: Element-wise multiplication between the bound HV and one of its input HVs.
Due to the nature of bipolar components, this can be a clean operation (no noise intro-
duction if no bundling afterwards), just as the XOR for BSC. We also note that just as
with BSC the binding and unbinding are self-inverse operations.

2.3. A GLIMPSE INTO VSA MODELS 29

The MAP model thus shows some resemblance to BSC with respect to its ’binary’ representation
but varies in its operation implementations and similarity measure (cosine similarity).

Holographic Reduced Representations (HRR)

• HV Representation: HRRs use real-valued components drawn from a normal distribution
with mean equal to 0 and variance equal to the inverse of the HV dimensionality 1{D.

• Similarity Measure: Cosine similarity

• Bundling: Element-wise addition, potentially with normalization to preserve the approxi-
mate unit Euclidean norm of the atomic HVs.

• Binding: Implemented by applying a circular convolution to the input HVs. This is
more computationally complex than the component-wise multiplication of MAP or the
component-wise XOR of BSC. Unlike in BSC or MAP the binding of two vectors (without
bundling thereafter) also introduces some noise.

• Unbinding: Implemented by applying a circular correlation, a very specific operation aim-
ing to invert the effect of a circular convolution.

This model potentially allows for an increased bundling capacity but this comes at a cost of
increased computational cost and storage demand due to the increased complexity of both the
operations and the components (float or double).

While the implementation details of all these models differ, we can confirm that the concentra-
tion of measure phenomenon is present for all of them by looking at figure 2.2, figure 2.3 and
figure 2.11.

Figure 2.11: Histogram of cosine similarity between a random HRR HV and all other,
randomly generated atomic HVs in item memory (10 000 in total)

We conclude that there is no fit-all model, the up- and downsides, and implementation details
with their respective properties have to be weighed against the problem-specific characteristics.
The interested reader can take a look at [5] for a more in-depth look at the implementation
details of several models.

30 CHAPTER 2. INTRODUCTION TO VECTOR SYMBOLIC ARCHITECTURES (VSAS)

2.4 Conclusion

In this chapter, we have laid the groundwork for understanding Vector Symbolic Architectures.
We delved into its core principles: hypervectors, similarity measures, and the fundamental op-
erations, bundling, binding, unbinding, and potentially permutation. The unique properties
of high-dimensional spaces and the carefully designed VSA models enable a rich representa-
tion scheme that supports complex symbolic structures, compositionality, and robust reasoning
capabilities as confirmed by our experiments.

The insights gained in this chapter will guide our explorations into the applicability of VSAs by
means of two compelling use cases:

Word Embeddings: We’ll discover how VSAs can be used to create meaningful vector repre-
sentations for words. While many modeling techniques for generating word embeddings exist,
we will focus on only one of them called word-document frequency modeling. We will lever-
age text documents to create HVs carrying semantic information that allow for similarity-based
comparisons, which can be used in natural language processing tasks. We will take a closer look
at the benefits and the downsides of creating and using VSA-based semantic vectors, by means
of comparing them against state-of-the-art word-document frequency modeling techniques by
means of established evaluation benchmarks.

VSA Databases: We’ll design a VSA-based database architecture, demonstrating how these
high-dimensional representations can model entries in tabular databases. This experiment will
showcase how VSAs can efficiently encode, store and query data while ensuring resilience to noise
and ambiguity. While we don’t explore it in this thesis, these representations could be directly
leveraged within neural network applications, opening up exciting possibilities for integrating
structured data with the power of deep learning.

Chapter 3

Word Embeddings

Word Embeddings lay at the foundation of any Natural Language Processing (NLP) application,
providing a way to represent the semantic meaning of words in a vector format. By capturing
complex semantic relationships between words in a language these vector representations enable
further processing and computation of text-based data by NNs.

The foundation of word embeddings lies in the statistical semantics hypothesis [14], which states
that the meaning of linguistic units (sentences or documents) can be inferred from patterns of
textual co-occurrence. Stated more simply, if units of text have similar words in them they tend
to have similar meanings.

From this, two more specific hypotheses evolved that have driven word embedding develop-
ment:

• Bag-of-words hypothesis: This hypothesis evolved from research surrounding document
retrieval. It states that word frequencies within documents directly relate to a document’s
meaning [15].

• Distributional hypothesis: Words appearing in similar contexts tend to have similar mean-
ings [16]. This hypothesis can be seen as a word-level interpretation of the statistical
semantics hypothesis.

Historically two primary methods of learning word embedding have emerged from these hypothe-
ses, namely:

• Count-based methods: These methods, of which Latent Semantic Analysis (LSA) is the
prime example, are based on the Bag-of-words hypothesis. They rely on constructing
term-document matrices to analyze co-occurrence frequencies. From these matrices, di-
mensionality reduction techniques, like (truncated) Singular Value Decomposition (SVD),
are used to generate ’dense’ word representations.

• Prediction-based methods: More recent approaches focus on the distributional hypothesis
and use context windows around the target word to measure co-occurrence. Two prime
examples come from the Word2Vec paper [17]. They utilize shallow NNs in two key
architectures:

– Continuous Bag-of-Words (CBOW), which predicts a target word based on surround-
ing context words.

– Skip-gram, which predicts surrounding context based on a central word.

Both of these methods are trained using backpropagation for their respective tasks, after
which the learned parameters of the NN are extracted as the word embeddings.

31

32 CHAPTER 3. WORD EMBEDDINGS

Later models, like GloVe [18] combine global co-occurrence statistics from a corpus with the
local context principles. More recent encoder-based transformer models such as BERT [19] use
a different approach by generating dynamic context-dependent word embeddings based on input
sentences.

In chapter 2 we have seen that VSAs offer an alternative paradigm for representing and ma-
nipulating information, making it a viable option to explore for generating vector-based repre-
sentations of words. In the remainder of this chapter we will explore the applicability of this
alternative paradigm to the creation of meaningful word embeddings. We will start off by in-
troducing a novel count-based VSA approach to learning word embeddings. Afterwards, we will
introduce a linguistic dataset that is suitable for our count-based learning method. Next we will
take a look at our training process in more detail and refine it to optimize the running time
and efficiency. Finally we will introduce the WordSim353 [20] validation dataset to evaluate
our learned word embeddings and compare it to LSA, a state-of-the art count-based learning
method,

3.1 VSA-based Word Embeddings

We begin with a general outline of the learning process using a document-based textual dataset.

Representing Words and Documents
As with any VSA-based application, we need to define a set of core, symbolic elements rep-
resented by atomic vectors upon which we can build and generate more intricate composite
representations.

We will initialize the document and word HVs as follows:

• Document HVs: Each document in our corpus is assigned a unique, randomly initialized
atomic HV. The HVs of the documents serve as the core elements of our problem, and can
be seen as a way to uniquely identify and represent the documents of our corpus.

• Word HVs: These are the HVs we would like to learn, thus each word in our vocabulary
will initially be represented by an ’empty’ HV. An empty HV, as the name suggests, is a
HV that does not contain any information, the exact initialization depends on the VSA
model used. Conceptually we can think of empty HVs as hypervectors representing empty
sets. More specifically, when an initially empty HV is bundled with a random HV x, the
resulting bundled HV is exactly x.

These initial representations lay the foundation for our next step: encoding the semantic rela-
tionships, present in our corpus, between the words in our vocabulary.

Encoding Semantic Similarity by Bundling
Our VSA-based learning method focuses on word-document co-occurrence to extract the se-
mantic relationships between words. For each word within a document, we use the bundling
operation to add the document’s unique HV to the word’s HV. Through this process, words that
frequently appear in similar documents will accumulate similar learned bundle HVs.

Psuedo-code of the algorithm we just described can be found in Algorithm 1.

We can give an intuitive view of our learning algorithm as follows: We start off by generating
random, dissimilar document HVs in our high-dimensional space. The word HVs are initially
empty, sitting at the origin. With each bundle of a document HV to a word HV appearing in
the respective document, we essentially move the HV for that word closer to the HV of that
document in our high dimensional space. We repeat this for each document in our corpus,
essentially moving the word embeddings to the ’center’ of all the document embeddings they
occur in. This repeated bundling of the document HVs thus moves HVs of words frequently
occurring together in documents to similar positions in the high-dimensional space.

3.2. EXPERIMENTS 33

Algorithm 1 VSA Word Embedding Learning

Require: Text corpus C, vocabulary V, dimensionality of HVs D, VSA model M
Initialization:
for each document d P C do

Generate a random atomic HV hvd of dimension D according to M
end for
for each word w P V do

Initialize empty HV ew of dimension D according to M
end for

Corpus Traversal:
for each document d P C do

for each word w P d do
ew Ð ew ` hvd Ź Bundle document HV with word HV

end for
end for

Normalization (Optional):
for each word w P V do

ew Ð fpewq Ź Model specific normalization
end for

3.2 Experiments

The primary goal of our experiment is to evaluate the effectiveness of our VSA-based learning
method in capturing meaningful semantic relationships between words that appear in similar
documents. We will do so by investigating the following questions:

• Initial observations: Is our VSA-based learning method capable of extracting useful
information? We will take a look at the learned embeddings and their similarities to each
other to validate that our method indeed extracts useful semantic information from the
training data.

• Similarity to Human Judgment: How closely do the similarity scores derived from our
VSA-based embeddings align with human perceptions of word relatedness? For this, we
will use the WordSim353 dataset.

• Comparison to Traditional Methods: How does the performance of our VSA-based
approach compare to established count-based techniques like LSA? Does it offer any ad-
vantages in terms of representation quality or computational aspects?

The evaluation method as well as other observations are of course highly sensitive to the training
dataset used and thus difficult to evaluate directly, that is why we will also compare our VSA-
based results to the evaluation of LSA on the same dataset to get more tangible results.

3.2.1 Dataset

For our VSA-based word embedding method, we require a high-quality document dataset over
a large domain of general text. This will ensure that we have a sufficient vocabulary size and a
diverse range of contexts in which we can observe word co-occurrences. This is why we selected
the WikiText 1 language modeling dataset. The WikiText dataset is a collection of documents
extracted from a set of good and featured articles on Wikipedia. These articles meet a core set
of editorial standards, are well written and contain factually accurate and verifiable information,
while also being broad in coverage 2. This dataset comes in 2 variants, the WikiText-2 dataset

1https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset
2https://en.wikipedia.org/wiki/Wikipedia:Good articles

34 CHAPTER 3. WORD EMBEDDINGS

Wikitext-2 Wikitext-103

Train Valid Test Train Valid Test

Articles 600 60 60 28,475 60 60

Tokens 2,088,628 217,646 245,569 103,227,021 217,646 245,569

Vocab 33,278 267,735

OoV 2.6% 0.4%

Table 3.1: Statistics for Wikitext-2 and WikiText-103 dataset

and the WikiText-103 dataset. Their respective sizes and statistics can be found in table 3.1.

For the purpose of this initial investigation into the potential of VSAs for learning document-
based word embeddings, we decided to utilize a random sample of 10 000 documents from
the training set of documents from the WikiText-103 dataset. This allows us to validate the
feasibility of our method, asses its potential, and benchmark it against LSA. The reason we
decided to not opt for the smaller WikiText-2 dataset is that it does not allow for a significant
dimensionality reduction and thus does not allow us to properly investigate and compare the
capabilities of both learning methods. The random subset we use offers a suitable balance
between vocabulary size and computational feasibility for our introductory exploration of VSAs
in word embedding generation. The decision to use this random subset over the entire dataset
is also based on the fact that it allows us to learn our embeddings locally on a GPU (NVIDIA
3070 with 16GB memory).

Preprocessing

The following preprocessing steps were performed on the WikiText-103 dataset to prepare it for
our VSA-based learning process:

1. Tokenization: Text is split into sentences and then into individual words (tokens).

2. Title Handling: Titles are identified, processed, and used to identify separate documents
within the dataset. This is needed because the dataset is given in one large compressed
file, and not on a per-document basis.

