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    Abstract 

 Adequate  knowledge  is  an  essential  requirement  for  responsible  inland  fisheries.  However,  many 

 inland  fisheries  lack  monitoring,  and  hence,  decision-making  for  fisheries  management  is  not 

 reliable.  In  this  paper,  we  used  data  from  surveys  and  literature  to  estimate  the  life-history  and 

 growth  parameters  of  16  exploited  fish  stocks  in  the  Ugandan  part  of  Lake  Edward  and  Lake 

 George  (East  Africa).  The  estimated  parameters  are  pivotal  indicators  of  fish  stock  status, 

 particularly  in  data-poor  fisheries.  The  estimated  parameters  included  maximum  length  (  L  max  )  and 

 mean  length  (  L  mean  )  as  indicators  of  size  structure  in  experimental  and  commercial  catches, 

 coefficients  of  length-weight  relationships,  length  at  50%  maturity  (  L  m50  ),  fecundity,  von  Bertalanffy 

 parameters,  total  mortality  (  Z  ),  and  natural  mortality  (  M  ).  These  parameters  were  estimated  using 

 empirical  formulae,  statistical  methods,  and  analyses  of  length  frequencies.  Only  two  stocks  of 

 semutundu  Bagrus  docmak  exhibited  significant  and  increasing  trends  in  L  max  (Lake  Edward)  and 
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 L  mean  (Lake  George).  The  estimates  for  the  remaining  parameters  were  consistent  with  those  in 

 FishBase  and  other  literature  resources,  either  for  the  same  species  or  related  species.  This 

 consistency  indicates  their  reliability  for  application  in  decision-making  and  further  assessments. 

 Some  paramters  showed  evidence  of  unsustainable  fishing.  For  example,  estimates  of  L  m50  for  four 

 of  the  assessed  stocks  belonging  to  two  species  (Nile  tilapia  Oreochromis  niloticus  and  marbled 

 lungfish  Protopterus  aethiopicus  )  were  lower  than  baseline  estimates  in  the  studied  waterbodies. 

 Furthermore,  the  L  mean  in  catches  for  all  the  stocks  were  less  than  the  optimum  lengths  (  L  opt  ),  which 

 maximize  catches  with  minimal  impact  on  biomass  and  size  structure.  No  significant  changes  in 

 L  mean  ,  length-frequency  distributions,  and  size  at  maturity  could  be  attributed  to  the  management 

 changes  implemented  in  2018  probably  because  it  is  too  early  to  observe  changes  in  these 

 parameters.  However,  there  are  positive  signs  attributable  to  the  changes  in  management  as  shown 

 by  a  high  proportion  of  mature  individuals  in  commercial  catches  for  most  of  the  stocks  for  which 

 the  proportion  was  calculated,  and  an  increase  in  L  mean  and  L  max  for  some  stocks  such  as  B.  docmak 

 in  commercial  or  experimental  catches.  New  estimates  from  this  study  will  enhance 

 decision-making  and  further  assessments  of  fisheries.  Routine  monitoring  is  recommended  to 

 update and improve the estimates. 

 Keywords: Fisheries management, Inland fisheries, Overfishing, Small-scale fisheries 
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    1  Introduction 

 Stakeholders  in  fisheries  research,  policy,  management,  advocacy,  and  industry  agreed  to  the  10 

 steps  for  responsible  inland  fisheries  (FAO  &  MSU,  2016).  The  steps  aim  at  addressing  the 

 challenges  that  inland  fisheries  face  to  sustain  their  contribution  to  biodiversity,  food  security  and 

 livelihoods  (FAO  and  MSU,  2016;  Lynch  et  al.,  2017).  Challenges  faced  by  inland  fisheries  include 

 high  fishing  pressure,  pollution,  and  invasive  species  (Welcomme  et  al.,  2010;  FAO  &  MSU,  2016). 

 Improving the assessment of inland fisheries is the first of the 10 steps. 

