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Abstract

Digital pathology has become increasingly popular for research and clinical applications.

Using high-quality microscopes to produce Whole Slide Images of tumor tissue enables the

discovery of insights into biological aspects invisible to the human eye. These are acquired

through downstream analyses using spatial statistics and artificial intelligence. Determina-

tion of the quality and consistency of these images is needed to ensure accurate outcomes

when identifying clinical and subclinical image features. Additionally, the time-intensive pro-

cess of generating high-volume images results in a trade-off that needs to be carefully bal-

anced. This study aims to determine optimal instrument settings to generate representative

images of pathological tissue using digital microscopy. Using various settings, an H&E

stained sample was scanned using the ZEISS Axio Scan.Z1. Next, nucleus segmentation

was performed on resulting images using StarDist. Subsequently, detections were com-

pared between scans using a matching algorithm. Finally, nucleus-level information was

compared between scans. Results indicated that while general matching percentages were

high, similarity between information from replicates was relatively low. Additionally, settings

resulting in longer scanning times and increased data volume did not increase similarity

between replicates. In conclusion, the scan setting ultimately deemed optimal combined

consistent and qualitative performance with low throughput time.

Introduction

Traditional pathology, where biopsies of tissue samples are examined by the pathologist using

light microscopy, is still implemented in many hospitals worldwide [1]. However, digital

pathology is an emerging field with applications in research and clinical settings. In this field,

digital slide scanners generate whole slide images (WSIs) of histopathological slides [2].
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Moreover, these WSIs open up new possibilities for analysis using artificial intelligence (AI)

and spatial statistics to acquire more information and aid in the diagnosis and prognosis of a

patient [1–3].

In recent years, the medical field’s focus has shifted towards a tailored approach for deter-

mining treatment strategies, called precision medicine. This approach requires various medical

sources such as a patient’s clinical history, genomics, and other pathological analyses. Digitiza-

tion is paramount to integrate these medical sources and paves the way for digital pathology as

a key player in this process [4].

Digital pathology creates a major window of opportunity for AI to improve a patient’s diag-

nosis [2, 4] significantly. The use of AI on WSIs can lead to a new field of discovery, where sub-

clinical features beyond human perception can be used for advanced tasks such as further

classification of the tumor microenvironment. One up-and-coming subclinical set of features

is the morphological pattern of nuclei, which can be used to differentiate between malignant

and benign breast tumors [5], estimate prostate cancer recurrence [6], or predict short-term

and long-term survival [7].

When pathologists assess slides manually, a first inspection of the tissue is typically per-

formed on low magnifications. After identifying specific regions of interest (ROIs), these areas

are evaluated at higher magnifications to draw conclusive insights. This concept applies to

both traditional and digital pathology. In higher magnifications, tissue, and cell properties

become more visible, allowing for better quantification of the tissue in question. A clearer view

of the tissue leads to a better patient diagnosis.

To enable the discovery of subclinical features using AI, the WSI quality must be equal or

superior to what is seen under the microscope under different magnifications [8]. As digital

pathology is generally still in its early stage, no standard with which all tissue slides are digi-

tized is currently available. This leads to a considerable variation of WSI in terms of image res-

olution, magnification, scan consistency, focus, etc. Manual validation of every scanned tissue

slide is very time-consuming and labor-intensive. Additionally, quality assessment can be sub-

jective, depending on the lab and the scan operator. It is, therefore, necessary to study and dis-

cuss the effects of different scan settings on the tissue slides and their downstream analysis

with AI and computer vision tools.

Generally, a scanner that creates WSIs has an optimal setting to ensure high quality. Still,

there are drawbacks when implementing this setting in a workflow where many slides must be

scanned. Two non-image-related drawbacks that are considered are time and data volume.

Increasing quality will have repercussions concerning the time it takes to scan the image, as

well as the size of the resulting data file. Both factors are essential when considering automa-

tion and further processing of the images.

Additionally, a higher data volume results in higher storage costs. To combat this, compres-

sion is widely used to reduce image size. However, this can result in image artifacts [9].