3. Lowercasing: All text is converted to lowercase to eliminate the impact of case variations.

4. Stop Word Removal: Common English stop words (e.g., ”the”, ”a”) and punctuation
are removed, as they carry minimal semantic meaning.

5. Filtering: We ensure that:

• Numeric tokens are replaced with a generic ”<num>” tag to represent numerical
entities collectively.

• Very short words (less than two characters) are removed.

• Words appearing in less than 3 documents are removed as they do not provide suffi-
cient semantic information and allow for a reasonable vocabulary size, relative to our
document count of 10 000.

From this preprocessed dataset we randomly sampled 10 000 documents, resulting in a vocabu-
lary of 91 613 words. These preprocessing steps aim to reduce noise, standardize the text format,
and focus the learning process on semantically relevant words within the corpus. It also delivers
separate documents that can be used to form a term-document matrix, simplifying the learning
process for both the VSA-based learning method and LSA.

3.2. EXPERIMENTS 35

3.2.2 Training

In this section, we will take a closer look at the earlier mentioned learning procedure (Algorithm
1), and optimize it by proposing a GPU-based learning process.

Thereafter, we will take a look at the hyperparameters of our learning method, namely the HV
dimensionality and the VSA model used.

Optimizing our learning algorithm
First, we will look at a small adjustment to Algorithm 1, allowing us to utilize vector or tensor
operations on a GPU to dramatically increase the running time of our algorithm. The updated
version can be found in Algorithm 2. The first difference with Algorithm 1 is in the initialization
step, where we now create 3 matrices, a binary term-document matrix, a document matrix
containing the atomic document HVs, and the term matrix containing empty HVs used for
learning.

The main differences with Algorithm 1 can be found in the actual learning procedure or corpus
traversal. It now utilizes the term-document matrix Mtd to quickly identify the words that
appear in the current document by getting the non-zero indices of the respective document row
in the term-document matrix. Notice we store the term document matrix where the rows contain
the document vectors and the columns represent the terms in the vocabulary. This allows us to
efficiently access the document vector containing the word occurrences for that document during
the learning process.

We also easily extract the atomic HV for our current document from the document matrix Md

using its index. At this point we have the document HV and the indices of the words in our
vocabulary that appear in that respective document. All that is left to do now is to update the
relevant word embeddings (HVs), indicated by the indices we just extracted, by bundling the
current document HV to them.

If we assume that the term matrix Mt containing the word HVs that we are learning fits in our
GPU memory, we can increase the speed of the training process significantly. We do this by
bundling the current document HV into the word HVs of all relevant words in our term matrix
Mt using a single GPU-based matrix addition operation.

We achieve this by leveraging broadcasting 3, a mechanism that allows us to perform operations
on tensors of different shapes without explicitly reshaping them.

Figure 3.1: Example of a broadcasted vector to matrix addition, extending the addition
of a 1x3 vector to a 4x3 matrix. 4

3https://pytorch.org/docs/stable/notes/broadcasting.html
4https://numpy.org/doc/1.25/user/basics.broadcasting.html

36 CHAPTER 3. WORD EMBEDDINGS

In our context, broadcasting allows us to bundle the document HV (a vector) to the selected
rows of the term matrix in one GPU-based matrix addition operation. Remember that the
bundling operation for all VSA models is an additive operation, and thus also for the MAP
model we use. A simple visualization of a broadcasted vector to matrix addition can be seen in
figure 3.1.

By using this matrix-based update of our word embeddings we eliminate the need for an inner
loop over the words and leverage highly parallelized computations using GPUs. This effec-
tively transforms our VSA-based learning process from a multi-minute process to a process that
takes only a handful of seconds, running time for the optimized algorithm is reported later in
table 3.4.

Algorithm 2 GPU-based VSA Word Embedding Learning

Require: Text corpus C, vocabulary V, dimensionality of HVs D, VSA model M
Initialization:
|C| Ð number of documents in our corpus
|V| Ð size of our vocabulary

Mtd Ð binary term-document matrix of size |C| ˆ |V|

Md Ð Document HV matrix of dimension |C| ˆ D, rows represent random atomic HVs of
dimension D according to M.
Mt Ð Word HV matrix of dimension |V| ˆ D, rows represent empty HVs of dimension D
according to M. This matrix is stored on the GPU.

Corpus Traversal:
for each document d P 1, ..., |C| do

Id Ð non-zero indices in Mtdrds Ź Get relevant indices
hvd Ð Mdrds Ź Extract document HV from document matrix
MtrIds Ð MtrIds ` hvd Ź Update relevant word embeddings using matrix addition

end for

Normalization (Optional):
for each word w P 1, ..., |V| do

Mtrws Ð fpMtrwsq Ź Model specific normalization
end for

We now have a highly optimized VSA learning algorithm where the computational complexity
grows linearly with the number of documents in the corpus, assuming the word HV matrix fits
into GPU memory. Even if this is not the case, we could partition our word matrix and thus
the vocabulary over several GPUs and let each GPU loop over the entirety of the corpus. After
which we can combine the partitions since the learning process of each word embedding does
not have cross dependencies on the learning of other word embeddings.

Initializing our hyperparameters
Now that we have an optimized, final version of our learning algorithm we can start initializing
its hyperparameters.

First, we notice that at the core of our learning algorithm lies the bundling operation. It is the
only VSA operation we use during corpus traversal. Thus there is no need for a normalization
of the bundled HV after each step. As we saw in subsection 2.2.3 this non-normalizing way of
bundling allows for a drastically improved bundling capacity and thus allows us to capture the
semantics of more documents inside a single learned word embedding. If at a later point in time,
we would want to create associations between learned embeddings using a binding operation,
we could do so by normalizing all HVs when the learning algorithm finishes. If we have these
normalized HVs we can safely apply a binding operation to associate word HV pairs.

The next step in implementing Algorithm 2 is to pick a suitable VSA model. If we take the

3.2. EXPERIMENTS 37

previous paragraph into consideration, we need a model that allows for a straightforward non-
normalized bundling operation that can be applied while we loop over all the documents in the
training data. A common first choice is the BSC model due to its simplicity, speed of the binary
operations, and memory efficiency of the binary components. However, we run into a problem
when we look at its inability to natively support the non-normalized bundling operation. If we
want to allow non-normalized bundling for BSC HVs we will need to keep track of the amount
of document HVs that will be added to the learned embedding for each word. Otherwise, we
can not apply a normalization afterwards because the normalization for the BSC model is a
thresholded sum, where the threshold is set to the number of input HVs of the bundle divided
by 2. We can solve this by storing the number of documents that each word appears in separately,
or we could look at another model for which the normalization step does not need any additional
information and thus reduces the overhead. The alternative we chose is the MAP model which
we discussed in section 2.3. It resembles BSC in many ways, the main difference is that MAP uses
randomly selected components from {-1,1} as opposed to the set {0,1} used in BSC. As stated in
section 2.3 the normalization consists of a ’binarization’ to {-1,1} for all the components. This
avoids the need to store the occurrence counts for each word since we do not need to perform
a thresholded sum but a simple binarization to {-1,1} for the respective negative and positive
components. Apart from the changes in the implementation details of the similarity measure and
the operations, we won’t see any changes in performance as MAP offers similar characteristics
and capabilities to BSC.

Lastly, we need to select a dimensionality for our document and word HVs. There are no concrete
guidelines provided in previous works, yet it is a common practice to pick a dimensionality in
the early thousands, where 10 000 is the most commonly selected dimensionality [21]. For our
experiment, we could consider the representational capacity of our HVs to determine a suitable
dimensionality. Since we solely use a non-normalized bundling operation, we can take a look at
the non-normalized bundling capacity depicted in figure 3.2. Here we notice great similarity to
figure 2.6, representing the non-normalized bundling capacity of the BSC model.

Figure 3.2: Bundle capacity of MAP model, non-normalized, bundle HV for several di-
mensionalities and bundle sizes. Experiment repeated over 10 batches, standard deviation
reported by bands.

Next, we take a look at figure 3.3, representing a histogram created by taking the document count
for each word in our vocabulary. This allows us to estimate the representational capacity that
our word HVs would need. We decided that a representational capacity of around 100 bundled

38 CHAPTER 3. WORD EMBEDDINGS

HVs would suffice to capture document co-occurrence inside our word embedding HVs.

Figure 3.3: Histogram depicting the document frequency for the words in our dataset.
This histogram was created by counting the number of documents each word in our vo-
cabulary appears in, and then binning the document frequencies per 10. We thus observe
that there are 47 000 words in our vocabulary appearing in at most 9 documents (first
bin), while only 126 words of our vocabulary appear in 300 to 309 documents.

If we combine the information found in Figures 3.2 and 3.3, we conclude that a dimensionality
of 5000 for our MAP model HVs should suffice to capture the general signal of document co-
occurrence for our HV word embeddings,

We also mention that we do apply the optional normalization in Algorithm 2 to maintain the
integrity of our HVs, and thus report results based on true MAP HVs, having components from
{-1,1} which can thus also be used to apply other VSA operations on.

LSA reference word embeddings
For the training of our reference word embeddings from LSA, we remain brief. We employed a
truncated SVD algorithm on the same binary term-document matrix we used for our VSA-based
algorithm, reducing (or truncating) the dimensionality to 2000.

The truncated SVD algorithm aims to approximate our original term-document matrix Mtd by
retaining only the r most significant singular values and their corresponding singular vectors [22].
This approximation is achieved by decomposing the original matrix into three separate matrices:
a term-concept matrix U, a diagonal matrix containing the top r singular values Σ, and a
concept-document matrix V. The product of these matrices forms an approximation of the
original term-document matrix:

Mtd « UrΣrV
T
r

Where Ur is an m by r matrix, Σr is an r by r matrix, and V is an n by r matrix. For our
example this would mean that m is equal to the number of documents in our corpus (10 000), n is
equal to the vocabulary size (91 613) and r is equal to the reduced dimensionality. From this de-
composition we can obtain our dimensionality-reduced word embeddings by the following matrix
multiplication: VrΣr. This approximation aims to retain the most salient semantic information
captured by the original term-document matrix while reducing the dimensionality.

Next, we briefly discuss our reasoning behind a lower dimensionality of 2000 for our LSA-based
embeddings as opposed to our VSA word embeddings. LSA operates through matrix factoriza-
tion, aiming to closely resemble the original term-document matrix by means of a lower-rank
approximation, facilitated by Truncated SVD. It identifies the most important latent features
in the term-document matrix and approximates the original matrix using these features, hence
the name Latent Semantic Analysis. We also note that the matrix factorization results in real-
valued vector components, these real-valued components offer more representational capacity as
opposed to simple binary {-1,1} components used in MAP. Moreover, the physical storage space

3.2. EXPERIMENTS 39

needed for these real-valued components is much greater than that of our binary components,
and thus it only seems fair to reduce the dimensionality of the LSA-based embeddings.

3.2.3 Initial Observations

Before we dive into a formal evaluation using WordSim353, we will explore some qualitative
insights about the word embeddings learned by our VSA-based method.

First, we take a closer look at the nearest neighbors of a target word and verify that they are
semantically related. This helps us get a general sense of whether the embeddings appear to be
capturing meaningful semantic relationships.

For example, if we look at the 15 most similar words to ’movie’ in figure 3.4, we observe many,
if not all, words seem to be meaningfully related. Some of the words that are closely related to
’movie’ according to our VSA learned embeddings are: ’film’, ’televisions’, ’actor’, ’producer’,
and ’script’. These are promising results, and they validate that our learning method is able to
extract the semantic relationships for words that co-occur inside documents.

Figure 3.4: Plot of 15 most similar words to ’movie’ for the VSA-based learned embed-
dings.

