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ABSTRACT

Random effect models for time-to-event data, also known as frailty models, provide a conceptually appealing
way of quantifying association between survival times and of representing heterogeneities resulting from factors
which may be difficult or impossible to measure. In the literature, the random effect is usually assumed to
have a continuous distribution. However, in some areas of application, discrete frailty distributions may be
more appropriate. The present paper is about the implementation and interpretation of the Addams family
of discrete frailty distributions. We propose methods of estimation for this family of densities in the context
of shared frailty models for the hazard rates for case I interval-censored data. Our optimization framework
allows for stratification of random effect distributions by covariates. We highlight interpretational advantages
of the Addams family of discrete frailty distributions and the K-point distribution as compared to other frailty
distributions. A unique feature of the Addams family and the K-point distribution is that the support of
the frailty distribution depends on its parameters. This feature is best exploited by imposing a model on the
distributional parameters, resulting in a model with non-homogeneous covariate effects that can be analysed
using standard measures such as the hazard ratio. Our methods are illustrated with applications to multivariate
case I interval-censored infection data.

KEYWORDS: Discrete distributions; Frailty; Heterogeneity; Infectious diseases; Multivariate survival data

1. INTRODUCTION

Multivariate time-to-event data are commonly encountered in the life sciences. An

example is the time to occurrence of multiple non-lethal events within the same

individual. In this setting, the individual can be thought of as forming a cluster in

which event times are likely to be correlated. An alternative point of view is that there

is heterogeneity across individuals (or clusters) due to characteristics that may be

difficult or impossible to measure. Random effect (RE) models for time-to-event data,
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also known as frailty models, offer a conceptually appealing approach to quantify

these associations within clusters and to model unobserved heterogeneity across

individuals (or clusters) (Duchateau and Janssen, 2008; Hougaard, 2000; Wienke,

2010).

While the majority of the existing literature assumes continuous frailty

distributions, such as the gamma (G), inverse Gaussian, or log-normal, for some

applications discrete frailty distributions may be more appropriate. One such

application is the study of infectious diseases transmitted via close contact, where

unobserved heterogeneity with respect to becoming infected with pathogens of

interest may be represented and analysed by latent risk groups.

This paper discusses the interpretation of discrete frailty models with parameter

dependent support. We propose interpreting the discrete frailties as ordered latent

risk categories. We extend this analysis by allowing the parameters of the discrete

frailty distribution to depend on covariates. The ordered nature of discrete frailty

facilitates comparing latent risk categories within or across different strata (as defined

by covariate values) using hazard ratios, along with probabilities of belonging to

specific risk categories. This approach facilitates the analysis of non-homogeneous

populations or non-homogeneous covariate effects, which might lead to a deeper

understanding of the problem under study.

In this context we discuss the “Addams” family (AF) of discrete frailty

distributions introduced by Farrington et al. (2012). This family is homogeneous

in the sense that it consists of discrete distributions, except for the continuous G
distribution, which serves as a reference case of constant association within clusters

over time. The discrete distributions within the AF are scaled variants of negative

binomial, shifted negative binomial, binomial, and Poisson distributions. For this

family, we investigate the hazard ratios conditional on risk group membership within

or across different strata. Furthermore, we introduce estimation routines for the

AF in the context of case I interval-censored data (Sun, 2007). Our optimization

framework allows for stratification of frailty distributions along covariates. We apply

the AF to data from a serological survey of human papillomaviruses (Mollema et al.,

2009; Scherpenisse et al., 2012).

The structure of the paper is as follows: Section 2 presents the time-invariant

shared frailty model and reviews the literature on discrete frailty models, comparing

the AF to other discrete frailty distributions. We further discuss the interpretation

of discrete frailty models for which the support is parameter dependent. Section 3

examines the conditional time-to-event model resulting from the AF of distributions.
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Section 4 outlines the estimation framework and optimization algorithm. In Section

5, the AF is applied to multivariate serological survey data. Finally, Section 6 offers

concluding remarks.

2. DISCRETE FRAILTY MODELS

Let i refer to a cluster, i = 1, . . . , n, and let n be the number of clusters observed.

Each cluster contains J units, and T
(j)
i > 0 denotes the time-to-event random variable

(RV) for the jth unit, j = 1, . . . , J , within the ith cluster. All indices are unique,

such that i ̸= i′ and j ̸= j′. The random vectors T i = [T
(1)
i , . . . , T

(J)
i ]T and T i′

are independent given the covariates xi and xi′ . Within a cluster, T
(j)
i and T

(j′)
i are

independent given the random and unobservable time-invariant cluster-specific frailty

Zi and covariates. The non-negative RV Zi has density or probability mass function

g(z|x̃i) ≡ gi(z), where the index i is relevant only if the distribution or its parameters

depend on (a subset of) covariates denoted by x̃i. Technically, x̃i could include unit-

specific covariates. However, as Zi is shared within the cluster i, x̃i will typically

also be shared within the cluster i, without containing covariates that differ across

the units. For unit-specific covariates, correlated frailties (Hens et al., 2009) may be

more appropriate, where the correlation parameter between the frailties of a cluster

may depend on cluster-invariant covariates, while unit-specific frailty parameters may

depend on unit-specific covariates. Given covariates, Zi and Zi′ are independent. We

do not distinguish in language between the random Zi and a realisation zi and refer

to both as frailty or RE.

The conditional hazard rate, is assumed to be of the form

λ
(j)
i (t|Zi) = Zi exp{x(j)

i

T
β(j)}λ(j)0 (t), (1)

with cluster- and unit-specific covariate vector x
(j)
i , and parameters β(j), as well

as unit-specific baseline hazard rate λ
(j)
0 (t). Note that the covariates x̃i are only

implicitly included in the equation (1) through the distribution of Zi, which may also

include a potential expectation parameter. Also note that for brevity, the dependence

of quantities, such as hazard rates or densities, on x
(j)
i or x̃i is indicated by a

superscript (j) or subscript i, respectively.

In much of the existing literature, Zi is typically considered a continuous

random variable, with common choices being the log-normal or G distributions.

