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1  |  INTRODUC TION

The incidence of age- related diseases such as Alzheimer's Disease, 
diabetes, cardiovascular disease, and cancer rapidly rises. Impaired 

or maladapted immune responses are common in age- related dis-
eases (Isobe et al., 2017). In addition, older individuals are more 
vulnerable to novel infections (Zheng et al., 2020). As the global 
population is aging, this poses a significant burden on healthcare 
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Abstract
Loss of proper T- cell functioning is a feature of aging that increases the risk of de-
veloping chronic diseases. In aged individuals, highly differentiated T cells arise with 
a reduced expression of CD28 and CD27 and an increased expression of KLRG- 1 or 
CD57. These cells are often referred to as immunosenescent T cells but may still be 
highly active and contribute to autoimmunity. Another population of T cells known as 
exhausted T cells arises after chronic antigen stimulation and loses its effector func-
tions, leading to a failure to combat malignancies and viral infections. A process called 
cellular senescence also increases during aging, and targeting this process has proven 
to be fruitful against a range of age- related pathologies in animal models. Cellular 
senescence occurs in cells that are irreparably damaged, limiting their proliferation 
and typically leading to chronic secretion of pro- inflammatory factors. To develop 
therapies against pathologies caused by defective T- cell function, it is important to 
understand the differences and similarities between immunosenescence and cellular 
senescence. Here, we review the hallmarks of cellular senescence versus senescent 
and exhausted T cells and provide considerations for the development of specific 
therapies against age- related diseases.
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systems worldwide. Therefore, several recent studies have inves-
tigated the aged immune system and tested different strategies to 
protect the elderly from age- related diseases and infections.

The cells in our body are constantly exposed to various stressors, 
including reactive oxygen species, toxins, DNA damage, and strong 
mitogenic	signals	induced	by	oncogene	expression.	When	the	dam-
age to a cell cannot be repaired, it may undergo apoptosis or enter 
a state known as cellular senescence (Gorgoulis et al., 2019). This 
stable state of cell cycle arrest assures that the dysfunctional cell 
ceases proliferation. Senescence is an important mechanism in our 
body to prevent tumor development. In addition, temporary senes-
cence plays a beneficial role in tissue remodeling during embryonic 
development, wound healing, the involution of the mammary glands 
after the cessation of breastfeeding, and the placenta after labor 
(Demaria et al., 2014; Sirinian et al., 2022).

Once a cell has entered a state of senescence, it may be cleared 
by the immune system (Xue et al., 2007). However, as the individ-
ual ages, the ability of the immune system to effectively eliminate 
senescent cells begins to decline. As we age, senescent cells accu-
mulate and become a chronic feature within the body. Immune aging 
or immunosenescence affects both the innate and adaptive immune 
system. This process results in decreased responsiveness to vac-
cines and increased susceptibility to infections and cancer among 
the elderly (Fulop et al., 2017).

The aging process has a significant impact on the T cell compart-
ment. The process of thymic involution, along with lifelong expo-
sure to latent viruses, leads to a decrease in overall T- cell immunity 
and the emergence of T cells with reduced expression of CD28 and 
CD27, and increased expression of KLRG- 1 or CD57, which are often 
referred to as senescent or immunosenescent T cells (Rodriguez 
et al., 2020). However, whether these T cells are truly senescent 
cells remains to be determined. Unfortunately, the term “senescent” 
is ambiguous when applied to T cells.

To make things more complicated, there is another subpopula-
tion of T cells that loses its effector functions after repeated stimu-
lation and becomes exhausted, thereby contributing to decreased T 
cell- mediated immunity with aging. Both exhausted T cells as well as 
immunosenescent T cells are identified with flow cytometry markers 
and are often referred to as senescent T cells throughout literature. 
Do these T cells possess the typical hallmarks of senescent cells? 
This is discussed in the following paragraphs.

2  |  HALLMARKS OF CELLUL AR 
SENESCENCE

The phenomenon of cellular senescence was first discovered by 
Hayflick	&	Moorhead	(1961), who observed that human fibroblasts 
in culture could divide around 50 times before they lose the ability 
to proliferate any further. Since this initial discovery of the ‘Hayflick 
limit,’ senescence has been described for many somatic cell types. 
The hallmarks of senescent cells are discussed below and are sum-
marized in panel 1 of Table 2.

2.1  |  Persistent DNA damage and cell cycle arrest

Hayflick's observations have revealed that replicative senescence 
can be attributed to telomere attrition the gradual shortening of tel-
omeres with each cell cycle. Once the telomeres have shortened to 
a critical point, the remaining DNA is perceived as a double- strand 
break, which elicits a DNA Damage Response (DDR). This leads to 
Telomere- associated DDR foci (TAFs), which can be detected as per-
sistent γH2Ax/53BP1 damage foci within telomeric DNA (Hewitt 
et al., 2012). H2Ax is a histone protein that becomes phosphoryl-
ated on serine 139 after DNA- damage, four positions from its C- 
terminus, hence leading to the nomenclature γH2Ax. Severe DNA 
damage, such as double- strand breaks, elicits a DDR aimed at quick 
and effective DNA repair. However, chronic and unresolved damage 
can cause γH2Ax to accumulate and persist in stress- induced cel-
lular senescence. During the repair process after severe DNA dam-
age, proliferation is put on hold. This cell cycle arrest is mediated by 
the activation of cyclin- dependent kinase inhibitors such as p16INK4a 
and p21CIP1 (hereafter p16 and p21). The initial stress response is 
mediated by p53, a transcription factor upstream of p21. p53/p21 
signaling initiates senescence, after which the cell reduces p21 and 
switches	 to	 p16	 expression,	 which	 maintains	 senescence.	 While	
p53 activation induces p21 expression and may, therefore, induce 
senescence, p21 is also able to induce senescence independent of 
p53. Therefore, upregulated expression of p16, p21, and also p53 are 
often used as markers to detect senescent cells (Alcorta et al., 1996). 
It is important to note that these markers are not exclusively ex-
pressed by senescent cells. For example, p53/p21 expression may 
indicate the intitation of senescence, but could also point to a cell 
dealing with acute DNA damage (el- Deiry et al., 1993). In addition, 
stem cells also upregulate cyclin- dependent kinases such as p21 to 
retain a state of quiescence (Terzi et al., 2016). Therefore, additional 
hallmarks of senescence are needed to detect and study senescent 
cells.