We can also gain valuable insights by comparing our VSA word embeddings to the ones learned
by LSA. We again display the 15 most similar words to ’movie’ in figure 3.5, but now for our
LSA embeddings.

Figure 3.5: Plot of 15 most similar words to ’movie’ for the LSA word embeddings.

Here we observe considerable overlap with the 15 most similar words to ’movie’ for our VSA
embeddings. We also observe that the ordering is different and also the set of similar words is
not identical. Since both methods learn from exactly the same corpus we conclude that while
they generate word embeddings with similar semantic meaning, there is a discrepancy between
them, and they thus do not extract exactly the same semantic relationships from a corpus of
documents.

40 CHAPTER 3. WORD EMBEDDINGS

3.2.4 Evaluation

Now that we have verified the validity of our VSA-based learned word embeddings, we look
into how we can assess their quality. We will introduce the WordSim353 dataset, a standard
benchmark for evaluating word embeddings, and outline the evaluation methodology.

The WordSim353 Evaluation Dataset
The WordSim353 dataset serves as an established tool for measuring the semantic similarity
or relatedness between word pairs. It comprises 353 English noun pairs annotated by human
subjects with a score, ranging from 0 to 10, reflecting how similar or related the words are in
meaning.

It’s important to acknowledge that the quality of any word embedding method is inherently
tied to the training data. Ideally, we’d have access to vast amounts of text data from diverse
sources, similar to the training of large language models. This would allow the word embeddings
to capture a broader range of semantic relationships.

While our training data is of decent quality, it is still ’limited’ in size if we compare it to the
number of corpora and thus also data that LLMs like ChatGPT are trained on. We may thus
not expect state-of-the-art performance on WordSim353. However, we can still gain valuable
insights by comparing our model’s evaluation score with a baseline from an established method
like LSA, trained on the same dataset.

In essence, using LSA as a benchmark helps us understand how well our VSA method cap-
tures semantic relationships, even if the absolute score on WordSim353 might not be directly
comparable to scores achieved with massive training datasets.

In table 3.2 we report the cosine similarities for 10 word pairs for VSA-based and LSA-learned
embeddings together with the human-assigned relatedness scores. To assess our learning methods
we also mention the cosine similarities for these word pairs from our original term-document
matrix, without any dimensionality reduction or learning applied to them.

Word pair VSA LSA Term-document matrix Human-assigned

computer - keyboard 0.092 0.194 0.122 7.62

planet - galaxy 0.182 0.447 0.262 8.11

canyon - landscape 0.054 0.170 0.086 7.53

day - summer 0.298 0.485 0.458 3.94

day - dawn 0.144 0.281 0.210 7.53

country - citizen 0.116 0.262 0.193 7.31

planet - people 0.139 0.241 0.190 5.75

environment - ecology 0.096 0.237 0.141 8.81

money - bank 0.167 0.324 0.263 8.5

computer - software 0.297 0.576 0.409 8.5

Pearson correlation 0.284 0.366 0.284

Table 3.2: First 10 word pairs of the WordSim353 dataset with their respective cosine
similarity for the learned VSA embeddings, LSA embeddings, and the embeddings in
the original term-document matrix. We also report the human-assigned scores from the
WordSim353 validation dataset, ranging from 0 to 10. The final row denotes the Pearson
correlation between the learned similarities and the human-assigned similarity scores for
all the WordSim353 word pairs for each embedding method, including the non-reduced
embeddings of our original term-document matrix.

For all of these word embeddings we also denote the Pearson correlation between the cosine
similarities of respective word-pair embeddings and the human-assigned similarity scores. This

3.2. EXPERIMENTS 41

allows us to measure the overall performance of the resulting embeddings of a learning method.
By using the correlation we essentially look if low (high) cosine similarities for learned embed-
dings of word pairs correlate with a lower (higher) human assigned similarity scores for the same
word pairs, independent of the scale used for each scoring.

3.2.5 Results

If we look at the individual similarity scores of the VSA and LSA embeddings we observe that
they are rather different. If we compare them to the original embeddings present in our term-
document matrix we observe a striking similarity, although on a different scale, between the
VSA embeddings and the original term-document embeddings.

If we then compare the Pearson correlation between the VSA/LSA embeddings and the human-
assigned scores we observe that the correlation score of our VSA-based embeddings is lower at
0.284 compared to the LSA correlation of 0.366. We also observe that the correlation for the
embeddings in the original term-document matrix is exactly the same as the one for our VSA
embeddings, validating the striking similarities we observe for the individual scores.

Reflecting on our observations
We start by commenting on the striking similarity between the semantic information that is cap-
tured in the VSA embeddings and the original term-document matrix. This similarity indicates
that our VSA learning method succeeds at capturing the semantic information present in the
original term-document matrix. To validate this observation we calculate the correlation of the
cosine similarities of the word pairs in the WordSim353 dataset between the VSA embeddings
and the original term-document matrix. This correlation is 0.982 and thus validates that our
VSA embeddings accurately capture the semantic relationship that is present in the original
(binary) term-document matrix.

A natural follow-up question is: why do the LSA embeddings have a higher Pearson correlation
of 0.366 when the correlation in our original data is only 0.284? One crucial aspect is the
dimensionality reduction algorithm employed to calculate the LSA embeddings.

The truncated SVD decomposition, which performs the dimensionality reduction of LSA, has
the effect of preserving the most important semantic information in the text while reducing noise
and other undesirable artifacts of the original space represented by our term-document matrix.
By utilizing 2000 dimensions, our LSA embeddings thus potentially eliminate irrelevant noise
captured by the complete term-document matrix, focusing on the most salient latent features. By
focusing on these latent features, LSA can mitigate the impact of noise and irrelevant information
present in the raw term-document matrix, possibly leading to an enhanced ability to capture
meaningful semantic relationships.

This gives us insight into one of the key differences between the VSA-based learning method
and the LSA learning method. That is, the VSA-based method essentially moves the HVs of
words that co-occur in documents closer to each other during learning since the same atomic
document HVs will be bundled to each of them. On the other hand, the LSA method focuses on
dimensionality reduction of the term-document matrix, which aims to preserve the relationships
between terms and documents by capturing the most significant latent features. This approach
does not explicitly manipulate the vectors of individual words based on their co-occurrence
patterns within documents but rather seeks to capture the broader semantic structure of the
text corpus.

We also note that the effectiveness of dimensionality reduction employed by LSA for improving
correlation scores is highly dependent on the evaluation method or dataset used. In some cases,
reducing dimensions to lower levels might indeed result in better scores by filtering out noise
and focusing on essential semantic features. However, the optimal dimensionality for achieving
the highest correlation may vary depending on the specific characteristics of the dataset and
the evaluation criteria employed. This idea is validated when we look at figure 3.6, here we
observe that lower dimensionalities can effectively filter out the noise. We also see the effect

42 CHAPTER 3. WORD EMBEDDINGS

Figure 3.6: Plot of the Pearson correlation between the word pair similarities of our
learned LSA embeddings and the human-assigned word pair similarities of our validation
dataset, against the dimensionality we reduced our learned embeddings to.

that the reduced or truncated dimensionality r has on the quality of our embeddings. First, we
observe an optimal dimensionality that seems to lie between 200 and 800, giving us the highest
correlation between the similarities of our learned embeddings on the word pairs of the validation
dataset and the human-assigned similarity scores for these word pairs. If the dimensionality we
reduce to is too small, 200 or less, we discard too much information, leading to a significant
drop in the correlation scores. Conversely, if the dimensionality is too high, we start to include
more noise and irrelevant details, which also degrades the performance. Lastly, we observe
that as the dimensionality increases to 5000 or above, we near the correlation of 0.284 obtained
by the embeddings of our original term-document matrix. For these higher dimensionalities,
where we do less reduction, we thus obtain the similarity information present in our original
term-document matrix.

3.3 Conclusion

From our preliminary experiment we conclude that VSA-based learning methods could offer a
viable alternative to LSA.

While LSA focuses on preserving latent semantic information through dimensionality reduction,
our VSA-based method emphasizes capturing the exact semantic relationships present in the
original term-document matrix by directly encoding contextual (co-occurrence) patterns. We
verified that our current learning algorithm effectively preserves this original co-occurrence pat-
tern present in the binary term-document matrix. But we also observed that the co-occurrence
relation present in our binary term-document matrix might not be an optimal representation
of the semantic relationships between words in our corpus. Because our VSA-based learning
algorithm aims to capture this semantic relation present in the original term-document matrix,
we know that our learned VSA embeddings can only be as good at capturing a semantic relation
as the one that is present in the term-document matrix we learn from.

To confirm this hypothesis we conducted an additional experiment on the same corpus of docu-
ments but now with term frequency – inverse document frequency (TF-IDF) vectorization of our
data for our term-document matrix. The dimensionalities of our term-document matrix remain
the same but the values within the matrix now reflect the TF-IDF scores rather than simple
binary occurrences. These TF-IDF values aim to better capture the importance of terms within
the documents and across the entire corpus, leading to improved semantic embeddings present
in our original term-document matrix.

We only give a brief description of the VSA-based learning algorithm that we applied to the TF-
IDF matrix. For this experiment we no longer have the binary occurrence data, but instead have
TF-IDF scores for a document, where a higher value for a word in our document indicates greater
importance of a word within this document relative to its occurrence across the entire corpus.
To capture this relation we apply a scaling operation of the values inside the TF-IDF vector

3.3. CONCLUSION 43

Word pair VSA LSA Term-document matrix Human-assigned

computer - keyboard 0.03 0.145 0.068 7.62

planet - galaxy 0.023 0.066 0.056 8.11

canyon - landscape 0.001 0.039 0.02 7.53

day - summer 0.084 0.169 0.128 3.94

day - dawn 0.044 0.133 0.071 7.53

country - citizen 0.058 0.139 0.073 7.31

planet - people 0.019 0.023 0.023 5.75

environment - ecology 0.066 0.219 0.110 8.81

money - bank 0.123 0.295 0.185 8.5

computer - software 0.178 0.407 0.288 8.5

Pearson correlation 0.345 0.374 0.389

Table 3.3: Same information as in table 3.2, now reported for the experiment where we
learn our embeddings from a TF-IDF vectorized term-document matrix. The final row
again denotes the Pearson correlation between the learned similarities and the human-
assigned similarity scores for each embedding method.

for a document, where we scale the TF-IDF importance values to natural numbers between 0
and some predefined maximum value denoted as m. Next, we bundle the documents HV to the
respective word embeddings as many times as our scaled importance value indicates. For our
experiment we set the maximum scaling value m to 10.

When a word is indicated to be important for a document by having a high TF-IDF score,
the scaled value of this word would be near our maximal scaling value m. This would lead
to the document HV getting bundled into the word HV many times. This way we ensure
that the importance of words within documents is appropriately reflected in the embedding
updates.

Conceptually this learning method ensures that words that have high importance, according to
the TF-IDF vectorization, in similar documents have similar HV word embeddings because the
same document HVs will get bundled with these words many times.

If we then look at the results of our new experiment in table 3.3 we notice the following:

• The Pearson correlation for the LSA embeddings does not differ greatly from our original
experiment where we used a simple, binary occurrence, term-document matrix. From this,
we conclude that the LSA method is relatively robust to the type of term-document matrix
used, whether it is binary or TF-IDF weighted. This consistency suggests that LSA’s
ability to capture latent semantic structures is not heavily influenced by the weighting of
the term-document matrix, as long as the general co-occurrence patterns are preserved.

• The Pearson correlation for the VSA embeddings, however, shows a noticeable improve-
ment, from 0.284 to 0.345 when using the TF-IDF weighted term-document matrix to learn
our VSA-based embeddings compared to the binary occurrence matrix. Furthermore, we
again notice the striking similarity between the word pair similarity scores of the VSA
embeddings and the embeddings in our original (TF-IDF) term-document matrix. We
solidify this observation by noting a correlation of 0.953 between the word-pair similarities
of our learned VSA embeddings and the original non-reduced embeddings.

