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Abstract  

Long-term stability is the primary challenge for the commercialization of perovskite 

photovoltaics, exacerbated by limited outdoor data and unclear correlations between indoor and 

outdoor tests. In this study, we report on the outdoor stability testing of perovskite mini-

modules conducted over a two-year period. We conducted a detailed analysis of the changes in 

performance across the day, quantifying both the diurnal degradation and the overnight 

recovery. Additionally, we employed the XGBoost regression model to forecast the power 

output. Our statistical analysis of extensive aging data showed that all perovskite configurations 

tested exhibited diurnal degradation and recovery, maintaining a linear relationship between 

these phases across all environmental conditions. Our predictive model, focusing on essential 

environmental parameters, accurately forecasted the power output of mini-modules with a 

6.76% nRMSE, indicating its potential to predict the lifetime of perovskite-based devices.  
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Metal halide perovskites, with their exceptional optoelectronic properties and compatibility 

with cost-effective large-scale production methods, hold promise as the next-gen photovoltaic 

(PV) solution. Extensive research over the past decade has boosted perovskite solar cell (PSC) 

efficiency, reaching certified values of 26% for single junction and 33.7% for perovskite/silicon 

tandem cells1. Furthermore, lab-made PSCs have passed several aging tests defined by the 

International Summit on Organic PV Stability (ISOS) protocols2. Despite remarkable progress, 

challenges such as scalability, long-term stability, and field reliability continue to hinder the 

commercialization of perovskite-based PV devices3. Several stress factors for the degradation, 

such as moisture4, UV light exposure5, and temperature6, have been widely reported in the 

literature. Most of the aging studies in PSCs have been implemented under indoor controlled 

conditions at low and elevated temperatures, either in constant or cyclic illumination7-9. The 

metastable behavior of perovskite PV is a complicated phenomenon in a historical context.  

While some studies report performance recovery in the dark and loss in perovskite device 

performance under light exposure9,10 some other studies report the opposite trend: performance 

degradation in the dark and restoration under the light11.  Furthermore, these two opposite trends 

were observed for the same devices at various degradation stages12. Moreover, the processes 

involved in both reversible and irreversible degradation were found to be sensitive to varied 

stoichiometries13 and dependent on the bias conditions of the device under test14. Reversible or 

temporary changes of perovskite devices observed indoors raise questions about the actual 

extent of degradation when operating in real outdoor environments15.  

So far, a number of studies have been conducted on outdoor performance monitoring of 

perovskite-based devices16,17. Outdoor stability testing has been reported for different types of 

perovskite devices, including single-junction cells18,19, modules16,20, and tandem cells21,22. 

Recently, 2-year outdoor data and 10-month outdoor data of perovskite cells have been 

presented23,24 but without the investigation of the impact of metastability effects on a daily basis. 

Diurnal changes of PCE values of carbon-based perovskite cells in a short-term outdoor 

exposure were investigated by De Rossi et al25.   

Most papers that refer to outdoor module measurements26-28 refer to a limited period of testing 

(<1 year) and do not investigate the diurnal metastable behavior of perovskites but rather the 

impact of temperature, spectrum in combination with life cycle assessment studies. Qualitative 

and quantitative investigation of the effect of light soaking effects on the metastable behavior 

of electrical parameters on a daily basis was presented recently by Ramec et al 29. However, this 

investigation refers to a limited period and does not extend over different degradation stages of 

the samples outdoors. An attempt to correlate the magnitude of nighttime degradation/recovery 

with performance recovery/degradation upon illumination for any major electrical parameter is 
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absent in the literature now. Finally, the investigation of evolution of the electrical parameters 

outdoor during nighttime in the field is absent from all the above publications.  

Machine learning is used to analyze large amounts of data and can be used as a powerful tool 

to evaluate PSCs and thus optimize their performance30-32. Studies have shown that it can 

accurately predict the power conversion efficiency of PSCs based on composition and structural 

parameters33,34. Machine learning algorithms have been utilized before35 using indoor stability 

data sets to predict the outdoor stability of perovskite-based devices. However, machine 

learning models using high-throughput outdoor stability data to predict the time-series power 

output is still limited in the literature. To this end, understanding the diurnal degradation and 

overnight recovery under real outdoor environmental conditions, along with developing a 

machine learning-based predictive model using outdoor stability data, will accelerate the 

advancement of perovskite photovoltaic technology.  