 Challenges  to  inland  fisheries  particularly  in  developing  countries  are  persistent  because 

 policymakers  overlook  these  fisheries  (Cooke  et  al.,  2016;  Lynch  et  al.,  2017).  This  emanates  from 

 limited  access  to  information  because  most  inland  fisheries  are  not  subjected  to  adequate 

 monitoring  and  assessments  (Cooke  et  al.,  2016;  Elliott  et  al.,  2019).  As  a  result,  these  fisheries  are 

 notably  absent  in  global  governance  processes  such  as  the  Sustainable  Development  Goals  (Cooke 

 et  al.,  2016;  Lynch  et  al.,  2017;  Elliot  et  al.,  2022).  Improving  assessments,  therefore,  is  envisaged 

 to  alleviate  the  information  limitations  and  mainstream  inland  fisheries  into  governance  processes  at 

 all  levels.  However,  this  (improved  assessment)  is  not  adequate  in  isolation  because  well-assessed 

 fish  stocks  may  also  not  be  effectively  managed  due  to,  for  example,  limited  political  will  (Froese  & 

 Quaas, 2012). 

 Life-history  parameters  of  fish  such  as  size  at  which  50  %  of  individuals  in  a  fish  population  attain 

 maturity  (  L  m50  ),  maximum  length  (  L  max  ),  fecundity,  mortality  rates,  coefficients  of  length-weight 

 relationships,  and  parameters  of  the  von  Bertalanffy  growth  function  (VBGF)  including  length  at 

 infinity  (  L  ∞  )  are  derived  from  stock  assessments.  The  VBGF  is  the  most  popular  model  of  fish 

 growth  in  terms  of  increase  in  length  or  weight  (von  Bertalanffy,  1938).  In  data-poor  fisheries,  these 

 parameters  could  be  the  only  tools  available  to  tell  the  status  of  the  exploited  species  (King  & 

 McFarlane,  2003).  These  parameters  also  serve  as  inputs  to  stock  assessment  and  ecosystem 

 models,  both  of  which  generate  more  robust  information  and  tools  for  decision-making  (Froese  et 

 al.,  2018).  Therefore,  more  reliable  and  updated  fish  life-history  parameters  and  growth  parameters 

 could  tell  the  status  of  exploited  stocks  and  support  decisions  to  improve  the  management  of 

 fisheries and conservation of species. 

 This  study  estimated  life-history  and  growth  parameters  for  the  exploited  fish  stocks  in  the  Ugandan 

 part  of  Lake  Edward  and  Lake  George.  With  a  combined  annual  catch  of  approximately  48,000  t, 

 supporting  about  23,000  fishers  in  Uganda  and  the  Democratic  Republic  of  Congo  (DRC)  ((NBI, 
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 2019,  2021)),  these  lakes  do  not  only  support  fisheries  that  are  of  economic  importance  to  local 

 communities,  but  also  habour  fish  species  of  conservation  importance  especially  the  haplochromine 

 cichlids  (Vranken  et  al.,  2019;  Decru  et  al.,  2020).  However,  the  populations  of  the  exploited  fish 

 stocks  in  these  lakes  lack  updated  life-history  and  growth  parameters.  Indeed,  a  recent  assessment 

 of  the  fish  stocks  using  an  approach  that  requires  some  of  these  parameters  (  L  m50  and  L  ∞  )  as  inputs 

 relied on old inputs from FishBase or estimates from empirical formulae (Musinguzi et al., 2021). 