These observations confirm our hypothesis that the quality of the semantic relationships captured
by VSA embeddings is heavily influenced by the quality of the semantic relationships captured by
the input term-document matrix. The TF-IDF weighting scheme better reflects the importance
of terms inside documents and our VSA-based learning method still succeeds at capturing most

44 CHAPTER 3. WORD EMBEDDINGS

Input data Binary term-document matrix TF-IDF term-document matrix

Learning method VSA LSA VSA (scaling) LSA

Mean running time (s) 6.084 6.336 11.257 6.154

Std running time (s) 0.066 0.057 0.298 0.113

Table 3.4: We denote the timings of our learning methods, recorded on a local machine
with a Nvidia RTX 3070 GPU having 16GB of VRAM. The mean and standard deviation
of timings are reported over 10 repeated experiments. All experiments were conducted
over the same training data. The input matrices for each experiment are of size 10 000
(documents) x 91 613 (vocab), the values inside matrices differ between binary occurrence
information and tf-idf vector information.

of the information inside the original term-document matrix, thus providing a more accurate
representation of semantic relationships according to our validation dataset.

Running times for our learning methods can be found in table 3.4, from this we notice our original
GPU-based learning method has similar running times to a GPU-optimized SVD operation
implemented in the pytorch library 5. We do note that the SVD algorithm has been a topic of
research for many years and thus is highly optimized.

The algorithm we used for learning from the tf-idf matrix is almost identical to the GPU-based
algorithm from our original experiment. The only difference being that we first need to scale
the tf-idf vectors of the documents within our range. We note here that we only conducted this
additional experiment to verify our hypothesis about the effect of the semantic relation captured
in the matrix we learn from on the quality of our VSA embeddings. We did thus not look into
possible GPU optimisations for the scaling of the tf-idf vector values. Hence the almost doubling
of the running time, since we first need to scale the values within each document tf-idf vector of
our term-document matrix.

3.4 Considerations

The conducted experiment is only a validation of applying the VSA representational and com-
putational model to learning patterns present in textual data, more specifically by learning word
embeddings. Further investigation is needed to look into its applicability on a larger scale,
possibly with different learning algorithms, based on a more intricate application of the VSA
operations and exploitation of their properties. Things to take into consideration are:

• Dimensionality: Which dimensionality is needed to capture all or most of the semantic
information available in a corpus of a certain size? Just as we did for our learning algorithm
one should always take into consideration the dimensionality that is needed to capture the
information we intend to retain. This is of course dependent on the VSA model used, the
VSA operations we apply, and when or if we normalize.

• VSA model: Is there a VSA model that gives better performance than MAP? This is
highly dependent on the use case and available resources. When picking a suitable model
we should evaluate the size (physical storage) encompassed by the HVs, the speed of
computation, and the representational capacity of the model, which again depends on the
operations and normalization. Models like FHHR might offer a larger bundling capacity,
allowing us to capture a larger amount of semantic information for the same dimensionality,
but due to the fact that it uses real-valued components, both the amount of memory needed
to store the vectors as well as the computational complexity of the bundling operation will
increase.

5https://pytorch.org/docs/stable/generated/torch.svd lowrank.html

3.4. CONSIDERATIONS 45

• Word Weighing / Scaling: Another aspect worth investigating is the impact of dif-
ferent word weighing or scaling techniques on the performance of our VSA-based word
embeddings. In our additional experiment we already looked at TF-IDF weighting which
enhanced the quality of the original embeddings present in the term-document matrix by
giving more weight to informative words while downplaying the significance of common
or less informative terms. Further research could explore various word-weighing strategies
and their effects on the quality of the semantic information contained in the original em-
beddings. As we did in our experiment, one should then also tailor the learning algorithm
to retain this semantic information and investigate how well our VSA-based embeddings
succeed at retaining this information.

46 CHAPTER 3. WORD EMBEDDINGS

Chapter 4

VSA Database

In this section we will take a look at the possibilities of encoding data from a table-like structure
in high-dimensional spaces using VSAs. We will give an initial implementation of a VSA Database
(VSADB) and discuss the possibilities of using it for storing and retrieving data.

4.1 Architecture

We will first introduce the architecture of our VSADB. Our approach aims to leverage the
principles and properties of VSAs to create a robust and efficient method for handling tabular
data. By employing this method we thus aim to create row embeddings of our tabular data with
the inherent advantages of noise resistance and similarity-based retrieval.

It is important to note that for the purpose of this exploratory experiment we assume the set
of attribute values for a given attribute in our database does not have an inherent similarity
structure. As an example, we will consider that ’city’ is an attribute of our database. The set
of attribute values may contain items like ’London’, ’Paris’, and ’Brussels’. We will treat these
values as distinct and thus unrelated in terms of similarity. Thus, we aim for the similarity of
the HV encoding of two database records to be proportional to the number of identical attribute
values they share across all columns.

For instance, if two database records share the same values for multiple columns such as ’city’,
’state’, and ’lastname’, the similarity of their corresponding encoded HVs will be higher compared
to records that only share a value in one column. This approach ensures that the overall similarity
between records is based on the holistic match of their attribute values rather than any assumed
inherent similarity between specific attribute values themselves.

We will thus not consider attributes like numerical or ordinal attributes because their values
inherently possess a similarity structure. Instead, we will focus on categorical attributes where
each possible value is treated as an independent and unrelated entity. This approach simplifies
the encoding process and aligns with our goal of exploring the basic capabilities of VSAs for
database encoding and retrieval.

4.1.1 Conceptual Idea of Representing Database Records

Before we dive into the details of the architecture of our VSADB, we give an overview of how
the VSA operations can be used to encode records.

First, we observe that a record can conceptually be seen as a set or collection of key-value pairs,
where the key is the respective attribute or column (name) and the value is that record’s value
for that attribute. If we combine this conceptual view of a record with the bundle and binding
VSA operations as defined in chapter 2, we can encode records as follows:

47

48 CHAPTER 4. VSA DATABASE

record attribute 1 attribute 2 attribute 3
record 1 value 1 value 2 value 3
record 2 value 4 value 5 value 6

Table 4.1: Example of 2 records, each having 3 attributes, in a tabular dataset.

Encoded as:
r1 “ pa1 l v1q ` pa2 l v2q ` pa3 l v3q

r2 “ pa1 l v4q ` pa2 l v5q ` pa3 l v6q

Remember that the bundling operation (`) was used to conceptually represent sets of HVs, and
the binding operation (l) to create associations between HVs or key-value pairs.

4.1.2 Column Representation

At the base of our VSADB lies the concept of a column, which we identify as the combination
of a unique column name and its corresponding set of values.

If we take into account our conceptual idea of representing records as HVs from subsection 4.1.1,
we conclude that a column must consist of the following key components:

• Atomic Vector: Each column is associated with a unique atomic HV, which serves as a
fixed identifier for the column name. This atomic HV is crucial for the binding operation,
where data values are combined with their respective column identifiers.

• Codebook: Each column maintains a codebook, a specialized dictionary-like data struc-
ture that maps attribute values to their corresponding HVs. The codebook ensures that
each value within the column has a unique and consistent HV representation. As men-
tioned before we assume the attribute values consist of solely categorical data and thus
also may assume these are given in a string format. By using a dictionary or hash-based
storage method we thus enable efficient lookups and storage of these values and their
corresponding HV representation.

When a new value is added to a column, it is first converted into a HV using the column’s
codebook. This process involves checking if the value already exists in the codebook. If it does,
the existing HV is retrieved. If not, a new HV is generated and added to the codebook. This
ensures that each value within a column is encoded by a unique atomic HV.

Overall, the representation of columns in VSADB is designed to be flexible and efficient, allowing
for straightforward handling of categorical data. By encapsulating the logic for encoding and
managing attribute values, the VSADB architecture maintains a clear separation of concerns.
That is each column handles its own attribute values and their respective HV representations
and we do not have to worry about this when encoding our rows. We simply add a new value
for the attribute, and the column class returns its corresponding HV representation, ensuring
the unique representation property and the storage in the background.

4.1.3 Encoding Rows

We now have the generation of the value HVs, that serve as the building blocks for the encoding
of our records, in place. All that is left is to utilize these attribute- and value HVs and combine
them into records HVs as illustrated by our conceptual idea mentioned before.

The process of encoding a database row thus involves the following steps:

1. Initialize Row Attribute Value HVs: For each column, retrieve or generate the HV
for the corresponding attribute value. If the value has not been used before in any record
for that attribute we generate a new atomic HV representing that value. On the other
hand, if the value has been used in another record before, we use the column’s codebook

4.1. ARCHITECTURE 49

to retrieve the HV for that value. This ensures that records with the same value for that
attribute also use the same HV representation for that value.

2. Binding: Bind each column’s atomic HV with its attribute value HV using the VSA bind-
ing operation. This essentially associates the column identifier with the attribute value,
creating a unique HV for each attribute-value pair. The binding operation is crucial as it
ensures that the attribute value HVs are contextually linked to their respective columns,
allowing the database to maintain the structure of the original tabular data. The resulting
bound HVs are then ready to be aggregated to form the row HV.

3. Bundling: Bundle all the previously created attribute-value pairs to form a single HV
representing the entire row. Recall that the bundling operation generates an HV that is
similar to all its inputs and thus aggregates their information. The resulting HV is thus a
high-dimensional representation of the entire row, capturing the combined information of
all attribute-value pairs.

4. Normalization: Next, we normalize the bundled HV to ensure consistency. Normaliza-
tion adjusts the HV so that it conforms to the expected properties of HVs in the VSA
model that is used to represent the information. While this step is not necessary for
the functioning of the encoding, we employ it to maintain the integrity of the generated
encoding with respect to the VSA model used.

For example, the bundling of MAP HVs will result in components that are in Z, while the
magnitude of these positive or negative integers do give us some extra information when
using cosine similarity, they do not conform with the MAP model which specifies its atomic
HV components to be drawn from t´1, 1u. As discussed in section 2.3, normalization for
the MAP model is implemented by a ’binarization’ of the negative or positive integers to
t´1, 1u respectively. As seen in chapter 2, normalizing thus may introduce some ’noise’
because we take away some of the information, for example, the magnitude in the MAP
model.

5. Row Storage: Store the normalized row HV in the database’s internal storage structure,
such as the earlier mentioned codebooks, a simple list, or if speed of computation is a
necessary requirement, one could use a specialized vector datastore that allows fast retrieval
or indexing of stored vectors 1. This storage structure acts as a mapping between the
encoded HVs and their corresponding rows in the original dataset. It allows for quick
access to the encoded data based on their original indices or identifiers, ensuring that the
original rows can be retrieved after a similarity-based search for target rows using a query
vector.

By following these steps, we can encode each row in the database as a single HV, preserving
the relationships between attribute values and enabling our goal of similarity-based retrieval of
tabular data.

4.1.4 Querying our Database

Now that we have encoded our tabular data as HVs we can perform similarity queries on our
VSADB by creating a query HV. We will see that the process of creating a query HV is very
similar to our row encoding process, using this query HV we can identify candidate result records
based on a similarity search.

We give a more detailed view of the steps we take during the query process:

1. Create Query HV: Construct the query HV by binding atomic attribute HVs with the
attribute values specified in the query. This process mirrors the row encoding process,
ensuring that the query HV is structured in the same way as the stored row HVs.

1https://github.com/facebookresearch/faiss

50 CHAPTER 4. VSA DATABASE

2. Calculate Similarity: Compare the query HV with each stored row HV using a similarity
measure, such as cosine similarity or Hamming similarity, depending on the VSA model.
The similarity scores indicate how closely each row matches the query.