This study presents the outdoor stability of perovskite mini-modules over a two-year period, 

with an emphasis on the evolution of key electrical parameters. We conducted a detailed 

statistical analysis of current-voltage (I-V) curves from different perovskite device 

configurations tested in outdoor conditions and tried to correlate the diurnal and nighttime 

changes in the perovskite devices. This analysis revealed patterns of performance degradation 

during daylight hours and overnight recovery. We also explored changes in electrical 

parameters such as current, voltage, and fill factor across day and night cycles to gain insights 

into the impact of irradiance and temperature on the electrical performance of these devices, as 

well as the underlying mechanisms responsible for their diurnal fluctuations. Additionally, we 

developed a data-driven predictive model using the eXtreme Gradient Boosting (XGBoost) 

regression technique. This model predicts the output power time series of perovskite modules, 

incorporating major input parameters that affect power output while excluding diurnal 

variables. 

In this study, we employ perovskite mini-modules with the p-i-n device architecture, 

glass/ITO/hole transport layer (HTL)/perovskite/ electron transport layer (ETL)/ITO. The 

chosen perovskite composition for this research is FA0.8Cs0.2Pb(I0.94Br0.06)3. For the HTL, 

sputtered NiO is utilized, while the electron ETL is varied between two configurations: 

LiF/C60/BCP and LiF/C60/LiF. All test samples were laminated using the same material to 

ensure uniformity in environmental protection. This architecture of mini-modules has been 

previously reported to show high stability under indoor accelerated testing36.  We deployed 

these mini-modules for outdoor testing in a fixed plane array situated in Nicosia, Cyprus, from 

the summer of 2021 to the summer of 2023. Throughout this period, I-V measurements were 

consistently gathered over several months to evaluate the performance. A comprehensive 
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breakdown of the sample characteristics, configurations and initial electrical characteristics at 

standard testing conditions is detailed in Table 1, which can be found in Supplementary 

Discussion 1. The outdoor performance data discussed in this work pertains to the exposure 

period detailed in Table 1.  

Table 1: Summary of the major structural and (initial) electrical characteristics in the perovskite samples studied 

in this work.   

Mini 

Module 

ID 

Exposure 

period 

Perovskite 

Absorber 

Electron 

Transport 

Layer (ETL) 

Hole 

Transport 

Layer 

(HTL) 

Isc 

(mA) 

Voc 

(V) 

FF(

nor

m.u

) 

PCE(

%) 

ETL1_ 

A 

22/07/2021-

22/07/2023  

FA0.8Cs0.2Pb(I

0.94Br0.06)3 

LiF/ C60/ 

BCP 

NiO 13.81 7.11 0.56 13.38 

ETL2_

A 

11/08/2022-

11/08/2023 

FA0.8Cs0.2Pb(I

0.94Br0.06)3 

LiF/C60/LiF NiO 11.52 6.88 0.65 14.32 

ETL2_

B 

11/08/2022- 

11/08/2023 

FA0.8Cs0.2Pb(I

0.94Br0.06)3 

LiF/C60/LiF NiO 12.52 6.79 0.68 14.46 

 

The normalized daily PCE of the different perovskite mini-modules were calculated using daily 

averages of reverse I-V sweep parameters and plane-of-array pyranometer irradiance. The 

installation date and the operating conditions for each sample can be found in supplementary 

discussion 2. Supplementary discussion 3 shows the temporal profile of both the electrical and 

environmental parameters of the modules for selected clear sky days. 

 

Figure 1: Long-term performance and performance loss rate. (a) Daily average power conversion efficiency 

(PCE) in normalized units from perovskite mini-modules of different structures. The initial PCE is shown in Table 
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1. The lifetime of the samples under test ranges between some months up to two years of testing. Efficiency at 

reverse sweeps is reported on the graph. Performance ratio evolution over time for (b) ETL1_A and (c) ETL2_B 

sample. The performance loss rate was estimated with a differential evolution algorithm on the performance ratio 

time series. 

