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Abstract:
Our study aims to investigate the dynamics of conventional memory T cells (Tconv) and regulatory T
cells (Treg) following activation, and to explore potential differences between these two cell types. To
achieve this, we developed advanced statistical mixed models based on mathematical models of ordinary
differential equations (ODE), which allowed us to transform post-vaccination immunological processes
into mathematical formulas. These models were applied to in-house data from a de novo Hepatitis B
vaccination trial. By accounting for inter- and intra-individual variability, our models provided good fits
for both antigen-specific Tconv and Treg cells, overcoming the challenge of studying these complex
processes. Our modeling approach provided a deeper understanding of the immunological processes
underlying T cell development after vaccination. Specifically, our analysis revealed several important
findings regarding the dynamics of Tconv and Treg cells, as well as their relationship to seropositivity
for Herpes Simplex Virus Type 1 (HSV-1) and Epstein-Barr Virus (EBV), and the dynamics of antibody
response to vaccination. Firstly, our modeling indicated that Tconv dynamics suggest the existence of
two T cell types, in contrast to Treg dynamics where only one T cell type is predicted. Secondly, we found
that individuals who converted to a positive antibody response to the vaccine earlier had lower decay
rates for both Tregs and Tconv cells, which may have important implications for the development of more
effective vaccination strategies. Additionally, our modeling showed that HSV-1 seropositivity negatively
influenced Tconv cell expansion after the second vaccination, while EBV seropositivity was associated
with higher Treg expansion rates after vaccination. Overall, this study provides a critical foundation for
understanding the dynamic processes underlying T cell development after vaccination.
Keywords: Immune system, T cell dynamics, Mathematical models, Mixed-effects modeling, Vaccina-
tion , Statistics.
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1 Introduction24

The immune system plays a crucial role in protecting the body against pathogens and preventing the25

development of diseases. It is a complex system consisting of various types of cells and molecules that26

work together to identify and eliminate foreign invaders while maintaining self-tolerance. Among the key27

players of the immune system are T cells, which play a central role in orchestrating immune responses28

against pathogens and cancer cells1, 2. Memory T cells, both conventional and regulatory, are subtypes of29

T cells that provide long-lasting protection against previously encountered antigens and modulate immune30

responses, respectively3, 4. While the HBV vaccine primarily elicits an antibody response, the role of31

memory T cells is pivotal in sustaining long-term immunity. These cells aid in the rapid recall response to32

HBV upon re-exposure and are crucial in maintaining a balanced immune state. This study emphasizes33

the understudied yet significant role of memory T cells in the context of HBV vaccination, bridging a gap34

in current vaccine immunology research. Conventional memory T cells are responsible for the rapid and35

robust response to pathogens upon re-exposure, while regulatory T cells suppress immune responses and36

prevent excessive inflammation and tissue damage3, 4. The development and maintenance of memory T37

cells are complex processes that involve various factors such as cytokines, co-stimulatory molecules, and38

transcription factors5, 6.39

Vaccination is a highly effective strategy for generating memory T cells and protecting individuals from40

infectious diseases7. For example, the hepatitis B virus (HBV) vaccine induces the production of memory41

T cells and antibodies against the virus, providing long-term protection against HBV infection8. Using42

data from a previously published study9, we build upon existing mathematical frameworks to develop43

mixed-effects models that capture the dynamics of Tconv and Treg following hepatitis B vaccination.44

Anti-hepatitis B surface antibodies (Anti-HBs) are proteins produced by the immune system in response to45

the presence of the hepatitis B surface antigen (HBsAg). Anti-HBs concentrations more than 10 mIU/mL46

provide protection against infection. However, it is worth noting that the percentage of individuals47

maintaining anti-HBs levels above 10 mIU/mL is significantly influenced by the duration since the48

initial vaccination. Anti-HBs concentrations below this threshold may not confer the same level of49

protection against HBV infection. It is important to recognize that the 10 mIU/mL threshold is a50

commonly used indicator of protection, although it is not an absolute cutoff. Our models aim to reflect51

the individual variability observed in the development of these memory responses and to provide a52

mechanistic understanding that can inform vaccination strategies. Memory specific T cells prompt a53

powerful anamnestic response upon exposure to the hepatitis B virus, preventing acute illness, long-term54

viremia, and chronic infection. An anamnestic anti-HBs response following vaccination with an additional55

dose demonstrates specific memory T cells after hepatitis B vaccination10. The majority of individuals56

who had a favorable response to the initial series of vaccinations will experience a rapid rise in anti-HBs57

as a result of this booster dose. Time since first vaccination appears to be related to immune memory58

persistence11. Although progress has been made in the development of vaccines against hepatitis B virus59

(HBV), the long-term clinical outcome of the disease remains poor due to the challenge of achieving60

immunological memory, which may involve viral clearance and/or non-specific antibody response9, 12.61

Recently, several mathematical models were developed to model longitudinal immune responses62

using ordinary differential equations (ODEs), which are popular and powerful tools for modelling very63

complex dynamical systems in many fields. They are widely used in the study of population dynamics,64

epidemiology, virology, pharmacokinetics and gene regulatory networks because of their ability to describe65

key interaction mechanisms between biological components of complex systems, their evolution over66

time, and provide reasonable stochastic dynamics approximations13–17. Our study extends these methods67

by applying mixed-effects modeling to account for both within- and between-subject variability in T cell68
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responses. Mixed-effects modeling offers the benefit of accounting for and quantifying the correlation69

between several replicates, as well as of achieving a more precise parameter estimate by pooling all70

the data, in comparison to fixed-effects modelling. There is currently a growing interest in estimating71

mixed-effects ODE models due to their ability to account for both within- and between-subject variability.72

With repeated measurements from multiple individuals, mixed-effects ODE models provide a more robust73

way of estimating model parameters than traditional ODE models. As a result, there is a growing interest74

in developing and applying mixed-effects ODE models in immunology research. The first to use the75

mixed effects modeling method with ordinary differential equations (ODE) in a form that more closely76

approximated immune response dynamics after vaccination were Andraud et al.16, who focused on long-77

term impacts, and Le et al.18 on the immediate effects of vaccination. Furthermore, Keersmaekers et al.19
78

used the mixed effect modeling to investigate two vaccine doses. Another recent study by Besbassi et al.20
79

employed mixed-effects ODE models to examine antibody dynamics following re-exposure to infection.80