3. Retrieve Most Similar Rows: Identify the rows with the highest similarity scores and
retrieve them. This step involves ranking the rows based on their similarity scores and
selecting the top results.

The interested reader might notice that steps 2 and 3 essentially perform a nearest-neighbor
retrieval (NN-search) in our high-dimensional space. By following these steps, the VSADB
can efficiently retrieve rows that are most similar to the specified query, providing a robust
mechanism for data retrieval based on matching attribute values.

4.2 Experiments

Now that we have knowledge of the inner workings of our VSADB, we can conduct an experiment
to evaluate the performance of our VSA Database in terms of encoding and retrieval efficiency.
The experiment involves using a real-world tabular dataset with categorical attributes, encoding
the records or rows of our tabular dataset as HVs, and performing similarity queries to assess
the accuracy and robustness of the retrieval process.

4.2.1 Dataset

For our experiment, we utilized a small real-world tabular dataset containing categorical at-
tributes. The dataset consists of the following 5 attributes:

• fname: First name of the individual.

• lname: Last name of the individual.

• city: City of residence.

• state: State of residence.

• gender: Gender of the individual.

The dataset contains the following records:

index fname lname city state gender
0 John Doe Riverside NJ M
1 Jack McGinnis Philadelphia PA M
2 John Repici Riverside NJ M
3 Stephen Tyler Sioux Falls SD M
4 John Blankman Sioux Falls SD M
5 Joan Anne Denver CO F
6 Jack Repici Riverside NJ M
7 Lilly Repici Philadelphia PA F

Table 4.2: Small real-world tabular dataset used in the experiment

This dataset served as the basis for our experiments. While it is not large in size, it allows us to
execute some interesting queries like finding individuals from the same family by querying on a
certain last name, identifying people residing in the same city, or a combination of these.

Additionally, we extended the dataset by generating random rows to increase its size, diversity,
and complexity. To extend the dataset we incorporated a supplementary dataset containing
information about the top 1000 cities in the United States and their corresponding states. We
generated 10 000 additional rows for our dataset as follows:

4.2. EXPERIMENTS 51

• Generate random first names (fname) and last names (lname) by generating random
strings of a certain length.

• Randomly select a state from the list of state abbreviations of our supplementary dataset.

• Randomly select a gender as either ’M’ or ’F’.

• Assign a city to each record based on the selected state to preserve the city-state relation-
ship using our supplementary dataset.

This combined and extended dataset of 10 008 records each having 5 attributes was used to
simulate real-world scenarios and evaluate the performance of our VSADB in terms of encoding
efficiency and retrieval accuracy. By using a mix of a small, focused dataset and a larger,
more diverse dataset, we were able to comprehensively test the capabilities of our system across
different data scales and complexities.

4.2.2 Encoding of Data

The creation of our VSADB based on this data was done according to the steps mentioned in
section 4.1, for this experiment we decided to opt for the BSC VSA model with a dimensionality
of 1000.

We chose the BSC model because it is conceptually the easiest to understand and also the
exemplary VSA model we used throughout the larger part of chapter 2. The reason we do not
look for an alternative VSA model as with our word embeddings in chapter 3 is that there is no
need for storing inputs of the bundling operation to perform non-normalized bundling. That is
all the attribute-value pair HVs needed for creating a record or query HV are available at the
moment we have to apply the bundling operation.

For the dimensionality we decided to opt for only 1000 as we will work with relatively small
bundle sizes because we have only 5 attributes, a bundle of a record will thus only consist of
5 input HVs. If we look back at figure 2.6, we observe that for bundle sizes that are smaller
than 20 a dimensionality of 1000 should suffice to obtain a near-perfect bundling capacity. This
dimensionality should thus be sufficient not only for our experiment, but also for the encoding of
most database relations as they typically contain less than 20 attributes. Because we are using
the BSC model, which consists of binary (bit) components this means we can encode our records
using only 1000 bits, or 125 bytes. A more in-depth analysis of the effect of the dimensionality
on the performance of our database and query accuracy will follow in section 4.4.

For the storage of our row HVs and thus our encoded database records we used the codebook
datastructure. As mentioned before this is a dictionary-like data structure where each key is a
unique identifier for a row (e.g., a primary key), and the corresponding value is the encoded HV
of the row. We pick the primary key or identifier for each row to be the index or location of this
row in the original dataset, this facilitates easy access to the stored encoded data based on their
original indices. For this exploratory experiment where we aim to verify the inner workings of
our setup we are not interested in the speed of retrieval but in the quality of the retrieved results
and thus decided not to opt for more advanced vector store methods.

For the sake of completeness, we do mention that the encoding of the 10 008 records each having
5 attributes took an average of 6.388 seconds over 10 repeated encodings of the entire database
with a standard deviation of 0.621 seconds.

4.2.3 Analysis

Now that we have the data in place and encoded, we can perform a series of analyses to evaluate
the performance and robustness of our VSADB.

We start our analysis by looking at the result of some queries, performed as discussed in sub-
section 4.1.4.

52 CHAPTER 4. VSA DATABASE

Query 1: The Repici family
A first query could be to retrieve all the records that concern the members of the Repici family
as seen in our original dataset in table 4.2. We perform this query by first creating the correct
query HV, which we can then use to perform a NN-search.

The steps involved in constructing and executing this query are as follows:

• Constructing the Query HV: To construct the query HV, we need to bind the ’lname’
atomic HV with the HV corresponding to the value ’Repici’ from this column. The ’lname’
atomic HV can be retrieved from the column object representing last names, and the HV
for ’Repici’ can be retrieved from the codebook maintained by this column. The resulting
Query HV is thus constructed as follows: q “ lname l repici.

As seen in chapter 2, l denotes the binding operation, lname is the unique HV key
representation of the ’lname’ column and repici is the atomic HV representing the value
’Repici’ for the ’lname’ column. The resulting query HV thus uniquely represents the
combination of the column (’lname’) and its value (’Repici’).

• Performing the NN-Search: Once we have the query HV, we use it to perform a NN
search on the row HVs stored in the codebook of our VSADB. The NN search identifies the
rows with HVs most similar to the query HV, effectively retrieving the records of interest.

fname lname city state gender Normalized
Hamming Similarity

John Repici Riverside NJ M 0.684

Jack Repici Riverside NJ M 0.675

Lilly Repici Philadelphia PA F 0.667

dmdroj rufnyo Gary IN F 0.552
tzvcpa lzrbtw Lawrence KS F 0.546
pmvnwd eirkgp Missoula MT F 0.546
sxbzsi mbnyye Little Rock AR F 0.545
jgelra ytyflj Washington DC F 0.545
dvwxoa rncqos Midland TX M 0.544
jnjlfa znyxwz Little Rock AR F 0.543

Table 4.3: 10 most similar records retrieved for the query concerning the Repici family
with the normalized hamming similarities with respect to the query HV

If we now look at the 10 most similar resulting HVs in table 4.3 we indeed observe that
we correctly retrieved all HVs concerning the Repici family from the 10 008 records in our
VSADB.

However, we also see irrelevant results further down the list as only the top 3 are the relevant
members of the Repici family in our dataset. This indicates that retrieving the most similar
results to our query HV is indeed a valuable strategy, but there still is a need for manual verifi-
cation of the top-k retrieved results. We also observe that the normalized Hamming similarity
for the relevant results (« 0.67) is significantly higher than those of the most similar irrelevant
results (« 0.545). Thus to avoid retrieving irrelevant results, we could look into the existence of
a similarity threshold. A more in-depth analysis into the use of such a similarity threshold to
avoid false positives will be discussed later.

Query 2: The Repici family, living in Riverside
We can extend the previous query to as many attributes as we would like. We could for example
add an additional attribute-value pair to the query HV concerning the city attribute. For this
example we would like to identify all the members of the Repici family that live in the Riverside
city.

The steps for constructing and executing this query are as follows:

4.2. EXPERIMENTS 53

• Constructing the Query HV:

– Retrieve the HVs: Retrieve the atomic column HVs for ’lname’ and ’city’, and the
value HVs for ’Repici’ and ’Riverside’, from their respective columns.

– Bind the Attribute HVs: Bind each attribute’s atomic HV with its corresponding
value HV.

– Bundle the HVs: Bundle the resulting attribute-value HVs to form a single query
HV.

– The resulting query HV is thus constructed as:

q “ lname l repici ` city l riverside

• Perform the NN Search: Use the bundled query HV q to perform a NN search on the
record HVs stored in the codebook of our VSADB.

We can again look at the 10 most similar HV to our query HV in table 4.4. Here we observe
that we again successfully identified the 2 records that answer our query. But we also notice
that among the 10 most similar records there are records that partially match our query. These
are records that either have Repici as their last name or live in Riverside. If we look at the
normalized hamming similarities of these full and partial match results with our query HV,
we notice that the similarity for the full matches, as expected, is significantly higher than the
others. But we also notice that the similarity for the partial matches is also significantly higher
than those that do not match at all, this conforms with our holistic similarity view, where the
similarity of record HVs (or the query HVs) is proportional to the number of matching attribute
values.

fname lname city state gender Normalized
Hamming Similarity

Jack Repici Riverside NJ M 0.695

John Repici Riverside NJ M 0.689

wpmrlq pnthyi Riverside CA M 0.598
Lilly Repici Philadelphia PA F 0.597
John Doe Riverside NJ M 0.592

gnumfw ilbywx Orem UT M 0.519
xopccc fxgopl Colorado Springs CO F 0.518
lfkaha wbutxq Sioux Falls SD F 0.518
nlntid vuljpm Reno NV F 0.518
zcudtl mxbtnf Albuquerque NM F 0.517

Table 4.4: 10 most similar records retrieved for the query concerning the Repici family
living in Riverside with their respective normalized hamming similarities to the query HV

From these observations, we conclude that we can correctly retrieve the results for partial match
queries where we specify values for a subset of the attributes and subsequently also for point
queries if we were to specify a value for each attribute of the relation.

Yet an interesting question arises when we look at the results of Query 2: Can we define a
similarity threshold that would ensure that we only retrieve the relevant records, and thus not
records that only partially match our query HV?

To answer this question we look for a similarity threshold that ensures only the relevant records
are retrieved. For the calculation of such a threshold value we conducted a theoretical analysis
that can be found in section 4.3. This mathematical derivation gives us many useful insights, not
only for the definition of such a similarity threshold, but it also verifies some of the experimental
results from chapter 2.

54 CHAPTER 4. VSA DATABASE

We mention that reading the mathematical section is not mandatory to understand the con-
tinuation of our analysis of this experiment as well as the results and conclusions. The non-
mathematically inclined reader may thus continue to section 4.4, where we give a brief descrip-
tion of the result of the theoretical analysis, the interested reader may verify the mathematical
derivations in section 4.3.

4.3 Mathematical Analysis

In the following we denote:

• D as the dimensionality of the HVs;

• N as the number of rows in the database, i.e. the number of HVs in item memory;

• All VSA vectors as random binary HVs of dimensionality D (BSC)

4.3.1 Atomic BSC HV’s Similarity

We will first take a look at the Hamming Similarity between two atomic BSC HVs x and y of
dimensionality D.

As in chapter 2, we define the Hamming similarity by the number of components that two input
vectors agree on:

δhampx,yq “

D
ÿ

i

1txi “ yiu

We can normalize this similarity measure, restricting the range to r0, 1s if we divide it by the
dimensionality D:

δham normpx,yq “
δhampx,yq

D

As we did in chapter 2 we will use the normalized Hamming Similarity since it is more intuitive,
and not proportional to the dimensionality used.

If we assume that x and y are BSC atomic HVs, we know the value for each dimension follows
a Bernoullipp “ 0.5q distribution. From this, it is straightforward to see that the Hamming
Similarity between them is also a random variable that follows a binomial distribution.