Figure 1 (a) shows that the different samples developed roughly the same PCE reduction over 

the first year of testing. To further evaluate the performance of the modules, the daily average 

performance ratio was measured on two representative samples, one for each configuration, 

over a period of one year. The performance ratio (PR) time series for ETL1_A sample was 

calculated for the period July 2021- July 2022 while for the ETL2_B sample was calculated for 

the period August 2022- August 2023 using the field measurements of the array DC power 

(Pmax) and in-plane irradiance. The PR indicates the overall effect of losses on the array’s rated 

output and is defined as the ratio of the array yield (YA) and the reference yield (Yr). Array 

yield is the sum of the array energy divided by the nominal power of the test PV array, while 

the reference yield is the sum of global irradiation at the plane of the array divided by the global 

irradiance at standard test conditions. Essentially, the PR describes the relationship between the 

actual/measured output and the theoretical/expected PV energy output for a given reporting 

period based on the system name-plate rating. Figures 1(b) and 1(c) show the computed 

performance ratio (PR) for ETL1_A and ETL1_B, respectively. The PR results for ETL1_A 

presented larger dispersion and thus were not taken into consideration in this analysis. It is 

evident that both samples exhibit an initial burn-in period followed by a period of relatively 

constant PR. During the initial burn-in period, the decrease in PR appears linear, prompting the 

fitting of a bilinear curve. The bilinear curve consists of two lines intersecting at the point of 

slope change. Three crucial estimated parameters simultaneously determine the optimal bilinear 

curve: the slopes of the two lines comprising the bilinear curve and the day of intersection 

between these lines. Slopes of the two lines correspond to performance loss rate (PLR) of the 

sample at each corresponding period. The mathematical expression of this curve and the error 

minimized to achieve the fitting of the curve are described in supplementary discussion 4, while 

details of this algorithm are provided in37.  

Figure 1 (b) shows a PLR for the ETL1_A sample of -22.9% during the initial burn-in period 

and -1.34% during the period of relatively constant PR. This equates to PLR values of -7.63% 

and -0.15% per month, respectively. The estimated intersection point occurs around the 91st 

day (~ 3 months). Similarly, Fig. 1 (c) shows the ETL2_B sample presented a PLR of -21% 

during the burn-in period and +1.7% over the period of relatively constant PR. This equates to 

PLR values of -7% and +0.18% per month, respectively. The estimated day of intersection 

remains at the 91st day.  To look at the root causes of the PCE degradation of the modules, Isc, 

Voc, and FF were also analyzed over time (Supplementary discussion 5). Over the first month 

of testing, current reduction was the major origin of performance degradation in all samples 
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(Figure 9, supplementary discussion 5), and is likely to be related to ionic movement, since 

ionic space charges can be the origin of transient current loss in PSCs38. Some samples also 

showed an increase in open-circuit voltage over the first month of testing, attributed to 

metastability or light-soaking effects present in these devices. FF reduction over the period was 

also observed for all samples and might be attributed to interface defects between the hole 

transport and absorber layers39.  

During long-term outdoor testing, the bias load condition of some samples between I-V curves 

was changed from Voc load to MPP and vice-versa. This was done to explore the changes that 

might occur in the evolution of electrical parameters, including diurnal PCE degradation and 

recovery. The details of each bias state are provided in Table 2, Supplementary discussion 2. 

The most important observation arising from this is that the bias load transition from Voc to 

MPP bias load between IV scans induced a reduction in the Voc values of samples ETL1_A 

and ETL2_A. Figure 2 demonstrates a more pronounced reduction of the Voc values with load 

transition in the ETL2_A sample. In the case of the ETL1 sample, the Voc value reduction can 

be observed at the 4th, 5th, and 11th month of testing when the bias load switched from Voc load 

to MPP load, and similarly in the case of the ETL2_A sample between the 5th and 8th month of 

testing for the same reasons. (see Supplementary discussion 5). One likely explanation for this 

is that different distributions of charged species arise in the devices due to the presence of 

different electric bias40.  Ion distribution at open circuit conditions and under bias at MPP will 

be different leading to different electrical performance thereafter (supplementary discussion 5).   