Besides telomere attrition and telomere- associated damage foci 
(TAF), many other stimuli can induce senescence, such as chemo-
therapy or radiation- induced damage, oncogene overexpression, 
and several types of persistent DNA damage such as double- 
stranded DNA breaks, replication fork stalling and failed mismatch 
repair (Anderson et al., 2019; Gorgoulis et al., 2019). Interestingly, 
the DNA of senescent cells shows characteristic alterations such as 
a large foci of DNA damage called ‘DNA segments with chromatin al-
terations reinforcing senescence’ (DNA- SCARS) (Rodier et al., 2011) 
and foci of condensed DNA in proliferation- promoting genes 
called ‘senescence- associated heterochromatin foci’ (SAHF) (Narita 
et al., 2003).

2.2  |  Resistance to apoptosis

Following the DDR, a cell has three possible fates: if the damage is 
successfully repaired, the cell can re- enter the cell cycle. However, 
when the damage cannot be repaired (such as after critical telomere 
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attrition), the cell can either undergo apoptosis or remain in per-
manent cell cycle arrest and become senescent. Some senescent 
cells upregulate anti- apoptotic molecules such as Bcl- 2, Bcl- xL or 
Bcl- W, which could make them more resistant to apoptosis (Yosef 
et al., 2016). Upregulated expression of these anti- apoptotic mol-
ecules is often used as another hallmark to detect senescent cells. 
In addition, Bcl- 2 family members can be therapeutically targeted by 
senolytics such as Navitoclax to eliminate senescent cells. However, 
other studies found a downregulation of Bcl- 2 in senescent fibro-
blasts, indicating Bcl- 2 family gene expression in senescence may 
be cell type and treatment specific. Another mechanism by which 
senescent cells may become resistant to apoptosis is through the 
upregulation of FOXO4, a transcription factor that binds p53 and 
mediates pro- survival effects by upregulating p21 (Baar et al., 2017). 
Breaking the interaction between FOXO4 and p53 induces apopto-
sis in senescent cells. The underlying mechanism involves the migra-
tion of p53 to the mitochondria where it elicits BAX/BAK- mediated 
apoptosis and reduces p21 expression (Baar et al., 2017). In conclu-
sion, several mechanisms may promote resistance to apoptosis in 
senescent cells, and these mechanisms can be exploited to eliminate 
them.

2.3  |  Chronic senescence is deleterious for tissue 
homeostasis

While	 acute	 senescence	 plays	 a	 protective	 role	 during	 wound	
healing and tissue remodeling, things change when senescent cells 
accumulate and become a chronic feature. Senescent cells accu-
mulate with aging, in sites of pathology, and after chemotherapy 
or irradiation. Senescent cells such as senescent fibroblasts, epi-
thelial cells and adipocytes secrete a mixture of proinflammatory 
mediators called the ‘senescence- associated secretory phenotype’ 
(SASP). The SASP consists of inflammatory cytokines, chemokines, 
growth factors, prostaglandins, matrix metalloproteinases, and 
exosomal cargo (Basisty et al., 2020). It is important to note that 
the SASP varies for different cell types, for different inducers of 
senescence, and even changes over time. However, it typically 
consists of a subset of proteins elevated in all SASPs, such as the 
inflammatory cytokines interleukin- 1 alpha (IL- 1α), IL- 6, and IL- 8. 
Acute release of SASP factors such as CCL2 and CCL7 may attract 
immune cells toward the senescent cell so that it can be eliminated 
by macrophages, NK cells or cytotoxic T cells (Kale et al., 2020; 
Marin et al., 2023). In contrast, chronic exposure to SASP mol-
ecules can be harmful to the surrounding cells, which may, in turn, 
also become senescent, a phenomenon referred to as paracrine 
senescence (Gonzalez- Meljem et al., 2018).

As senescent cells accumulate during aging, their SASP may also 
contribute to the chronic low- grade inflammation, known as “in-
flammaging” (Franceschi et al., 2000), that is commonly found in the 
elderly population. This way, senescent cells may accelerate aging 
processes throughout the rest of the body. Indeed, selective dele-
tion of senescent (p16- positive) cells extends the lifespan of mice 

and attenuates age- related functional decline of several vital organs 
such as the liver and the heart (Baker et al., 2016). This study shows 
that the accumulation of senescent cells during aging negatively af-
fects lifespan and healthspan. In addition, recent independent stud-
ies showed that injection of senescent adipocyte progenitor cells, as 
well as blood exchange from aged into young mice, is sufficient to 
induce	cellular	senescence	in	multiple	tissues	(Jeon	et	al.,	2022; Xu 
et al., 2018; Yousefzadeh et al., 2020). Together, these studies indi-
cate that the accumulation of senescent cells during aging reduces 
lifespan and actively contributes to age- related functional decline 
throughout the body.

2.4  |  Changes in cellular organelles

Although senescent cells remain metabolically active, they often 
display an altered morphology and function (Table 1, reviewed in 
(Huang et al., 2022)). Lamin B1 (LMNB1) is reduced in the nuclear 
lamina of senescent cells (Freund et al., 2012). The nucleus of se-
nescent cells also displays an altered morphology (Heckenbach 
et al., 2022). Another typical hallmark of senescence is a reduced 
functionality of the mitochondria (Korolchuk et al., 2017). Their 
ability to produce ATP is compromised, and “mitophagy”, the re-
cycling process of damaged mitochondria, is impaired, leading 
to an accumulation of dysfunctional mitochondria that produce 
a lot of reactive oxygen species (ROS). ROS, in turn, causes dam-
age to cellular structures, including the mitochondria, leading to 
a positive feedback loop in which cellular damage accumulates. 
During senescence, a subset of mitochondria may display outer 
membrane permeabilization, reminiscent of a failed apoptosis re-
sponse (Victorelli et al., 2023). Release of DNA from the damaged 
mitochondria or the nucleus (cytoplasmic chromatin fragments), 
activating TLR or cGAS/Sting signaling also contributes to senes-
cence (Victorelli et al., 2023). The cGAS- STING pathway leads to 
SASP production. Interestingly, cells that undergo mitochondrial 
dysfunction- associated senescence (MiDAS) display a distinct 
SASP from cells that undergo genotoxic- induced senescence. 
The MiDAS SASP includes IL- 10, TNF- α and CCL27 but lacks the 
IL-	1	dependent	inflammatory	factors	(Wiley	et	al.,	2016). Besides 
mitochondrial dysfunction, senescent cells also show increased 
numbers of lysosomes, but this does not necessarily reflect an 
increased degradation process. Instead, the cellular recycling pro-
cess of autophagy is reduced in senescent cells (Tai et al., 2017). 
The alterations in lysosomes in senescent cells can be measured as 
an increased activity of ‘senescence- associated beta- galactosidase’ 
(SA- β- Gal). β- Gal is an essential enzyme in non- senescent cells as 
well, catalyzing the hydrolysis of β- galactose residues. Through 
the breakdown of lactose to galactose and glucose, the enzyme is 
a key energy provider. This lysosomal enzyme accumulates in se-
nescent cells, and its activity can be specifically detected in senes-
cent	cells	at	pH 6.0	(Dimri	et	al.,	1995). It is important to note that 
none of these hallmarks are specific for senescent cells. Therefore, 
a combination of several of the hallmarks described above is often 
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TA B L E  1 Hallmarks	of	senescence	reported	for	senescent	fibroblasts,	immunosenescent	T	cells,	and	exhausted	T	cells.

