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Abstract

Plain language summary

Background Across Europe, countries have responded to the COVID-19 pandemic with a
combination of non-pharmaceutical interventions and vaccination. Evaluating the
effectiveness of such interventions is of particular relevance to policy-makers.

Methods We leverage almost three years of available data across 38 European countries to
evaluate the effectiveness of governmental responses in controlling the pandemic. We
developed a Bayesian hierarchical model that flexibly relates daily COVID-19 incidence to
past levels of vaccination and non-pharmaceutical interventions as summarised in the
Stringency Index. Specifically, we use a distributed lag approach to temporally weight past
intervention values, a tensor-product smooth to capture non-linearities and interactions
between both types of interventions, and a hierarchical approach to parsimoniously address
heterogeneity across countries.

Results We identify a pronounced negative association between daily incidence and the
strength of non-pharmaceutical interventions, along with substantial heterogeneity in
effectiveness among European countries. Similarly, we observe a strong but more
consistent negative association with vaccination levels. Our results show that non-linear
interactions shape the effectiveness of interventions, with non-pharmaceutical
interventions becoming less effective under high vaccination levels. Finally, our results
indicate that the effects of interventions on daily incidence are most pronounced at a lag of
14 days after being in place.

Conclusions Our Bayesian hierarchical modelling approach reveals clear negative
and lagged effects of non-pharmaceutical interventions and vaccination on confirmed
COVID-19 cases across European countries.

As soon as COVID-19 hit Europe in early
2020, non-pharmaceutical interventions such
as movement restrictions and social distan-
cing were employed to contain the pandemic.
Towards the end of 2020, vaccination was
available and promoted as an additional
defence. We analysed almost three years of
public COVID-19 data to determine how
effective both types of strategies were in
containing the pandemic across 38 European
countries. We developed a statistical model
to relate confirmed cases to how strict non-
pharmaceutical interventions were and to
vaccination levels. Both non-pharmaceutical
interventions and vaccination resulted in
decreased confirmed cases, although varia-
tion exists among countries. When an inter-
vention is applied, the effect on number of
confirmed cases could be seen most about
fourteen days after implementation.

When the COVID-19 pandemic hit Europe in the early months of 2020, the
only lines of defence took the form of non-pharmaceutical interventions
(NPIs), such as mobility restrictions, social distancing, and the closure of
schools, economic sectors, and leisure. Very strict and encompassing NPIs
are needed for a so-called suppression strategy, whereas they would be
relatively lighter for a herd immunity strategy. Most European countries

balanced both strategies, following a so-called mitigation strategy, aimed at
controlling viral circulation to such an extent that the health care system is
protected and burden for the population is kept at a reasonable level .
Measures adopted by countries or regions have been diverse and have
been changing over time. Depending on the country, NPIs were com-
plemented by vaccination campaigns starting towards the end of 2020 or
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early 2021. From then onward, there was a gradually increasing fraction of
fully vaccinated people’. Throughout most of the COVID-19 pandemic in
Europe, NPIs have been maintained to a varying extent along with
increasing vaccination levels in order to suppress the pandemic’.

Quantifying the effectiveness of NPIs and vaccination is of key
importance to inform policy-makers. As early as March 2020, evidence for
the effectiveness of NPIs was being compiled, emphasising the importance
of combining multiple NPIs rather than relying on individual measures™.
Soon after, Flaxman etal.” demonstrated that NPIs (e.g. national lockdowns)
strongly reduced transmission in Europe by developing a Bayesian
mechanistic model to link the infection cycle to key health-related and
epidemiological outcomes. This seminal study was followed by a multitude
of other efforts, varying in spatiotemporal extent, outcome, number and
type of interventions, and methodological approach, among other
characteristics™”. For instance, a considerable number of studies focused on
the effect of facial masking, with substantial evidence for its effectiveness
accumulating throughout the first year of the pandemic™™". Other studies
addressed compliance to NPIs instead of the effectiveness of NPIs per se and
identified considerable variation across space. For instance, Santos et al.”*
observed very high levels of compliance in Portugal, while lower levels of
compliance have been observed in other countries such as in Belgium
throughout later stages of the pandemic”. Downing et al."* have shown that
public compliance varies among NPIs, with the perceived effectiveness
being a more important driver compared to one’s fear of contracting
COVID-19.