Nonetheless, discrete frailty distributions have also been explored for both univariate
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and multivariate data. A prominent choice is the K-point distribution (Palloni

and Beltrán-Sánchez, 2017; Bijwaard, 2014; Begun et al., 2000; Gasperoni et al.,

2020; Pickles and Crouchley, 1994; Choi and Huang, 2012; Choi et al., 2014;

Troncoso-Ponce, 2018), i.e. a frailty distribution with (ordered) support parameters

{z(1), . . . , z(K)} ∈ RK≥0 and corresponding probability parameters prm = gi(z(m)) > 0

for m = 1, . . . , K, and
∑K

m=1 prm = 1 (Wienke, 2010). Other choices are the binomial

(B) (Ata and Özel, 2013), negative binomial (NB) (Ata and Özel, 2013; Caroni

et al., 2010), geometric (Caroni et al., 2010; Cancho et al., 2021; Choi and Huang,

2012; Choi et al., 2014), Poisson (P) (Ata and Özel, 2013; Caroni et al., 2010;

Cancho et al., 2020b; Choi and Huang, 2012; Choi et al., 2014), and the hyper-

Poisson distributions (Mohseni et al., 2020; de Souza et al., 2017). The framework

of the zero-inflated and zero-modified power series (ZMPS) distributions, where the

probability of Z = 0 is modified by an additional parameter as compared to the

discrete reference distribution, has been investigated by Cancho et al. (2018, 2020a)

and Molina et al. (2021), respectively. In particular, the zero-inflated geometric, P
and logarithmic distributions and the zero-modified geometric and P distributions

are investigated. The Addams family (AF), as conceptualised by Farrington et al.

(2012), includes (shifted and) scaled NB, as well as scaled B and P distributions,

and the G distribution as a continuous special case.

Modelling a whole family of distributions, such as the AF , is preferable to

modelling a given (discrete) distribution, such as the P , since the latter strategy

typically severely limits the patterns of heterogeneity as measured by the relative

frailty variance (RFV(t) = Var(Z|T>t)
E(Z|T>t)2 , t = [t(1), . . . , t(J)]T ) to either monotonically

increasing or monotonically decreasing trajectories over time; for examples see

Farrington et al. (2012) and Bardo and Unkel (2023). It can be shown that the long-

term trajectory of the RFV (or association, as measured by the cross-ratio function

[CRF(t) = 1+RFV(t)]) is determined with positive probability by the smallest value

of the frailty distribution (z(1)). Specifically, if z(1) = 0, RFV and CRF approach

infinity as time approaches infinity. Conversely, if z(1) > 0, the RFV approaches zero

and the CRF approaches one. Therefore, the choice of a discrete frailty distribution

has an enormous impact on the model, even if gi(0) > 0 or z(1) > 0 is very small, and

even more so if the model’s trajectory of RFV is monotone. The AF achieves greater

flexibility in the trajectory of heterogeneity and association by incorporating discrete

frailty distributions for which z(1) = 0 and frailty distributions for which z(1) > 0, and

is thus able to induce increasing and decreasing trajectories of the RFV (CRF). Thus,

in the case of AF , the trajectory of the RFV can be informed by the data in the
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fitting process. This is a rare property among frailty distributions, and for the discrete

distributions mentioned above it is only possible for the K-point distribution and the

ZMPS. However, in these cases the decision between a decreasing or increasing long-

term trajectory lies on the edge of the parameter space (Bardo and Unkel, 2023),

which is not the case for the AF . As optimising on the edge of the parameter space

is usually difficult, this is an advantage when using the AF . Note, however, that the

K-point distribution and the ZMPS are able to induce non-monotone trajectories of

the RFV (CRF), which is not the case for the AF . We will discuss the AF and its

special cases in Section 3.

From an interpretive point of view, the AF and K-point distributions offer a

unique perspective because the support is also subject to estimation. The support

of other discrete frailty distributions is usually the natural number including zero

(N≥0). Therefore, the interpretation of discrete frailty models often focuses on the

cure rate, i.e. those who are not susceptible to the event of interest (see e.g. de Souza

et al. (2017); Cancho et al. (2018, 2020a,b); Mohseni et al. (2020); Cancho et al.

(2021); Molina et al. (2021)). Subject-related interpretations are also common. Caroni

et al. (2010) suggest interpreting discrete frailties as the unobservable number of

flaws in a unit or exposure to damage on an unknown number of occasions. Similar

interpretations can be found in Ata and Özel (2013) for time-to-event models on

earthquake data. Both studies consider discrete frailty distributions with support on

N≥0. However, due to the latent nature of the frailty, such concrete interpretations

are difficult because the hazard ratio (HR) of, say, two events versus one event

would be fixed by the model structure at HR = 2 if the support is fixed at N≥0.

However, if the true HR is less than two, the probability mass of frailty could be

shifted to the right relative to the distribution of the number of hits. Consequently, a

more abstract interpretation such as the “effective” number of harms would be more

appropriate. The K-point frailty distributions are often interpreted as representing

sub-populations, such as unobservable carriers of certain disease genotypes (e.g.,

Pickles and Crouchley (1994); Begun et al. (2000); Wienke (2010); Bijwaard (2014)).

Palloni and Beltrán-Sánchez (2017) interpret a delayed binary frailty as the effect of

adverse early life conditions on adult mortality. Using theK-point distribution, where

K is also subject to estimation, Gasperoni et al. (2020) interpret the discrete frailties

as (an unknown number of) latent sub-populations. They suggest calculating HRs

between these sub-populations, which is interpretable as the support being subject

to estimation.
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In the present paper, we endorse the interpretation of discrete frailties as latent sub-

populations and expand upon it. Note that we focus on discrete frailty distributions

for which the support Ω is parameter dependent, which is mainly the case for the K-

point distribution and, although more restricted, the AF , as will be seen in Section

3. Let Ωi = {zi,(1), zi,(2), . . . }, with zi,(1) ≥ 0 and zi,(k) < zi,(k+1), represent the

support of discrete RV Zi, where the distribution parameters might depend on x̃i.

We define that x̃i constitutes a stratum of the population. We also consider zi,(k) as

the conditional hazard-determining value for an individual in the kth risk category

(RC) within the stratum which is defined by x̃i.

For discrete frailty distributions for which the support depends on parameters, the

within-stratum hazard ratio, HRW(k) =
λ
(j)
i (t|Zi=zi,(k+1))

λ
(j)
i (t|Zi=zi,(k))

=
zi,(k+1)

zi,(k)
, might be analysed.