The approach was applied to 61 herpes zoster patients to gain insights into varicella-zoster virus specific81

antibody dynamics during and after clinical herpes zoster. The study provided a deeper understanding of82

the population’s characteristics and offered unique insights that can aid in improving our understanding83

of Varicella-Zoster Virus (VZV) antibody dynamics and in making more accurate projections regarding84

the potential impact of vaccines21.Our work complements these studies by focusing on the dynamics of85

memory T cell populations, a less explored aspect of the immune response to vaccination.86

In this current study, we have applied an innovative ODE-based mixed-effects modeling approach87

to analyze the kinetics of hepatitis B virus (HBV)-specific memory T cell responses in individuals88

receiving de novo HBV vaccination9. Our focus on characterizing the dynamics of both conventional89

and regulatory memory T cells over time aims to unravel the complexities underlying immunological90

memory development and maintenance. By considering individual variability in these responses, our work91

sheds light on key factors that drive the long-term efficacy of vaccines and could significantly influence92

the design of future vaccination strategies and the development of novel immunotherapies.93

This research aligns with the evolving landscape of immunological modeling, extending beyond94

traditional methodologies to offer a more nuanced understanding of T cell dynamics post-vaccination. Our95

integration of advanced mixed-effects modeling with a specific focus on memory T cells offers a novel96

perspective critical for comprehending vaccine-induced immune responses. The insights gained from97

this study are not only pivotal for advancing vaccine development but also provide a valuable framework98

for further explorations in the field of vaccine immunology. Specifically, this study aims to model the99

dynamics of memory T cells post-Hepatitis B vaccination, with a focus on the roles of conventional100

memory T cells (Tconv) and regulatory memory T cells (Tregs), exploring their responses to vaccination101

and how they contribute to long-term immunity.102

The approach of this study is novel, leveraging the power of mixed-effects modeling to delve into103

the intricacies of immune response variability among individuals. This methodology allows for a more104

accurate depiction of the complex interplay between various immunological factors and the hepatitis B105

vaccine, setting a new standard for the quantitative analysis of vaccine efficacy and immune memory106

dynamics.107

2 Material and methods108

2.1 Data109

We used data from a previously published study by Elias et al.9, which included a cohort of 34 healthy110

subjects who received the hepatitis B vaccine. The absence of prior HBV infection and vaccination history111

in this cohort provides an ideal baseline for our analysis, allowing for a clearer understanding of T cell112
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dynamics in response to the hepatitis B vaccine. This data selection from Elias et al.9 study is pivotal for113

our analysis, as it provides a rich source of empirical evidence necessary for understanding the nuanced114

T-cell responses post-vaccination, particularly focusing on TCR affinity and seropositivity, which are key115

determinants of vaccine efficacy. Engerix-B® with a dose of 20 µg of hepatitis B surface antigen with116

alum adjuvant, was administered to the participants through intramuscular injection on days 0, 30, and117

365. Peripheral blood samples were collected at four time points: day 0 (pre-vaccination), as well as 3118

months, 6 months, and 12 months after the first vaccine dose. The blood samples at the 12-month mark119

were collected just before the administration of the third dose on day 365. This timing ensures that the120

measurements reflect the immune response from the first two doses without the influence of the third121

dose. The cohort exhibited a diverse age range, from 21.3 to 50.2 years, and comprised 22 females and 12122

males. Participants were categorized as early-converters if they seroconverted by day 60, late-converters if123

seroconversion occurred by day 180 or day 365, and non-converters if their anti-HBs titer did not exceed124

10 IU/ml at any measured time points. This comprehensive data collection enables a thorough investigation125

of the dynamic immune response to the hepatitis B vaccine over a one-year period.126

The study also collected data on the TCR affinity for the HBsAg peptide pool and cytomegalovirus127

(CMV), ebstein-barr virus (EBV), or herpes simplex virus type 1 (HSV) seropositivity during the study.128

The TCR affinity, specifically the HBsAg-specific TCR affinity, was determined by calculating the ratio129

of unique T-cell receptors (TCRs) annotated as HBsAg-specific in the sequenced TCR repertoire to the130

number of bystander TCRs. This calculation provides insight into the strength of the binding interaction131

between the T-cell receptor and the peptides derived from the hepatitis B surface antigen. CMV, EBV,132

and HSV seropositivity were measured at the day of vaccination to evaluate whether previous exposure to133

these viruses influenced the immune response to the hepatitis B vaccine. These factors were included to134

comprehensively assess how prior viral exposures might affect vaccine efficacy. The data collected was135

used to study the longitudinal dynamics of CD4+ T cells and to evaluate the influence of these factors on136

the immune response to the hepatitis B vaccine.137

2.2 T-cell data138

Generating adaptive immune responses against microbial invaders is mostly dependent on CD4+ T cells.139

The identification of antigenic peptides presented on major histocompatibility complexes (MHC) by the140

TCR, together with antigen-independent co-stimulation, is necessary for naive CD4+ T cells to develop141

into more specialized subsets after T cell activation. The study utilized flow cytometry to assess T cell142

responses and TCRβ repertoire sequencing to identify vaccine-specific TCRβ clonotypes. In our focus,143

we particularly concentrated on two subsets of CD4+ T cells stimulated by HbsAg: memory conventional144

T cells (Tconv) and regulatory memory T cells (Tregs), defined by distinct surface markers. Depending on145

the antigen, CD4+ T cells can differentiate into a variety of subset populations. In the previously published146

study9 HbsAg stimulated CD4+ T cells were subtyped into different cell subsets; however, we will only147

focus on two types: one being the memory conventional T cell subset out of total CD4+ T cell ("Tconv"),148

which is defined as CD154+CD137- cells. The other being regulatory memory T cells out of total CD4+ T149

cells ("Tregs"), which is defined as CD154-CD137+ cells, that specialise in immunological homeostasis150

and maintenance of self-tolerance, inflammation control and prevention of autoimmune diseases. These151

subsets were chosen due to their significant roles in the immune response to hepatitis B vaccination. The152

use of CD154 and CD137 as markers for identifying these subsets has been validated in previous studies,153

demonstrating their efficacy in characterizing T cell responses9, 22.154

To accurately capture the dynamics of these T-cell populations, we introduce two pivotal time points,155

h1 and h2, which delineate the phases of T-cell population changes post-vaccination. The period [0,h1]156

encompasses the initial response to the vaccine, characterized by an increase in T-cell counts following157
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the first dose, with h1 marking the end of this phase, observed just before the 2-month mark. The second158

period [2,h2] extends from the point marking the beginning of the secondary response phase, following159

the second vaccination dose, up to h2, the time point at which we observe a plateau or decrease in T-cell160

populations, indicating the stabilization of the immune response. This secondary phase captures the161

sustained or boosted immune response, culminating at 12 months post-initial vaccination. In case only one162

peak is observed in the T-cell response dynamics, we will assume h1 = 2 < h2, which allows for a flexible163

adaptation of our analysis framework to the observed data patterns. These defined periods are instrumental164

in our study as they allow us to segment the immune response into distinct, quantifiable phases of T-cell165

dynamics, providing a structured framework for our analysis.166

To provide a comprehensive understanding of the participant demographics and key characteristics167

in our study, Table1 summarizes the essential data. This includes age distribution, antibody titres, TCR168

affinity, serostatus for various viruses, gender distribution, and vaccine response status. This diverse169

representation of participants ensures a comprehensive analysis of the immune response to the hepatitis170