As the availability of data increased throughout the pandemic, large-
scale modelling studies gathered increasingly solid evidence on the effec-
tiveness of individual NPIs, with limiting large gatherings, school closings,
internal movement restrictions being consistently identified as effective
NPIs, along with facial masking™". Other large-scale studies suggest that
combinations of less costly and less intrusive interventions can be equally
effective as drastic ones, such as national lockdowns'®, Sharma et al."”
showed that the efficacy of some NPIs dropped after the first wave.
For instance, they found school closures to be less effective during resurgent
waves, likely due to improved organisational safety measures. The
availability of vaccination also impacted the effectiveness of NPIs, with
patterns being modulated by or confounded with circulating variants (lar-
gely Wild-type in 2020, Alpha, Beta, and Gamma in early 2021 in Europe,
Delta in middle and late 2021, etc.”**"). For instance, Ge et al.”> shows that
both NPIs and vaccination jointly act to reduce cases, but that the effec-
tiveness of NPIs decreases with vaccination. They also found the effective-
ness of vaccination to be more sensitive to variants compared to the
effectiveness of NPIs.

The Stringency Index" has been developed as a convenient summary
measure for the package of NPIs adopted by a given country, summarising a
country’s approach in those domains that make up the index. These are:
school closing (C1); workplace closing (C2); cancelling public events (C3);
restrictions on gatherings (C4); closing public transport (C5); stay-at-home
requirements (C6); restrictions on internal movement (C7); international
travel control (C8); and launching public information campaigns (H1).
Each item is scored on an ordinal scale where the number of alternatives is
specific to each item. Upon scaling, 0 corresponds to no measures at all along
the dimensions present in the index, whereas 100 corresponds to the highest
level for all items”. As governmental interventions stabilised over the course
of 2022 across much of the globe, the Stringency Index is no longer being
recorded from 2023 onward’. A variety of other initiatives tracking the
strength of NPIs have been developed, emphasising different types of NPIs.
For instance, the Oxford Covid-19 Government Response Tracker also
developed the Comprehensive Health Index, which complements the
Stringency Index by also taking into account testing policy, contact tracing,
facial covering, vaccination policy and protection of older individuals*. The
Response Measures Database, developed by the European Centre for Dis-
ease Prevention and Control is yet another metric, specifically maintained
for 30 European countries”. Throughout the remainder of this paper,
we will, however, exclusively focus on the Stringency Index, as the

Comprehensive Health Index also includes vaccination data, and because
the Response Measures Database is only available for a limited number of
European countries.

In this paper, we capitalise on almost three years of data on daily
incidence, Stringency Index values and vaccination levels to study how
the combination of NPIs and vaccination shaped the COVID-19 epide-
miological time series of 38 European countries. Rather than proposing a full
set of explanatory variables to model the key outcome, our aim is to develop
and apply a hierarchical model that comprehensively captures the rela-
tionships between these three time-series, flexibly accounting for lagged
responses, non-linearities and interactions, as well as for the multi-country
setting.

Methods

Data selection and preparation

We selected all 38 Pan-European countries with a population size of at least
100,000 inhabitants for which the Stringency Index, the fraction of the total
population fully vaccinated, and confirmed cases are available. We retrieved
country-level Stringency Index and daily confirmed case data from the
Oxford Covid-19 Government Response Tracker project’, and country-
level data on the fraction of population fully vaccinated (i.e. having received
a primary series of COVID-19 vaccines) from OurWorldInData.org’ (data
retrieval: 17/05/2024).

We smoothed the daily confirmed cases using a centred 7-day rolling
average window to address reporting heterogeneity across days of the week.
As outcome of interest, we consider the daily confirmed case change
y; (i=1, ..., n), which is calculated as the ratio of the smoothed number of
confirmed cases of two subsequent days, subtracted by one. As such,
negative values pertain to the percentage decrease in number of cases, while
positive values pertain to the percentage increase in number of cases.

As systematic reporting on vaccination in OurWorldInData.org typi-
cally only starts from the first non-zero instance onward, we zero-imputed
the fraction of population fully vaccinated prior to the first non-zero
instance for each country. Furthermore, we used a linear interpolation
approach whenever missing data gaps of up to 50 consecutive days occurred
in the vaccination time series due to irregular reporting. At the time of data
retrieval, data on the fraction of population fully vaccinated was largely
missing for the Grand Duchy of Luxembourg and for Switzerland. Instead,
we used the fraction of population vaccinated (i.e. at least one dose) for these
countries (throughout the entire study period), lagged by a 28-day period to
account for the delay between the first and final shot required to achieve a
fully vaccinated status. We chose this delay based on guidelines for the
interval between doses for several widely used COVID-19 vaccines in these
countries, including the Pfizer-BioNTech (3 weeks) and Moderna (4 weeks)
vaccines™”. We verified this choice by screening governmental websites
and news coverage available for these two countries.