δham norm „ BinpD, 0.5q ˚
1

D

The expected value of this random variable is hence:

Erδham normpx, yqs “ ErBinpD, 0.5q ˚
1

D
s “

1

D
˚ D ˚ 0.5 “ 0.5

Note that the expected value of the Hamming similarity is independent from D.

The variance is calculated as follows:

Varrδham normpx, yqs “ VarrBinpD, 0.5q ˚
1

D
s “

1

D2
˚ D ˚ 0.52 “

0.52

D

Observe that the variance is inversely proportional to D.

4.3.2 Bundle Similarity

We will now take a look at the similarity between a bundled HV v and its input HVs x1, x2, ..., xk.
Recall that bundling for BSC is implemented using a majority vote (thresholded sum) over all
the input HVs for each dimension to decide if the dimension of the resulting HV should be set

4.3. MATHEMATICAL ANALYSIS 55

to 0 or 1. For these calculations we assume that k is uneven, if not we can add a random vector
to the bundle to make it uneven. We will denote the bundle as v “ x1 ` x2 ` ... ` xk.

For notational simplicity we will now look at the similarity between v and x1, but these results
can be generalized to any input HV xj : j P r1, ks. In the following we will denote xj,i as
the ith dimension of the jth input HV, and vi as the ith dimension of our bundled or resulting
HV.

Assume x1,i “ 1, then vi “ 1 if and only if at least half of the other k ´ 1 components are 1. We
can now calculate the probability of x1,i “ vi as follows:

ppx1,i “ viq “ ppX ě
k ´ 1

2
q where X „ Binpk ´ 1, 0.5q

“

k´1
ÿ

i“ k´1
2

ˆ

k ´ 1

i

˙

0.5i0.5k´1´i

“ 0.5k´1
k´1
ÿ

i“ k´1
2

ˆ

k ´ 1

i

˙

We can now simplify the sum using the binomial theorem:

ppx1,i “ viq “ 0.5k´1

»

–

k´1
ÿ

i“0

ˆ

k ´ 1

i

˙

´

k´1
2 ´1
ÿ

i“0

ˆ

k ´ 1

i

˙

fi

fl

using the binomial theorem:
k

ÿ

i“0

ˆ

k

i

˙

“ 2k

“ 0.5k´1

»

–2k´1 ´

¨

˝

k´1
2

ÿ

i“0

ˆ

k ´ 1

i

˙

´

ˆ

k ´ 1
k´1
2

˙

˛

‚

fi

fl

“ 1 ´ 0.5k´1

k´1
2

ÿ

i“0

ˆ

k ´ 1

i

˙

` 0.5k´1

ˆ

k ´ 1
k´1
2

˙

“ 1 ´ 0.5k´1

»

–

k´1
2

ÿ

i“0

ˆ

0.5

ˆ

k ´ 1

i

˙

` 0.5

ˆ

k ´ 1

k ´ 1 ´ i

˙˙

fi

fl ` 0.5k´1

ˆ

k ´ 1
k´1
2

˙

“ 1 ´ 0.5k

»

–

k´1
2

ÿ

i“0

ˆ

k ´ 1

i

˙

`

k´1
2

ÿ

i“0

ˆ

k ´ 1

k ´ 1 ´ i

˙

fi

fl ` 0.5k´1

ˆ

k ´ 1
k´1
2

˙

“ 1 ´ 0.5k

«

k´1
ÿ

i“0

ˆ

k ´ 1

i

˙

`

ˆ

k ´ 1
k´1
2

˙

ff

` 0.5k´1

ˆ

k ´ 1
k´1
2

˙

“ 1 ´ 0.5k2k´1 ´ 0.5k
ˆ

k ´ 1
k´1
2

˙

` 0.5k´1

ˆ

k ´ 1
k´1
2

˙

“ 1 ´ 0.5k2k´1 ` 0.5k´1

„ˆ

k ´ 1
k´1
2

˙

´ 0.5

ˆ

k ´ 1
k´1
2

˙ȷ

“ 1 ´ 0.5k2k´1 ` 0.5k
ˆ

k ´ 1
k´1
2

˙

“
1

2
` 0.5k

ˆ

k ´ 1
k´1
2

˙

56 CHAPTER 4. VSA DATABASE

Note the previous calculation is the same for every dimension i. This probability gives us the
building block of the normalized Hamming similarity between v and x1 or actually any of its
input HVs xj , which we can now calculate as follows:

δham normpv, x1q “

D
ÿ

i“1

ppx1,i “ viq ˚
1

D

From this we see that the normalized Hamming similarity between v and x1 follows a binomial
distribution with D trials and probability ppx1,i “ viq.

δham normpv, x1q „ BinpD, ppx1,i “ viqq ˚
1

D
(4.1)

The expected value of this binomial distribution is:

Erδham normpv, x1qs “ ErBinpD, ppx1,i “ viqq ˚
1

D
s “

1

D
˚ D ˚ ppx1,i “ viq “ ppx1,i “ viq (4.2)

With the variance calculated as follows:

Varrδham normpv, x1qs “ VarrBinpD, ppx1,i “ viqq ˚
1

D
s

“
1

D2
˚ D ˚ ppx1,i “ viq ˚ p1 ´ ppx1,i “ viqq

“
ppx1,i “ viq ˚ p1 ´ ppx1,i “ viqq

D

From this we conclude that the expected value of the normalized Hamming similarity between
v and x1 is equal to the probability of x1,i “ vi and the variance is inversely proportional to
D.

4.3.3 Similarity threshold

We can now calculate a threshold for the normalized Hamming similarity between v and x1.
Where we are α ˚ 100% confident that the normalized Hamming similarity between v and x1 is
greater than the thershold t. In these derivations we will use the normal approximation of the
binomial distribution, which is valid for large D ą 30.

δham normpv, x1q „ BinpD, ppx1,i “ viqq ˚
1

D

« N pD ˚ ppx1,i “ viq, D ˚ ppx1,i “ viq ˚ p1 ´ ppx1,i “ viqqq ˚
1

D

“ N pppx1,i “ viq, ppx1,i “ viq ˚ p1 ´ ppx1,i “ viqq ˚
1

D
q

We can now calculate the threshold t as follows:

Prδham normpv, x1q ě ts “ α

ðñ Pp
δham normpv, x1q ´ ppx1,i “ viq

b

ppx1,i “ viq ˚ p1 ´ ppx1,i “ viqq ˚ 1
D

ě
t ´ ppx1,i “ viq

b

ppx1,i “ viq ˚ p1 ´ ppx1,i “ viqq ˚ 1
D

q “ α

ðñ
t ´ ppx1,i “ viq

b

ppx1,i “ viq ˚ p1 ´ ppx1,i “ viqq ˚ 1
D

“ zp1 ´ αq

where zp1 ´ αq is the p1 ´ αq quantile of the standard normal distribution

ðñ t “ ppx1,i “ viq ` zp1 ´ αq ˚

c

ppx1,i “ viq ˚ p1 ´ ppx1,i “ viqq ˚
1

D

4.4. EXPERIMENT REVIEW 57

4.4 Experiment Review

From the theoretical analysis, we identified that the normalized Hamming similarity between
a bundled HV and its input HVs follows a binomial distribution. This distribution can be
approximated by a normal distribution for large dimensionalities D ą 30, we may assume
this is true as dimensionalities used by VSA models typically are in the thousands. Using
this information we derived a threshold value that ensures with high confidence α that the
normalized similarity between a bundled HV and its input HV is above this threshold. The
objective is defined as follows:

Prδham normpv, xjq ą“ ts “ α

If we now calculate this for our threshold value t we get:

t “ ppxj,i “ viq ` zp1 ´ αq ˚

c

ppxj,i “ viq ˚ p1 ´ ppxj,i “ viqq ˚
1

D

Where ppxj,i “ viq is the probability that an individual dimension of the bundled HV matches
that of an input HV, and zp1 ´ αq is the quantile of the standard normal distribution for the
desired confidence level α.

We can now apply this threshold value to our earlier examples to verify that they do indeed
allow us to correctly identify the records of interest and only these. If we calculate the threshold
value for a confidence level α “ 0.99, D “ 1000, and bundle size of 5 we get t “ 0.653.

If we look at our results in table 4.3 and table 4.4 we see that if we only keep the records that
have a normalized Hamming similarity above our threshold value t “ 0.653 that we correctly
retrieve the records that answer our query. Moreover, we do not keep any partial matches of
false positives, we only keep the relevant records that fully match with our query HV.

Recall vs. Precision
The interested reader might notice that the level of confidence α we set for our threshold value is
equal to the recall rate that we would achieve when filtering our query results using the threshold
value calculated based on this α.

We clarify this by looking at the formula we based the calculation of t on:

Prδhamnormpv, xjq ą“ ts “ α

This value stands for the probability that the normalized Hamming similarity between the bun-
dled HV and its input HVs meets or exceeds the threshold t. Hence, α directly translates to
the recall rate, which is the proportion of relevant records that we retain when filtering our
results based on their similarity with the query HV using this threshold. In our example we set
α “ 0.99, we thus calculated a threshold value t such that there is a 99% probability that the
similarity between the query HV and any of the relevant HVs is above this value t.

We verify this by retrieving the relevant records that have gender equal to male (or female)
from our dataset for different threshold values. Since the gender attribute is assigned with a
probability of 0.5 to our randomly generated values we have a larger scale of data to verify the
recall.

We can see that the results in figure 4.1 verify our hypothesis that the significance level α we use
for calculating our threshold value t is equal to the recall of the resulting records we obtained
by querying with a query HV and filtering the results based on the threshold t.

One might wonder if using such a high recall as in our example α “ 0.99 might lead to a low
precision. In other words, we might retain irrelevant HVs that thus do not or only partially
match with our query HV (false positives). Yet in our experiments concerning Query 1, Query
2, and in our recall experiment querying on gender, we do not observe any false positives or
irrelevant records being retained after filtering the results using the threshold value.

58 CHAPTER 4. VSA DATABASE

(a) We plot the theoretical recall or significance level α
that is set when calculating the threshold value t against
the number of male records (true positives) obtained af-
ter querying for male records and filtering on similari-
ties above the threshold value t. We note that the total
number of records with gender equal to male for our
dataset is equal to 4897. We also note that we did not
obtain any false positives in these experiments, that is
we did not retain a record having the female gender for
any of the queries.

(b) We plot the theoretical recall or significance level α
that is set when calculating the threshold value t against
the recall of the obtained records after querying for male
records and filtering on similarities above the threshold
value t. The recall was calculated by dividing the num-
ber of true male records retrieved for a certain threshold
as seen in the figure on the left by the total number of
male records in the dataset (4897).

Figure 4.1: Experiment on the equivalence of recall based on threshold value calculated
using a certain significance level α

We identify why this is the case by looking at the following result obtained from our theoretical
analysis in section 4.3: the variance of the similarity between the resulting, bundled, HV and
any of its input HVs is proportional to the number of input HVs (see definition ppxj,i “ viq) of
the bundle and inversely proportional the dimensionality.

Thus a higher bundle size and/or a lower dimensionality of the HVs makes it more difficult to
distinguish between the input HVs of the bundle and any other non-input (atomic) HV. This
thus means that there is a higher probability of incorrectly identifying answers to our query
when setting a high recall if we have a larger bundle size or a lower dimensionality.

But this is not a problem for our database experiment, thanks to the fact that our records only
consist of 5 attributes, we thus have an extremely small bundle size of only 5 key-value pairs.
For our dimensionality of 1000 this bundle size is small enough to obtain a high precision next
to the high recall value that we specify.

