## Organic Solvent Nanofiltration and data-driven approaches



Pieter-Jan Piccard,

Bart Cleuren, Jef Hooyberghs (UHasselt), Pedro Borges, Anita Buekenhoudt (VITO)





# Membranes are strong and sustainable separation tools

An alternative to ubiquitous distillations and evaporations:

• Energy and CO<sub>2</sub> reduction

• Easy scalability

Hybrid processing possible



**Distillation Tower** 



For example: Desalination, getting salt out of seawater

- Reverse Osmosis: Membrane separation
- Model-based understanding

• E.g., Spiegler-Kedem model



#### Membranes for desalination

For example: Desalination, getting salt out of seawater

- Reverse Osmosis: Membrane separation
- Model-based understanding

• E.g., Spiegler-Kedem model:

Linear irreversible thermodynamics:

$$J_w = L_{11}F_w + L_{11}F_s$$
$$J_s = L_{21}F_w + L_{22}F_s$$

Linear irreversible thermodynamics:

$$J = L(\Delta p - \sigma \Delta \pi) \qquad \longleftarrow \qquad J_w = L_{11}F_w + L_{11}F_s$$
$$J_s = -P\Delta z \frac{dc}{dz} + J(1-\sigma)c \qquad \qquad J_s = L_{21}F_w + L_{22}F_s$$

With *volume* flux  $J = \nu_w J_w + \nu_s J_s$ 

#### FLUX:

$$J = L(\Delta p - \sigma \Delta \pi)$$
$$J_s = -P\Delta z \frac{dc}{dz} + J(1 - \sigma)c$$

RETENTION:  $R = 1 - \frac{c''}{c'}$ 

With volume flux  $J = 
u_w J_w + 
u_s J_s$ 



#### FLUX:

$$J = L(\Delta p - \sigma \Delta \pi)$$
$$J_s = -P\Delta z \frac{dc}{dz} + J(1 - \sigma)c$$

**RETENTION:**  $R = \left[ \frac{1 - e^{-\frac{J(1-\sigma)}{P}}}{1 - \sigma e^{-\frac{J(1-\sigma)}{P}}} \right] \sigma$ 

With volume flux  $J = 
u_w J_w + 
u_s J_s$ 



## Model is not predictive for just any solvent

Works well for water

![](_page_7_Picture_2.jpeg)

Loses predictive ability for **organic solvents** 

![](_page_7_Figure_4.jpeg)

## Model is not predictive for just any solvent

#### **Complex separation mechanism**

Interactions between solvent-solute-membrane

Nanoscale: 'pore'-size reached molecular level

Model is not able to generalize for just any solvent

![](_page_8_Picture_5.jpeg)

![](_page_8_Picture_6.jpeg)

![](_page_8_Figure_7.jpeg)

# Slow development process hampers industrial acceptance

![](_page_9_Figure_1.jpeg)

## Data driven approaches to the rescue

![](_page_10_Figure_1.jpeg)

## Ceramic Membranes: our Advantage

Unique compared to common polymeric membranes:

• Inert

![](_page_11_Picture_3.jpeg)

- No swelling
- Simpler separation mechanism

![](_page_11_Picture_6.jpeg)

# Data driven approaches for understanding and prediction

- Exploratory data-analysis
- Dimensionality reduction
- Predicting membrane performance

|                              | -                            |
|------------------------------|------------------------------|
| SOLVENT                      | MEMBRANE                     |
| Category                     | Contact angle                |
| Density                      | Functionalization            |
| Hansen Solubility Parameters | Hansen Solubility Parameters |
| Kinetic Diameter             | Material                     |
| Molar Volume                 | MW cut-off                   |
| Molecular Weight             | Polarity                     |
| Viscosity                    | Pore size                    |
|                              | Water permeability           |
| SOLUTE                       | TEST CONDITIONS              |
| Hansen Solubility Parameters | Concentration of solute      |
| Isomeric Smiles              | Crossflow                    |
| Molecular Weight             | Pressure (TMP)               |
| Polarity                     | Temperature                  |
| Structure                    |                              |

Descriptors

![](_page_12_Picture_5.jpeg)

![](_page_12_Picture_6.jpeg)

Retention Flux

# The data distribution dictate the limits of our model

![](_page_13_Figure_1.jpeg)

### Correlations among descriptors

![](_page_14_Figure_1.jpeg)

### Correlations among descriptors help us find patterns

... And provide a global overview of the data of physical properties

![](_page_15_Figure_2.jpeg)

#### Membrane properties

![](_page_16_Figure_1.jpeg)

## Solvent properties are very noticeably grouped together

![](_page_17_Figure_1.jpeg)

## Solvent Molecular weight & Diameter

![](_page_18_Figure_1.jpeg)

### Solvent polarity and weight

![](_page_19_Figure_1.jpeg)

## Correlation induced by experimenter

![](_page_20_Figure_1.jpeg)

### Dimensionality reduction

...of input-space, with minimal loss of information

Example for solvent: Strong correlation between Molecular weight & Diameter

Keep only one

of information

without loss

Correlation matrix - 1.00 MW Molar Volume - 0.75 Kinetic diameter -Log P -- 0.50 HSP tot -- 0.25 HSP pol -HSP hydr -- 0.00 Top. Pol. Surface Area -Dielectric Constant -- -0.25 Dipole Moment -Viscosity 25°C --0.50Density --0.75 HSP disp -Surface tension --1.00HSP tot HSP pol. HSP hydr HSP disp . Log P Density Molar Volume Top. Pol. Surface Area Dielectric Constant Dipole Moment Viscosity 25°C Surface tension MΜ Kinetic diameter

Solvent table:

### Dimensionality reduction

...of input-space, with minimal loss of information

Example for solvent:

#### Strong correlation between Molecular weight & Diameter

![](_page_22_Picture_4.jpeg)

Keep only one without loss of information

![](_page_22_Figure_6.jpeg)

# Principle Component Analysis (PCA) to reduce the input dimension

![](_page_23_Figure_1.jpeg)

- Using PCA, the solvent can be characterized by only 2 to 4 parameters
- Correct linear combinations found automatically by optimized scripts
- Reduced dimension can be directly fed into data-model

![](_page_24_Figure_1.jpeg)

- Significant correlation between polarity of **solute and retention**
- Expected for a **polar**, native ceramic membrane

• Interaction membrane - solute

### Grafting OH → CH3 Decreasing Interactions

![](_page_26_Figure_1.jpeg)

\*For a specific membrane: 0,9 nm TiO2 (native & C1)

![](_page_27_Figure_1.jpeg)

\*For a specific membrane: 0,9 nm TiO2 (native & C1)

# Retention - Flux curves show remarkably regular behavior

![](_page_28_Figure_1.jpeg)

# Retention - Flux curves now *do* show similarity to physical model

![](_page_29_Figure_1.jpeg)

# Data-driven models for prediction of membrane performance

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

### Integrating physics for insight in the mechanism

![](_page_31_Figure_1.jpeg)

### THANK YOU

![](_page_32_Picture_1.jpeg)