For each country and date, we computed lagged values of the Strin-
gency Index and fraction of population fully vaccinated, in order to deter-
mine the temporal delay between interventions and daily confirmed
case changes. Specifically, we consider a set of 56 daily lags, ranging
from 45 days before the confirmed case change (¢t — 45) to 10 days after
the confirmed case change (t + 10). The choice for this range is motivated
by epidemiological knowledge and has been verified by ensuring that
lags beyond this time window feature a negligible importance during
preliminary runs. We account for future lags (leads) up to 10 days to assess
whether changing interventions are a consequence rather than a cause
of confirmed case changes, and to assess whether future interventions
might impact confirmed case changes (e.g. through the early adoption of
upcoming measures).

Whenever the daily change in confirmed cases or any of the lagged
Stringency Index and fraction of the population fully vaccinated values is
missing, the data point is omitted from the analysis. In total, n =36, 355
data points across the 38 considered countries, ranging from 27/01/2020 to
28/12/2022, are included in this analysis. A graphical overview of the
available data is included in the Supplementary Information (Figs. S1-S2).
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Statistical modelling

We developed a Bayesian hierarchical distributed lag model to relate daily
confirmed case changes to past values of the Stringency Index and the
fraction of population fully vaccinated in a multi-country setting. The
development of this model was driven by two principal aims: (1) to flexibly
model the combined effect of both interventions, including non-linearities
and interactions, while simultaneously allowing individual countries to
deviate from overall patterns, and (2) to enable the model to estimate the
varying importance of past and future time lags from the data, rather than
requiring strong decisions from the modeller’s side.

Throughout the following, our notation presumes all observed
daily confirmed case changes y; to be arranged in a long vector format,
where the observations of all countries are stacked. We use the indexing
functions c(i) and t(i) to denote the country c and day ¢ of observation i
respectively.

We assume each observed daily confirmed case change y; (i=1, ..., n)
to follow a location-scale ¢ distribution with v = 3 degrees of freedom:

yi~Ts (#i?ai(i))7 1)

where y; is the linear predictor for observation i and o; is the country-
specific scale parameter for the corresponding country ¢ of data point i. The
scale parameters are modelled in a fixed fashion (i.e. a no-pooling scenario).
We specifically assume a location-scale ¢ distribution as preliminary
goodness-of-fit cheques revealed substantial excess kurtosis under a
Gaussian model likelihood (Supplementary Information; Fig. S3). We use
an identity link function to map the linear predictor to the expected values.
We model the linear predictor y; as follows:

u =P, +f( ST 1y, Vax :(i),r(i))
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where f; is the overall model intercept, SI7, and Vax}, are the time-

weighted Stringency Index and fraction of pépulation fully vaccinated of
country c at day ¢, fis a two-dimensional smooth function that describes the
combined average effect of Stringency Index and the fraction of population
fully vaccinated across countries, by . is a random intercept for country ¢, and
bs-and by, - are country-specific random slopes for the effect of Stringency
Index and the fraction of population fully vaccinated.

Following a distributed lag modelling approach®, time-weighted
Stringency Indices and fractions of population fully vaccinated are calcu-
lated as weighted averages:

10 10

SI zt = Z ()’1 ) SIc,t+1) and  Vaxj, = Z (Yz ’ Vaxc,r+1)7 (3)
I=—45 I=—45

where [ = —45, —44, ..., 9, 10 is the lag considered, y, is the relative weight of
lag I and SI., ; and Vax,, ; are the observed Stringency Index and the
fraction of population fully vaccinated of country cat day ¢ — . As indicated,
we want the relative lag weights y; to be estimated from the data rather than
imposing a specific structure from the modeller’s side. We model the raw
vector of lag weights y' = (v}, 7, ..,7}) ! using a Gaussian process prior
(szogn):

Yy ~GP(0, k7 (AD), @)

where k”)(Al) is an exponentiated quadratic covariance function that
models how similarity in lag weights decays along with an increasing lag

distance Al:
1 [ A?
) — . _ .
KY(A) = v exp( 5 (p(y)> ), (5)

where o is a marginal variance parameter that controls the amplitude in lag

weight differences, and p? is a length scale parameter that controls the rate
at which the correlation among lags decays along with increasing Al The
exponentiated quadratic kernel, also known as the radial basis function
kernel, is a commonly used kernel in Gaussian process regression and was
chosen to ensure smoothness among the highly correlated subsequent lags,
as it is infinitely differentiable’’. To constrain the vector of lag weights y to
sum to one, the raw lag weights y' are transformed using the softmax
function:

exp(y1)

S e(y)

©)

We assume an identical delay for the effects of the Stringency Index
and the fraction of population fully vaccinated. While the model
could easily accommodate distinct delays, the delayed effect of vaccination
can be expected to be poorly identified due the gradual and monotonous
increase in vaccination levels, motivating the assumption of an iden-
tical delay.