To verify this we run an experiment, where we generate n “ 100 bundles of size k “ 5, the
same as the records in our database, and use these bundled HVs to query a database of 10 000
random HVs. This database or set of 10 000 random HVs (item memory) of course contains the
inputs used for the bundle or query HVs otherwise we would not get valid results. We calculate
the threshold value t for filtering the results of our query, based on a recall or significance level
of α “ 0.95, and look at the precision, recall, and accuracy of the retrieved results based on this
threshold t. We give a brief overview of the key metrics used for this experiment:

• True Positive (TP): The number of relevant HVs correctly identified by having a normal-
ized Hamming similarity with the query HV that is equal to or higher than our similarity
threshold t.

• False Positive (FP): The number of irrelevant HVs incorrectly identified as relevant by
the query HV.

• True Negative (TN): The number of irrelevant HVs correctly identified as irrelevant
by having a normalized Hamming similarity with the query HV that is smaller than our
similarity threshold t.

4.4. EXPERIMENT REVIEW 59

• False Negative (FN): The number of relevant HVs not identified as a positive by the
query HV.

These metrics allow us to calculate the following performance measures:

• Recall: TP
TP`FN In our context, it represents The proportion of relevant HVs that were

correctly identified by the query HV and our threshold value.

• Precision: TP
TP`FP This metric measures the proportion of retrieved instances that are

relevant. In our context, it represents the proportion of retrieved records that are actually
correct matches to the query HV.

• Accuracy: TP`TN
TP`TN`FP`FN „ TP`TN

size of item memory This metric measures the overall cor-

rectness of the system, it represents the proportion of all correctly retrieved instances (both
positive and negative), with respect to the query HV and the threshold used, out of all
instances in item memory.

We run this experiment for dimensionalities ranging from 50 to 3000, results can be seen in
figure 4.2.

Figure 4.2: Experiment identifying the effect of the dimensionality on our ability to
accurately retrieve results using a threshold value t calculated based on a recall or level
of significance of α “ 0.95, the dimensionality D and the size of our bundles k “ 5, which
remains constant. The bundle size is set to 5 to simulate the effect on records in our
database with 5 attributes.

First, we observe that we achieve a recall of 0.95, irrespective of the dimensionality. This
is no surprise since we used a level of significance α “ 0.95 to calculate our threshold value
t. More importantly, we observe we also obtain perfect precision and thus also accuracy for
dimensionalities of as little as 300. This proves that we can use our threshold method to correctly
identify the relevant records, and only these, by querying our database that encodes records of
5 attributes using 1000 dimensional BSC HVs.

For the sake of completeness, we also ran the experiment for a near-perfect recall of 0.995, as
can be seen in figure 4.3.

From this experiment, we conclude that we could actually use a dimensionality of as little as
350 to encode our records of 5 attributes and obtain near-perfect recall (0.995), precision, and
accuracy for our queries.

To conclude our experiments we also ran the last experiment for a larger bundle size of 20, to see
what dimensionality would suffice in case we would encode records of a relation that contains
up to 20 attributes.

60 CHAPTER 4. VSA DATABASE

Figure 4.3: Experiment identifying the effect of the dimensionality on our ability to
accurately retrieve results using a threshold value t calculated based on a recall or level of
significance of α “ 0.995, the dimensionality D and the size of our bundles k “ 5, which
remains constant.

Figure 4.4: Experiment identifying the effect of the dimensionality on our ability to
accurately retrieve results using a threshold value t calculated based on a recall or level of
significance of α “ 0.995, the dimensionality D and the size of our bundles k “ 20, which
remains constant.

If we observe these results in figure 4.4, we see that a higher bundle size indeed has a negative
impact on our accuracy when retrieving results based on our threshold. We observe that we
still attain a recall of 0.995 since we calculated the threshold value t using a recall or level of
significance of α “ 0.995. But we also observe that the precision is considerably lower for lower
dimensionalities, indicating that we retain false positive results when filtering on the threshold
value t. This not only gives us insight into what dimensionality we might need to use to encode
database records of 20 attribute values but it also verifies our theoretical observation. That is,
increasing the bundle size and/or lowering the dimensionality negatively impacts the precision
and accuracy because it becomes more challenging to distinguish between the HVs corresponding
to the input attributes and those of unrelated HVs in the database. Specifically, we see that
for a bundle size of 20, a higher dimensionality of at least 1400 is required to maintain perfect
precision and accuracy.

4.5. CONCLUSION 61

4.5 Conclusion

In this chapter, we introduced the architecture of a VSA Database for encoding, storing, and
retrieving tabular data by means of point or partial match queries. We conducted experiments
to validate the potential of our method using this VSADB architecture for efficient and robust
encoding and retrieval of tabular, categorical data.

We also did a theoretical analysis to identify a threshold value, which allowed us to retrieve only
the relevant records for a given query HV.

We experimentally identified the dimensionality that can be used for a fixed recall and bundle
size to obtain a near-perfect accuracy, having a minimal amount of false positives and negatives.
For a bundle size of 5 and a near-perfect recall of 0.995 we identified that a dimensionality of 350
should suffice to not only achieve a near-perfect recall of 0.995 but also a near-perfect precision
and accuracy. Increasing the number of attributes or bundle size to 20, leads to the need for
1400 dimensions to represent our HVs and obtain near-perfect retrieval.

From this, we may conclude that for typical databases or tabular datasets, ranging from 5 to 20
attributes, a dimensionality of 1500 should suffice to encode and reliably retrieve all and only
the relevant results from this encoded dataset. As we based the experiments and our theoretical
analysis on the BSC model, which has binary components, we may assume we can reliably encode
and decode a dataset consisting of 10 000 records, each having 5 to 20 attributes, in as little as
1.9MB. It is important to note that the reliability of the encoding and decoding only depends
on the number of attributes and the dimensionality used to calculate the threshold value for a
certain pre-defined recall, and thus not on the number of encoded records in our VSADB.

An important side note for this conclusion is that this size in MegaBytes only considers the
space needed for the encoded record HVs. To encode these records we also used the column
representations, containing the HVs for the values in that respective column. If we assume in the
worst case that the set of values for each column or attribute does not contain any duplicates,
this would mean that each column maintains a codebook of 10 000 atomic value HVs of size
1.9MB. In the previous assumption, we naively disregard the space needed to maintain the hash-
based dictionary or index structure, as each value HV has to be related to its actual value using
this dictionary structure.

Another point of consideration is that after we perform the similarity search using our con-
structed query HV on the VSADB of encoded records of size 1.9MB, we still have to decode the
relevant HVs we identified. Thus once we have retrieved these relevant HVs or more specifically
their indices, we still rely on the original dataset, to identify the original records that correspond
to the retrieved HVs of the encoded dataset. The decoding of the retrieved records could also
be done using the unbinding operation on the retrieved record, using the column or attribute
codebooks to identify the correct value. For example, if we retrieve the following encoded record
from our VSADB using a query HV for the ’Repici’ family in Query 1:

r “ pfname l jackq ` plname l repiciq ` pcity l riversideq ` pstate l njq ` pgender l mq

If we would now like to identify the value of the ’fname’ attribute for this retrieved record we
could easily do this by unbinding using the atomic HV for the ’fname’ column:

fname m r “ fname m pfname l jackq ` fname m plname l repiciq

` fname m pcity l riversideq ` fname m pstate l njq ` fname m pgender l mq

“ jack ` noise ` noise ` noise ` noise

We then compare this resulting unbound HV, to the value HVs in the ’fname’ codebook and
pick the most similar item. Note that the noise introduced here is not significant enough to lead
to a false positive value. We can understand why this is the case by making the following simple
analogy, in the previous equation we notice that the unbinding of the ’fname’ atomic HV to an

62 CHAPTER 4. VSA DATABASE

encoded record leads to a HV that is similar to the original name value HV (’jack’), but with
the introduction of 4 noise terms. The probability that we obtain the correct value from the
’fname’ codebook is thus directly related to the bundling capacity, depicted in figure 2.6. Again
this is correct because the resulting unbound HV is equivalent to the original HV for the ’jack’
value bundled with 4 noise terms which can be seen as 4 atomic, random HVs that introduce
noise. In figure 2.6 we observe that for a bundle size of 5 to 20, we obtain perfect bundling
capacity for dimensionalities of 1024 upwards. For our specified dimensionality of 1500, there
should thus be no problem in retrieving the correct value HV from a column’s codebook given
the noisy estimate of the value HV achieved by unbinding using the column atomic HV. The
interested reader might notice that we already performed an experimental analysis identifying
the noise introduced for a bundle of key-value bound HVs in the unbinding section of chapter 2,
a review of this section might help with understanding the more practical explanation of this
section.

To verify our idea we execute the earlier mentioned example for our experiment dataset, we
thus perform a nearest-neighbour search on the ’fname’ column codebook using the resultant
HV from unbinding the encoded VSADB HV of the ’Jack Repici’ record (r) with the atomic HV
of the ’fname’ column, results can be found in table 4.5. Here we noted the top 10 most similar
values ot the earlier mentioned unbound HV to identify the ’jack’ value, we clearly see that by
simply picking the most similar HV we correctly identify the value for ’fname’ for the record.
Similar results would be obtained to identify the values for the other columns.

Value Normalized Hamming Similarity

Jack 0.695
akubhv 0.557
pxbfax 0.556
fpiwfa 0.554
kbcros 0.554
bqcfzr 0.552
fefeph 0.552
aeaszn 0.551
hiljkm 0.551
fsiwfa 0.550

Table 4.5: Identifying the correct fname value for our ’Jack Repici’ record, table reports
the fname column values and their corresponding normalized Hamming similarities to the
unbound record using ’fname’ column atomic HV.

If we now take all these conclusions into account we could opt for a VSADB where we do not
keep the original DB records and only keep the encoded records and the column codebooks that
were used to create these encoded records. Using these we would then have to decode a record
by unbinding it with each atomic column HV separately and retrieving the most similar value
HV for that column. This means we save space because we do not keep the original database,
but it also increases the overhead as each of the relevant records retrieved from a query HV
needs to be decoded.

We can conclude that we proposed an architecture to effectively encode and decode a tabular
dataset, where each record has 5 to 20 attributes, using only 1500 dimensions of a BSC model
HV. The end user should evaluate whether they use this encoded VSADB for indexing results
of a nearest-neighbour search, identifying the relevant records using a query HV, and loading
these from the original database, as we did for our experiments. Alternatively, we identified in
this conclusion that the user could only store the encoded records and column codebooks. This
allows for a saving in space but introduces the need to decode the obtained relevant records
using the value codebooks for each column.

Either way, we have validated that using a dimensionality of 1500 and a threshold value based

4.5. CONCLUSION 63

on this dimensionality, the number of attributes, and a (high) pre-defined recall value to query
the VSADB, we can obtain perfect recall, precision, and accuracy for point or partial match
queries.

Future research
In this chapter we verified the validity of the current proposed architecture and implementation
of the VSADB. Yet there is still room for improvement to extend this implementation.

Future research could focus on extending this approach to handle numerical and ordinal at-
tributes while maintaining the robustness we achieved for our current implementation.

More specifically we could look into the integration of values that have an inherent similarity
structure, where the HV embedding of these values inside a column respect this similarity struc-
ture. A straightforward example is the embedding of a numerical attribute such as age, where
the HV for a lower age like 15 has a higher similarity with the HV for age 12 than it has with
the HV for age 43. More specifically, we could look into the design of VSA embeddings that
have a linear similarity structure, that decreases proportionally to the amount of discrete steps
we move away from a target value.

Another valid point of research could be the support of more advanced or intricate querying
operations like joins, aggregations, and selections based on inequalities rather than exact matches
for attribute values. This last query type of course goes hand in hand with the suggestion to
look into the support of ordinal data.

64 CHAPTER 4. VSA DATABASE

Chapter 5

Conclusion

For this thesis I researched the concept of Vector Symbolic Architectures (VSAs), a field that
promises to bridge the gap between traditional symbolic and connectionist approaches to artificial
intelligence.