Hallmarks of 
senescence Senescent fibroblasts

Immunosenescent T cellsa CD28−, 
TEMRA CD57+, KLRG- 1+

Exhausted T cells PD- 1+, 
CTLA4+, TIM- 3+, TIGIT+

Cell cycle arrest Yes, often indicated by the upregulation of 
cyclin- dependent kinase inhibitors p16 or p21 
(Alcorta et al., 1996). No longer proliferate

Conflicting results. Reduced 
proliferation, upregulation of 
p16 (protein) and p21 (mRNA) 
(Henson et al., 2014; Scheuring 
et al., 2002). Other studies 
suggest they retain the capacity 
to proliferate in vivo or after 
PHA or IL- 15 stimulation ex vivo 
(Brzezinska et al., 2004; Chiu 
et al., 2006; Vallejo et al., 2000)

Conflicting results. Yes, 
indicated by the upregulation 
of cell cycle inhibitors p16 
or p21. No longer proliferate 
(Janelle	et	al.,	2021). But after 
repeated immunizations, 
PD1+ cells were still able 
to proliferate (Soerens 
et al., 2023)

DNA damage Common, although exceptions exist. 
Evidenced by critically short telomeres, 
persistent γH2AX DNA damage foci/
DNA-	SCARS/TAFs	(Allsopp	&	Harley,	1995; 
Anderson et al., 2019; d'Adda di Fagagna 
et al., 2003; Rodier et al., 2011)

Unclear. Evidence of γH2AX 
upregulation and shortened 
telomeres, but not clear whether 
damage/shortening is sufficient 
to induce senescence (Di Mitri 
et al., 2011; Effros et al., 1996; 
Lanna et al., 2014; Monteiro 
et al., 1996; Riddell et al., 2015)

Yes, evidence of increased 
γH2AX but no evidence of 
shortened	telomeres	(Janelle	
et al., 2021)

More resistant to 
apoptosis

Yes, but mechanism may differ between cells. 
Upregulation of anti- apoptotic molecules such 
as Bcl- 2 family members in some senescent 
cells (Yosef et al., 2016)

Yes. Also upregulation of Bcl- 2 
but unclear whether senescent 
T cells depend on Bcl- 2 for 
survival (Dumitriu, 2015; Schirmer 
et al., 1998; Spaulding et al., 1999; 
Vallejo et al., 2000)

No, upregulation of 
programmed cell death 1 
(PD- 1) makes them more 
susceptible to apoptosis 
(Patsoukis et al., 2020)

Senescence- associated 
secretory phenotype 
(SASP)

Yes, secretion of inflammatory cytokines, 
chemokines, growth factors, prostaglandins, 
matrix metalloproteinases (Basisty et al., 2020)

Yes, secretion of inflammatory 
cytokines, but also of cytotoxic 
molecules granzyme B and 
perforin (Broux et al., 2012; 
Echeverria et al., 2015) and 
increased MMP9 and growth 
factor production (Rioseras 
et al., 2021). Depending on 
the T cell lineage (CD8, Th1, 
Th2, Th17 cells, Tregs) and the 
microenvironment, other factors 
are secreted (Pieper et al., 2014)

No, unable to secrete 
proinflammatory cytokines 
upon stimulation (Saeidi 
et al., 2018)

Altered cellular and 
nuclear morphology

Yes, in vitro evidence of flattened and enlarged 
cell bodies, vacuolization, and granularity 
in the cytoplasm (Huang et al., 2022). In 
addition, senescence is marked by a loss of 
lamin B1 (LMNB1) in the nuclear lamina (Baar 
et al., 2017; Freund et al., 2012) and altered 
nuclear morphology (Heckenbach et al., 2022)

NI After repeated in vitro 
stimulations, exhausted T cells 
lose expression of LMNB1 
mRNA	(Janelle	et	al.,	2021)

Loss of normal cell 
function

Partially (Gerasymchuk et al., 2022) Partially, defective IL- 2 
production, but potent 
cytotoxic effector functions 
(Broux et al., 2012;	Pereira	&	
Akbar, 2016)

Yes (Saeidi et al., 2018)

Accumulation 
of dysfunctional 
mitochondria

Yes, decreased membrane potential, more 
ROS production (Korolchuk et al., 2017). A 
subset of mitochondria may display outer 
membrane permeabilization enabling release 
of DNA activating cGAS/Sting signaling and 
SASP (Victorelli et al., 2023). Mitochondrial 
dysfunction- associated senescence (MiDAS) 
SASP lacks IL- 1 dependent inflammatory 
factors	(Wiley	et	al.,	2016)

Yes, for CD8+ immunosenescent 
T cells.
No for CD4+ immunosenescent 
T cells (Callender et al., 2020; 
Henson et al., 2014).

Yes (Scharping et al., 2021).
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used to detect senescent cells (Gorgoulis et al., 2019) (Figure 1 and 
Table 1, left panel).