As both the Stringency Index and the fraction of population fully
vaccinated might influence the change in daily confirmed cases Y in a non-
linear fashion, and as they might interact accordingly, we model their
average combined effect across countries through the smooth two-
dimensional function f. Some regions of the parameter space might be
prone to overfitting due to data sparsity, motivating us to model this
function using a tensor-product spline surface with a low number (4) of
basis functions along each dimension:

F(sttvax) = 33 (wl) B0 (s12) B (Vaxl)). o)

i=1 j=1

-

where Bl(-f)(-) and B]w (+) are the 7'th and jth cubic basis functions with
equally spaced knots along each dimension, and wg) is their corresponding
weight coefficient.

In addition to the country-specific random intercepts by, we also allow
each country to linearly deviate from the overall effect through the country-
specific random slopes bs; . and by, .. We assume the vector of country-
specific effects b, = (b, , bg; ., byae) | to follow a multivariate location-
scale t distribution:

b.~MVT,(0, %), ®)

with v degrees of freedom (estimated from the data), zero-mean vector
0 =(0,0,0)" and variance-covariance matrix £ = diag(7) - Q - diag(7),
where 7 is a vector of scale coefficients and Q is a correlation matrix.
By assuming a multivariate location-scale ¢ distribution for the random
effects, we allow the model to fit deviant country-specific responses
while simultaneously preventing these countries from affecting global
patterns.

To ascertain that our findings are not affected by confounding caused
by temporal dynamics such as the appearance of variants of concern and
behavioural changes, we performed a sensitivity analysis by developing a
second model that features a country-specific temporal Gaussian process,
capturing temporally structured residual patterns. The model structure is
identical compared to the main model, except for the additional smooth
country-specific functions g

#i =By +f< SI:(i),t(i)v Vax :(i)ﬂi)) + bO,c(i) + bSI,c(i) - SI :(i),t(i)
+ byaccy VX 40y + 8o (1D))-

(©)

To ease the computational burden, we use regularised B-splines projected
Gaussian processes in a similar fashion as ref. 32 instead of exact Gaussian
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processes, as the latter scale cubically with the number of days. First, we set
up 50 basis functions with equally spaced knots along the date range of our
study (1067 days in total, ie. t=1, ..., 1067):

gt = f)(w%?? BY0),

i=1

(10)

where ng) is the 7'th cubic basis function and wg-) is the corresponding
weight coefficient for country c. We chose 50 basis functions since pre-
liminary runs indicated that this allowed for sufficient temporal resolution.
The weight coefficients w® for each country are regularised through a
Gaussian process prior:

w® ~ GP(0, k9 (A1), (11)
where k®)(At) is an exponentiated quadratic covariance function, that
models how the covariance among weight coefficients decays along with the
number of days At that separates their respective knots:

2
K&(At) = a® - exp (—l <ﬁ> ),
¢ ¢ ) ©
pe
()

where ¢ is a country-specific marginal variance parameter that controls
the amplitude in temporal patterns,and p¢ is a country-specific length scale
parameter that controls the rate of temporal turnover.

We assume a weakly informative normal prior for the overall model
intercept 8, ~ N(0, 1), a Lewandowski-Kurowicka-Joe (LK]) prior for the
random effects’ correlation matrix Q ~ LKJ(2.0)”, a weakly informative
half-normal prior for the random effects’ covariance function’s scale para-
meters 7~/ "(0,0.2), informative inverse-gamma priors p) ~ Inv —
Gamma(5, 5) and p(fg) ~Inv — Gamma(5, 5) to constrain the GPs’ length
scales to a sensible range, weakly informative half-normal priors
V@ ~ N(0,10) and va® ~ N (0, 1) for the GPs’ marginal standard
deviation parameters, and weakly informative half-normal priors for the
country-specific residual standard deviation parameters o, ~ N"* (0, 1). We
assume the coefficients of the tensor-product spline basis functions to follow
anormal distribution w ~ A/(0, 1), with a weakly informative prior on their
scale parameter A ~ A (0, 1).

(12)

Model implementation

We implemented our Bayesian hierarchical distributed lag model in the
probabilistic programming language Stan and performed Markov chain
Monte Carlo (MCMC) sampling through the CMDSTANR v.2.31.0
package™ in Rv.4.2.2 (R Core Team™). Stan performs Bayesian inference by
means of a dynamic Hamiltonian Monte Carlo (HMC) algorithm, a
gradient-based MCMC sampler™.