 

Figure 2: Open-circuit voltage values evolution over time for the sample (a) ETL1_A and (b) ETL2_A. The reduction 

of the open-circuit voltage values of the perovskite devices with the transition from the Voc load to MPP load 

between IV sweeps is indicated by the arrows in both cases.  
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To gain a deeper understanding of the diurnal changes occurring in the perovskite modules the 

diurnal performance degradation (DPD) and the diurnal performance recovery (DPR) overnight 

were studied. The diurnal performance degradation (DPD) corresponds to the difference in 

performance values at the beginning and the end of each day outdoors at the same irradiance 

levels. The beginning and the end of the day were selected to correspond to irradiances in the 

morning and afternoon close to 400 W/m2. The values were then normalized to the initial 

efficiency value of the first day to have comparable and normalized results from all days in the 

field. Similarly, the diurnal performance recovery (DPR) values were calculated by considering 

the difference between the final efficiency value of the previous day and the initial efficiency 

value of the next day at the same irradiance levels (400 W/m2). The resulting efficiency 

recovery values were normalized for comparative purposes. The equation and the points 

utilized for diurnal performance degradation and diurnal performance recovery overnight can 

be found in Equations 1 and 2 and  Figure 3 below.  

𝐷𝑃𝐷 =

𝑃𝐶𝐸
𝑀𝑂𝑅𝑁𝐼𝑁𝐺 ,𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦 (𝐺𝑁𝐼=400

𝑊
𝑚2)

− 𝑃𝐶𝐸
𝐸𝑉𝐸𝑁𝐼𝑁𝐺,𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦(𝐺𝑁𝐼=400

𝑊
𝑚2)

𝑃𝐶𝐸
𝑀𝑂𝑅𝑁𝐼𝑁𝐺,𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦 (𝐺𝑁𝐼=400

𝑊
𝑚2)

=
① − ②

①
                                                                                                     (1) 

𝐷𝑃𝑅 =

𝑃𝐶𝐸
𝑀𝑂𝑅𝑁𝐼𝑁𝐺,𝑠𝑒𝑐𝑜𝑛𝑑 𝑑𝑎𝑦 (𝐺𝑁𝐼=400

𝑊
𝑚2)

− 𝑃𝐶𝐸
𝐸𝑉𝐸𝑁𝐼𝑁𝐺,𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦(𝐺𝑁𝐼=400

𝑊
𝑚2)

𝑃𝐶𝐸
𝑀𝑂𝑅𝑁𝐼𝑁𝐺,𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦 (𝐺𝑁𝐼=400

𝑊
𝑚2)

=
③ − ②

①
                                                                                               (2) 
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Figure 3: Representation of a diurnal change in performance for one module under test for two consecutive days. 

The points used to extract diurnal performance degradation and diurnal performance recovery overnight are 

indicated on the schematic. 

DPD and DPR were calculated to establish the typical values of diurnal changes and to extract 

the degradation-to-recovery ratio and its seasonal dependence. A flowchart of the procedure 

followed to extract the DPD and the DPR overnight are provided in detail in Supplementary 

discussion 6. Fig. 4(a) and Fig. 4(b) show the normalized DPD and DPR overnight from 

representative modules of each perovskite architecture. The DPD and DPR from the ETL2_B 

are provided in Supplementary discussion 7.  DPD and DPR were recorded mainly in the range 

of 0-25% at all modules under test and were unrelated to the degradation stage. Larger 

dispersions of these values are apparent in months with fewer data points due to either site 

maintenance outages or environmental conditions. (December 2022-January 2023, May 2023).  
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Fig. 4: (a) Diurnal performance degradation and (b) Diurnal Performance Recovery overnight for mini-modules, 

ETL1_A and ETL2_A. Open-circuit load was utilized mainly during the outdoor testing of modules while MPP 

load was applied only in some months of testing. The boxplots results take into consideration the mean and median 

values of the data collected from each day in the field within each month of testing. 

The DPD of the ETL1 series sample was analyzed in relation to temperature and irradiance 

levels. Boxplots of the DPD at different temperature levels from the sample ETL1_A which 

presented the longer lifetime, are shown in Figure 5.  A larger statistical dataset was available 

for the plot of the ETL1_A sample since this was tested for two-years outdoors compared to 

the ETL2 series samples which exhibited statistical data from roughly a year of testing. DPD 

values were studied in the range 20°C-60°C with a temperature step of 10°C. Normalized values 

for the diurnal parameters were utilized. The ETL1_A sample presented a slight increase in 

DPD and DPR at higher temperature levels. A statistically significant difference was found 

between the results at low and high temperatures (between the results in the bin [20,40] and 