3  |  CELLUL AR SENESCENCE IN T CELL S

Now that we have discussed the typical hallmarks of cellular senes-
cence, it is time to take a closer look at the T cells. T cells show a 
high potency to expand in response to viruses, bacteria, and other 
invaders. Those T cells that are specific for latent viruses, common 

antigens such as pollen, or autoantigens, are likely to proliferate a 
lot throughout an individual's lifetime. As discussed above, this may 
lead to telomere attrition and subsequent genotoxic stress. In ad-
dition, as T cells migrate towards sites of inflammation, they are 
likely to be subjected to high amounts of ROS, generated by innate 
immune cells such as neutrophils and macrophages. This may also 
cause DNA damage and subsequent senescence. After repeated 
antigen exposure, two subpopulations of T cells arise that can be 
distinguished using specific flow cytometry markers. These sub-
populations are known as immunosenescent T cells and exhausted 

Hallmarks of 
senescence Senescent fibroblasts

Immunosenescent T cellsa CD28−, 
TEMRA CD57+, KLRG- 1+

Exhausted T cells PD- 1+, 
CTLA4+, TIM- 3+, TIGIT+

Beta- galactosidase 
activity	at	pH 6.0

Yes (Dimri et al., 1995) Yes, majority shows high β- gal 
activity (Martinez- Zamudio 
et al., 2021)

After repeated in vitro 
stimulations, around 30% 
of exhausted T cells show 
high β-	gal	activity	(Janelle	
et al., 2021), however in 
exhausted T cells directly 
isolated from elderly 
individuals, only a minor 
fraction shows high β- gal 
activity (Martinez- Zamudio 
et al., 2021)

aImmunosenescent T cells: for simplicity, we included studies on CD28null T cells and TEMRA cells that are CD57+ or KLRG1+.
Abbreviations: CTLA4, cytotoxic T lymphocyte- associated protein 4; KLRG- 1, killer- cell lectin- like receptor G1; NI, not investigated to our 
knowledge; PD- 1, programmed cell death protein- 1; ROS, Reactive oxygen species; TEMRA, Terminal Effector T cells that have lost expression 
of CCR7 and re- express CD45RA; TIGIT, T- cell immunoglobulin and immunoreceptor tyrosine- based inhibitory motif (ITIM) domain; TIM- 3, T cell 
immunoglobulin mucin- 3; β- gal, β- galactosidase.

TA B L E  1 (Continued)

F I G U R E  1 Hallmarks	reported	for	senescent	fibroblasts,	immunosenescent	T	cells,	and	exhausted	T	cells.	Senescent fibroblasts have 
flattened and enlarged cell bodies in vitro. They show DNA damage foci. The cells may upregulate p16 and p21 leading to cell cycle 
arrest. Senescent fibroblasts may also upregulate Bcl- family proteins, making them more resistant to apoptosis. They secrete a cocktail 
of inflammatory molecules termed the SASP. Other hallmarks include dysfunctional mitochondria and high senescence- associated β- 
galactosidase (SA- β- Gal) activity. Immunosenescent T cells can be identified by a loss of CCR7 combined with re- expression of CD45RA, in 
addition to a loss of CD28 and/or CD27. The cells also upregulate natural killer cell- like receptors such as killer- cell lectin- like receptor G1 
(KLRG1) and CD57 and acquire cytotoxic functions, producing granzyme B and perforin. Immunosenescent T cells may also upregulate p16 
and p21, but it is not clear whether they go into permanent cell cycle arrest. The cells can upregulate Bcl- 2 and become more resistant to 
apoptosis. They accumulate dysfunctional mitochondria and the majority of them shows high SA- β- Gal activity. Exhausted T cells lose the 
ability to perform effector functions such as cytokine production and secretion of cytotoxic molecules. They can be detected by exhaustion 
markers such as T cell immunoglobulin mucin- 3 (TIM- 3), cytotoxic T lymphocyte- associated protein 4 (CTLA- 4), and T- cell immunoglobulin 
and immunoreceptor tyrosine- based inhibitory motif (ITIM) domain (TIGIT). Although they may accumulate DNA damage and upregulate 
expression of p16, only a minority shows high SA- β- Gal activity.
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T cells. In the following paragraphs, we discuss the changes within 
the T cell compartment during aging and describe in detail whether 
immunosenescent and exhausted T cells possess the hallmarks of 
cellular senescence described above.

3.1  |  The effects of aging on T lymphocytes

The immune system becomes less efficient in protecting us 
against novel viruses and malignancies during aging. A critical 
factor leading to decreased immunity is the effect of aging on 
the	T	lymphocytes.	With	increasing	age,	the	hematopoietic	stem	
cells in the bone marrow preferentially give rise to myeloid cells 
at the expense of the lymphocyte compartment. In addition, the 
thymus shrinks, and its specialized tissue is replaced by adipose 
tissue, a process called thymic involution (Xu et al., 2022). As the 
final steps of T cell development and maturation take place in this 
organ, thymic involution, together with the reduced lymphopoie-
sis in the bone marrow, leads to a decrease in the generation of 
naïve T cells.

3.1.1  |  T	cell	differentiation	stages

When	 naïve	 T	 cells	 are	 released	 from	 the	 thymus,	 they	 start	 to	
patrol our body. If a T cell recognizes an antigen, the T cell is acti-
vated. It starts to proliferate, giving rise to effector cells partici-
pating in the immune response against the invading pathogen or 
the aberrant cell. After clearance of the potential threat, most ef-
fector cells die through apoptosis, while others differentiate into 
memory cells that remain in our body for extended periods. The 
different T cell subsets can be detected with flow cytometry using 
specific markers (for commonly used human T cell differentiation 
markers, see Table 2).

Central memory cells (CM) are long- lived cells that preferentially 
reside in lymphoid tissues and provide protection against recurrent 
infections	(Martin	&	Badovinac,	2018). CM T cells have self- renewal 
capacity in the absence of an antigen. However, as T cells proliferate 
multiple times throughout an individual's lifetime, the cells gradually 
lose this self- renewal capacity.

Effector memory cells (EM) display reduced proliferation capac-
ity but retain their cytolytic and proinflammatory functions (Martin 
&	Badovinac,	2018). EM T cells reside in peripheral tissues where 
they can immediately respond to possible threats. They are charac-
terized by a loss of the expression of CD27 and/or CD28. These co- 
stimulatory molecules are critical for T cell activation. They interact 
with CD70 and CD80/86 on antigen- presenting cells and generate 
the signal that provides the necessary co- stimulation to activate T 
cells. These cells are often referred to as CD28null or CD27 null cells. 
Loss of CD28 and CD27 is described in ample human studies but has 
not been extensively studied in mice. EM T cells are further charac-
terized by the loss of C- C chemokine receptor type 7 (CCR7) expres-
sion. CCR7 is also necessary for T cell activation and is involved in T 
cell homing to secondary lymphoid tissues.