The HRW(k) compares the hazard of the kth and (k + 1)th RC of stratum i. This

is in line with Gasperoni et al. (2020), except for the presence of different strata for

the distribution of the frailty, i.e. the HRW might differ for x̃i and x̃i′ . Moreover,

due to the presence of different strata for the frailty distribution, an across-stratum

analysis can be conducted by computing the across-stratum hazard ratio, HRA(k) =
λ
(j)
i (t|Zi=zi,(k))

λ
(j)

i′ (t|Zi′=zi′,(k))
=

zi,(k)
zi′,(k)

, for x̃i ̸= x̃i′ , and equality in the remaining covariates x
(j)
i

and x
(j)
i′ . If the support between stratum i and i′ is very different, it might be more

desirable to analyse HRA(k; k
′) =

zi,(k)
zi′,(k′)

for all k′ for which P (Zi′ ≤ zi′,(k′)) ∈ [P (Zi ≤
zi,(k−1)), P (Zi ≤ zi,(k))) or the closest quantiles of Zi, Zi′ if no such k′ exists. In

order to put the analysis of the HRW and HRA into context, they should always

be accompanied by reporting the distribution of the RCs. This allows for a separate

but accompanying analysis of the distribution of individual heterogeneity via the

distribution of RCs and the magnitude related impact of the RCs on the hazard

rates.

The approach of imposing a model on the distribution parameters of the frailty

has some similarity to generalized additive models for location, scale, and shape

parameters for the population time-to-event distribution, i.e. for the time-to-event

distribution with the frailty marginalized out. However, modelling the determinants

of the randomness of hazard rates via covariates might be more intuitive, as the

hazard rates are usually the standard approach for modelling time-to-event data.

This approach is not new per se. It can be found, for example, in Aalen et al. (2008)

and is also quite common in the field of discrete frailty modelling (Choi and Huang,

2012; Choi et al., 2014; Molina et al., 2021; Cancho et al., 2018, 2020a), and random

slopes could also be interpreted in this way. What is new, however, is the type of
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analysis with within-stratum and across-stratum hazard ratios. Note that this type of

analysis has no counterpart for continuous frailty distributions, as there is no kth RC.

Nor does such an analysis make sense for discrete frailty models where the support

of the frailty distribution is set by assumption, e.g. to N≥0, as this would fix the

HRW and HRA by assumption. A tempting alternative in such a case might be to

calculate the hazard ratio between, say, the third and the first quartile of the frailty

distribution. However, the quartiles of the frailty distribution vary over time due to

selection effects, which is particularly important for hazard ratios which inherit the

survival condition. Therefore, the hazard ratio is either meaningless if the quartiles

at t = 0 are chosen and maintained throughout the analysis, or the analysis is more

complicated if the time-varying quartiles of the frailty distribution are chosen.

Therefore, an analysis via the HRW and HRA is unique to discrete frailty models,

where the support of the frailty distribution varies with (a subset of) distribution

parameters that may depend on stratum membership. In this case, the data inform

the support of the frailty distribution by likelihood criteria making it suitable to

represent latent RCs. This allows the analysis of non-homogeneous covariate effects

using common measures such as HRs as described above and probabilities of belonging

to a particular RC. This might in particular be helpful in communicating the results

of heterogeneous (covariate) effects to an audience outside of statistics such as medical

doctors.

3. THE ADDAMS FAMILY OF DISCRETE FRAILTY DISTRIBUTIONS

Let Λ
(j)
0 (t) denote the cumulative baseline hazard rate

∫ t
0 λ

(j)
0 (u)du. Moreover, Λi(t) =∑J

j=1 exp{x
(j)
i

T
β(j)}× Λ

(j)
0 (t(j)). We further ignore that the parameters of the frailty

distribution may depend on x̃i in the first part of this section and come back to this

issue in the latter part of this section.

The RFV that induces the AF equals RFV(t) = γ exp{αµΛi(t)}, with γ, µ =

E(Z) ∈ R>0, and α ∈ R. As shown in Farrington et al. (2012), the Laplace transform

L(s) =
∫∞
0 exp{−zs}g(z)dz of the AF equals

L(s) =



((
1− γ

α

)
exp{−αµs}+ γ

α

) 1
α−γ

if α ̸= γ, α ̸= 0,

exp

{
1
γ

(
exp{−γµs} − 1

)}
if α = γ,

(1 + γµs)−
1
γ if α = 0.

(2)
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Note that µ may be set to one for identification purposes. Hence, the AF is a two

parameter distribution. We will retain the parameter µ in our notation, as we will

explicitly model it via µ(x̃) = exp{x̃Tβ(0)}, where β(0) ∈ R is an additional vector

of parameters. In a setting where the distribution of the frailty is not the focus of the

analysis, β(0) is typically interpreted as the log-proportional hazard ratio.

Table 1. RFV and distribution parameters of the Addams family and support.

Parameters Z ∼ Distribution Parameters Support

γ > 0 > α ψNB>0(ν, π) ν = 1
γ−α (number of successes), ψ×

π = −α
γ−α (success probability) {ν, 1+ ν, 2+ ν, . . . }

γ > 0 = α G(γ−1, γ∗) γ−1 (shape), γ∗ = (µγ)−1 (rate) R>0

α = γ > 0 ψP(λ∗) λ∗ = γ−1 (rate) ψ × {0, 1, 2 . . . }
γ > α > 0 ψNB(ν, π) ν = 1

γ−α (number of successes), ψ×
π = α

γ (success probability) {0, 1, 2, . . . }
α > γ > 0 ψB(b, π) b = (α− γ)−1 (number of trials), ψ×

π = α−γ
α (success probability) {0, 1, . . . , b}

The Laplace transform uniquely determines the distribution of Z, as shown in

Table 1 (Farrington et al., 2012). The AF consists of different scaled and possibly

shifted discrete distributions. The scaling parameter ψ of the corresponding discrete

distributions is equal to µ|α|, and the parameter α selects one of the distributions

of the AF . If α < 0, the scaled and shifted negative binomial (ψNB>0) is chosen,

where the support is shifted to the right by the parameter ν, resulting in a model

without a latent non-susceptible sub-population. If α > 0, a frailty distribution

is chosen that includes a non-susceptible latent sub-population. For γ > α > 0,

the non-shifted scaled negative binomial (ψNB) and for α = γ the scaled Poisson

(ψP) distribution is selected. In the case of α > γ, the frailty distribution is scaled

binomial (ψB), resulting in a model with an upper bound of the frailty that limits

the maximum deviation of RC-conditioned survival curves between the susceptible

latent sub-populations and a finite number of RCs including a non-susceptible group.