Cubic basis functions for the effect of Stringency Index and fraction
of population fully vaccinated level, as well as for the daily basis functions,
are computed using the SPLINES package (R Core Team”) in R v.4.2.2.
The range of the Stringency Index and fraction of population fully vacci-
nated (expressed as percentage) naturally ranges over [0, 100]. For com-
putational efficiency, we scaled these values to the range [—0.5, 0.5], but
we rescaled all output shown to the original scale. For ease of interpretability
and compactness, we linearised country-specific responses to the Stringency
Index and fraction of population fully vaccinated (ie. the sum of the
smooth function and the effect of the random slopes) through ordinary
least squares (OLS) at each posterior iteration. As such, the posterior linear
effect of the Stringency Index and fraction of population fully vaccinated can
be succinctly visualised for each country. A detailed visual scheme is pro-
vided in the Supplementary Information (Fig. S$4) to further clarify this
procedure.

We ran four MCMC chains of 1000 iterations each, of which the first
500 were discarded as warm-up. As per Stan’s default settings, initial values
were uniformly drawn from the [—2, 2]-interval, and were appropriately

transformed for constrained parameters. The resulting 2000 posterior
samples are summarised using posterior means and 95% equal-tailed
credible intervals (bounded by the 2.5% and 97.5% samples from the dis-
tribution). We used the TIDYBAYES v.3.0.2 package” to visualise
the posterior distributions. We assessed model convergence both visually
by means of traceplots and numerically by means of effective sample
sizes and the Potential Scale Reduction Factor R, for which all parameters
had R<1.1%. We performed posterior predictive cheques, which showed
satisfactory goodness of fit. We performed a sensitivity analysis to
ensure that the obtained results do not strongly depend on the prior
specifications. Visualisations of the traceplots, posterior predictive cheques
and the sensitivity analysis are shown in the Supplementary Information
(Figs. S5-S8).

The full code for the automated data retrieval pipeline and statistical
analysis is available on GitHub through https://github.com/MFajgenblat/
covid_stringency_effect and on Zenodo™.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Overall effectiveness of interventions
We estimated the combined effect of the Stringency Index and the fraction
of population fully vaccinated on the change in daily confirmed cases across
38 European countries using almost three years of data. Our model captures
the combined average effect of both intervention measures across countries
by means of a two-dimensional response surface, shown in Fig. 1.
Qualitatively, a low Stringency Index combined with a low fraction
of population fully vaccinated is linked to very strong increases in daily
confirmed cases (change in daily confirmed cases > 0) (Fig. 1; lower left
corner). Higher values of the Stringency Index or the fraction of population
fully vaccinated are expected to lower the daily confirmed case changes
(Fig. 1; right and upper half). Beyond a certain point, high values for the
Stringency Index or for the fraction of population fully vaccinated are
expected to confer a reduction in the daily confirmed cases (change in daily
confirmed cases < 0). High values of the Stringency Index combined with a
high fraction of population fully vaccinated, however, feature a positive
change in daily confirmed cases (Fig. 1; upper right corner). Importantly, the
absence of data in large zones of the two-dimensional stringency-vaccina-
tion space (especially across countries) leads to a high level of uncertainty
and prevents meaningful inference in these zones of the response
surface (Fig. 1).

Inter-country heterogeneity in effectiveness
We observe important differences in the effects of the Stringency Index
among countries (Fig. 2). All countries show a clear negative (>99% pos-
terior probability) but highly variable effect, with the exception of Belarus,
for which the evidence of a negative effect is lower (92.8% posterior prob-
ability). This variability is reflected by the large scale coefficient 7, (posterior
mean 0.070, 95% CrlI [0.052, 0.091]) for the country-specific random slopes
of the Stringency Index, as well as by the low estimated degrees of freedom v
for the multivariate location-scale ¢ distribution used to model the country-
specific effects (posterior mean 19.352, 95% CrI [4.569, 51.787]). The three
countries with the strongest effect of the Stringency Index are Italy, Portugal,
and Spain. In these countries, raising the Stringency Index by ten units unit
confers a posterior mean reduction in the change in daily confirmed cases by
0.033, 0.030 and 0.028, respectively. Though seemingly small, these esti-
mated effects can be highly effective to control an epidemic as the Stringency
Index can be raised by more units, and as their effect is multiplicative over
the course of days during which a given level of stringency is held.
Belarus, Russia, Moldova and Ukraine are the countries with the
weakest negative effects. In these countries, raising the Stringency Index by
ten units confers a posterior mean reduction in the change in daily con-
firmed cases by only 0.002, 0.004, 0.004 and 0.005, respectively.
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Predicted change
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Fig. 1 | Overall effect of the Stringency Index and vaccination levels. Combined
effect of the Stringency Index and the fraction of population fully vaccinated across
countries on the daily confirmed case changes, as estimated by the two-dimensional
tensor-product spline function f, for the average country. Original data points are
shown as black dots. Zones with no or poor data availability (defined as the lower
tercile region of a bivariate normal kernel density smooth of the original data points,
with bandwidth 20) have been whited out as these zones pertain to mere

100

in daily confirmed cases
| I
. .
0 0.025 >0.05

extrapolation, preventing meaningful inference. a displays posterior mean predic-
tions, (b) displays the lower bounds of 95% credible intervals, and (c) displays the
upper bounds of 95% credible intervals. Green zones pertain to combinations of the
Stringency Index and the fraction of population fully vaccinated that are expected to
confer an absolute reduction in daily confirmed cases, while red zones are expected
to confer an absolute increase. Yellow zones correspond to a zero change in
confirmed cases.