Several quality assessment tools for generated histopathological WSIs are available to opti-

mize the scanning protocol, such as HistoQC and PathProfiler [10, 11]. These tools can iden-

tify common artifacts that may affect the quality of the WSIs. For example, images that contain

scratches or folds, unfocused areas, or other expected quality losses must be removed from the

dataset [12]. However, these tools do not assess the quality of an image in function of the per-

formance of an AI model trained for the segmentation or classification of cell types.

Multiple elements may contribute to high-quality images for data analysis. Some steps that

can be optimized include the focus point strategy, sharpness measurement set, single layer ver-

sus z-stack, and optionally compressing the data. A detailed description of these settings can

be found in the Axio Scan.Z1 manual [13]. However, there is currently no golden standard

protocol for digitization for all available tissue types and staining methods. Therefore,
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optimization of the scanning protocol is needed, especially when the goal is to apply AI analy-

ses to these images.

This manuscript presents the optimization of a scanning protocol for tissue slide digitiza-

tion. Hence, we aim to achieve a good balance between image quality on the one hand and the

drawbacks of scanning time and file size on the other hand. The generation of high-quality

images is prioritized, as the rejection of low-quality slides results in time delays due to rescan-

ning or resampling.

Aside from measuring quality, we also focus on the inter-scan variability. Even when apply-

ing a set scan setting, results of the nucleus detection algorithm might differ slightly across dif-

ferent scans of the same sample, as the algorithm might make non-identical detections when

pixels give slightly different information in two separate scans. These detections could lead to

many high-quality but inconsistent images, which are unsuitable input data for machine learn-

ing and AI modeling techniques. Therefore, as the primary goal, detections should be as con-

sistent as possible across fixed-setting scans while keeping scan quality high and scanning time

acceptable for continuous generation of WSIs.

Methods

Human sample

To identify the optimal scan profile as an initial step, we used one representative biopsy/surgi-

cal resection (a cryo-fixated Hematoxylin and Eosin (H&E) stained tumor-free lymph node)

from a non-small cell lung cancer patient who was diagnosed with invasive squamous cell car-

cinoma. For the validation of the chosen scan profile as a final step, five additional biopsies

(Formalin-Fixed Paraffin-Embedded, H&E stained, tumor-containing tissue) were used from

non-small cell lung cancer patients. The cases were selected from the prospective PROLUNG

study and were obtained from the pathology department of Ziekenhuis Oost-Limburg, Bel-

gium (Start of study: 28-05-2018, End of study: 31-12-2022). The recruitment period started at

29-05-2018 and ended at 20-01-2022. The initially selected biopsy was accessed for scanning

and research purposes between 4-11-2021 and 05-02-2022 and the five biopsies used for vali-

dation were accessed between 01-12-2022 and 09-07-2024. Ethical approval was granted by

Comité Medische Ethiek Ziekenhuis Oost-Limburg (18/0023U). Written informed consent was

obtained from all patients. This tissue slide was selected based on its median tissue size. The

tissue was stained with the automated tissue stainer "linear slide stainer ST4020" (Leica).

Scan profile

A 40x brightfield scanning profile was created using the Axio Scan.Z1 (Zeiss) and its ZEN soft-

ware (Zeiss). While generating the profile, several parameters were taken into account. The

standard settings regarding the global overview, preview, and tissue detection standard settings

were not altered during optimization. An automated tissue detection was performed using the

standard settings and determining the best focus map settings.

First, the 10x objective lens was combined with a fixed number of focus points (4) strategy

and basic sharpness measurement set in the coarse focus setting. Several strategies were

explored to achieve the optimal focus across the entire sample. The 40x objective lens was used

for the fine focus setting and the onionskin focus point strategy. For the latter, the density of

the focus points and the maximum number of points were adapted. More specifically, the

focus point density refers to the percentage of tiles covered with one specific focus point,

which can be limited to a value set by the maximum number of points [13]. The following con-

ditions were tested for the maximum number of focus points: 100, 150, and 200, combined

with a density of either 5 or 10%. In addition, the "best" and "Hg^8 sharpness" measurement
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settings were used for comparison. An overview of the different focus map settings is provided

in Table 1.