Terminal Effector T cells (TE) have a late- stage differentiated phe-
notype. On top of the loss of both CCR7, CD27, and CD28, they 
may	re-	express	CD45RA.	When	they	re-	express	CD45RA,	they	are	
called TEMRA cells. TEMRA cells are considered to be terminally 
differentiated or senescent T cells (Henson et al., 2015). The term 
senescent	may	be	misleading	here.	Whether	 these	 cells	 fit	 all	 the	
criteria of cellular senescence and whether they are the only pop-
ulation of T cells that can be called senescent is discussed in the 
following paragraphs.

3.1.2  |  Aging	and	T	cells

A meta- analysis found significant reductions in the frequency of naïve T 
cells with aging, most pronounced within the CD8 compartment but 
also significant within the CD4 population (Rodriguez et al., 2020). 
In addition, several groups have reported increased frequencies of 
CD28 null T cells in the elderly. Loss of CD28 is believed to be caused 
by proliferative stress. In vitro, T cells lose expression of their co- 
stimulatory	molecule	 upon	 repeated	 antigen	 stimulation	 (Effros	&	
Pawelec, 1997). In vivo, latent viruses such as the cytomegalovirus 
(CMV), human immunodeficiency virus (HIV), or autoantigens in au-
toimmune disease may cause continuous chronic antigen stimula-
tion. Indeed, CD28null cells have been isolated from the peripheral 
blood of elderly individuals, HIV patients, and autoimmune patients 
(Broadley et al., 2017; Broux et al., 2012; Echeverria et al., 2015). T 
cells can be expected to undergo frequent antigen stimulation in all 
these individuals and, as such, repeated proliferation. In addition, 
studies investigating CMV- specific T cells found that most have 
indeed lost the expression of CD28 (Bano et al., 2019; Vescovini 
et al., 2004).

3.2  |  The hallmarks of senescence in T 
lymphocytes

Similar to the ‘Hayflick limit’ described above for senescent fi-
broblasts, T cells in culture lose their proliferation capacity after 
a certain number (between 25 and 40) of population doublings 

TA B L E  2 Subsets	of	naïve	and	memory	human	T	lymphocytes	
with commonly used cell surface expression markers.

CD45RA CD27 CD28 CCR7

Naïve T cells (N) + + + +

Central memory T cells 
(CM)

− + + +

Effector memory T cells 
(EM)

− − +/− −

Terminal effector T cells 
(TEMRA)

+ − − −
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    |  7 of 14SLAETS et al.

(Effros	&	Pawelec,	1997). This suggests that T cells do indeed have 
the ability to undergo replicative cellular senescence. In these se-
nescent T cell cultures, most T cells have lost expression of CD28. 
Therefore, CD28null T cells are generally referred to as immu-
nosenescent T cells.

3.2.1  |  Cell	cycle	arrest	in	immunosenescent	T	cells

The question remains whether the Hayflick limit described for cul-
tured T cells is also reached by T cells in vivo. A recent study showed 
that T cells are not intrinsically constrained by cell division limits 
(Soerens et al., 2023). In this study, mice were immunized, after 
which the expanded T cell population was transferred to new mice, 
which were immunized again, and so on. The authors showed that T 
cells	still	responded	to	with	proliferation,	even	after	10 years	and	51	
successive immunizations. This suggests that T cells do not reach the 
Hayflick limit in vivo. There are conflicting reports regarding the pro-
liferation capacity of CD28null T cells in vivo. Several studies found 
that CD28null cells can still proliferate, in vivo as well as after ex vivo 
stimulation with either PHA, IL- 15, or anti- CD3 and IL- 2, which in-
dicates they are not in a stable state of cell cycle arrest (Brzezinska 
et al., 2004; Chiu et al., 2006; Chong et al., 2008; Markovic- Plese 
et al., 2001; Vallejo et al., 2000). In contrast, reduced proliferation is 
detected in human CD28null cells isolated from the peripheral blood 
compared to their CD28 positive counterparts after CD3 stimula-
tion, but also in response to mitogens that bypass T cell receptor 
signaling, such as PMA/ionomycin (Henson et al., 2014; Scheuring 
et al., 2002). The reduced proliferation capacity may partly be due 
to their decreased ability to synthesize IL- 2 (Thompson et al., 1989).

In addition, the CD28null cells show upregulation of p16 and p21, 
indicating that these T cells may indeed be in a state of cellular se-
nescence (Scheuring et al., 2002).	While	p21	is	known	as	a	cell	cycle	
regulator, it appears to play a unique role in T cells, namely as a sup-
pressor of autoimmune responses. Overexpression of p21 in T cells 
reduces the proliferation of autoreactive T cells in a mouse model 
of lupus without affecting normal T cell responses (Daszkiewicz 
et al., 2015). Vice versa, deletion of p21 results in autoimmunity, 
suggesting that p21 plays a role in suppressing T cell- mediated auto-
immunity. Another study also suggests a role for senescence in con-
trolling unwanted T cell responses: human Tregs in culture suppress 
activated T cells by inducing senescence as indicated by a strong 
upregulation of p16, p21, and β- Gal activity. The T cells cease pro-
liferation and downregulate CD27 and CD28 (Ye et al., 2012). These 
studies suggest that senescence may be essential in controlling un-
wanted T cell responses.

Nevertheless, as most studies indicate, CD28null T cells may 
still be able to proliferate in vivo (Brzezinska et al., 2004; Chiu 
et al., 2006; Chong et al., 2008; Markovic- Plese et al., 2001; Vallejo 
et al., 2000). In addition, they become resistant to the suppressive 
actions of Tregs (Bano et al., 2019; Hoeks et al., 2021). This implies 
that CD28null T cells, often referred to as immunosenescent T cells, 
are not all in a state of replicative senescence in vivo.