B vaccine. Figures 1 and 2 show individual-specific memory Tconv and Treg profiles by time in days,171

respectively. The data are presented for early, late, and non-converters. These visual representations172

provide a clear depiction of the dynamic changes in T cell populations across different converter categories173

and time points, emphasizing the need for individual-level modeling approaches.

Characteristic Description
Age Range 21.3 - 50.2 years (Median: 40.25 years)
Antibody Titre Range: 2 - 8.55 (Mostly concentrated around 2)
TCR Affinity Range: 0.42 - 1.46
CMV Status Positive: 9, Negative: 25
EBV Status Positive: 25, Negative: 9
HSV1_2 Status Positive: 14, Negative: 20
HHV6 Status Positive: 32, Negative: 2
Gender Female: 22, Male: 12
Vaccine Response Early-converter: 21, Late-converter: 9, Non-converter: 4

Table 1. Summary of Participant Demographics and Vaccine Response

174
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Figure 1. Individual-specific memory Tconv profiles by time (in days) for Early/Late/Non converter
status. The plot shows the variation in memory Tconv over time for each individual, and how this varies
between early converters, late converters, and non-converters.

2.3 Mathematical methods175

2.3.1 T-cell dynamic Models176

In this subsection, we present nonlinear mixed-effect models based on ordinary differential equations to177

model the dynamics of T-cells. Our goal is to obtain models that best describe the available data while178

representing the important cell populations in the T-cell response process generated by the body after179

vaccination. This includes accounting for the distinct roles and lifespans of short-lived and long-lived180

T-cell populations, which are derived from empirical observations and theoretical insights into T-cell181

dynamics post-vaccination.182

Our modeling strategy has been developed with an awareness of the current state of T cell dynamics183

research. We have carefully reviewed and considered recent advances in the field, ensuring our models184

reflect the known biological processes of T cell activation and memory formation post-vaccination. This185

approach allows us to capture the essential dynamics of T cell responses in a manner that balances186

biological accuracy with computational and data practicality.187

The main T-cell populations considered include conventional memory T cells, regulatory memory T188

cells, which are key components in understanding the immune response. These are further subdivided189

into short-lived and long-lived memory T conventional cells, and short-lived and long-lived memory190

T regulatory cells. The differentiation into short-lived and long-lived subsets is based on established191

immunological knowledge and is crucial for modeling the immediate and memory responses accurately.192
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Figure 2. Longitudinal profiles of memory regulatory T-cells over time (in days) for individual
participants, stratified by their converter status (Early/Late/Non). The variation in response over time and
between individuals is apparent, highlighting the importance of individual-level modeling approaches.

While our models do not explicitly label a process as ’clonal expansion’, the mechanism is inherently193

captured in the dynamic representation of T-cell proliferation and response post-vaccination. The expansion194

terms in our models implicitly encompass the biological reality of T-cell multiplication in response to195

antigenic stimulation, which is a cornerstone of the adaptive immune response.196

We used a systematic approach to fit and compare multiple models to obtain the least number of197

parameters needed to accurately describe the T-cell dynamics, ensuring model parsimony and avoiding198

overfitting. This approach aligns with the principles of model selection where simplicity and accuracy are199

balanced to avoid complexity that does not add explanatory power. The general ODE equation used to200

describe the dynamics of T-cells is:201


dT
dt

= ϕ1(T )I0≤t≤h1 +ϕ2(T )I2≤t≤h2 −ϕ3(T ),

T0 = T (0), t = 0

Here, ϕ1 represents the expansion of T-cells after the first vaccination at time 0 until a certain time h1202

(with 0 ≤ h1 ≤ 2). The inclusion of different phases of T-cell expansion reflects the observed immune203

response kinetics following vaccination. After h1 has been reached, T-cells will not further be activated204

until the second vaccination, one month after the first one, which ϕ2 defines as the expansion of T-cells205

during the period [2,h2], h2 being the point at which the second T-cell peak is attained.206
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In the context of our study, I0≤t≤h1 denotes the active phase of T-cell proliferation following the initial207

vaccination, where t is the time post-vaccination and h1 is the time until which this immediate response208

is considered. The second term, I2≤t≤h2 , captures the T-cell expansion from two months post-initial209

vaccination until the time h2, which is determined by the observed data to be the point where the T-cell210

count starts to reduce after the booster-induced peak. These indicators are crucial for our model as they211

help to segment the T-cell response into distinct phases corresponding to the vaccine administration212

schedule and observed immunological outcomes.213

Our modeling choices are corroborated by empirical data showing distinct phases of T-cell response214

to vaccination. The decay of T-cells will occur throughout the full time period and is described by the215

function ϕ3. Although not explicitly labeled as ’clonal expansion’ in our models, the proliferative behavior216

of T-cells post-stimulation inherent in these functions encapsulates this biological process. In all models,217

we assume that the decay rate of T-cells is proportional to the number of T-cells, which can be written as218

ϕ3 = µT ×T . The proportional decay rate is a common assumption in biological modeling and simplifies219

the system without loss of generality. Moreover, we assume an expansion rate for T-cells after each220

vaccination event, which aligns with the initial phase of the immune response characterized by rapid T-cell221

activation and subsequent division. In this model, one can hypothesize that 1 dividing T-cell will generate222

1 circulating “effector” T-cell and 1 T-cell that will proceed in the expansion process.223

Assuming an equal expansion rate of T cells after each vaccination leads to Model 1. Functions
ϕi(i ∈ {1,2,3}) can now be written as:

dT
dt

= αT I0≤t≤h1 +αT I2≤t≤h2 −µT T, (1)