Note that for the case α > γ, (α− γ)−1 has to be an integer in order for L(s) to be

a valid Laplace transform (Farrington et al., 2012). The continuous exception in the

AF is the G distribution, which results from α = 0.
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The parameter α plays a unique role in the context of discrete shared frailty

modelling. For discrete shared frailty models the RFV (CRF) either approaches

zero (one) or infinity (Bardo and Unkel, 2023). Therefore, it is desirable to have

a continuous exception within a family of discrete shared frailty distributions for

which the RFV (CRF) does not approach zero (one) or infinity with time approaching

infinity. Within the context of theAF this is the G which arises for α = 0. In that case

the RFV (CRF) is constant, a shape that is impossible for a discrete shared frailty

model to generate. The nested structure might be utilized to test for a constant RFV

(CRF) within the AF .

Moreover, the AF can choose between a monotonically decreasing or increasing

trajectory of the RFV (CRF) through the sign of α. This is unprecedented in the

context of discrete shared frailty models. Though the ZMPS distribution is able

to create decreasing trajectories of the RFV (CRF), this involves the edge of the

parameter space for its deflation/inflation parameter. The opposite is true for the

K-point distribution: its RFV (CRF) approaches zero (one) in the long run unless

z(1) is equal to zero, which again involves the edge of the parameter space. For the

AF , the parameter α chooses between a decreasing or increasing RFV (CRF) by

determining the support of the discrete distribution without involving the edge of

parameter space. If α > 0, z(1) = 0 and a cure fraction exists. This induces an

increasing trajectory of the RFV (CRF). If α < 0 instead, z(1) > 0 and no cure

fraction exists. This induces a decreasing trajectory of the RFV (CRF); see Bardo

and Unkel (2023) for a discussion of the shape of the RFV (CRF) for discrete frailty

models.

The feature of the support being dependent on the distribution parameters offers

the possibility of a meaningful interpretation of the HRW. Figure 1a shows examples

of the HRW for α > 0 and α < 0. If α > 0, HRW(1) ≡ ∞ and HRW(k) = k
k−1

for k ≥ 2. Note that there may be an upper bound on the RCs if ψB is chosen.

In this case, the upper bound of the frailty as well as the number of RCs chosen

through the fitting procedure may be the main component of the analysis, e.g. by

comparing the RC-related survival curve of the upper bound versus another RC. If

α < 0, HRW(k) = ν+k
ν+k−1 which approaches k

k−1 for large k. So there is reasonable

flexibility for the first few within-stratum HRs and the focus may be on HRW(1),

where the model is more flexible than for later RCs. This is less flexible than the

K-point distribution is, provided that K is large enough, which may even show a

non-monotone trajectory of the HRW. However, modelling the K-point distribution

with a large K is difficult given that this involves 2(K − 1) parameters for a latent
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distribution, especially if the cluster size is small. On the contrary, within the AF
one is remunerated with |Ω| = ∞ (except for the ψB case) which can be important

for extreme observations where events occur very early in the lifespan. However, the

parametric constraints of the AF on the trajectory of HRW should always be taken

in consideration and challenged by the K-point distribution whenever possible.

∞

1 2 3 4 5 6 7 8 9 10
k

H
R

W
(k
)

1

2

3

α > 0, ν ∈ R>0

α < 0, ν = 0.5
α < 0, ν = 2

(a) Within stratum HR for α > 0 and α < 0 versus RC

k.

1 2 3 4 5 6 7 8 9 10

0.0

0.5
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1.5

2.0

k

H
R

A
(k
)

u
n
d
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n
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(b) Across-stratum HR for αi, αi′ > 0 versus RC k.

0
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4
5

1 2 3 4 5 6 7 8 9 10
k

H
R

A
(k
)

ψi/ψi′ = 0.5, νi = 0.1, νi′ = 1
ψi/ψi′ = 0.5, νi = 1, νi′ = 0.1
ψi/ψi′ = 0.5, νi = 10, νi′ = 1
ψi/ψi′ = 2, νi = 0.1, νi′ = 0.1

(c) Across-stratum HR for αi, αi′ < 0 versus RC k.

1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

1.5

k

H
R

A
(k
)

∞
ψi/ψi′ = 0.5, νi = 0.5
ψi/ψi′ = 0.5, νi = 1
ψi/ψi′ = 0.5, νi = 2
ψi/ψi′ = 1, νi = 0.5

(d) Across-stratum HR for αi < 0, αi′ > 0 versus RC k.

Fig. 1. Within- and across-stratum hazard ratios versus RC k for various members of the Addams
family.

This analysis can be extended to the across-stratum HR, HRA, if there is a model

for the distribution of individual heterogeneity within the AF . For that purpose, we
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allow the parameters to depend on a stratum-specifying set of covariates x̃, which

determine the parameters of individual heterogeneity α(x̃) = x̃Tζ, γ(x̃) = exp{x̃Tκ},
with each parameter in the vectors ζ,κ being an element of R. For the sake of brevity,
we denote α(x̃i), γ(x̃i), and µ(x̃i) by αi, γi, and µi, respectively. Figure 1 shows the

HRA for varying scenarios of αi and αi′ . For αi, αi′ > 0 (Figure 1b), the HRA = ψi

ψi′

for all k ≥ 2 and is undefined for k = 1. However, for αi, αi′ < 0 (Figure 1c), the

HRA(k) = ψi(νi+k−1)
ψi′(νi′+k−1) , which approaches a constant ratio HRA(k) = ψi

ψi′
for large

k. Note that the HRA might be greater or less than one for all k, but can also

cross the threshold of one with increasing k. If x̃ is for example an experimental

treatment indicator (in a univariate context), the HRA represents a heterogeneous

treatment effect which might identify sub-groups within the population for which

the treatment is harmful. For αi < 0, αi′ > 0 (Figure 1d), HRA(1) ≡ ∞, as for

stratum i′ there is a latent sub-population that is not susceptible to the event of

interest, whereas for stratum i all latent sub-populations are susceptible. For k ≥ 2

and HRA(k) =
ψi(νi+k−1)
ψi′(k−1) . Another scenario, not explicitly shown in Figure 1b and

1d, is that one or both strata (i and i′) might have (different) upper bounds of frailty

in the ψB case. In such a case, the stratum with the larger upper bound (which could

still be ∞), say i′, could be considered more vulnerable, since that stratum has a

higher proportion of individuals who are expected to experience the event very early,

namely those with a frailty value greater than ψibi.