In concordance with the fine focus, a 40x objective lens was used in the final step. More-

over, several parameters were tested for compression to determine image quality. Lossless

compression was chosen instead of lossy compression to retain as much information as possi-

ble for further downstream analysis. Single-layer scanning versus Z-stack scanning in combi-

nation with the Extended Depth of Focus (EDF) function was also compared. The latter was

considered our optimal scan due to its extensive setting profile and scanning time, further

referred to as the reference standard. Here, we used the standard maximum number of points

with a 5% density in the fine focus map settings.

Hereafter, the complete scan profile will be referred to as the scan settings.

To validate the chosen setting, we used the default setting, which utilizes the 5x objective

lens for the coarse focus, and 40x objective lens for the fine focus and final step. In the default

profile, only one point of focus is selected for the image, and the sharpness option is set to

“basic”.

Nuclei detection

After scanning tissue slides, nuclei detection was performed to provide information for further

downstream analyses. Scans were visualized in QuPath, an open-source bioimage analysis pro-

gram [14]. As a first parameter to determine image quality, simple nucleus segmentation was

performed using a state-of-the-art deep learning algorithm called StarDist [15]. The StarDist

algorithm utilizes a pre-trained model using the MoNuSeg 2018 dataset [16]. To lower the

algorithm’s execution time over multiple repeated images while maintaining sufficient infor-

mation, ten ROIs were selected. Each region was 2,000 by 2,000 pixels, corresponding to

220 μm by 220 μm on the scans with a pixel size of 0.11 μm. In addition, the deep learning

algorithm was applied to images with resolutions of 0.22 μm and 0.44 μm per pixel derived

from the original image. The algorithm’s settings were kept the same for all ROIs to ensure

maximum comparability. Slight location shifts of the tissue between different scans were

observed, possibly due to a different selection procedure of the tissue of interest by the Axio

Scan.Z1. To ensure consistency while comparing different scan settings, the tissue was

matched via affine transformation of the image, thereby correctly aligning the nuclei within

the chosen ROI. After detecting all nuclei in the ROI, several features of the nuclei were gener-

ated, including the location of the centroid of the nucleus, summary statistics of the H&E val-

ues in each pixel, and the area of the detected nucleus.

The number of detected nuclei was also used to measure the image quality, as higher-quality

images should better preserve tissue features, leading to more accurate detections.

Table 1. Overview of the tested focus map settings. The reference standard was generated in combination with a Z-stack and Extended Depth of Focus (EDF).

Setting name Maximum number of focus points Focus point density (in %) Sharpness option
S1 100 5 Best

S2 100 5 Hair gradient 2^8

S3 150 10 Hair gradient 2^8

S4 150 5 Best

S5 150 5 Hair gradient 2^8

S6 200 10 Hair gradient 2^8

S7 200 5 Best

S8 200 5 Hair gradient 2^8

Reference standard 24 5 Best

https://doi.org/10.1371/journal.pone.0309740.t001
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Quantitative measurements

All nuclei present in the ten ROIs were annotated manually as a reference for the assessment

of the different conditions quantitatively. Two biomedical scientists with histological expertise,

hereafter referred to as HIS1 and HIS2, manually selected five additional 2000 by 2000 pixel

ROIs in which the nuclei were annotated using the annotation tool in QuPath, followed by

automatic segmentation using the algorithm described above. The automated detections and

manual annotations were compared per region via overlay.

A similar manual assessment was performed to verify the nucleus detection algorithm’s effi-

ciency. First, the detection was performed on the ten 2000 by 2000 pixel ROIs. Afterward, the

detections made by StarDist were manually corrected and categorized into four classes: correct

detections, nuclei not detected by the algorithm, detections that did not correspond to a

nucleus, and detections considered incorrect due to under- or over segmentation by the algo-

rithm. HIS1 and HIS2 manually corrected these segmentation errors by making a new

annotation.

Inter-scan variability

After scanning tissue slides, the optimal image quality was determined using inter-scan vari-

ability as a parameter. The inter-scan variability was assessed by verifying how often a unique

nucleus was detected at a highly similar location in multiple scans using identical scan settings.

Three technical replicates were made for each scan setting. Ten smaller ROIs within the sample

were identified in every scan and compared.