This model choice reflects our intention to explore the implications of uniform T-cell proliferation post-
vaccination, a scenario that simplifies the biological complexity but offers valuable initial insights. Model
2 does not assume an equal expansion rate after each vaccination. In addition, it is reasonable to consider
a different rate after the second vaccination due to a memory response. In this scenario, the functions ϕi
are expressed as follows:

dT
dt

= α1T I0≤t≤h1 +α2T I2≤t≤h2 −µT T, (2)

As we proceed, we distinguish the short-lived T cells, denoted as ST(t), from the long-lived T cells,
denoted as LT(t). This distinction is not merely for model complexity but is grounded in the biological
understanding that different T-cell subtypes exhibit markedly different lifespans and roles in the immune
response, as supported by current immunological research19. The total T-cell population is represented as
the sum of these two distinct sub-populations. While our modeling makes a simplifying assumption about
the initial absence of short-lived T cells for tractability, this approach is justified given that our primary
interest is in the dynamics post-vaccination. This distinction is vital for accurately capturing the dynamic
behavior of T-cell populations during various stages of the immune response, crucial for understanding
both immediate and lasting immunity We describe it by the functions ϕi, ψi where i ∈ {1,2,3}):

dST
dt

= ϕ1(T )I0≤t≤h1 +ϕ2(T )I2≤t≤h2 −ϕ3(T ),

dLT
dt

= ψ1(T )I0≤t≤h1 +ψ2(T )I2≤t≤h2 −ψ3(T ),

T (t) = ST (t)+LT (t),

with LT0 = LT (0) the initial number of long living T-cells and ST0 = 0 the number of short living T-cells
at time 0.
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First, similarly to the preceding models, we will suppose that the expansion rates of ST are constant and
there is no decay of LT (thus a constant number of LT). Model 3 also presumes that the expansion rates of
ST after the two vaccinations are identical. The functions ϕi and ψi are accordingly given as:

dST
dt

= αST I0≤t≤h1 +αST I2≤t≤h2 −µST ST,
dLT
dt = 0.

(3)

In Model 4, we consider different expansion rates of ST after the two vaccinations. The decision to explore
different expansion rates stems from our hypothesis that post-vaccination immune responses may vary
significantly between initial and subsequent exposures. This leads to:

dST
dt

= α1ST I0≤t≤h1 +α2ST I2≤t≤h2 −µST ST,

dLT
dt

= 0.
(4)

Thereafter, we also introduce a constant αLT proliferation rate of long-lived T cells after each vaccination.
Taking this into account, we obtain Model 5 where we assume equal expansion rates for ST after the two
vaccinations, written as :

dST
dt = αST I0≤t≤h1 +αST I2≤t≤h2 −µST ST,

dLT
dt = αLT I0≤t≤h1 +αLT I2≤t≤h2.

(5)

We complete the T cell models with the Model 6, in which in each vaccination different ST activation
rates are considered, given as:

dST
dt = α1ST I0≤t≤h1 +α2ST I2≤t≤h2 −µST ST,

dLT
dt = αLT I0≤t≤h1 +αLT I2≤t≤h2.

(6)

By incorporating this distinction and building it into our models, we can provide more accurate predictions224

and insights into how vaccines may elicit protective immunity. These insights are particularly relevant225

for the design of new vaccines and the assessment of long-term vaccine efficacy. The models presented226

here are thus not only mathematically robust but also deeply rooted in biological reality, making them a227

valuable tool for both theoretical and applied immunological research.228

To put our modeling approach into perspective for a broader audience, we have developed models that229

simulate how T cells react and change over time in response to hepatitis B vaccination. These models help230

us understand the complex interactions within the immune system and predict how it responds to vaccines,231

crucial for designing effective immunotherapies and vaccination strategies.232

2.4 Statistics233

2.4.1 Nonlinear mixed models234

Nonlinear mixed models are designed to capture the inter-individual variability in response to Hepatitis B235

vaccination, integrating both fixed effects to represent common trends and random effects to encapsulate236

individual deviations. Each individual parameter Pi can be described as Pi = uiPpop, where Ppop is a237

population parameter and ui is log-normally distributed with E(ui) = 1. To better reflect the underlying238
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biological processes and enhance model interpretability, we have meticulously justified the inclusion and239

definition of each parameter. Categorical variables, such as sex,are incorporated via dummy variables240

accompanied by an additional parameter β j, which quantifies group-specific deviations from the reference241

category, enabling a nuanced exploration of the demographic influences on the parameter estimates. This242

allows for investigating which specific parameter of the structural model, such as expansion rate or decay243

rate, is responsible for observed differences between different groups.244

The statistical methodology employed herein synergizes stochastic approximation of the standard ex-245

pectation maximization algorithm (SAEM) with simulated annealing, combined with a Markov chain246

Monte Carlo (MCMC) approach that substitutes the simulation step of the SAEM algorithm. This robust247

fusion not only enhances the precision of parameter estimation but also fortifies the model against poten-248

tial overfitting. The computation of the log-likelihood through importance sampling, assuming a fixed249

t-distribution with 5 degrees of freedom, provides a safeguard against data outliers, thereby bolstering the250

model’s reliability. The extensive computational efforts undertaken using the facilities of the VSC (Vlaams251

Supercomputer Centrum) have facilitated a rigorous data analysis and modeling process, strengthening the252

confidence in our statistical outcomes. These statistical approaches extend beyond mere computational253

analysis, serving as vital tools for translating quantitative data into deeper biological understanding. This254

integration of statistical rigor and biological relevance elevates the impact of our findings, contributing255

significantly to the field of immunological research.256

2.4.2 Inference and model selection257

We have adopted a systematic and robust approach to model selection. nitially, a comprehensive suite258

of models, from Model 1 to Model 6, was created to analyze T-cell data. These models incorporated259

varying assumptions about parameter variability, explicitly accounting for whether individual variation260

was present, thus determining if random effects should be included for different parameters.In a first step,261

a list of models was composed, consisting of models 1 to 6 for T-cell data, together with assumptions on262

the parameters reflecting whether or not individual variation on these parameters is present, i.e. whether or263

not random effects were included for the different parameters. This selection was meticulously designed264

to reflect the intricate biological mechanisms governing T-cell responses. Parameters for these models265

were rigorously estimated using Monolix software ©Lixoft, a leading tool for such analyses.266

Models with suboptimal SAEM convergence, generally indicative of undue complexity or poor data267

fit, were excluded from further analysis. The remaining models were then evaluated using Akaike’s268