3.2.2  |  Telomere	attrition	in	immunosenescent	
T cells

It is important to note that T cells differ from other somatic cells 
with regard to the expression of the enzyme telomerase. Telomerase 
counteracts telomere shortening by the de novo synthesis of telo-
meric repeats. Most somatic cells, such as fibroblasts, do not ex-
press telomerase after birth. Consequently, their telomeres become 
shorter	with	 every	 cell	 division.	 T	 cells	 are	 an	 exception.	When	 a	
T cell recognizes its antigen, T cell receptor activation leads to a 
transient upregulation of telomerase (Hodes et al., 2002; Maini 
et al., 1999). This unique property enables clonal expansion of T 
cells	to	combat	infections	and	allows	long-	lived	immunity	(Akbar	&	
Vukmanovic- Stejic, 2007). However, signals through CD28 are re-
quired for telomerase induction, so when T cells lose expression of 
CD28, this results in lower telomerase activity. In addition, telomer-
ase deficiency can lead to reduced expression of CD28, suggesting 
a feedback loop between both molecules (Matthe et al., 2022). This 
may lead to CD28null T cells being more susceptible to telomere 
shortening than CD28+ cells.

In addition, another mechanism was recently revealed by 
which T cells can elongate their telomeres, even when they do 
not express telomerase themselves (Lanna et al., 2022). T cells can 
acquire telomeres from vesicles released by antigen- presenting 
cells (APC) when they form an immunological synapse (Lanna 
et al., 2022). Importantly, T cells cultured in the absence of APCs, 
such as those used to demonstrate the “Hayflick's limit”, may 
therefore not represent telomere shortening as it occurs upon 
clonal	expansion	in	vivo.	When	we	look	at	CD28null	cells	isolated	
from human blood, they have shorter telomeres than CD28+ T 
cells from the same individual. In addition, yH2Ax is upregulated 
in TEMRA cells and CD28null T cells (Di Mitri et al., 2011; Henson 
et al., 2015; Lanna et al., 2014). As these studies used flow cy-
tometry to detect yH2Ax, it remains unknown whether immu-
nosenescent T cells display real DNA- SCARS and TAFs, or merely 
upregulate small, acute DNA damage. In addition, while CD28null 
cells have shorter telomeres than CD28+ cells from the same donor, 
they are still intermediate in length (Di Mitri et al., 2011; Effros 
et al., 1996; Monteiro et al., 1996; Riddell et al., 2015). These 
findings suggest that the telomeres of CD28null T cells do not 
reach a length that is so critically short that it induces replicative 
senescence.

3.2.3  |  Immunosenescent	T	cells	and	resistance	to	
apoptosis

Similar to the observations in some senescent fibroblasts that 
become highly resistant to apoptosis, upregulation of the anti- 
apoptotic molecule Bcl- 2 is also reported in CD4+CD28null T cells 
(Schirmer et al., 1998). However, the latter observation was done 
on T cell clones, and it remains to be determined whether CD28null 
cells in vivo also show upregulation of Bcl- 2 or its family members. 
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Several studies showed that both CD4+ and CD8+ CD28null T cells 
are more resistant to apoptosis in response to in vitro stimuli such as 
Fas stimulation, heat, or IL- 2 withdrawal (Dumitriu, 2015; Schirmer 
et al., 1998; Spaulding et al., 1999; Vallejo et al., 2000) compared to 
CD28+ cells. If CD28null cells are also highly resistant to apoptosis 
in vivo, they may persist for a person's lifetime, highlighting the im-
portance of understanding the functional changes in immunosenes-
cent T cells.

3.2.4  |  Gain	of	functions	in	immunosenescent	
T cells

A typical hallmark of senescent cells is the release of the SASP: 
Senescent cells continuously secrete a multitude of inflamma-
tory mediators. The content of the SASP changes over time and 
depends on the context and cell type. Similarly, CD28null T cells 
secrete high levels of inflammatory cytokines. In addition, with 
the loss of CD28 expression, T cells appear to acquire additional 
inflammatory functions. CD4+CD28null cells start to produce the 
cytotoxic molecules granzyme B and perforin, which are normally 
only expressed by CD8+ T cells and NK cells (Broux et al., 2012; 
Echeverria et al., 2015). Although T cell receptor signaling is di-
minished in CD4+ T cells from aged individuals, the cells prefer-
entially differentiate into effector cells instead of memory cells. 
A recent study showed that this could be due to the upregulated 
expression of the IL2 receptor and the downregulation of the 
transcription factor HELIOS, leading to increased STAT5 phospho-
rylation (Zhang et al., 2023). Immunosenescent T cells not only 
express high levels of cytotoxic molecules and inflammatory me-
diators like IFN- γ and TNF- α indicative of a SASP. CD4+CD28null 
of RA patients also significantly upregulate the expression of 
typical SASP molecules such as the metalloproteinase MMP9 and 
growth factors like VEGFA, IGF1, and hepatocyte growth fac-
tor in response to IL- 15 stimulation, in contrast to their CD28+ 
counterparts (Igarashi et al., 2022; Rioseras et al., 2021). In ad-
dition, CD28null cells upregulate receptors that are typical for the 
innate immune system: killer immunoglobulin- like receptors (KIR) 
such as CD57 (Leu7) and killer- cell lectin- like receptor G1 (KLRG1) 
(Pereira	&	Akbar,	2016). The acquisition of these receptors, typi-
cally expressed by NK cells, allows immunosenescent T cells to 
exert antigen- independent effector functions. In conclusion, im-
munosenescent T cells acquire innate- like immune functions and 
display a distinct secretory phenotype that distinguishes them 
from CD28+ T cells.

3.2.5  |  Loss	of	functions	in	T	cells

Another hallmark of senescence is the (partial) loss of cell- specific 
functions. CD28null T cells obviously lose CD28- mediated func-
tions, such as co- stimulation upon T cell receptor engagement 
and IL- 2 production. Nevertheless, as described in the previous 

paragraph, they retain multiple effector functions. In contrast, an-
other subpopulation of memory T cells, the above- mentioned ex-
hausted T cells, loses its memory effector functions, such as a high 
proliferative capacity or the ability to respond to antigenic chal-
lenge with cytokine production or cytotoxicity (Lee et al., 2016; 
Wherry,	2011). Both immunosenescent and exhausted T cells are 
memory T cells that have undergone persistent antigen stimula-
tion. But while immunosenescent T cells become resistant to ap-
optosis, exhausted T cells are programmed to undergo apoptosis 
as they express high levels of programmed cell death protein- 1 
(PD- 1)	(Janelle	et	al.,	2021). Single- cell RNA seq of T cell receptors 
showed that clonal expansion is responsible for the age- associated 
increase in PD1+CD8+ T cells in mice (Mogilenko et al., 2021). 
PD- 1 expression is mainly upregulated on early differentiated T 
cells: naïve and central memory T cells, but is down- regulated dur-
ing late stages of differentiation (Sauce et al., 2007). Markers of 
cellular senescence have not been investigated in exhausted T 
cells to the same extent as in immunosenescent T cells. The main 
differences between immunosenescent and exhausted T cells with 
regard to the hallmarks of senescence are summarized in Table 1 
and depicted in Figure 1. Although literature often describes im-
munosenescent and exhausted T cells as subsets with distinct 
markers and properties, it should be noted that they are not mutu-
ally exclusive, as markers of immunosenescence and exhaustion 
can be co- expressed (Song et al., 2018).