Note that the parameters in the formula of HRA and HRW (and hence the

parameters as specified in the legends of Figure 1) do not uniquely identify the

parameters of the frailty distribution, i.e. for a given trajectory of HRA,HRW there

is an infinite set of (α, γ) or (αi, γi) and (αi′ , γi′), respectively, that induce the same

trajectory but with a different distributions of the RCs which did not need to be

specified for Figure 1. This shows that the analysis of the frailty model has always

two branches. The first branch is the analysis of HRs, which indicate the meaning of

being in a particular latent RC (in a particular stratum) relative to another latent

RC or to another observable stratum in the same latent RC. On the one hand,

HRW can help to assess the importance of individual heterogeneity, e.g. if HRW(k)

is large, then latent RC membership has a large effect on expected survival. On the

other hand, comparing HRW across strata or analysing the HRA gives an account of

random covariate effects where, e.g., covariates with a beneficial effect on survival or

covariates with partly beneficial, partly detrimental effects might be detected. The

second branch of the analysis is the distribution of RCs across strata, which may

indicate differences in the distribution of risk-taking behaviour and predisposition
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across strata, e.g. by indicating a stratum with a heavier tail of vulnerable RCs.

Taken together, the analysis of HRs and the distribution of RCs can provide thorough

analytical explanations in terms of selection and random covariate effects that can

help to explain the trajectories of population survival curves (where the RCs are

marginalised out), i.e. explanations for why the survival curves of two strata come

closer or even cross over time.

4. ESTIMATION

In this section, all time-dependent quantities are evaluated at the monitored (censored

or uncensored) event times of the individuals. We delete the argument from the

expression and indicate the corresponding quantity with a subscript, e.g. Λ
(j)
i =

exp{x(j)
i

T
β(j)}Λ(j)

0 (t
(j)
i ). Furthermore, let A ∈ P({1, . . . , J}), where P denotes the

power set. Then, Λ
(A)
i =

∑
j∈A Λ

(j)
i and Λ

(−A)
i =

∑
j /∈A Λ

(j)
i . Note that we define

Λ
(∅)
i = 0 and Λi = Λ

(1,...,J)
i .

We develop estimation routines for case I interval-censored data. In the case of case

I interval-censored data it is only known whether the event occurred during follow-up

or not but the exact event time is unknown. For multivariate cases (J > 1) it is easier

to understand the likelihood if one starts by exploiting the conditional independence

assumption of T
(j)
i and T

(j′)
i , j ̸= j′, given Zi = z:

L(θ,λ0,β; data) =
n∏
i=1

∫ ∞

0

J∏
j=1

(1− exp{−zΛ(j)
i })d

(j)
i exp{−zΛ(j)

i }1−d
(j)
i gi(z)dz

=
n∏
i=1

∫ ∞

0

∑
A∈P(di)

(−1)|A| exp{−zi(Λ(A)
i + Λ

(−di)
i )}gi(z)dz

=
n∏
i=1

∑
A∈P(di)

(−1)|A|L(Λ(A)
i + Λ

(−di)
i ). (3)

where d
(j)
i is the observational unit and target-specific event indicator (equal to one if

the event occurred during the follow-up, zero otherwise), and di is the set of targets on

which the ith observational unit had an event. The vector λ0 contains all parameters

of the baseline hazard rates, β = [β(0),β(1), . . . ,β(J)], and θ = [ζ,κ].
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Quasi-Newton optimization routines were applied for optimizing the corresponding

log-likelihood based on (3). We choose BFGS as the standard method, as implemented

in R version 4.2.2 (R Core Team, 2022). Standard errors (SE) are obtained via the

Hessian of the log-likelihood, which is approximated by Richardson extrapolation

as implemented by Gilbert and Varadhan (2019). The delta method was applied

where necessary to obtain SE: confidence intervals (CIs) are based on ln or ln{− ln }
transformations if the parameter of interest is greater than zero or between zero and

one respectively, and are then transformed back to the scale of interest.

We provide algorithms that are able to fit univariate and multivariate frailty models

for case I interval-censored data. The frailty distributions can be stratified by a

(multi-level) factor. The frailty distribution might either be AF or from the power

variance family (both parameters can be estimated). The baseline hazard can be

chosen to be piecewise-constant or the parametric generalized gamma distribution

(Cox et al., 2007) or one of its special cases, respectively. Covariates can be added in

proportional hazards manner. Overdispersion parameters might be added by means

of the Dirichlet compound multinomial distribution. Implementations are available

on GitHub (https://github.com/time-to-MaBo/Addamsfamily/).

5. APPLICATIONS

We illustrate the AF in the context of multivariate case I interval-censored data

on the human papillomavirus (HPV), obtained from a serological survey in the

Netherlands (PIENTER-2); see Mollema et al. (2009) for details on PIENTER-2 and

Scherpenisse et al. (2012) for an investigation of the respective HPV dataset. The data

were collected in the years 2006 and 2007 and cover people aged 0 to 79. Participants

were asked to complete a questionnaire and to provide a blood sample (Mollema et al.,

2009). By means of the blood samples, the level of antibodies regarding the high-risk

HPV types 16, 18, 31, 33, 45, 52, and 58 were determined in order to detect past

infections. Therefore, at the time of observation, it is only known whether the study

participants have had an infection in the past or not, but it is never known exactly

when the potential infection occurred, resulting in case I interval-censored data, also

known as current status data (Sun, 2007). Note that at the time of data collection

the Dutch national immunization programme did not include a vaccine against HPV.

We analysed the nationwide sample including oversampled migrants and applied

weighting factors to make the sample representative for the Dutch population. We

excluded individuals in their first year of life from the analysis, as maternal antibodies

https://github.com/time-to-MaBo/Addamsfamily/
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could be transmitted to the infant transplacentally or through breastfeeding (Rintala

et al., 2005). This left us with a sample size of n = 6384 individuals aged 2 to 80.

The weighted proportion of females in the dataset is 49.9% (unweighted: 54.4%).