 The  two  lakes  have  been  subject  to  high  levels  of  fishing  effort  and  a  high  prevalence  of  illegal 

 fishing  practices  and  fishing  gear  (Bassa  et  al.,  2014;  Lubala  et  al.,  2018).  However,  since  2018, 

 major  changes  occurred  in  the  management  of  both  lakes  in  Uganda.  To  strengthen  the  enforcement 

 of  fishing  regulations,  a  Fish  Protection  Unit  (FPU),  drawn  from  the  Uganda  Peoples  Defense 

 Forces  (UPDF)  was  deployed  on  the  waterbodies  to  improve  adherence  to  fishing  regulations  by 

 banning  illegal  fishing  gear,  crafts,  and  practices  such  as  fishing  in  near-shore  areas  designated  as 

 fish  breeding  areas  (NPA,  2019).  Therefore,  in  addition  to  estimating  the  life-history  and  growth 

 parameters,  the  changes  in  the  life-history  parameters  that  could  be  attributed  to  the  changes  in 

 management  were  examined  where  applicable.  We  hypothesized  that  the  values  of  the  parameters 

 before  and  after  2018  differed,  with  those  before  2018  signaling  unsustainable  fishing.  The 

 estimated  parameters  enhance  our  understanding  of  the  exploited  fish  stocks,  ultimately 

 contributing to more effective management measures. 

    2  Materials and methods 

    2.1  Lakes Edward and George 

 Lake  George  is  located  entirely  in  Uganda,  while  Lake  Edward  is  shared  between  Uganda  (29  %) 

 and  the  DRC  (71  %).  The  two  lakes  are  connected  by  the  40  km  long  Kazinga  Channel  (Figure  1). 

 Fish  species  of  economic  importance  in  the  waterbodies  are  marbled  lungfish  Protopterus 

 aethiopicus  Heckel  1851,  North  African  catfish  Clarias  gariepinus  (Burchell  1822),  semutundu 

 Bagrus  docmak  (Fabricius  1775)  ,  Ripon  barbel  Labeobarbus  altianalis  (Boulenger  1900)  ,  Nile 

 tilapia  Oreochromis  niloticus  (Linnaeus,  1758),  blue-spotted  tilapia  Oreochromis  leucostictus 

 (Trewavas  1933),  and  to  a  lesser  extent,  elephant-snout  fish  Mormyrus  kannume  Forsskål  1775,  and 

 omuruma  Labeo  forskalii  Rüppell  1835  (Lubala  et  al.,  2018;  NaFIRRI,  2019).  Based  on  the 

 contribution  to  the  annual  catches  of  2020  (NBI,  2021),  O.  niloticus  is  the  most  important  in  the 

 Ugandan  section  of  Lake  Edward  with  38.2  %  of  the  catches,  followed  by  P.  aethiopicus  (21.2  %), 

 B.  docmak  (20.0  %),  C.  gariepinus  (8.8  %),  M.  kannume  (7.0  %),  and  L.  altianalis  (4.8  %).  In  Lake 

 George,  P.  aethiopicus  is  the  most  important  with  35.8  %  of  the  catches,  followed  by  B.  docmak 
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 (26.4  %),  O.  niloticus  (18.1  %),  C.  gariepinus  (17.0  %),  M.  kannume  (2.4  %),  and  L.  altianalis 

 (0.2%). In both lakes, the contribution of the haplochromines to the catches of 2020 was negligible. 

 Lakes  Edward  and  George  are  mostly  surrounded  by  protected  areas.  The  entire  Congolese  part  of 

 Lake  Edward  is  located  within  the  Virunga  National  Park.  In  Uganda,  the  whole  of  the  Kazinga 

 Channel  lies  within  the  Queen  Elizabeth  National  Park  (QENP),  while  most  of  Lake  George  and  the 

 entirety  of  Lake  Edward  (Uganda)  are  surrounded  by  the  QENP  (Figure  1).  The  presence  of  these 

 protected  areas  limits  farming  (Uganda  Wildlife  Authority,  2012),  making  fishing  a  vital  source  of 

 sustenance for riparian communities. Therefore, efforts to sustain fishing activities are crucial. 