Information Criterion (AIC), with the model boasting the lowest AIC identified as the preliminary269

candidate. To solidify our model selection, a non-parametric bootstrap analysis with 1000 resamples was270

conducted on the leading model. This step underwent critical evaluation to ensure the resampling process271

accurately represented the variability within the data. By adopting a sequential approach that focused only272

on models with the most favorable AIC metrics enabled us to significantly reduce computational demands.273

This analysis revealed that a successful bootstrap required proper SAEM convergence in at least 70-80%274

of the samples. Consequently, we established that a minimum of 70% bootstrap sample convergence275

was necessary to consider the bootstrap analysis reliable. Models falling short of this benchmark were276

rigorously scrutinized and eliminated from the pool of potential candidates. For a detailed explanation of277

the underlying algorithms, the reader is referred to14. These algorithms were primarily executed using the278

default settings of the Monolix software. Finally, to ensure robust estimation of population parameters, we279

utilized a two-step SAEM-MCMC method, reinforcing the statistical integrity of our analysis.280

In summary, our methodological advancements include the use of mixed-effects models for capturing281

individual variability, novel approaches in T-cell dynamics modeling, and a systematic model selection282

process that ensures both accuracy and simplicity.283
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3 Results284

For the present study, all parameters were initially set as random and were later selected one by one to285

be fixed, driven by a robust combination of their statistical significance—as determined by the Akaike286

Information Criterion (AIC)—and their biological plausibility. This process was not only guided by287

statistical rigor but also by a clear relevance to the biological phenomena under study, as elaborated in the288

Mathematical Methods subsection 2.3. After a meticulous evaluation, each parameter was fixed, grounding289

our model in both theoretical and empirical validity. The selection of the fixed effects was anchored290

in a comprehensive analysis of their statistical robustness and theoretical underpinnings, as detailed291

in the Mathematical Methods subsection 2.3. Only those fixed effects that demonstrated unequivocal292

significance were incorporated into the tables 2 and 4, which were the product of a series of preliminary293

analyses involving various model iterations with different combinations of fixed and random parameters.294

This iterative and transparent process, as outlined in the Statistical Methods section 2.4, reinforces the295

robustness of our findings and directly addresses any concerns regarding the justification for parameter296

fixation. The meticulous and discerning selection process ensures that the fixed effects included in the297

final tables are not only meaningful but also enhance the overall scientific rigor of the study.298

3.1 Conventional memory T-cells datasets (Tconv)299

3.1.1 Model selection300

The Tconv dataset was modeled using the model selection process described in section 2.4.2. Initially, we301

considered model 1 for Tconv, which assumes α1T = α2T = αT . Model 1a supposed that all parameters302

had random effects, resulting in an AIC value of 1727.23.303

We then considered model 2, where α1T ̸= α2T . Model 2a assumed that all parameters had random304

effects, resulting in a converged AIC value of 1705.11. When we introduced fixed effects for h2, the model305

demonstrated a marginally lower AIC value of 1701.86 in model 2b.306

Next, we assumed the distinction between short-lived and long-lived T cells (ST and LT), as justified in307

the subsection on Mathematical Methods 2.3. Model 3 assumed all parameters had random effects, while308

models 3b and 3c fixed uST and h2, respectively. Only model 3a, with an AIC value of 1756.3, showed309

convergence.310

Model 4 considered different expansion rates of T cells after each vaccination, reflecting the distinct311

immune response kinetics observed post-vaccination.. Model 4a considered random effects for all312

parameters, while models 4b and 4c fixed the expansion rates α1ST and α2ST . Model 4d assumed the decay313

of T cells (µST ) occurred with a fixed population parameter. Models 4e and 4f fixed the period after each314

vaccination that T cells were activated for h1 and h2, respectively. SAEM convergence was only reached315

for model 4a and model 4c, with AIC values of 1651.33 and 1649.52, respectively.316

Models 5 and 6 were obtained when LT activation with a constant proliferation rate was assumed,317

taking into account the established immunological knowledge. Model 5 assumed that the activation rates318

of ST were identical following each vaccination. This led to model 5a, with an AIC value of 1760.13,319

assuming all parameters were random. In model 5b, we assumed h2 to be fixed population parameters,320

showing an AIC value of 1758.05. We did not achieve SAEM convergence in models with fixed population321

parameters uST , h1, and αLT .322

The last model examined was model 6, in which different activation rates for ST were considered.323

We set all parameters as random parameters, leading to model 6a, with SAEM convergence reached and324

an AIC value of 1660.01. We set the decay rate of ST-cells (uST ), proliferation rate of LT (aLT ), and325

activation periods (h1 and h2) as fixed parameters in models 6b, 6c, 6d, and 6e, respectively. We considered326

combinations of these fixed parameters but did not observe any improvement except for model 6e, with327
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SAEM convergence achieved and an AIC value of 1656.23.328

Model 4c was initially chosen as the leading candidate model due to its lowest AIC value of 1649.52.
However, it was later rejected as a result of a 1000-sample bootstrap that failed to demonstrate sufficient,
this indicates that despite the low AIC value suggesting a good fit, the bootstrap results call into question
the model’s stability and predictive power, which is why Model 4c was ultimately not selected. Similarly,
Models 6a and 6e also lacked proper bootstrap convergence. As a result, Model 4a

dST
dt

= α1ST I0≤t≤h1 +α2ST I2≤t≤h2 −µST ST,

dLT
dt

= 0,

with an AIC value of 1651.33, was selected as a candidate model since it demonstrated bootstrap329

convergence with 95% of the bootstrap samples achieving SAEM convergence. A bootstrap convergence330

of 95% for Model 4a indicates that the model’s predictions are stable across a wide range of resampled331

datasets, providing confidence in its reliability and predictive power. This high level of convergence332

suggests that the parameter estimates and model structure are robust, reinforcing our confidence in the333

biological and statistical interpretations discussed in the Statistics subsection 2.4. A thorough search was334

conducted in both the converging and non-converging bootstrap datasets for frequently deviant profiles, but335

none were identified. In summary, Model 4a indicates that the expansion rates of Tconv after the first and336

second vaccinations are distinct, and this observation may have implications for the long-term durability of337

vaccine-induced immunity. Moreover, the findings align with the theoretical insights into T-cell dynamics338

post-vaccination outlined in the Mathematical Methods section 2.3, suggesting the existence of two types339