The observed time is the individuals’ age at the date of serological monitoring.

The event indicator d
(j)
i = 1 means that individual i is seropositive with respect

to pathogen j, j ∈ {HPV16,HPV18,HPV31,HPV33,HPV45,HPV52,HPV58}, and
seronegative and still susceptible if d

(j)
i = 0. Seroprevalence is interpreted as a proxy

for past infections. Note, however, that there is a time-lag between the infection and

the time of seroconversion, as well as a difference in the number of individuals who

were infected with HPV and those who seroconverted: in previous studies, antibodies

could not be detected for about 20-50% of females who were carriers of HPV DNA.

However, antibody responses are relatively stable over time and hence, the study

of the population’s seroprevalence might yield important insights; see Scherpenisse

et al. (2012) for a discussion.

We consider the following models for the individual hazard rates, λ
(j)
i (t) =

Ziλ
(sex:j)
0 (t), sex ∈ {m, f}, where the target-specific baseline hazard λ(sex:j)0 (t) is either

sex-stratified (sex-stratified baseline hazard model), or non-stratified λ
(sex:j)
0 (t) =

λ
(j)
0 (t) (non-stratified baseline hazard model). The purpose of stratifying baseline

hazards by sex is twofold. The first is to investigate whether it is justified to estimate

baseline hazards jointly for both sexes, and the second is to investigate whether

a potential difference in the distribution is better explained by stratified baseline

hazards than by different distributions of individual heterogeneity. In any case

the target (and potentially sex) specific hazard rate is piecewise constant with a

unique parameter within the intervals [0; 5), [5; 10), [10; 20), [20; 30), [30; 40), [40; 50),

[50; 65), [65; 80). The frailty Z is either sex-stratified, i.e. Zi ∼ AF(αsexi , γsexi) (sex-

stratified RE model), or non-stratified, i.e. Zi ∼ AF(α, γ) (non-stratified RE model).

Note that in both cases µm ≡ 1, µf ∈ R>0 except for the stratified-hazard model

where µf is also set to one for the sake of identifiability. The stratified RE model

might be better able to reflect differing patterns in individual heterogeneity due to

biological and environmental predisposition as well as a different distribution of risk-

related behaviour across males and females. We combine the stratification status of

the baseline hazard with the stratification status of the RE.

An HPV infection can be transmitted via skin-to-skin contact, often - though

not exclusively (see, e.g., Syrjänen (2010), Rintala et al. (2005) or Meyers et al.

(2014)) - via sexual intercourse (Gavillon et al., 2010). Therefore, individual – and

typically unobserved – behaviour is an important determinant of an individual’s
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risk of contracting HPV. Frailty models have been used previously to incorporate

unobservable individual heterogeneity in the transmission of infectious diseases (see,

e.g., Unkel et al. (2014) or Hens et al. (2009)). Moreover, we suspect that there

may be distinct jumps in the individual hazard rates due to differences in individual

behaviour that are relevant for transmission, e.g. comparing individuals who have no

sex at all to individuals who have (see, e.g., Richardson et al. (2000), Burchell et al.

(2006)), or whether the individuals use condoms or not (see, for example, Lam et al.

(2014) or Nielson et al. (2010)). More formally, non-Gaussian and discrete omitted

covariates may be the most important drivers of individual heterogeneity, and thus

a discrete frailty model may be particularly appropriate here.

We start with a bivariate analysis including HPV16 and HPV18. An extension to

higher variate data with data on seven types of HPV follows.

5.1. Bivariate Data Analysis

We begin by exploiting the nested structure of the models for model selection. The

stratification of the RE is statistically significant on conventional levels by means of a

likelihood ratio test (LRT) no matter the stratification status of the baseline hazard.

The null-hypothesis is H0: Zm ∼ Zf ∼ AF(α, γ) vs. H1 : Zsex ∼ AF(αsex, γsex). Note

that the expectation parameter µf is not included in the hypothesis. In the case of

non-stratified baseline hazards the LRT test statistic equals 29.700 on 2 degrees of

freedom (p-value ≈ 0). In the case of sex-stratified baseline hazards the LRT test

statistic equals 30.822 on 2 degrees of freedom (p-value ≈ 0). Better performance of

stratified RE models is also suggested by the ϕ-plot which can be seen in Figure 2a.

The measure ϕ is an association measure for bivariate current status data introduced

by Unkel and Farrington (2012), ϕ > 0 indicates positive and ϕ < 0 negative

association. Additionally, ϕ tracks ln{1+RFV(t)} with a time-lag. It can be observed

that the association between HPV16 and HPV18 is higher for females early in life,

but declines more strongly than for males. This is likely to be the reason for the

success of stratified RE models here as those models are able to choose a distinct

intercept and slope of the RFV across the sexes. We choose the sex-stratified RE

model for further analysis.

In terms of AIC, the non-stratified baseline hazard model λ
(j)
0 (t), j ∈

{HPV16,HPV18} performs better than sex-stratified-baseline hazard model λ
(sex:j)
0 (t)

(9647 vs. 9656). Thus, we choose the non-stratified baseline hazard, stratified RE

model for further analysis.
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(a) Observed association between HPV16 and HPV18 in terms of a ϕ-plot. Black dots refer to cohort- and sex-specific non-

parametric estimates, size proportional to precision. The black solid line is the corresponding LOESS. Other dotted and

dashed lines are estimates resulting from corresponding parametric model.
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(b) RFV of bivariate (left) and higher variate (right) dataset of non-stratified hazard, stratified RE model. Note the different

scales on the y-axis. The curves reach a plateau at around 30 years of age, hence, the x-axis was cut-off after 40 years. Note

that also the seroprevalence curves (1 − P (T (j) > t)) reach a plateau around this time (not shown).

Fig. 2. Observed association between HPV types in the PIENTER-2 data.
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A LRT for a constant RFV (CRF), i.e. H0 : Zsex ∼ G(γsex) vs. H1 : Zsex ∼
AF(αsex, γsex) for males and females, yields a test-statistic of 93.514 on 2 degrees of

freedom (p-value ≈ 0). Hence, the hypothesis on a constant RFV (CRF) can also be

rejected. A constant pattern of the RFV is also not suggested by Figure 2a, where

it can be observed that association is constantly falling up to the age of around

50. Considering all tests and pairwise AIC comparisons we choose the non-stratified

baseline hazard, stratified AF model for final analysis.