An in-house image registration algorithm was developed to compare the same region across

two different scans. First, the x- and y- coordinates of the centroid of each nucleus were kept

as information. The data could then be seen as a point pattern where each event is a nucleus.

Each nucleus corresponding to one point was then matched to a nucleus corresponding to the

other point pattern, which was done by choosing its nearest neighbor of the other point pat-

tern within a 10 μm x 10 μm square centered around the nucleus. Note that two nuclei could

have the same nearest neighbor. In this case, those nuclei from the two-point patterns with the

smallest distance between them are considered the correct match. The remaining nuclei with

the same nearest neighbor remained unmatched (i.e., failed to have found a matching nucleus).

These nuclei were considered for matching a second time in case a different potential match

existed. After this second attempt, there were matched and unmatched nuclei from the initial

batch for both point patterns. The percentages of matched and unmatched nuclei relative to

the whole batch were used to indicate inter-scan variability. Small coordinate shifts could have

occurred when overlaying two detections, which was solved by shifting one side towards the

nearest neighbors of the other side.

As a result, a small percentage of nuclei from either side was no longer considered, as they

lay beyond the corresponding area on the other side. These were noted as ’edged-out.’ A

benchmark to compare the percentages as mentioned above was constructed. HIS1 and HIS2

both manually annotated the same five tissue regions. The matching algorithm was then used

to compare both independent annotations. Furthermore, to inspect the algorithm’s general

performance, HIS1 and HIS2 manually corrected the nucleus detections made by the algo-

rithm. The same ten ROIs used for the analyses described in the methods section were

reviewed (specifically on the second scan of the S7 setting, specified in Table 1).

A batch of matched nuclei was observed on either side per pairwise scan comparison. Each

nucleus had descriptive information determined by the algorithm, as listed before. Therefore,

we were able to analyze the agreement between different measurements. In this context, this

translates to measuring how similar each nucleus’ aspect is compared to its match from
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another scan. Bland-Altman plots, also called difference plots, visualize the average measures

of the matching nuclei versus the difference among them. Limits of agreement (LOAs) indicate

how far apart the measures of the matching nuclei are and were used as indicators of inter-

scan variability. For some variables (e.g., nucleus area), the measurements were heteroscedastic

(i.e., differences become larger when measurements are larger).

Consequently, instead of computing the conventional difference between the two measure-

ments, we chose to consider their ratios by log transforming first and subsequently computing

the differences, the median, and LOAs of these differences, after which these values were back-

transformed [17]. In addition, we chose the 2.5% and 97.5% quantile of the differences of log-

transformed values to account for violating the normality assumption even after log-transfor-

mation of the data [17]. Finally, confidence intervals around the median and quantiles were

constructed by bootstrapping (i.e., randomly sampling the data with replacement and recalcu-

lating the statistics in question) the data.

Results

Scan time and file size

The resulting scan time and file size differ considerably depending on the chosen scan setting.

In addition to the quality of the scans, the scan time and file sizes were also considered.

Table 2 summarizes the average values of the three repeated scans concerning scan times and

file sizes. A change in the maximum number of points slightly increased scan times but did

not lead to larger file sizes. The density of the focus points and the chosen sharpness measure-

ment set did not alter scan time or file size. Using the reference standard settings, the scan

time heavily increased while the file size remained within the range of the other settings, which

may be due to the EDF function used in this setting. Using a Z-stack without performing EDF

resulted in a much larger file size. One scan with setting S7 has fewer focus points, slightly low-

ering the average scan time.

Nuclei detection using StarDist

On each replicate of each scan setting, nucleus detection was performed on the ten ROIs men-

tioned above using the StarDist deep learning algorithm in QuPath. Additionally, three resolu-

tions were considered. Fig 1 shows a side-by-side comparison of detections on a small section

of one of the ten regions using three resolutions. To create this example, an image of the refer-

ence standard was used. Detections on Fig 1A are based on the highest resolution, while

Table 2. Overview of the variables of interest regarding the scanned slides for the reference standard setting and

the eight settings (n = 3) used. One of the three replicates in setting S7 contained 199 focus points instead of the

expected 200, therefore the average number of points for that setting is 199.667.