Similarly to the Stringency Index, the fraction of population fully
vaccinated shows a clear negative effect across most countries. Though
inter-country variation is also present, it is noticeably lower compared to the
variation present in the country-specific responses to the Stringency Index.
This is reflected by the random effect’s scale coefficient 75 (posterior mean
0.042, 95% CrI [0.031, 0.055]), with >99.9% posterior probability of this
coefficient being lower than the one that captures inter-country variation in
response to the Stringency Index. The countries Iceland, Finland, and
Belarus display a lower statistical support for a negative effect compared to
the other countries.

Our findings are robust against altered modelling decisions, as
demonstrated by multiple sensitivity analyses. First, prior sensitivity ana-
lyses demonstrate that alternative prior specifications yield almost identical
posterior distributions of model parameters (Supplementary Information;
Fig. S7). Second, the omission of outlying countries such as Belarus does not
meaningfully impact findings for the other countries (Supplementary
Information; Figs. S8-9). Third, an alternative model specification in which
temporally structured residual variation is modelled through country-
specific Gaussian processes, yields quantitatively different but qualitatively
consistent patterns (Supplementary Information; Fig. S10), despite identi-
fying strong temporal patterns for some countries (Supplementary Infor-
mation; Fig. S11).

Delayed effectiveness of interventions

The estimated delay in the effect of the Stringency Index and the fraction
of the population fully vaccinated is shown in Fig. 3. The posterior median
lag with the highest relative weight equals 14 days prior to the confirmed case
(95% CrI [12, 15]), which corresponds to the amount of time required for
interventions to impact the change in daily confirmed cases most. 95% of the
cumulative lag weight is reached by day 24 (95% CrI [20, 33]), indicating that
interventions do not meaningfully impact the change in daily confirmed
cases afterwards. A posterior median fraction of 0.03% (95% CrI [0.00, 0.34])
of the lag weight is allocated to positive lags, indicating that the confirmed
case changes are almost exclusively influenced by past interventions, rather
than by upcoming interventions. When interpreting the delay between
interventions and the daily confirmed case changes, it is important to note
that our estimates also include an administrative delay, as the official
registration of a confirmed case is typically lagged compared to the true onset
of infection. However, our delay estimates do not feature any additional lag
due to data preparation, as we used a centred 7-day rolling average window
to smooth out intra-week reporting heterogeneity.

Discussion
Our analysis reveals a strong link between the change in daily confirmed
cases and the Stringency Index and the fraction of population fully
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Fig. 2 | Inter-country heterogeneity in the effect of the Stringency Index and
vaccination levels. Country-specific estimates for the intercept (a), the effect of the
Stringency Index (b) and the fraction of population fully vaccinated (c), represented
by 50, 80, 95 and 99% credible intervals. For the sake of interpretation, the shown
intercept values are adjusted to represent the predicted change in daily confirmed
cases when the Stringency Index and the fraction of population fully vaccinated
equal 0. The country-specific effects of the Stringency Index and the fraction of
population fully vaccinated are derived from the smooth two-dimensional function f

0.99 0.95 0.8 mm 05

(describing common patterns across countries) and the country-specific random
slopes b, ;) and b, (;), and have been linearised using ordinary least squares (at each
posterior iteration) for the ease of interpretability and compactness. Their value
represents the predicted change in daily confirmed cases upon a ten-unit change in
the Stringency Index or a 10 percentage point change in the fraction of population
fully vaccinated, conditionally on a 0 value for the other variable. A schematic
overview of the procedure followed to derived the linear slopes is provided in the
Supplementary Information (Fig. S4).

vaccinated across Europe. Furthermore, the estimated delay function shows
that past values of the Stringency Index are the most important in influ-
encing present cases, hinting at the causal direction of the relationship
between governmental interventions and the change in daily con-
firmed cases.