Table 2. Estimated RFV parameters (above dashed line) and resulting estimated frailty
distribution parameters (below dashed line) for non-stratified hazard, stratified RE model.
Parentheses below point estimates show 95%-CIs.

male female

α̂sex −0.502
(−0.809;−0.196)

−2.882
(−5.008;−0.757)

γ̂sex 83.447
(66.629;104.509)

90.996
(60.167;137.621)

ψ̂sex 0.502
(0.243;1.038)

0.946
(0.336;2.66)

ν̂sex 0.012
(0.009;0.016)

0.011
(0.006;0.018)

π̂sex 0.006
(0.002;0.015)

0.031
(0.009;0.11)

Table 3. Estimated distribution of RCs and across stratum analysis for stratified RE, non-
stratified hazard model. Parentheses below point estimate show 95%-CI.

P̂
(
Zsex ≤ ẑsex,(k)

)
ẑsex,(k)

kth RC males females
P̂
(
Zf≤zf,(k)

)
P̂
(
Zm≤zm,(k)

) males females ĤRA(k)

1st 0.941
(0.932;0.949)

0.964
(0.956;0.97)

1.024
(1.013;1.036)

0.006
(0.002;0.015)

0.01
(0.004;0.026)

1.684
(1.411;2.01)

2nd 0.952
(0.949;0.955)

0.974
(0.971;0.976)

1.023
(1.013;1.032)

0.508
(0.245;1.053)

0.956
(0.341;2.684)

1.881
(1.064;3.325)

3rd 0.958
(0.956;0.96)

0.978
(0.977;0.98)

1.022
(1.017;1.027)

1.011
(0.489;2.091)

1.902
(0.677;5.344)

1.882
(1.061;3.336)

4th 0.961
(0.96;0.963)

0.982
(0.98;0.983)

1.021
(1.017;1.025)

1.513
(0.732;3.13)

2.848
(1.014;8.004)

1.882
(1.061;3.34)

5th 0.964
(0.963;0.966)

0.984
(0.983;0.985)

1.02
(1.017;1.024)

2.016
(0.975;4.168)

3.794
(1.35;10.664)

1.882
(1.06;3.341)

The RFV parameter estimates for the stratified RE, non-stratified baseline hazard

models can be seen in Table 2. The estimated RFV (CRF) is decreasing for both

sexes. The estimated RFV parameters indicate higher heterogeneity across clusters



18 • Bardo et al.

or association within a cluster for females early on, as indicated by the intercept of

the RFV (γ̂f > γ̂m). However, the descent is more strongly for females (|α̂f | > |α̂m|)
and consequently it is estimated that heterogeneity/association is stronger for males

from the 4th year of life onwards; see left-hand panel of Figure 2b. These results are

also supported by the non-parametric estimates of ϕ in Figure 2a.

The estimated distribution corresponds to a ψ̂sexNB>0(ν̂sex, π̂sex) for males and

females. The mean parameter µ̂f = 0.328 (95%-CI [0.091; 1.182]) and is insignificant

as indicated by the 95%-CI. The resulting distribution parameters can also be found

in Table 2. The estimated mean µ̂f indicates lower expected frailty (and therefore

lower population hazard) for females initially. However, the mean parameter has to

be interpreted in the context of its distribution. Let µsex(t) = E(Z|T > t, sex). The

limit of the conditional expectation of the frailty is µsex([∞,∞]) = ψsexνsex. With

the estimates from Table 2, µ̂f ([∞,∞]) = 0.01 > µ̂m([∞,∞]) = 0.006 follows and

the initial order of the expectations is reversed. In this example, this leads to the

estimated population seroprevalence P̂ (T (HPV16) ≤ age) being higher for males early

in life but from 12 years of life onwards, females start to catch up and finally cross

the curve of males at 25 years of life (not shown). We will discuss the reason for

the switching order of µ̂f (t), and µ̂m(t) that finally leads to crossing seroprevalence

curves by analysing the distribution of the frailties in the paragraphs below.

Table 3 shows an excerpt of the distribution of the RCs. We interpret the

distribution of the RCs as the distribution of stratum-relative risk-related behaviour

and predisposition. The bulk of the population is estimated to be in the lowest RC,

though there is more probability to the right of the lowest RC for males. The ratio

of the cumulative probabilities between females and males is always above one, also

indicating a more heavy tail for males. The heavier tale of the distribution of latent

RCs for males is the reason for µm > µ̂f .

The numerical value of the frailties then assigns a magnitude related interpretation

to the distinct RCs. The estimated support shows that females have a higher category-

related hazard in each RC (see the last column Table 3). Across strata, given the kth

RC, the conditional or RC-related HR, ĤRA(k) =
ẑf,(k)λ̂

(j)
0 (t)

ẑm,(k)λ̂
(j)
0 (t)

, is 1.684 in the important

first category. In this case, the ĤRA(k) approaches its limit (with respect to k),
ψ̂f

ψ̂m
=

1.883, fast due to small values of ν̂sex. Higher RC-related hazard for females is the

reason for µ̂f (t) surpassing µ̂m(t) with time progressing: the individuals belonging to

the tale of the distribution of the RCs start to seroconvert early. This selection effect

is more pronounced for males due to the heavier tale of the distribution of RCs. Due
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to extreme individuals within the male population seroconverting more quickly, the

higher RC-related hazard for females causes µ̂f ([t, 0]) > µ̂m([t, 0]) from 12 years of

life onwards.

Within stratum, ĤRW(1) = 94.878 (95%-CI [60.448; 148.919]) for females and

84.949 (95%-CI [65.475; 110.215]) for males, i.e. being in the second instead of the

lowest RC is estimated to be more hazardous for females than for males even from a

relative perspective. The ĤRW(k) then approaches its limit k
k−1 immediately because

ν̂sex is small for males and females.