Scan setting Number of focus points used Average scan time (min.) File size (GB)

S1 100 20.7 29.35

S2 100 20.8 28.99

S3 150 24.2 28.55

S4 150 24.1 29.03

S5 150 24.0 28.64

S6 200 27.8 28.93

S7 199.667 27.7 29.25

S8 200 27.3 29.03

Reference standard 24 119.8 31.02

https://doi.org/10.1371/journal.pone.0309740.t002
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detections on Fig 1B and 1C are based on resolutions of 0.22 and 0.44 μm per pixel, respec-

tively. In general, detections using the lowest resolution are less smooth and, therefore, do not

have correct boundary alignment. Small nuclei are also left undetected in this resolution.

While detections on the highest resolution have better boundaries on each nucleus, some

larger nuclei are left out or segmented inadequately.

Descriptive statistics for each scan setting

To assess inter-scan variability, we first calculated two summary statistics related to nucleus

detection: mean number of nucleus detections and mean nucleus area. The number of nuclei

detections per scan is presented in Fig 2. The mean and standard deviation of the nucleus area

per nucleus, subdivided by resolution, are presented in S1 Table. This shows that the differ-

ences between scan settings were minimal, whereas differences between resolutions were more

prominent. More specifically, the mean nucleus area increased, and the number of detected

nuclei decreased as the resolution decreased.

The detailed distribution of the nucleus area in a given pixel setting is presented as a density

plot (i.e., a smoothed visualization of the value distribution) in Fig 3. Resolution 0.11 shows

two peaks in its distribution of nucleus areas with a high density of nucleus areas below

10 μm2, which was not seen for resolutions 0.22 and 0.44. Furthermore, a general rightward

Fig 1. Three images with nuclei detections (yellow outline) using the StarDist segmentation tool. A: Detections on

a resolution of 0.11 μm per pixel. B: Detections on a resolution of 0.22 μm per pixel. C: Detections on a resolution of

0.44 μm per pixel.

https://doi.org/10.1371/journal.pone.0309740.g001

Fig 2. Number of detected nuclei per scan for each scan setting with AI detections on resolutions 0.11, 0.22, and 0.44 μm.

https://doi.org/10.1371/journal.pone.0309740.g002
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shift in distribution can be observed as the resolution decreases, resulting in an increasing dis-

tribution mode.

Inter-scan variability

The matching percentages were determined for each scan setting. The benchmark for match-

ing percentages by HIS1 and HIS2 yielded a matched, unmatched, and edged-out percentage

of 90.25%, 9.71%, and 0.04%, respectively. In addition, the inspection by HIS1 and HIS2

showed that, over all regions, 20,349 nuclei (mean nucleus area of 13.46μm2) were detected by

the algorithm, of which 194 (0.95% of total nuclei, mean nucleus area of 4.43μm2) were

deemed not a nucleus by the reviewers. An additional 1,380 nuclei (6.78% of total nuclei, mean

nucleus area of 16.00μm2) were manually detected but were missed by the algorithm. For 460

of the detected nuclei (2.26% of total nuclei, mean nucleus area of 14.21μm2), the detection

was considered incorrect and was corrected by manual annotation. The correction resulted in

the annotation of 522 nuclei. Therefore, the 460 detected nuclei (mean nucleus area of

19.62μm2) made up 88% of the true number of nuclei.

The matching percentages for each setting per resolution are presented in Fig 4. For all res-

olutions, the S2 scan setting had the highest matching percentage. In all resolutions, the match-

ing percentage for this setting was above the benchmark (90.25% of nuclei matched)

established by matching manual annotations. The matching percentage again more promi-

nently differed between resolutions than between scan settings. A decrease in the chosen reso-

lution increased the matching percentage, independent of the scan setting.

The LOAs, which indicate how much difference is found between matched nucleus mea-

sures, and their bootstrap percentile intervals are shown in Fig 5. None of the settings dis-

played a consistently smaller LOA compared to other settings. However, the setting previously

noted to have the best matching percentages (S2, as coined in Table 1) is consistent among the

groups with smaller agreement intervals. The differences in widths of the LOAs are larger

between resolutions than between scan settings, which is in line with our previous results.