[50,60]). Mobile ion migration and accumulation are dramatically affected by thermal effects, 

with more freely moving ion generation present at higher temperature levels41 which may result 

in larger diurnal changes. To support these findings, two identical modules with the ETL1 

configuration were tested indoors under a high throughput aging system to study the impact of 

temperature on DPD and DPR. The aging system cycled day-night irradiance levels at different 

temperatures to mimic outdoor conditions during summer and winter. The results showed that 

higher temperature levels did lead to higher DPD, which agrees with the outdoor results. Details 

of this experiment are provided in supplementary discussion 8. Lastly, no trend of the diurnal 

values with irradiance was detected in the ETL1_A sample, suggesting that irradiance might 

not play a role in the DPD and DPR values (see Figure 5).  
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Figure 5: Diurnal performance degradation for ETL1_A sample at different temperature and irradiance levels. 

A statistical analysis was applied to the diurnal data for all samples tested outdoors 

(Supplementary discussion 9). The normalized DPD and DPR were separated into bins of 5% 

and the frequency of occurrence at each bin was calculated for each module.  Long-lasting 

modules experienced degradation and recovery mostly in the 0%-5% and 15%-20% bins. The 

DPD outdoors is determined by the deviation of the output power values in the morning and 

evening hours (see Supplementary discussion 10). The diurnal degradation and recovery of the 

maximum power point current (Imp) and maximum power point voltage (Vmp) were also 

investigated to uncover the main origin of the diurnal changes. Based on the results shown in 

Supplementary discussion 11, diurnal Imp degradation occurs on most days of outdoor exposure 

for all samples, in line with the DPD behavior. On the other hand, the Vmp presented an increase 

over the day and a reduction overnight due to light-soaking effects. It is worth noting that since 

Vmp values are strongly influenced by temperature, the diurnal Vmp degradation was calculated 

by restricting the temperature difference between morning and evening to within 5°C in the 

DPD algorithm (Supplementary discussion 6). However, the results remain the same again. 

Diurnal increase of Vmp was found to be lower than 10% at all samples under tests and for 

most days of testing  

The diurnal changes in electrical parameters from sample ETL2_A for one representative day 

in autumn 2022 are summarized in Fig. 6 . The diurnal changes of the major electrical 

parameters of sample ETL2_B for the same day in Autumn 2022 are shown in Figure 23 (see 

supplementary material 11). Based on the above, the DPD and DPR processes are mainly driven 

by current, not voltage. Ion migration affects the current in perovskite materials and, for this 

reason, changes in Imp seem to determine both the DPD and DPR in perovskite samples. After 

two years of testing, the ETL1 _A module was kept indoors for one week and then exposed 

outdoors again (Supplementary discussion 12) to study the recovery dynamics during dark 

storage. The major path of output power recovery originated from the current and not from the 

voltage in agreement with the outdoor diurnal data results.  
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Fig. 6:  Diurnal changes occur at all major electrical parameters of a perovskite device during the (a) day and (b) 

night hours.  Current and voltage values correspond to the ones at maximum power point conditions (Imp, Vmp). 

Data corresponds to the 38th day of exposure of sample ETL2_A (where PCE degradation was around 9%) and at 

irradiances higher than 400 W/m2. The data in the red circles have been utilized for calculating the diurnal 

degradation and recovery values for PCE, Imp, Vmp and FF. Data corresponds to a day with high irradiation and 

temperature levels.  

 Based on the analysis of diurnal FF degradation from long-term outdoor testing of modules 

(see supplementary discussion 11) it was found that the FF increases during the day. We 

hypothesize that the device's morning performance is primarily affected by mobile defects. 

During the preceding dark period, defect accumulation occurs due to the built-in potential. 

Upon initial exposure to light, this accumulation begins to decrease. As light intensity increases, 

the net electric field under open-circuit conditions shifts direction. This shift drives 

accumulated ions away from the interface, reducing interface recombination and enhancing 

charge extraction, which improves both the open-circuit voltage (Voc) and fill factor (FF). 

However, as the day progresses, a new degradation pathway emerges due to the evolving 

distribution of mobile defects, ultimately diminishing performance. The observed performance 

changes suggest that multiple degradation pathways are activated throughout the day. At this 

stage, we cannot precisely identify the underlying mechanisms from the current data. Further 

characterization and modeling will be necessary to confirm these phenomena, which is our next 

step.   