The effect of the Stringency Index varies strongly across countries.
Strong effects are beneficial as a lower Stringency Index is sufficient to keep
the epidemic under control. Variation in effect strength can be due to,
among others, ineffective measures, slow implementation, too frequent
changes, civil inertia, civil disobedience and pandemic fatigue***'. The
effectiveness of NPIs as measured by the Stringency Index can be strongly

influenced by the level of population compliance. For instance, a study on
compliance in Portugal indicates high adherence to NPIs, which likely
enhances their effectiveness'’. In contrast, lower compliance in other
countries could diminish the impact of similarly stringent measures, thus
affecting the overall relationship between the Stringency Index and changes
in daily confirmed cases. Low apparent effectiveness might also be due to the
effectiveness of voluntary behavioural changes*.

The countries Portugal, Italy, and Spain display the highest effective-
ness with respect to the Stringency Index, meaning that relatively little
interventions are sufficient to prevent confirmed cases from rising. Several
factors likely contribute to this observation. Italy was one of the first
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Fig. 3 | Delay in the effectiveness of interventions. Estimated delay in the effect of
the Stringency Index and the effect of the fraction of the population fully vaccinated
on the change in daily confirmed cases, modelled as a Gaussian process and

visualised by means of 50, 80, 95 and 99% credible intervals. For each considered lag
I, the curve represents the estimated relative weight y;.

European countries to be severely impacted by COVID-19 and imple-
mented stringent measures early on, which remained in place over time.
Similarly, Spain experienced significant outbreaks, including during the
summer of 2021 due to tourism, but Spanish residents continued to adhere
to precautionary measures. Both countries maintained relatively stable and
consistent interventions, unlike some other European nations, such as the
Czech Republic, where measures fluctuated more. Portugal, being geo-
graphically isolated in the southwestern corner of Europe, experienced less
transit traffic compared to countries such as Italy or Spain. This isolation,
combined with prolonged and robust governmental measures, resulted in
high public trust and a notably high vaccination rate. Portugal also imple-
mented unique policies, such as differentiated measures for weekdays and
weekends, which allowed essential activities like work and school to con-
tinue while reducing non-essential movement. For instance, inter-regional
travel was permitted during the week but restricted on weekends, effectively
limiting occasional interactions that would have otherwise substantially
contributed to transmission. These strategic and consistent approaches
likely played a crucial role in the higher effectiveness of NPIs observed in
these countries.

Vaccination helps to bring down the required non-pharmaceutical
interventions (NPIs; which are expressed in the Stringency Index) to
manage the epidemic”. Vaccination is especially effective when a high
percentage of the population has been vaccinated (herd immunity*’). Hence,
aiming for the higher vaccination levels can be beneficial, even (especially) if
the vaccination levels are already high. The effect strength of vaccination
also varies across countries. In line with Ge et al.”%, our findings indicate that
the effectiveness of NPIs decreases with increasing vaccination levels.
Additionally, we observe that the combination of high stringency and high
vaccination levels is linked to increasing changes in confirmed cases. This
outcome can be attributed to several countries that experienced severe
outbreaks from September 2021 to March 2022 despite high vaccination
rates, including Austria, Cyprus, Italy, The Netherlands, Norway, and
Switzerland. During this period, attempts to suppress these outbreaks
through NPIs had limited success. This is likely due to a combination of
factors, including the emergence of variants of concern, notably the highly
transmissible and immune-escaping Omicron variant*****’, and pandemic
fatigue, which resulted in reduced compliance with NPIs**. Overall,
mechanisms such as the appearance of variants of concern and the reduced
compliance with NPIs can be expected to confound the effectiveness of
vaccination levels regardless of the Stringency Index, leading to apparent

reduced effectiveness. This mechanism might be responsible for the weak
relationship between vaccination and confirmed case changes in Norway
and Iceland as identified in our study, while other more targeted studies did
demonstrate a strongly beneficial effect of vaccination on public health in
these countries™.

Variation in the effectiveness of vaccination can also arise from dif-
ferences in vaccination policies”. In our analysis, countries featuring suc-
cessful prioritisation strategies are expected to display a higher estimated
effectiveness of vaccination compared to other countries. Time-varying
differences in vaccination policies among countries, however, can be
expected to yield patterns of temporally changing effectiveness, which are
left unexplained by the model as countries are only allowed to deviate in a
linear fashion from overall patterns through random slopes.