The LOAs concerning the median H&E values of the nucleus are also shown in Fig 5.

Again, there is no setting with a consistently smaller LOA, but those belonging to the afore-

mentioned best-matching setting are among the smaller LOAs.

Fig 3. Density (probability per unit) of the variable nucleus area in μm2 across all included scans for the resolution settings 0.11, 0.22, and 0.44 μm per

pixel.

https://doi.org/10.1371/journal.pone.0309740.g003
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Optimal scan setting validation

Matching percentages for the chosen optimal setting in comparison to the default setting are

shown in S2 Fig. In four out of five samples, the chosen setting had a higher matching percent-

age than the default setting. All matching percentages for the chosen setting were superior to

the aforementioned manual benchmark of 90.25%, whereas for one sample, the default setting

attained a matching percentage under the benchmark (88.28%).

LOAs for the chosen setting versus the default setting are shown in S3 Fig. Consistency in

nucleus area measurements was relatively similar in both settings with the exception of one

sample, in which the default setting had less consistent measurements. For hematoxylin values,

three samples showed similar LOAs for both settings, one was more consistent in the chosen

setting and one was more consistent in the default setting. Finally, for eosin values, in three

samples, the default setting was relatively more consistent than the chosen setting. In the

remaining two samples, both settings yielded similar consistency in one sample and the chosen

setting showed more consistency in the other.

Discussion

In this study, we explored design methods to select the optimal setting for the generation of

high-quality WSI using digital microscopy via an optimization procedure. The main factors

that aided our decision were inter-scan variability and quality of nucleus detection via a seg-

mentation model based on AI. The goal was to obtain a scan setting that provided images with

Fig 4. Matching percentages of pairwise comparisons within repeats of the same scan settings for resolutions of 0.11, 0.22, and 0.44 μm per pixel. The

Y-axis is limited from 85 to 100% for visual purposes. The dashed black line indicates the benchmark-matched percentage calculated by comparing manual

annotations. Setting names are detailed in Table 1.

https://doi.org/10.1371/journal.pone.0309740.g004
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consistent segmentation results and minimal artifacts present while optimizing two non-

image-related limiting factors: time and data volume. An additional result of a consistent scan

setting was to ensure that few or no slides needed to be rescanned, minimizing the time lost in

routine analyses. This added quality also aids computer vision models, which prefer higher-

quality data than the human eye, to notice tissue features that an expert can ignore [18, 19].

Fig 5. Limits of agreement between matched nuclei of pairwise comparisons within repeats of the same scan settings (S1-8). LOAs are shown on a ratio

scale (in %). (A) shows the nucleus area for 0.11μm/pixel resolution, (B) for 0.22μm/pixel, and (C) for 0.44μm/pixel. The median hematoxylin value of the

nucleus is shown in (D) for 0.11μm/pixel, (E) for 0.22, and (F) for 0.44. The median eosin value of the nucleus is shown in (G) for 0.11μm/pixel, (H) for 0.22,

and (I) for 0.44. Comparisons are shown in order of scan 1 vs. 2, scan 1 vs. 3, and scan 2 vs. 3 within each setting. Confidence intervals around the median,

2.5%, and 97.5% quantiles were built as a bootstrapped percentile interval. Setting names are detailed in Table 1.

https://doi.org/10.1371/journal.pone.0309740.g005
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Throughput time as a trade-off aspect

One of the key parameters while implementing a digital pathology workflow is throughput

times. Efficient scanner usage time yields more data to train algorithms to support diagnostics.

By reducing scan times, faster image analysis becomes feasible, leading to an increased likeli-

hood of reporting biomarker results promptly. Previous research highlights the significance of

timely reporting in delivering high-quality clinical care to non-small-cell lung cancer patients

[20]. In this context, extremely long scan times, such as those belonging to the previously

labeled ’reference standard’ scanning type, are unfavorable. Even a slight increase in scan time

by increasing the maximum focus points can add up quickly in an automated workflow.

Hence, it is essential to assess whether increased scan times yield improved outcomes concern-

ing the quality and consistency of detection.