The DPD-to-DPR ratio was analyzed to study the interdependence of these qualities and any 

fluctuations present due to seasonal effects. The ratio was found to be broadly consistent across 

all temperature and irradiance levels and degradation stages (see Fig. 7). This result holds for 

all samples under test even if absolute values of DPD and DPR are taken into consideration 

(Supplementary discussion 14). However, the exact value of the DPD-to-DPR ratio depends on 
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the specific perovskite structure and sample. The value of the slope varies from device to device 

with lower values obtained for samples that degrade more rapidly. Lastly, the linear correlation 

between diurnal degradation and recovery was observed for the maximum power point current 

(Imp) and performance (PCE) and it was not the case for the maximum power point voltage 

(Vmp) and Fill Factor (FF) (Figure 28, Supplementary discussion 14).  

 

Fig. 7: Diurnal performance recovery overnight against diurnal performance degradation at (a) different ambient 

temperatures and (b) total irradiation levels during the two years of outdoor testing. Data correspond to the 

ETL1_A sample which presented a longer lifetime. 

 

Finally, a data-driven predictive model was constructed to simulate the PV performance using 

the eXtreme Gradient Boosting (XGBoost) regression model. The approach for the 

development of the predictive model relies on optimized model hyper-parameters by following 

structured supervised learning regimes that utilize low partitions of historic data and input 

features for the training procedure. The constructed XGBoost regressor was used to predict the 

PV power output (Pmax) since it has exhibited high-performance accuracies in prediction 

problems42. The XGBoost is an ensemble algorithm that combines several decision trees using 

the boosting method to generate the desired output prediction. Once decision trees were trained, 

ensemble modelling by weighted averaging was performed to pool the results from multiple 

trees and average them using weights based on accuracy to minimize the error. The core of 

XGBoost is to optimize the objective function’s value by using gradient descent to create new 
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trees based on the residual errors of previously trees. The equations used in the photovoltaic 

system machine learning predictive model are provided in the Supplementary discussion 15.  

Initially, the XGBoost regression model was implemented using the available essential 

measurements parameters such as module temperature, normal irradiance at the plane of array 

and output power. The PV time series was separated into train and test subsets. More 

specifically, a 70:30% train and test set approach was followed. The train set (70% using 

random samples) was used for the model’s training process (developing the model) and 

included the dates between July 2021 and June 2022, while the test set (30%) was used for 

assessing the model’s performance and included dates between June 2022 and April 2023. 

Comparison of the measured and predicted power output for four (4) selected days in the field 

can be found in Fig. 8. Better agreement between the predicted and real power is detected 

during clear sky days.  

 

Fig. 8: Measured and predicted power output from sample ETL1_A for four (4) selected days in (a) July 2022, (b) 

November 2022, (c) February 2023 and (d) April 2023. The mean module temperature for each day is provided at 

each graph. 

To evaluate the predictive accuracy of the constructed model, the normalized root mean square 

error (nRMSE) and the mean bias error (MBE) metric were used43,44. The root mean square 

error considers the square of the difference between real and predicted data to signal large errors 

in the predictions. The mean bias error (MBE) operates differently by adding the standard 

difference and indicates whether the predictions are under- or overestimating. These metrics 
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can be normalized by considering the average of the actual values, yielding the normalized root 

mean squared error (nRMSE) and the normalized Mean Bias Error (nMBE). 

A linear behavior was found between the actual and predicted power at different temperature 

and irradiance levels. The results are summarized in Fig. 9. The proposed model achieved a 

maximum nRMSE of 6.70% when applied to the test set dataset at low power levels (0.01 

<power < 0.02) giving evidence of large discrepancies between the actual and predicted power 

at lower power levels. At higher power levels (>0.02 W) the nRMSE lies at lower values giving 

evidence of better prediction ability of the regression model at high output power of the PV 

module.  The nRMSE and MBE metrics are both demonstrated in the inset of Fig. 9. Based on 

the modeling results, it seems that the essential input parameters such as temperature, 

irradiance, and measured power in the regression model are sufficient to predict the power time 

series of perovskites.  