Differences in unobserved heterogeneity across the sexes are reflected by the support

and the distribution of the RCs. Given that HPV is a sexually transmitted disease, the

membership to a certain RC is partly governed by stratum-relative (sexual) behaviour

in that sense, that having, for example, a higher number of sexual partners than some

stratum reference should put one in a higher RC than the reference individual. It is

tempting to interpret the difference in magnitude of a given RC on the conditional

hazard rate across the sexes. For the human immunodeficiency viruses, for example,

it is known that male to female transmission is more likely than female to male

transmission (see Nicolosi et al. (1994) or European Study Group on Heterosexual

Transmission of HIV (1992)). Assuming that each RC comprises the same set of

sexual behaviour across the sexes, zf,(k) > zm,(k) for all k, could also hint on a

higher susceptibility of females with respect to an infection with HPV16 and HPV18

per relevant contact. However, the RCs are anchored in the stratum and do not

necessarily imply the same behaviour across the sexes. Hence, this interpretation is

highly speculative and assumption based.

5.2. Higher Variate Analysis

When including all seven high-risk types of HPV for which we have data,

the direction of interpretation is largely similar to that of the bivariate

case, and mainly the magnitude changes. The estimated RFV parameters are

α̂m = −1.359 (95%-CI [−1.8;−0.918]), γ̂m = 9.908 (95%-CI [8.928; 10.995]),

α̂f = −2.005 (95%-CI [−2.5;−1.509]), γ̂f = 6.855 (95%-CI [6.143; 7.649]). The

heterogeneity/association is less extreme than in the bivariate case early in life.

However, the association remains at larger levels compared to the bivariate case, as

shown in Figure 2b, indicating that association remains high throughout life. It can

also be seen that the RFV (CRF) of females is always below that of males, indicating

greater heterogeneity due to individual factors for males throughout the entire time

period. As the level of association differs strongly between the bivariate case above
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and the higher variate case with seven high-risk HPV types, a shared frailty model

might be seen as inadequate to capture the patterns of association between the various

types of HPV. Therefore, a correlated frailty model may be more appropriate. The

shared frailty model might be chosen for its simplicity, however, if the specific types

of HPV are less relevant to the research question but, for example, the prognostic

factor of one “anonymous” high-risk type on another “anonymous” high-risk type is

investigated.

The (initial) expectation of the frailty is virtually identical for males and females;

µ̂f = 0.955 (95%-CI [0.883; 1.033]). In the higher variate case the distribution of the

RCs is not as much focused on the lower categories. The tail is again more heavy for

males (not shown). The HRA(k) > 1 for all k again indicates higher RC-related hazard

for females. The ĤRW(1) is less extreme in the higher variate case than in the bivariate

case: 9.86 (95%-CI [8.627; 11.268]) for females and 12.267 (95%-CI [10.786; 13.95]) for

males. Note that the order of ĤRW(1) for males and females changes when comparing

this to the bivariate scenario.

6. CONCLUSION

In this paper, we discuss the Addams family of discrete frailty distributions, which has

been conceptualised by Farrington et al. (2012) for modelling individual heterogeneity

in time-to-event models. We further examine the properties of the conditional time-

to-event model induced by the Addams family and develop estimation routines for

multivariate case I interval-censored data.

For discrete frailty distributions, the RFV (CRF) approaches either infinity or zero

(one) over the course of time, where the distinction is made by the minimum of the

support of the frailty being zero or greater than zero respectively. Few discrete frailty

distributions are able to manipulate the support via its parameters to choose the long-

term behaviour of the two functions accordingly, but this typically involves the edge

of the parameter space; see Bardo and Unkel (2023) for a discussion. For the Addams

family of discrete frailty distributions, the minimum of the support can either be zero,

resulting in a cure rate model, or greater than zero without involving the edge of the

parameter space. Consequently, the RFV (CRF) is either monotonically increasing or

monotonically decreasing, again without involving the edge of the parameter space.

Through the introduction of a scaling parameter, the Addams family is also able to

increase or flatten the slope of the RFV (CRF) and might even approach a constant

by approaching its continuous exception, a shape that is impossible for discrete shared
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frailty model to generate. This makes the Addams family a useful general-purpose

modelling approach.

A unique feature of the Addams family is that the support of the discrete frailty

distribution varies with its parameters and is hence subject to estimation. We suggest

interpreting the support as ordered latent risk categories. This feature allows for a

unique analysis of the latent model as the effect of latent risk category membership

on the hazard rates can be separated from the distribution of the latent risk category

membership. By focusing on the support of the frailty, the latent model can essentially

be interpreted analogously to the effect of a covariate, e.g. via time-invariant hazard

ratios of different risk categories, which we call the within-stratum hazard ratio.

If a model is imposed on the distribution parameters of the Addams family, this

analysis can be enriched by the across-stratum hazard ratio, i.e. the hazard ratio

of a given latent risk category for different strata that are defined by covariates.

In a second step, the distribution of the ordered risk category membership can be

examined in order to fully understand the impact of unobserved heterogeneity on

observable patterns such as population hazard rates and ratios which are averaged

over the risk category membership of survivors. This type of analysis could also be

performed with the discreteK-point distribution. However, there is no counterpart to

this covariate-style analysis for continuous frailty distributions, or for discrete frailty

distributions where the support is fixed. This is because the distribution of frailty

cannot be meaningfully separated from the effect of frailty on hazard rates, as one

would need to compare, e.g., quartiles of frailty distributions that vary with survival.

Consequently, a time-invariant proportional hazards interpretation is not possible

because the hazard ratio inherits the survival condition. Thus, the Addams family

and the K-point distribution offer the possibility to analyse the latent model, which

may include heterogeneous covariate effects, thoroughly with common measures.

The analysis of the latent model via the within-stratum hazard ratio might help

to understand the importance of individual heterogeneity. In that sense, individual

heterogeneity might be regarded as important if the within-stratum hazard ratios

are large and vice versa. The analysis of the across-stratum hazard ratio may

reveal structural differences in individual heterogeneity across covariates, prompting

a discussion of the reasons for this. In this sense, the covariate-style interpretation

may be beneficial for scientific discussion, as hazard ratios and probabilities are a

common way of communicating with a non-statistical audience.

We applied the Addams family to multivariate case I interval-censored infection

data and allowed the distribution of individual heterogeneity to differ for males and
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females. Males are found to have a higher probability for more hazardous categories,

possibly reflecting a more cautious behaviour in the female population compared to

males. However, the estimated hazard in each risk category is higher for females

than for males, which might reflect a higher biological burden with respect to the

susceptibility of HPV. There was no evidence for the existence of a non-susceptible

sub-group, neither in the bivariate data set, including HPV 16 and HPV 18, nor in

the data set containing seven high-risk types of HPV.
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