of conventional memory T cells with one actively expanding and contracting after vaccination and the340

other remaining at a stable background equilibrium.341

3.1.2 Covariate influence342

The sequential approach to covariate analysis, starting with a fundamental model followed by incorporating343

covariates, was strategically chosen. This method ensures that the primary dynamics are well-understood344

before examining the nuanced influences of covariates, allowing for a clear distinction between primary345

effects and additional covariate impacts.346

To understand the factors that could potentially influence the dynamics of conventional memory T-cells347

post-vaccination, we conducted an extensive investigation into a variety of covariates. These included348

biological indicators such as sex, age, and antibody titers; clinical factors like CMV, EBV, and HSV349

seropositivity; and demographic details such as the status of early or late converters. Our intent was to350

encompass a broad spectrum of variables that might exert influence over the immune response, to ensure a351

thorough examination of all plausible influences.352

In this rigorous analysis, we tested each covariate for its impact on the parameters of our model. The353

covariates were chosen based on their potential biological and clinical importance, reflecting our aim to354

capture any significant contributors to the variability of the immune response following vaccination.355

Our study included an unequal sex proportion (female 22: male 12), which could potentially affect the356

outcomes. However, in our analysis, sex was tested as a covariate and found to have no significant impact357

on the models, indicating that the immune response to the HBV vaccine in our study was not significantly358

influenced by the sex of the participants. We acknowledge the importance of sex-based differences and359

will aim for a more balanced sex ratio in future studies to further validate these findings.360

On the selected model 4a, it is now possible to investigate the influence of some covariates. To decide361

which parameter-covariate relationship to test next, we used the Conditional Sampling usage for Stepwise362
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Tconv model Fixed population Convergence-AIC Candidate Bootstrap
parameter model convergence

1a − 1727.23 No
2a − 1705.11 No
2b h2 1701.86 No
3a − 1756.3 No
3b µST No No
4a − 1651.33 Selected 91%
4b α1ST No No
4c α2ST 1649.52 Yes No
4d µST No No
4e h1 No No
4f h2 No No
5a − 1760.13 No
5b h2 1758.05 No
6a − 1660.01 Yes 73%
6e h1 1656.23 Yes No

Table 2. ODE Model Formulations Considered for Memory Conventional T-Cell Data and Model
Selection Procedure. The table details the fixed population parameter, convergence-AIC, candidate
models, and bootstrap convergence for the six different Tconv models considered in the analysis. Model
4c and 6a were selected as the best models for the data, with 91% and 73% bootstrap convergence,
respectively. The table provides important information about the model selection procedure for the Tconv
models.

Approach based on Correlation testing (COSSAC) method that makes use of the data in the current model.363

The COSSAC method we employed is detailed in Ayral et al.23, which provides a comprehensive guide364

to its application in model selection. By applying this method, the number of covariate models that are365

looked at is drastically reduced while the models that increase log-likelihood remain in the search. In366

particular, we investigated whether sex, age, antibody titres, TCR, early/late-converters, CMV, EBV and367

HSV seropositivity affect the model parameters.368

The investigation revealed that adding the covariates of early/late-converters and HSV seropositivity,369

which effect on the parameter µST , generated a more parsimonious model with a lower AIC of 1642.45,370

improving the AIC value of the original model selected by 8.68 points. The other covariates did not371

have a significant influence on model 4a. This significant improvement suggests a robust covariate effect,372

indicating that early/late-converters and HSV seropositivity may play an important role in the model.373

These results indicate that HSV1 carriership may be associated with lower expansion rates compared to374

non-carriers. Furthermore, early converters exhibit lower decay rates µST , which could have implications375

for understanding the differential immune response dynamics among individuals. The estimated parameter376

values and corresponding 95% confidence intervals for the final model 4a are shown in Table 3, The377

p-values and confidence intervals provided alongside the parameter estimates in Table 3 offer a statistical378

basis for assessing the significance and reliability of the model parameters. This statistical evidence is379

crucial for the biological interpretation of the model, supporting the validity of the findings within the380

context of T-cell dynamics post-vaccination. Additionally, Figure 3 shows the comparison between the381

observations of T cells and the predictions from model 4a on linear scale and logarithmic scale. Figure382
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4 presents the Visual Predictive Check (VPC), demonstrating that the observed percentiles match the383

expected percentiles and remain within the prediction intervals.384

Figure 3. Comparison of observed memory conventional T-cell data (blue circles) with the
predictions of model 4a (line).On top The dotted lines represent the 95% prediction interval on a
linear scale. Down The dotted lines represent the 95% prediction interval on a logarithmic scale.
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Figure 4. The Visual Predictive Check (VPC). We present a VPC to assess the performance of our
model (Model 4a) in predicting Tconv data. The blue lines represent observed empirical percentiles
summarizing the Tconv data from our study. The blue and pink shaded areas depict 95% prediction
intervals generated by our model. Notably, the observed percentiles consistently fall within the 95%
prediction intervals, indicating that our model provides a good fit to the observed data and is capable of
capturing the variability present in the Tconv data.

Parameter Estimate 95% CI P-value
Tconv(0) 10976.43 (6.93 e6 ; 8.98 e11 )
α1ST 10.65 ( 7.62; 31.689)
α2ST 3.13 ( 0.615 ; 7.053)
βα2ST

(HSV 1) -1.65 (-2.918; -0.292) 4.63e-16
uST 0.017 (0.006; 0.045)
βuST (Late− converter) 1.28 (0.18; 2.336) 3.04e-6
βuST (Non− converter) 1.92 (0.719; 3.271) 4.08e-7

Table 3. Parameter estimates and corresponding 95% confidence intervals (CI) of final model 4a.