Throughout the analysis, Belarus was identified as a strongly deviant
country with respect to the effects of interventions. This country displays
weak links between the Stringency Index and the fraction of population fully
vaccinated on the one hand, and the confirmed case changes on the other
hand. Using reported COVID-19 cases is challenging as these have largely
been underestimated in many countries***. Given the number of countries
and the long observation period involved, we estimate that the overall effect
is relatively well captured, but spatial and temporal patterns in under-
reporting will likely contribute to the large variation in effect between
countries and might partly explain the deviant result for Belarus. For
instance, note that the country’s number of reported cases remains very flat
and almost never exceeds 200 per million before reaching a peak in March
2022. Additionally, extreme differences exist between the reportedly low
COVID-19 mortality and excess mortality reaching 70% at the end of
2020. On 31 March 2021 (last available data), Belarus reports a total of 235
COVID-19 deaths per million inhabitants, compared to a cumulative excess
mortality of 3.274 deaths per million for the same period™. Accordingly,
under-reporting and lack of accuracy in reporting daily cases is very
probable. The model we developed is, however, robust against such issues
due to the use of a location-scale ¢ distribution. This approach effectively
reduced the impact of outlying countries, as demonstrated by the unaffected
results when excluding Belarus from the analysis (Supplementary Infor-
mation; Figs. S8-59), and highlights the merits of heavy-tailed distributions
when analysing complex multi-country.

As opposed to the weak effects of the Stringency Index and the fraction
of population fully vaccinated, Belarus features the lowest intercept of all
considered countries and, hence, shows the smallest positive change in daily

Communications Medicine | (2024)4:178



https://doi.org/10.1038/s43856-024-00600-0

Article

confirmed cases in the complete absence of interventions. Even if this pat-
tern did not solely arise from poor data quality, the ability of a country to
(better) keep the epidemic situation under control without any intervention
(through, for example, the buildup of natural immunity) is not necessarily
beneficial as it might have detrimental consequences beyond the registered
confirmed cases. Indeed, several lines of evidence suggest that Belarus faced
a strongly increased excess mortality compared to other European
countries’".

The Stringency Index and the fraction of population fully vaccinated
influence the daily confirmed cases most with a lag of approximately
14 days, and their effect is estimated to be negligible beyond ~24 days prior
to confirmed cases (<5% of cumulative lag weight). Policymakers reacting to
peaking confirmed cases by imposing additional NPIs might induce an
apparent but non-causal relationship between confirmed case changes and
the Stringency Index. While single-lag analyses would fail to rule out this
mechanism, our distributed lag approach enabled us to show that this
mechanism is unlikely, as the amount of weight assigned to future lags is
negligible. Nevertheless, we found that past lags as small as 5 days still hold
non-negligible importance. Given that the combined duration of the
incubation period, the time from symptom onset to diagnosis, and the
reporting delay typically amount to considerably longer delays, this suggests
that interventions might already impact transmission before their official
implementation. This might be due to early adoption following the com-
munication of upcoming interventions.

Despite the clear findings, it is important to acknowledge a number
of limitations of this study. For instance, the use of the Stringency Index
precludes us from determining the effectiveness of individual NPIs or the
interactions among them. Examining the heterogeneity in the effectiveness of
individual NPIs across different countries would be particularly valuable, as it
could provide insights into the optimal implementation of various types of
NPIs. Moreover, the change in daily confirmed cases is affected by a multi-
tude of other phenomena, including endogenous epidemiological processes,
meteorological factors, emerging variants of concern, temporal variation in
testing policy and behaviour, waning immunity, stringency of governmental
measures not properly captured by the Stringency Index (e.g. face mask
covering mandates), some of which might have a confounding effect or might
invoke complex feedback loops™*********, Though disentangling the relative
importance of these drivers is beyond the scope of this paper, an alternative
model that accounts for temporal dynamics yields similar results, and our
model could easily be extended to include additional predictors. The use of
confirmed cases might also blur epidemic patterns, for instance when testing
capacity does not scale appropriately during strong epidemic growth,
potentially affecting model estimates. Finally, the data are relatively sparse as
there are, e.g., only a few instances where a high Stringency Index and a high
vaccination rate co-occur. This makes it difficult to model non-linear effects
in more detail across the entire intervention space.

The Stringency Index effectively communicates a summary of the
intensity and comprehensiveness of government responses to COVID-19
over time and across countries. By aggregating multiple dimensions of NPIs
into a single metric, the index facilitates comparisons of policy strictness
between countries over time. However, it does not account for the com-
pliance with these measures, nor does it capture the nuances of how these
policies are implemented or enforced. Moreover, the Stringency Index only
summarises a subset of the broad set of possible interventions, and does not,
for instance, feature facial masking. In conclusion, the Stringency Index is an
aggregate measure with many disadvantages, but this study shows that there
is a strong relationship between a country’s NPIs (translated in the Strin-
gency Index) and its ability to control the epidemic.

Data availability

Source data used in this work can be retrieved online through the Oxford
Covid-19 Government Response Tracker’s GitHub repository (Stringency
Index and daily confirmed cases") and from OurWorldInData.org’s GitHub
repository (fraction of population fully vaccinated’).

Code availability

Fully documented code for automated source data retrieval and for the
statistical analysis is available on GitHub through https:/github.com/
mfajgenblat/covid_stringency_effect and on Zenodo®.
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