 
 

Fig. 9:Actual vs. predicted power for perovskite mini-module ETL1_A Module using the eXtreme Gradient 

Boosting (XGBoost) regression model. The normalized root mean square error (nRMSE) and the normalized mean 

bias error (nMBE) metrics are provided in the inset. 

In summary, a long-term outdoor study was conducted on perovskite mini-modules in two 

configurations. The most durable mini-module maintained 78% of its initial PCE after one year. 

Performance loss rates during the burn-in period of perovskites were found to be around 7%- 

8% per month for the perovskite configurations tested. Long-term I-V monitoring facilitated 

the analysis of diurnal performance changes, including variations in current, voltage, and fill 

factor. Our high-level statistical analysis revealed a consistent pattern: diurnal performance 

degradation was invariably followed by overnight recovery, regardless of the stage of 
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degradation or environmental variables like irradiance and temperature. The linear correlation 

between diurnal degradation and diurnal recovery was also observed between diurnal 

degradation and recovery in the maximum power current values. Statistical data further 

indicated a decrease in diurnal performance and current throughout the day, with recovery 

occurring overnight. Conversely, voltage and fill factor tended to improve during the day but 

decreased overnight. This behavior is generally observed and is independent of the stage of 

degradation or environmental variables like irradiance and temperature. We also implemented 

a data-driven predictive model using the XGBoost regression to forecast the power output. The 

model achieved a normalized nRMSE of 6.76% on the test set, demonstrating a strong 

correlation between actual and predicted power. Notably, the accuracy of predictions was 

higher at higher power and irradiance levels, with greater deviation at lower power values. Our 

findings suggest that machine learning models effectively predict the outdoor behavior of 

perovskites. We believe that this work will serve as a crucial stepping stone in advancing our 

understanding of degradation features when testing perovskite solar cells under real outdoor 

conditions. 

Materials and methods  

Materials: Indium tin oxide (ITO) coated glass substrates were purchased from Colorado 

Concept Coatings LLC. Formamidinium bromide (FABr) and formamidinium iodide (FAI) 

were purchased from Greatcell Solar Materials. Lead iodide (PbI2) and cesium iodide (CsI) 

was purchased from Tokyo Chemical Industry (TCI).  Fullerene C60 was purchased from 

Nano-C. 2,9-dimethyl-4,7-diphenyl1,10-phenanthroline (BCP) was purchased from 

Luminescence Technology Corp. (Lumtec). Lithium fluoride (LiF), Anhydrous 

dimethylformamide (DMF), and anhydrous 1-methyl-2-pyrrolidone (NMP) were purchased 

from Sigma Aldrich. Absolute acetone and isopropanol were purchased from VWR. All 

materials were used as received. 

Perovskite Precursor Solution: For the preparation of 1 ml solution, dissolve 38.8 mg CsI, 

81.9 mg FAI, 15 mg FABr, 342.7 mg PbI2 in 0.950 ml DMF, and 0.05 ml NMP. Stir the solution 

at room temperature until all powder dissolves. 

Device Fabrication 

A set of perovskite solar modules with an aperture area of 4 cm² was fabricated for 

investigation. These modules were deposited onto 3x3 cm² glass substrates.  

P1 scribe was performed on the ITO-coated glass substrates, which isolate the ITO layer. Then 

the ITO-coated glass substrates were subsequently cleaned for 5 min in an ultrasonic bath of 

detergent, deionized water, acetone, and isopropanol. The substrates were transferred to N2 
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filled glovebox for the deposition of HTL NiOx. The 15 nm NiOx was deposited with DC 

sputtering. After the sputtering the NiOx was annealed at 300 ℃ for 20 min in air. The NiOx 

substrates were transferred to a nitrogen-filled glovebox, where the perovskite layer was 

deposited. A blade coater with an air knife for N2 gas quenching attached to it, was used for 

the perovskite coating. A uniform layer was obtained using a coating speed of 2.5 mm/s. After 

the coating, the gas quenching via an air knife was performed. Finally, the perovskite layer was 

annealed at 100˚C for 30 min. After perovskite layer deposition, the samples were transferred 

into a high-vacuum chamber (base pressure ∼ 10-8 Torr) to deposit ETL by thermal 

evaporation. Two different ETLs were considered in this work. ETL1 consisted of a tri-layer 