3.2 Regulatory memory T-cells datasets (Treg)385

3.2.1 Model selection386

Similarly as previously regarding the conventional memory T cells, we used model 1 to analyze the Treg387

dataset and observed the following distinctions: a scenario where all parameters have random effects led388

to model 1a, where an AIC value of 1592.31 was found. Setting αT fixed in model 1b did not improve the389

model (AIC:1593.47). On the other hand, when we set fix µT , h1 and h2 we get a lower AIC value for390
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model 1c (AIC:1588.01), 1d (AIC:1590.1), 1e (AIC:1589.35), respectively.391

Next, we considered model 2, which assumes a changed rate after the second vaccination due to a392

memory response. We obtained an AIC value of 1553.86 for model 2a, assuming all parameters had393

random effects. However, when we adapted the assumptions and considered fixed population parameters,394

the model did not improve in some cases and did not converge in others.395

We further explored models that separated short-lived and long-lived T-cells. For model 3a, where396

all parameters were assumed to have random effects, we obtained an AIC value of 1599.76. However,397

no SAEM convergence was achieved for model 3b, where we fixed αT . In models 3c, 3d, and 3e, we398

fixed muT , h1, and h2, respectively. Model 3c and 3e showed a lower AIC value, 1596.88 and 1596.75,399

respectively.400

For model 4a, where all parameters were considered random, we obtained an AIC value of 1559.85.401

When we set α1T , α2T , and µST as fixed parameters in models 4b, 4c, and 4d, respectively, we did not402

achieve SAEM convergence. No significant result was obtained when setting other parameters fixed.403

We also considered models 5 and 6, which include a proliferation rate for LT. For model 5, many404

assumptions were made about the parameters, but we did not obtain convergence. Finally, we examined405

model 6. When testing different assumptions about the parameters, only model 6a and model 6f showed406

convergence. In model 6a, all parameters had random effects, leading to an AIC value of 1567.3. In model407

6f, h2 was set as a fixed parameter, giving an AIC value of 1564.35.408

The model 2a had the lowest AIC value of 1545.8 among all the above-mentioned models

dT
dt

= α1T I0≤t≤h1 +α2T I2≤t≤h2 −µT T,

and was selected as the first candidate model. The candidate model showed bootstrap convergence; 93%409

of the bootstrap samples achieved SAEM convergence, this high percentage of convergence in bootstrap410

samples reinforces the validity of Model 2a, suggesting that it is a stable and reliable representation of411

the underlying biological processes. As before, we examined often divergent profiles in the converging412

and non-converging bootstrap datasets, but no such profile was detected. This suggests that the model is413

robust and that the results are reliable. Overall, these results indicate that model 2a is a strong candidate414

for explaining the underlying data and that it can be used to make predictions or draw conclusions about415

the phenomenon being studied. We note that model 2a is similar to model 4a with the difference of no416

co-existence of a stable background population.417

3.2.2 Covariate influence418

Similar to our approach with conventional memory T-cells, we evaluated a comprehensive set of covariates419

for regulatory memory T-cells. This encompassed demographic, clinical, and biological factors that could420

modulate the immune system’s behavior in response to vaccination, such as age, sex, and seropositivity421

to various viruses like CMV, EBV, and HSV. The selection of these covariates was informed by their422

hypothesized relevance to the dynamics of T-cell populations post-vaccination.423

Upon examining the influence of each covariate within our model framework, we identified specific424

factors that significantly altered the model parameters, thus providing insights into the differential immune425

responses observed among individuals.426

Our sample included more females (22) than males (12), which raised concerns about potential sex-427

related biases in the outcomes. However, after including sex as a covariate in the analysis, we found that428

sex did not significantly affect the models.429

We applied the COSSAC approach, a method that strategically narrows down covariate models to430

those that most significantly improve the log-likelihood, as detailed in Ayral et al23. The model that431
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Treg model Fixed population Convergence-AIC Candidate Bootstrap
parameter model convergence

1a − 1592,31 No
1b αT 1593.47 No
1c h2 1588.01 No
2a − 1545.80 Selected 93%
2b α1T 1548.28 Yes 82%
2c α2T 1553.11 No
2d µT 1551.67 Yes 72%
2e h1 1572.98 No
3a − 1599.76 No
3b αST No No
3c µT 1596.88 No
3e h2 1596.75 No
4a − 1559.85 Yes No
4b α1T No No
4e h1 1571.15 No
6a − 1567.30 No
6b α2ST No No
6e h1 1565.35 No

Table 4. ODE Model formulations considered for memory conventional T-cell data and model selection
procedure. Model 5 has been omitted from the table because non-convergence was obtained for random or
fixed parameters.

examined early/late converters, adding the effect on the parameter µST , and EBV seropositivity, adding432

the effect on the initial value of α2T , was discovered to have the lowest AIC of 1536.89, decreasing the433

AIC value to the original model chosen by approximately 9 points. The estimated parameters and their434

95% confidence intervals for the final Model 2a, which includes the effect of early/late converters and435

EBV seropositivity on the initial values of µST and α2T , respectively, are shown in Table 5, the inclusion436

of p-values and confidence intervals for the parameter estimates in Table 5 is not just for statistical rigor437

but also for biological relevance, allowing us to draw more confident conclusions about the role of these438

parameters in the regulatory T-cell dynamics post-vaccination. Figure 5 shows the comparison between439

the observations of T cells and the predictions from model 2a on both linear and logarithmic scale. Figure440

6 presents the visual predictive check (VPC) comparing the model-based simulations with observed data.441

The VPC plot shows that the observed percentiles are close to the predicted percentiles and remain within442

the corresponding 95% prediction intervals, indicating that the model can accurately predict the immune443

response.444

The results suggests that individuals who have been previously infected with EBV may have a different445

immune response to vaccination compared to those who have not been infected. Specifically, our study446

found that EBV seropositivity was associated with an increase in Treg cell expansion rates following447

vaccination, potentially enabling the virus to establish a stable infection by persisting within an individual.448

Furthermore, the results also suggest that the dynamics of Treg cells may be influenced by the timing449

of their conversion. Specifically, individuals who convert to a positive response to the vaccine earlier have450

lower decay rates of Treg cells compared to late converters. We note that this finding is similar to what we451
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found for Tconv.452

Parameter Estimate 95% CI P-value
Treg(0) 13.13 (0.812;27.418 )
α1T 7062.06 ( 612.503;296344.9)
α2T 4.3 (0.769;11.013 )
βα2ST

(EBV ) -1.4 (-3.801;-0.163) <2.2e-16
uST 0.038 (0.009, 0.083)
βuST (Late− converter) 1.76 (1.105, 2.985) 1.87e-14

Table 5. Parameter estimates and corresponding 95% confidence intervals (CI) of final model 2a.
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Figure 5. Comparison of observed memory regulatory T-cell data (blue circles) with the
predictions of model 2a (line). On top The dotted lines represent the 95% prediction interval on a
linear scale. Down The dotted lines represent the 95% prediction interval on a logarithmic scale.