Algorithm performance and consistency

Three resolutions were considered for nucleus detection via the StarDist algorithm. In the low-

est resolution of 0.44 μm per pixel, nuclei boundaries were not segmented adequately, leading

to a loss in accuracy. Higher resolutions have good segmentation boundaries, but some large

nuclei are only partially segmented on the highest resolution of 0.11 μm per pixel. This finding

is related to the resolution of the images used to train the StarDist algorithm. The model is

trained on the MoNuSeg 2018 dataset, which uses annotated data extracted from The Cancer

Genome Atlas (TCGA) tissue slides with a corresponding approximated pixel size of 0.25 μm

[16]. The dataset was also acquired using a 40x objective, but additional information is lacking.

As a result, an increase or decrease in resolution of a factor of two will yield slightly different

results after segmentation.

In addition, a lower resolution yielded a more significant matching percentage and agree-

ment regarding inter-scan variability. However, the image quality and subsequent detections

using a resolution of 0.44 μm were considered suboptimal. Lower resolutions lead to a decrease

in the number of detected nuclei. However, the detected nuclei had a larger area.

The decreasing resolution indicated a general upward shift of the nucleus area (Fig 3). A

nucleus detected by the algorithm will have an expected area based on its number of pixels. A

higher-resolution image will have more pixels per nucleus, while an image of lower resolution

will have fewer pixels per nucleus. This can yield detected nucleus areas that are shifted

upwards for low-resolution images and shifted downwards for high-resolution images.

As a result, detections became more homogeneous, which increased the likelihood of find-

ing a match and having similar traits to that match. This points to a limitation in using these

measures to choose the optimal scan setting, as in this case, consistency between images did

not point to quality but to loss of information. Additionally, the highest resolution yields a sec-

ond peak in the left side of the distribution of the nucleus area, suggesting an increase in arti-

facts, i.e., small, color-intensive spots that will be falsely recognized as nuclei.

Finally, based on the matching percentages over all resolutions, scan setting S2 performed

the best. However, no specific scan setting should be chosen when comparing the LOAs

between measurements of the nucleus area because of lower inter-scan variability. Even the

lowest matching percentages were not far below the provided benchmark. The assertion that

time-intensive scanning methods are unsuitable in a clinical context is particularly strength-

ened by the above analyses, which do not show a clear relationship between an increased

throughput time and image quality or inter-scan variability.

Considering all the abovementioned factors, scan setting S2 provides a good balance, was

chosen as optimal scan setting and will be used for further analyses. The analysis for the valida-

tion of this setting by comparing it to a default setting showed that matching percentages were
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in most cases superior for the chosen setting. When comparing the consistency using LOAs,

the chosen setting was superior for nucleus area values, was relatively similar for hematoxylin

values, and was inferior for eosin values. Considering that all measurements were taken from

the nucleus of each cell while eosin is inherently more relevant in cytoplasm, we consider

eosin to be the least important of the three variables. As a result, we could interpret the consis-

tency of the chosen setting to be superior.

The scanning resolution of 0.11 μm per pixel is chosen for two reasons. First, images

scanned on this resolution will still have the ability to be downsampled into lower resolutions

when necessary for algorithmic purposes. Second, scanned images will eventually be used as

training samples to develop new deep-learning algorithms for digital pathology. This field will

continue to improve, so higher-resolution images will eventually be generated. Resolution-

based artifacts such as the wrongly segmented small spots mentioned before will be reduced

with an increasing amount of annotated training data of higher resolution. It is therefore nec-

essary to adapt to the ever-growing field of machine learning as quickly as possible.

By showing our optimization process, we hope to provide a guideline for future WSI gener-

ation, especially when downstream analysis using computer vision models will be performed.

Limitations and future research

Scientific reports on the impact of image quality on the performance of deep learning and seg-

mentation techniques are relatively scarce, with only a few papers available on this subject [18,

21, 22]. Therefore, our study aims to contribute to establishing a robust methodology for opti-

mizing tissue scans in digital pathology. However, it is essential to acknowledge certain limita-

tions inherent in this paper.