Exhausted T cells are detected after chronic viral infections 
(Moskophidis et al., 1993). As they lose effector functions and be-
come highly susceptible to apoptosis, this leads to a reduction in 
the numbers and efficacy of those cells that should attack the virus- 
infected cells, allowing the persistence of the virus. Exhausted T 
cells can further be distinguished by a high expression of inhibitory 
receptors such as T cell immunoglobulin mucin- 3 (TIM- 3), cytotoxic 
T lymphocyte- associated protein 4 (CTLA- 4), and T- cell immuno-
globulin and immunoreceptor tyrosine- based inhibitory motif (ITIM) 
domain (TIGIT) (Lee et al., 2016; Song et al., 2018). Expression of 
these inhibitory receptors leads to the suppression of T cell effector 
functions (Sakuishi et al., 2010).

T cell exhaustion is a phenomenon that receives particular at-
tention in the field of cancer immunotherapies. For hematological 
cancers, chimeric antigen receptor (CAR) T cells can be produced 
that express a genetically engineered T cell receptor specifically 
targeting the tumor antigens. However, for solid tumors, CAR 
T cell therapy has been less successful. This is partly due to the 
inability of T cells to infiltrate the tumor but also due to T cell 
exhaustion caused by the strong immunosuppressive features 
of	 the	 tumor	 microenvironment	 (Johnson	 et	 al.,	 2022; van der 
Heide et al., 2022). Interestingly, the dysfunction of exhausted T 
cells can be reversed by immune checkpoint inhibitors, such as 
anti- PD1 and anti- CTLA4, which holds promise to boost immune 
responses against cancer cells. Some senescent cells express the 
PD- 1 Ligands PD- 1 L or PD- 2 L. PD- 1 L expressing senescent cells 
accumulate	with	aging	(Wang	et	al.,	2022). PD- 1 Ligands prevent 
cytotoxicity induced by PD- 1- expressing T cells. As such, PD- 1 
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L and PD- 2 L- expressing senescent cells are resistant to T cell- 
mediated immune surveillance, even though they secrete high 
levels of SASP. Consequently, anti- PD- 1 treatment results in in-
creased T- cell mediated elimination of PD- 1 L+ senescent cells in 
aging mice and in a preclinical model of steatohepatitis (Onorati 
et al., 2022;	Wang	et	 al.,	2022). Likewise, targeting PD- L2 com-
bined with chemotherapy leads to improved CD8 T cell- mediated 
eradication of senescent cancer cells (Chaib et al., 2024).

It seems that PD1+ T cells can become senescent as well. After 
repeated proliferation in culture, PD- 1 expressing human T cells 
show DNA damage, cease proliferation and upregulate expression 
of	p16	(Janelle	et	al.,	2021).

3.2.6  |  Altered	gene	expression,	impaired	
mitochondria and increased SA- β- gal activity in T cells

Senescent cells typically display epigenetic changes, such as chro-
matin remodeling, altered methylation patterns and histone modi-
fications, thereby altering gene expression patterns and changing 
the metabolic functions in senescent cells (Crouch et al., 2022). An 
example of epigenetic changes in senescent cells are the SAHFs, 
that have a repressive H3K9- Me3 core segregated in space from 
an H3K27me3 ring, forming high- order chromatin structures 
(Chandra	&	Narita,	2013). A few studies analysed chromatin ac-
cessibility in T cells isolated from young and older individuals. 
They found a loss of accessibility in gene promoter regions of the 
nuclear respiratory factor 1 (NRF1) in naïve CD8+ T cells of aged 
individuals (Moskowitz et al., 2017) NRF1 is a transcription factor 
that regulates gene expression of mitochondrial respiratory chain 
proteins. In addition, memory CD8+ T cells of aged individuals 
display a decreased chromatin accessibility in promoters and en-
hancers associated with IL- 7R signaling (Ucar et al., 2017). Finally, 
naïve CD4+ T cells from aged individuals show altered chromatin 
accessibility resulting in reduced HELIOS expression and aberrant 
IL- 2 receptor signaling, associated with increased inflammatory 
effector functions (Zhang et al., 2023). Although these studies 
did not directly measure senescence- associated heterochroma-
tin foci (SAHF) or H3K9- Me3 in immunosenescent or exhausted 
T cells, they support a link between chromatin remodeling and T 
cell aging.

Another hallmark of senescence is the accumulation of dysfunc-
tional mitochondria. For T cells, there appears to be a difference be-
tween immunosenescent CD8+ versus CD4+ T cells. CD8+ TEMRA 
cells have impaired mitochondrial function with elevated ROS pro-
duction, similar to what has been described for senescent fibroblasts 
(Henson et al., 2014). On the other hand, CD4+ TEMRA cells have 
healthier mitochondria (Callender et al., 2020). Exhausted T cells 
also have impaired mitochondrial function. Recent studies indicate 
that the combination of chronic antigen stimulation with severe met-
abolic stress, such as hypoxia, can lead to mitochondrial dysfunction 
in T cells (Scharping et al., 2021). This, in turn, leads to the produc-
tion of intolerable levels of ROS, which subsequently promotes T 

cell exhaustion (Scharping et al., 2021). It is noteworthy that T cells 
with dysfunctional mitochondria, due to deficiency in the mitochon-
drial transcription factor A (TFAM), can induce senescence in other 
organ systems. They also cause inflammaging and premature death 
(Desdin- Mico et al., 2020). These studies further suggest that dys-
functional T cells may drive senescence and age- related pathologies 
throughout the body. In conclusion, highly differentiated CD8+ T 
cells and exhausted T cells display impaired mitochondrial function.