The research began with an extensive literature review, as VSAs are a relatively new concept for
which I had little to no prior knowledge. This began with going through an extensive curriculum
consisting of 12 modules on VSAs provided by the Redwood Center for Theoretical Neuroscience
and Berkeley Wireless Research Center at UC Berkeley during fall 2021 1. This provided me
with insights into the basic operations and also provided me with research that was already done
on some potential use cases. It thus laid the perfect foundation for conducting experiments to
gain a deeper understanding of the properties and capabilities of VSAs for storing and retrieving
information. This curriculum also sparked my interest as it became clear that VSAs lie at the
center of my interests, combining ideas from AI and data representation, through a lens of
statistics.

As I gained a better understanding of the inner workings of VSAs, I documented this knowledge
in a concise introductory format for individuals with no prior knowledge of VSAs, as seen in
chapter 2. This included an overview of the core principles of VSAs, followed by a comprehensive
review of the fundamental operations and their respective properties, as well as a series of ex-
periments to explore their capabilities for storing and retrieving information. These experiments
helped to uncover the statistical properties of these operations.

Building on this foundation, the thesis delved into the practical applicability of VSAs by inves-
tigating two real-world use cases: the creation of meaningful word embeddings and the encoding
or vectorization of tabular datasets.

Word Embeddings
For the first use case, detailed in chapter 3, I developed a new approach for creating meaningful
word representations using VSAs. This method, based on word-document co-occurrence, was
tested on a corpus of Wikipedia articles and compared to the established Latent Semantic
Analysis (LSA) method.

The results showed that while VSA-based word embeddings were not able to surpass the per-
formance of LSA on the WordSim353 validation dataset, they preserved the original semantic
information of the term-document matrix more accurately. This led to the conclusion that the
quality of the VSA word embeddings is highly dependent on the quality of the input term-
document matrix, and that there is significant potential for future research into various data
preprocessing methods and more advanced VSA learning strategies.

1https://www.hd-computing.com/course-computing-with-high-dimensional-vectors

65

66 CHAPTER 5. CONCLUSION

VSA Databases
The second use case, explored in chapter 4, focused on creating a VSA Database (VSADB) for
encoding, storing, and retrieving tabular data. The proposed VSADB architecture successfully
demonstrated the ability to encode rows as HVs and perform efficient similarity-based retrieval
using query HVs.

To avoid retrieving false positives I conducted a theoretical analysis to identify a threshold value
for filtering query results, ensuring that only relevant records were retrieved. Here, my knowledge
of statistics really proved to be useful.

It is important to state that there are still many caveats in the current, basic, implementation.
For example, there is currently no direct support for more advanced queries that require joins or
aggregations as we only support point or partial match queries, based only on the equalities of
attribute values. More importantly, we made a significant assumption about our data that there
is no inherent similarity structure between the values in a single column or for values across
columns. We thus only support categorical data, for which all unique values are dissimilar, and
not numerical or ordinal data.

General Reflection on Research
Based on the research in this thesis, I have successfully explored the capabilities and possibilities
offered by VSAs.

First, I thoroughly examined and clarified the fundamental characteristics and properties of
VSAs through various experiments. Second, I proposed algorithms and architectures for 2 prac-
tical use cases, generating word embeddings and, encoding and querying tabular data. I exam-
ined and verified their qualities and potential shortcomings through well-founded experimental
analyses. Despite the identified shortcomings, the experimental and critical analyses provide a
strong foundation for potential extensions of these implementations.

Personal Reflection
This research journey has also been a significant personal growth experience. I feel like the
challenges I encountered in navigating a relatively new field, understanding complex concepts,
and setting up experiments to validate hypotheses have strengthened my analytical thinking and
research capabilities.

I was initially drawn to VSAs by my promotor due to their potential to enhance AI systems
by combining the strengths of symbolic and connectionist approaches. However, as I delved
deeper into the subject, I immediately noticed that the properties of VSAs are deeply rooted
in statistical principles. That is, the most critical part of any VSA application, the creation of
atomic HVs relies on specific probability distributions. Throughout the initial experiments, we
uncovered that the operations and their capabilities are intricately linked to these distributions,
and validated this idea for a specific model, the BSC model, in the mathematical analysis in
section 4.3.

I can thus conclude that the subject of this thesis offered a perfect culmination of my masters
degree, as it provided me with the chance to utilize the knowledge I gained through the sup-
plementary courses I took on statistics. This knowledge could then be applied to two use cases
that were rooted in the two key areas of my masters degree, AI and Data Management.

Lastly, I cannot conclude the personal reflection without mentioning the guidance that was
provided to me by my promotor prof. dr. Stijn Vansummeren. He suggested this fascinating
topic, made time for weekly meetings to go over my progress, and guided me in many parts of
this journey. He provided me with constructive and concise feedback on my experiments and
also on the written text of this thesis.

In conclusion, I am fulfilled and proud of the research I delivered and believe that this thesis
opens up a world of opportunities for further exploration of the potential of Vector Symbolic
Architectures.

67

Bibliography

[1] Philip Boucher. Artificial Intelligence: How does it work, why does it matter, and what can
we do about it?: Study, pp. 1–17.

[2] Norvig Peter. Artificial Intelligence: A modern approach, global edition. Pearson Education
Limited, 2021.

[3] Nicholas Wang et al. “Characterizing the Effects of Transient Faults on a High-Performance
Processor Pipeline”. In: Jan. 2004, pp. 61–. doi: 10.1109/DSN.2004.1311877.

[4] Alexandra Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. “Estimating the Carbon
Footprint of BLOOM, a 176B Parameter Language Model”. In: abs/2211.02001 (Nov.
2022). doi: 10.48550/arXiv.2211.02001.

[5] “A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part I:
Models and Data Transformations”. In: 55 (), pp. 1–40. doi: 10.1145/3538531. url:
https://dl.acm.org/doi/10.1145/3538531.

[6] David E. Rumelhart, James L. McClelland, and PDP Research Group. “Parallel Dis-
tributed Processing, Volume 1: Explorations in the Microstructure of Cognition: Founda-
tions.” In: MIT Press, Mar. 1986, pp. 77–109. doi: https://doi.org/10.7551/mitpress/
5236.001.0001.

[7] Tony Plate. “Distributed Representations and Nested Compositional Structure”. In: (1994).
[8] David E. Rumelhart, James L. McClelland, and PDP Research Group. “Parallel Dis-

tributed Processing, Volume 1: Explorations in the Microstructure of Cognition: Founda-
tions.” In: MIT Press, Mar. 1986, pp. 3–44. doi: https://doi.org/10.7551/mitpress/
5236.001.0001.

[9] P. D. Turney and P. Pantel. “From Frequency to Meaning: Vector Space Models of Se-
mantics”. In: Journal of Artificial Intelligence Research 37 (Feb. 2010), pp. 141–188. issn:
1076-9757. doi: 10.1613/jair.2934. url: http://dx.doi.org/10.1613/jair.2934.

[10] Artur d’Avila Garcez et al. “Neural-Symbolic Computing: An Effective Methodology for
Principled Integration of Machine Learning and Reasoning”. In: (2019). arXiv: 1905.06088
[cs.AI].

[11] Hiroshi Fujii et al. “Dynamical Cell Assembly Hypothesis — Theoretical Possibility of
Spatio-temporal Coding in the Cortex”. In: Neural Networks 9.8 (1996). Four Major Hy-
potheses in Neuroscience, pp. 1303–1350. issn: 0893-6080. doi: https://doi.org/10.
1016/S0893- 6080(96)00054- 8. url: https://www.sciencedirect.com/science/
article/pii/S0893608096000548.

[12] Jerry A. Fodor and Zenon W. Pylyshyn. “Connectionism and cognitive architecture: A
critical analysis”. In: Cognition 28.1 (1988), pp. 3–71. issn: 0010-0277. doi: https://
doi.org/10.1016/0010-0277(88)90031-5. url: https://www.sciencedirect.com/
science/article/pii/0010027788900315.

[13] Ray Jackendoff. Foundations of Language: Brain, Meaning, Grammar, Evolution. Oxford
University Press UK, 2002.

[14] Claude E. Shannon, Warren Weaver, and A. Chapanis. “The Mathematical Theory of
Communication”. In: 26.3 (Sept. 1951). doi: 10.1086/398349.

[15] G. Salton, A. Wong, and C. S. Yang. “A vector space model for automatic indexing”. In:
Commun. ACM 18.11 (Nov. 1975), pp. 613–620. issn: 0001-0782. doi: 10.1145/361219.
361220. url: https://doi.org/10.1145/361219.361220.

68

https://doi.org/10.1109/DSN.2004.1311877
https://doi.org/10.48550/arXiv.2211.02001
https://doi.org/10.1145/3538531
https://dl.acm.org/doi/10.1145/3538531
https://doi.org/https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/10.1613/jair.2934
http://dx.doi.org/10.1613/jair.2934
https://arxiv.org/abs/1905.06088
https://arxiv.org/abs/1905.06088
https://doi.org/https://doi.org/10.1016/S0893-6080(96)00054-8
https://doi.org/https://doi.org/10.1016/S0893-6080(96)00054-8
https://www.sciencedirect.com/science/article/pii/S0893608096000548
https://www.sciencedirect.com/science/article/pii/S0893608096000548
https://doi.org/https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/https://doi.org/10.1016/0010-0277(88)90031-5
https://www.sciencedirect.com/science/article/pii/0010027788900315
https://www.sciencedirect.com/science/article/pii/0010027788900315
https://doi.org/10.1086/398349
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220

BIBLIOGRAPHY 69

[16] Zellig S. Harris. “Distributional Structure”. In: 10.2 (Jan. 1954). doi: 10.1080/00437956.
1954.11659520.

[17] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space. 2013.
arXiv: 1301.3781 [cs.CL].

[18] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global Vectors
for Word Representation”. In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Ed. by Alessandro Moschitti, Bo Pang, and
Walter Daelemans. Doha, Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 1532–1543. doi: 10.3115/v1/D14-1162. url: https://aclanthology.org/D14-
1162.

[19] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[20] Eneko Agirre et al. “A Study on Similarity and Relatedness Using Distributional and
WordNet-based Approaches”. In: Proceedings of the 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics (HLT-NAACL-2009).
Boulder, Colorado, 2009, pp. 19–27. url: http://alfonseca.org/pubs/2009-naacl-
long.pdf.

[21] Pentti Kanerva. “Computing with High-Dimensional Vectors”. In: 36.3 (June 2019). doi:
10.1109/MDAT.2018.2890221.

[22] Latent semantic analysis. url: https://en.wikipedia.org/w/index.php?title=
Latent_semantic_analysis&oldid=1218342466.

https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://arxiv.org/abs/1810.04805
http://alfonseca.org/pubs/2009-naacl-long.pdf
http://alfonseca.org/pubs/2009-naacl-long.pdf
https://doi.org/10.1109/MDAT.2018.2890221
https://en.wikipedia.org/w/index.php?title=Latent_semantic_analysis&oldid=1218342466
https://en.wikipedia.org/w/index.php?title=Latent_semantic_analysis&oldid=1218342466

	Introduction
	Introduction to Vector Symbolic Architectures (VSAs)
	Motivation: Why VSAs?
	Core principles / Building Blocks of VSAs
	Similarity Measures
	Atomic HVs
	Fundamental Operations

	A Glimpse into VSA Models
	Conclusion

	Word Embeddings
	VSA-based Word Embeddings
	Experiments
	Dataset
	Training
	Initial Observations
	Evaluation
	Results

	Conclusion
	Considerations

	VSA Database
	Architecture
	Conceptual Idea of Representing Database Records
	Column Representation
	Encoding Rows
	Querying our Database

	Experiments
	Dataset
	Encoding of Data
	Analysis

	Mathematical Analysis
	Atomic BSC HV's Similarity
	Bundle Similarity
	Similarity threshold

	Experiment Review
	Conclusion

	Conclusion