    2.2  Data used and its sources 

 We  analyzed  secondary  data  from  catch  assessments  (fishery-dependent)  and  experimental  gillnet 

 surveys  (fishery-independent)  conducted  on  the  Ugandan  part  of  Lake  Edward  and  George  by  the 

 National  Fisheries  Resources  Research  Institute  (NaFIRRI),  a  public  research  institute  with  a 

 mandate  to  conduct  fisheries  research  in  Uganda  (Table  S1).  From  the  catch  assessment  surveys 

 (CAS),  we  obtained  length  measurements  of  fish  samples  from  commercial  catches.  Measurements 

 were  available  from  2006  to  2017  for  Lake  Edward  and  from  2000  to  2017  for  Lake  George,  but 

 with  temporal  gaps.  We  obtained  data  on  length,  weight,  sex,  and  gonadal  development  stage  from 

 experimental  gillnet  surveys  conducted  in  1995,  2006,  2007,  2011,  2012,  2013,  2016,  and  2019  for 

 Lake Edward and 1994, 1995, 2011, 2012, and in 2016 for Lake George. 

 We  conducted  supplementary  data  collection  in  the  two  waterbodies.  The  data  collection  on  Lake 

 Edward  only  covered  the  Ugandan  section  of  the  lake  (Figure  1).  Supplementary  experimental 

 gillnet  surveys  were  conducted  in  2021  (Lakes  Edward  and  George)  and  2022  (Lake  Edward  only), 

 following  standard  operating  procedures  for  studies  in  fish  biology  and  ecology  in  the  region 

 (LVFO,  2007).  In  2021,  we  conducted  four  surveys,  two  in  each  lake  between  January  and  August. 

 In  2022,  we  conducted  six  consecutive  monthly  surveys  from  June  to  November  2022  on  Lake 

 Edward.  Alongside  the  experimental  surveys  in  2022,  we  collected  length  measurements  of  fish 

 specimens  in  commercial  catches  on  the  lake.  However,  no  surveys  were  conducted  on  Lake 

 George. 

 During  the  experimental  gillnet  surveys,  three  sets  of  gillnets  were  placed  in  predetermined 

 locations.  The  selected  locations  cover  diverse  habitats  in  the  lakes,  including  near-shore,  river 

 mouths,  rocky,  and  offshore  (Figure  1).  The  sets  comprised  multifilament  gillnets  (different  from 

 monofilament  gillnets  of  one  twine  by  having  multiple  twines)  of  mesh  sizes  ranging  from  25.4  mm 

 (1  inch)  to  203.2  mm  (8  inches),  90  m  long  and  26  meshes  deep.  Mesh  sizes  ranging  from  25.4  mm 
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 to  139.7  mm  (5.5  inches)  were  in  increments  of  12.7  mm  (0.5  inches)  while  mesh  sizes  152.4  - 

 203.2  mm  (6  to  8  inches)  were  in  increments  of  25.4  mm.  The  gillnets  were  set  in  the  evening  and 

 retrieved  in  the  morning.  A  wide  range  of  mesh  sizes  and  habitats  were  used  to  increase  the  chances 

 of  obtaining  representative  samples  by  capturing  fish  specimens  in  all  habitats  and  size  classes.  The 

 mesh  sizes  also  included  the  legally  approved  size  (4.5  inches  or  114.3  mm).  After  capture,  fish 

 were  sorted  by  species  based  on  the  knowledge  and  experience  of  research  technicians  and 

 scientists  at  NaFIRRI  .  For  small  catches,  all  individuals  were  measured,  while  a  random 

 manageable  subsample  was  taken  if  catches  were  deemed  (subjectively)  to  be  too  large  to  handle. 

 Data  on  catch  composition  by  weight  was  not  analyzed  as  it  fell  out  of  the  scope  of  this  study.  Data 

 was  collected  on  total  length  or  fork  length  for  species  with  a  forked  caudal  fin,  weight,  sex,  and 

 maturity  stage  of  gonads.  The  gonads  were  given  maturity  stages  ranging  from  1  to  6,  with  stages  1 

 to  3  considered  to  be  immature  and  stages  4  to  6  considered  to  be  mature.  The  assignment  of  the 

 maturity  stages  was  based  on  standard  procedures  (LVFO,  2007).  Ovaries  of  stages  4,  5  and  6  were 

 retained to estimate fecundity. 