of LiF (0.8 nm), C60 60 (40 nm), and BCP (5 nm), referred to as LiF/C60/BCP, which was 

evaporated within a thermal chamber. ETL2 consisted of a tri-layer of LiF (0.8 nm)/C60 (20 

nm)/LiF (0.8 nm).  P2 laser scribe was performed by a picosecond UV laser. Then, a 70 nm 

thick ITO was sputtered. After this, finally, the P3 scribe was performed with a UV laser. After 

this step, the modules were laminated. The Sn-coated Cu busbars, which were 50 µm thick, 

were attached using conductive glue (Nagase Chemicals, DB-1588-4). The lamination package 

included a polyolefin encapsulant (Borealis, BPO8828F) and two 2 mm-thick soda lime glass 

plates, serving as the front and back sheets. The edges were sealed using butyl rubber (Quanex, 

Solargain LP-03). The lamination was performed at 130°C for 15 minutes at 1 atm pressure 

over the sample. More details regarding the module architecture can be found in supplementary 

discussion 16. 

Aging of perovskite mini-modules  

The three (3) perovskite samples under study have been aged outdoors at different time periods 

between July 2021 and July 2023 at FOSS testing site at a fixed plane array and a data 

acquisition system was utilized to collect the I-V curves from the mini-modules. The electrical 

measurements have been acquired by a single current-voltage source-meter multiplexed to take 

sequential measurements from the devices under test. The test laboratory facilities consist of 

14 channels connected to relay panels, the required electrical equipment (national instruments 

PC, relay control board, Keithley 2430 source meter) and a weather station. LabVIEW software 

was designed to record the current-voltage (I-V) traces every 10-15 minutes at high Global 

Normal Irradiance (GNI) conditions (GNI>400 W/m2). The I-V curves were acquired as quick 

as possible to keep the irradiance constant and avoid sudden changes due to clouds (sweep rate 

in the range between 0.25 V/sec – 1V /sec was applied). The sweep rate and the measurement 

frequency determined the number of I-V curves collected per hour. Both forward (<0V to > 

open-circuit voltage (Voc) and reverse (> Voc to < 0V) voltage sweeps have been applied to 

the devices. Forward-first voltage approach has been used at almost all instances. The system 

permits the application of different bias load between I-V scans. For the measurements shown 
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in this report, open-circuit load was mainly applied between I-V scans. However, at some 

months of testing and in some samples under test, MPP load was applied.  The MPP load did 

not employ active tracking, rather the system was designed to hold the terminal voltage of the 

device under test at the average maximum power point voltage of both the forwards and reverse 

I-V sweeps. Thus, the MPP voltage was updated immediately after an I-V sweep and held 

constant until the next I-V sweep occurred. At low irradiance levels (<350 W/m2) and during 

the night period the samples were kept at open-circuit conditions.  The detailed description of 

the outdoor infrastructure set-up utilized for performance monitoring of samples can be found 

in supplementary discussion 17.  

Environmental data such as Global Normal Irradiance (GNI), Direct Normal Irradiance (DNI), 

wind speed, relative humidity, pressure, ambient temperature, module temperature were 

collected simultaneously with the electrical characteristics of the samples using a real-time data 

acquisition system (see supplementary discussions 17 and 18). The ambient and module 

temperatures were measured simultaneously with I-V curves collection and at irradiances 

higher than 400W/m2. The instrument used for the collection of the global normal irradiance 

was a first‐class pyranometer Hukseflux SR 11 with uncertainty ±2%. The operating 

temperature range of the sensor is between −40 °C and 80 °C, while spectral range is between 

285–3000 nm. The sensor for measuring the ambient temperature is a Rotronic HC2S3 with 

uncertainty ±0.1 °C at 23 °C. The module temperature was measured with a PT 1000 resistance 

thermometer located at the back of the module under test. PT 1000 measures at the temperature 

range from −50 °C to 500 °C. The humidity was measured with a Rotronic HC2S3 probe with 

uncertainty ±0.8 RH% at 23 °C.  The environmental conditions at the tested location belongs 

to Csa conditions according to the Köppen climate classification.  

ASSOCIATED CONTENT 

Supporting information contains Supplementary Discussion 1-17, Figures 1−35, and Tables 

1−5, as mentioned in the text.  
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