Senescence- associated β- Gal activity significantly increases in 
CD4+ and to a higher degree in CD8+ T cells in older individuals 
(Martinez- Zamudio et al., 2021). The CD8+ T cells marked by high 
β- Gal activity also show other markers of senescence, namely de-
creased proliferation potential, an upregulation of p16 and p21, as 
well as double- stranded DNA breaks, also in the telomere regions. 
Thus, T cells with the hallmarks of cellular senescence significantly 
increase in elderly individuals cellular senescence mostly arises 
in highly differentiated T cells, but to a lesser extent, also in cen-
tral memory T cells and even in naïve T cells (Martinez- Zamudio 
et al., 2021). In line with this, telomere attrition and telomere- 
associated DNA damage have previously been described in naïve T 
cells of RA patients, indicating that even naïve T cells may be vulner-
able to cellular senescence (Li et al., 2018). Most exhausted PD1+ 
T cells show low β- Gal activity, indicating that T cell exhaustion is 
not indicative of cellular senescence (Martinez- Zamudio et al., 2021) 
theHighly differentiated TEMRA cells seem to be most prone to 
cellular senescence, but senescent T cells may arise in other differ-
entiation stages as well. As such, to identify senescent T cells, one 
cannot rely on flow cytometry markers like CD57, KLRG1 or CCR7−/
CD45RA+, but should use the classical hallmarks of cellular senes-
cence, such as SA- β- Gal and p16.

4  |  POTENTIAL THER APEUTIC 
CONSEQUENCES

To address the age- related accumulation of senescent cells, drugs 
known as “senolytics” have been developed that selectively elimi-
nate senescent cells. As the immune system is responsible for 
clearing senescent cells, boosting these immune functions could 
represent an alternative way to clear senescent cells. Recently, CAR 
T cells with chimeric antigen receptors specifically engineered to 
target senescent cells have shown therapeutic potential in mouse 
models of liver fibrosis and lung adenocarcinoma (Amor et al., 2020). 
It will be interesting to see if this approach is effective in the treat-
ment of other age- related pathologies. In addition, preventing or re-
versing immunosenescence could be another strategy to rejuvenate 
tissues throughout the body. At present, it is uncertain whether se-
nolytics are able to eliminate senescent T cells. It will be important 
to assess whether immunosenescent T cells depend on Bcl- 2 family 
members for their survival. If so, they could be eliminated by seno-
lytics such as Navitoclax or Venetoclax. Another mechanism worth 
exploring is whether p53 is also a key regulator of immunosenescent 
T cell viability. If so, the FOXO4- DRI peptide could be used to break 
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the interaction between FOXO4 and p53 and consequently induce 
apoptosis in dysfunctional T cells, as was previously shown in senes-
cent fibroblasts (Baar et al., 2017). However, given the limited un-
derstanding of the role of senescence in earlier T cell differentiation 
stages, it may be more desirable to restore the function of the dys-
functional T cells. To this end, various approaches are being investi-
gated. Blocking of KLRG1 signaling boosts the proliferative capacity 
of CD28null cells (Henson et al., 2009). Inhibition of p38 MAPK sign-
aling boosts the proliferation, telomerase activity, and mitochondrial 
biogenesis in TEMRA cells (Henson et al., 2015; Lanna et al., 2014). 
Likewise, blockade of the PD- 1 pathway and shRNA- mediated p16 
targeting can both restore T cell functions in exhausted T cells 
(Janelle	et	al.,	2021; Lee et al., 2015). Recently, single- cell RNA se-
quencing studies have revealed shifts in more low- abundant immune 
cell subsets, such as increases in Granzyme K expressing CD8+ TEM 
cells and in type 2 memory T cells with aging (Mogilenko et al., 2021; 
Terekhova et al., 2023). Ultimately, it will be essential to fully under-
stand the functional changes in the different T cell subpopulations 
in a specific age- related disease to design adequate therapies that 
target the relevant cells.

5  |  CONCLUSION

In young and healthy individuals, damaged cells can enter a state of 
cellular senescence, which limits the spread of dysfunctional cells. 
These senescent cells produce a SASP which attracts immune cells 
that may ultimately clear these senescent cells. Recent studies sug-
gest that when the immune cells themselves become senescent, 
they fail to clear other senescent cells and drive senescence, and 
age- related dysfunction of other organs (Desdin- Mico et al., 2020; 
Yousefzadeh et al., 2021).

As we age, T cells may develop cellular senescence, similar to 
fibroblasts and other cell types in which the state of cellular senes-
cence has been extensively investigated. But importantly, the cell 
surface markers frequently used to detect immunosenescent T cells, 
such as the loss of CD27 and CD28 expression or the upregulated 
KLRG- 1 or Leu7 expression, or the exhaustion marker PD- 1, do not 
accurately demarcate the population that is in a true state of se-
nescence. Rather, they mark a heterogenous population of T cells, 
mostly but not exclusively consisting of senescent cells. Referring to 
this population as senescent T cells is, at best, an oversimplification 
and leads to a significant underestimation and misinterpretation of 
the actual number of senescent T cells in individual patients. Several 
hallmarks of cellular senescence, such as p16, p21, absence of pro-
liferation, DNA- SCARS, TAFs, SAHFs, loss of LMNB1 and increased 
senescence- associated β- gal activity, should be included to accu-
rately measure senescent T cells.

Future studies should investigate the functional properties of T 
cells that are in a state of cellular senescence in the different T cell 
differentiation stages. For a long time, research into T cell senes-
cence has focused on late- stage differentiation stages, such as the 
CD28null population, the CD57+ TEMRA cells (the effector memory 

cells that re- express CD45RA), or the exhausted T cells. The ques-
tion now arises whether earlier T cell differentiation stages can also 
become senescent. Knowledge on the functional consequences of 
accumulating senescent naïve or central memory T cells is lacking. It 
is essential to determine whether these subpopulations of senescent 
T cells increase in age- related diseases and actively contribute to pa-
thology. Additionally, it is important to explore whether they secrete 
a SASP and how they differ functionally from non- senescent T cells 
of the same differentiation stage. These are critical open questions 
that require further investigation.

In conclusion, the distinct hallmarks of senescence should be ap-
plied together with specific markers for the different T cell differen-
tiation stages (CCR7, CD45RA/RO, CD27, and CD28) and the typical 
markers of immunosenescence (KLRG1 and CD57) and exhaustion 
(PD- 1, TIM- 3, CTLA- 4, and TIGIT). Further research is needed to 
fully understand the role of T cell senescence in aging and pathology 
to design therapies that selectively target those T cells necessary for 
preventing the accumulation of senescent cells or the development 
of age- related pathology.
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