4 Discussion and conclusion453

Understanding the establishment of effective immunological memory is a complex task. In this study, we454

employed mixed-effects modeling to analyze data from a previously published vaccination trial featuring455

de novo Hepatitis B surface antigen-specific CD4 T cells9. This approach enabled us to identify individual456

variations in immune responses and discern the diverse dynamics observed in Tconv and Treg cells post-457

vaccination. By applying ordinary differential equations, we unveiled two pivotal models that significantly458

contribute to our understanding of T cell memory formation in response to the hepatitis B vaccine.459

(i) Regarding conventional T cells, our best model (referred to as model refM4) demonstrated that the460
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Figure 6. The Visual Predictive Check (VPC) comparing the results of the model-based simulations
with observed data. We present a VPC to assess the performance of our model (Model 2a) in predicting
Treg data. The blue lines represent observed empirical percentiles summarizing the Treg data from our
study. The blue and pink shaded areas depict 95% prediction intervals generated by our model. Notably,
the observed percentiles consistently fall within the 95% prediction intervals, indicating that our model
provides a good fit to the observed data and is capable of capturing the variability present in the Treg data.

dynamics of Tconv consist of two types of memory T-cells with actively expanding and contracting461

and the other remaining unchanged at a stable level. Moreover the dynamic Tconv type was462

influenced by the Early/Late converter status and HSV-1 seropositivity. It was observed that early463

converter vaccinees had lower decay rates for short lived Tconv cells, compared to late converter464

vaccinees and non-converters . This is supported by the finding in the Elias et al9 study, indicating465

that early-converters have a higher relative frequency of vaccine-specific TCRβ sequences present466

in their conventional memory CD4 T cell repertoire at day 60 compared to vaccinees from the two467

other groups in the cohort. Our modeling results thus allow us to add knowledge on why these468

higher T-cell frequencies could have been established on day 60. In contrast to a potentially more469

rapid T-cell expansion in early converters, our modeling actually indicated that the higher frequency470

in early converters could be a consequence of a lower T cell decay rate in early converters compared471

to the two other converter groups .472

Furthermore, the expansion rate after the second vaccination of the short lived Tconv cells was473

influenced by HSV-1 seropositivity, where the vaccinees without HSV-1 have a significantly higher474

expansion rate ) compared to vaccinee who have HSV-1 ). Although other human herpesviruses475

have been noted to affect T cell responses upon vaccination (like CMV24 ), HSV-1 has not yet476

been reported by previous research. This could be suggesting that HSV-1 has the potential to477

modulate T-cell viability. Interestingly, HSV-infected cells have been reported to resist T-cell-478

induced apoptosis25, which may be a mechanism behind the observed effect.479

(ii) Regarding regulatory T cells, our best model (referred to as model 2) indicated no existence of a480

stable unchanged second Treg type next to the expanding and contracting Treg type. Our modeling481
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indicated that the Treg expansion rate after the second vaccination for individuals with positive482

EBV seropositivity was higher than for those without it, thereby suggesting that EBV might induce483

Treg activity. Tregs are a type of immune cell that play a role in regulating the immune response484

and preventing autoimmune reactions. However, if their activity is too high, they may suppress the485

immune response to viral infections. This, in turn, could contribute to a higher level of virus in486

the body over time and facilitate the establishment and maintenance of viral persistence for EBV487

This hypothesis is based on observed data trends but requires further research for confirmation.488

Our findings align with previous studies26–28 and stimulate further investigation into the virus-host489

immune interactions. Additionally, our analysis showed that the time it took for individuals to490

convert to a positive response to the vaccine (i.e., early converters vs. late converters) was associated491

with differences in Treg cell decay rates. Specifically, individuals who convert to a positive response492

to the vaccine earlier have lower decay rates of Treg cells compared to late converters. Hypothetically,493

like in Tconv, better TCR-epitope recognition could have rendered a lower Treg decay rate, but this494

hypothesis would only be valid if the TCR-epitope recognition for Tconv would be correlated with495

Treg cellular regulation, which still remains to be proven. However, We found a slightly significant496

effect of TCR on the decay rate of Treg cells in our analysis, but due to lack of data for some497

individuals and instability in the bootstrap, we were unable to include it in our final model. It498

is possible that differences in TCR could still influence Treg cell activity in a subtle or complex499

manner, and further research is required to better understand its role in Treg cell dynamics.500

After exploring the complexities of Tconv and Treg cell dynamics and their implications for immuno-501

logical memory and vaccine efficacy, our findings underscore the need for broader investigation. These502

insights not only improve our understanding of Tconv and Treg cell dynamics following vaccination but503

also pave the way for more comprehensive studies of immune memory interpretation. The distinct roles of504

other immune cell populations beyond Tconv and Treg cells require further investigation to fully unravel505

the complexity of vaccine-induced immunity. This knowledge is pivotal for designing vaccines that ensure506

robust and lasting immunity.507

Addressing the limitations of our study is essential for future research. The data used in this study were508

collected by Elias et al.9, who utilized markers such as CD154 (CD40L) and CD137 (4-1BB) to identify509

activated T cells, including Tregs. Our focus on Tconv and Treg cells and the simplifications inherent in our510

modeling approach suggest that a broader examination of immune cell types and the use of comprehensive511

datasets are crucial steps towards a more detailed understanding of vaccine responses.Therefore, our512

findings should be viewed as a foundation for further research, which is needed to validate and extend our513

models.514

In summary, our mixed effects modeling approach, based on ordinary differential equations, identified515

key factors influencing effective immunological memory in Tconv and Treg. Our study provides novel516

quantitative evaluation of T-cell dynamics temporal scales, offering insights into crucial biological517

processes unattainable with traditional statistics. We seamlessly integrated phenomenological elements518

with mechanistic models to elucidate the kinetics and drivers of T cell memory formation.519

Our investigation reveals groundbreaking insights into the modulation of Tconv and Treg cell dynamics520

by external factors such as HSV-1 seropositivity and EBV. This advance in our understanding of vaccine-521

induced immunological memory underscores the potential for designing personalized vaccine strategies522

Furthermore, our findings enhance understanding of the long-term dynamics of vaccine-induced523

immunity. Identifying key factors that influence sustained immune protection enables predictions of524

immune response development over time. This knowledge is invaluable for clinical trial researchers,525

aiding in the creation of more effective vaccination strategies and identifying individuals who may benefit526
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from additional interventions.527

In conclusion, while our study has shed light on the unique responses of Tconv and Treg cells to528

vaccination, it also highlights the necessity for a broader perspective on immune cell dynamics in response529

to vaccines. Moving forward, it is imperative to expand our models to incorporate a wider range of data530

and immune cell types, thereby refining our strategies for immunological intervention.531
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