In our analyses, only three technical replicates were used per scan setting. This resulted in

only three possible comparisons to the reference standard per set. Similarly, only three possible

pairwise comparisons within a setting could be used. Each scan was therefore used in two out

of three comparisons. Thus, even one suboptimal scan would have influenced the calculations

and subsequent analyses. This is the case for one scan made with the S5 setting. As shown in

Figs 4 and 5, LOAs concerning compared values of eosin of S5 scans were greater than 100%,

indicating a general shift in color during the scanning process, which was confirmed through

variable distribution inspection. In addition, a key assumption in the method presented above

is the assumption of lack of interaction between disease-image features and the nucleus detec-

tion algorithm. In practice, though, the specific properties of the used nucleus detection algo-

rithm potentially influenced our findings.

Our methods did not include a full factorial design, which would have included other fac-

tors such as artifact detection, image compression, and more exploration of the settings from

the Zeiss Axioscan. Future research could include a complete list of settings or, if accessible,

images produced by other scanners. Adding more images in the analysis workflow would also

increase the generalizability of the results. Our analyses are limited to H&E-stained lung tissue,

whereas similar analyses can be performed on fluorescent- or other immunohistochemical

stainings.

Conclusion

In this study, we presented a method for comparing instrument settings to scan and digitize

pathological tissue consistently and qualitatively. With a list of possible scan settings, replicate

images of the same tissue were made, and nuclei on these images were detected and subse-

quently compared between replicates in a measurement agreement framework. Finally, one

scan setting was deemed optimal because of its consistency shown within this framework, as
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well as its favorable throughput time. Within the developing field of digital pathology, we are

convinced this paper contributes to the rigorous investigation of the importance of image

quality of pathological tissue.

Supporting information

S1 Table. Mean and standard deviation of nucleus area of detected nuclei (in μm) per scan

for each scan setting with AI detections on resolutions 0.11, 0.22, and 0.44 μm. S1-8 refer to

the settings mentioned in the manuscript.

(DOCX)

S1 Fig. Limits of agreement between matched nuclei of pairwise comparisons between any

scan (settings S1-8) and the ’reference standard’ scan. LOAs are shown on a ratio scale (in

%). (A) shows nucleus area for 0.11μm/pixel resolution, (B) for 0.22μm/pixel, and (C) for

0.44μm/pixel. The median hematoxylin value of the nucleus is shown in (D) for 0.11μm/pixel,

(E) for 0.22, and (F) for 0.44. The median eosin value of the nucleus is shown in (G) for

0.11μm/pixel, (H) for 0.22, and (I) for 0.44. Comparisons to the reference standard are shown

in order of scans 1, 2, and 3 of a given setting, measuring their likeness to this reference stan-

dard. Confidence intervals around the median, 2.5%, and 97.5% quantiles were built as a boot-

strapped percentile interval. No setting with a consistently smaller agreement interval could be

found, though slight differences in settings could still be noted. Wider LOA’s were found for

scans using the 0.44 μm/pixel resolution, as the reference standard is created at a 0.11μm/pixel

resolution. Matched nuclei will therefore have a larger area in the low resolution scans, result-

ing in a larger discrepancy. Setting names are detailed in Table 1.

(TIF)

S2 Fig. Matching percentages of pairwise comparisons within repeats of the same scan set-

tings for D (default setting) and C (chosen optimal setting). All cells were divided into those

who found a match in the comparison (matched), those who did not (unmatched) and those

not considered due to lying in non-overlapping areas (edged out). Samples 1–5 are shown sep-

arately. The Y-axis is limited from 87.5% to 100% for visual purposes. The dashed black line

indicates the benchmark-matched percentage calculated by comparing manual annotations.

(TIF)

S3 Fig. Limits of agreement between matched nuclei of pairwise comparisons within

repeats of D (default setting) and C (chosen optimal setting). LOAs are shown on a ratio

scale (in %). (A-E) show nucleus area LOAs for samples 1 through 5 respectively. The median

hematoxylin value of the nucleus is shown in (F-J) for samples 1 through 5 respectively. The

median eosin value of the nucleus is shown in (K-O) for samples 1 through 5 respectively.

Comparisons from left to right: scan 1 vs. 2, scan 1 vs. 3, and scan 2 vs. 3 within each setting.

Confidence intervals around the median, 2.5%, and 97.5% quantiles were built as a boot-

strapped percentile interval.

(TIF)
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