    2.3  Data processing and analysis 

    2.3.1  Size structure 

 We  determined  the  size  structure  of  the  fish  stocks  in  commercial  and  experimental  catches 

 separately  for  each  waterbody.  Size  structure  was  determined  in  terms  of  L  max  and  mean  length 

 (  L  mean  )  in  the  catches,  indicators  used  for  evaluating  the  exploitation  status  of  stocks  (Shin  et  al., 

 2005).  The  estimates  for  these  indicators  were  determined  for  each  year  with  data  to  allow 

 comparisons  across  years.  The  presence  of  trends  in  the  indicators  of  size  structure  and  their 

 significance  was  examined  using  Mann-Kendall  tests  where  four  or  more  samples  (years)  were 

 available  (Hassig  et  al.,  2010).  These  tests  were  performed  in  R  using  the  Kendall  package 

 (McLeod, 2011). 

 The  length  measurements  used  to  determine  size  structure  were  distributed  into  appropriate  length 

 intervals  to  create  histograms  for  each  year  to  visualize  the  size  structure  in  both  experimental  and 

 commercial  catches  by  species.  Only  years  with  30  or  more  length  measurements  for  a  stock  were 

 included  in  the  histograms.  Length-frequency  distributions  are  multi-model,  a  principle  that  reflects 

 the  presence  of  individuals  of  multiple  age  or  size  classes  in  fish  populations  (Gulland  & 

 Rosenberg,  1992).  Therefore,  the  status  of  stocks  could  be  deduced  from  length-frequency 

 distribution  patterns,  with  a  steady  decline  from  larger  to  smaller  individuals  showing  a  good  status 

 and  vice  versa  (Neumann  &  Allen,  2007).  Based  on  this  principle,  the  patterns  of  the 
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 length-frequency  histograms  for  the  stocks  were  visually  examined  for  insights  into  the  status  of  the 

 stocks. 

 The  presence  of  significant  differences  in  size  structure  was  examined  by:  (i)  comparing  the  L  mean  in 

 catches  over  years  using  the  Kruskal-Wallis  test;  and  (ii)  comparing  length-frequency  distributions 

 using  the  Kolmogorov–Smirnov  two-sample  test  with  a  Holm–Bonferroni  correction  (Neumann  & 

 Allen,  2007).  Dunn’s  test  for  pairwise  multiple  comparisons  using  the  Benjamini-Hochberg  method 

 was  applied  when  the  Kruskal–Wallis  test  was  significant.  The  Kruskal-Wallis  and  Dunn’s  tests 

 were  implemented  in  R  using  the  stats  package  (R  Core  Team  and  contributors  worldwide,  2023). 

 The  Kolmogorov–Smirnov  two-sample  test  was  implemented  in  python  using  the  scipy.stats 

 module (Seabold et al., 2010). 

    2.3.2  Length-weight relationships and Fulton’s condition factor (K  c  ) 

 Linear  models  were  fitted  to  log  10  -transformed  total  length  or  fork  length  and  weight  data  from 

 experimental  catches  to  generate  a  and  b  coefficients  of  length-weight  regressions  for  each  stock. 

 The  length-weight  regressions  were  conducted  for  each  lake  separately.  Data  for  all  years  were 

 aggregated  for  each  stock  to  increase  the  sample  size.  The  aggregated  years  were  2011,  2012  and 

 2021  for  Lake  George.  In  the  Ugandan  part  of  Lake  Edward,  the  years  aggregated  were  2006-07, 

 2011-13,  2016,  2019,  and  2021-22.  However,  most  (86.6%)  measurements  were  from  2019,  2021 

 and  2022.  The  length  and  weight  data  were  cleaned  to  remove  outliers  and  improve  the  models. 

 The  validity  of  the  values  of  a  and  b  was  evaluated  by  comparisons  with  the  values  for  each  species 

 available in literature or FishBase (Froese & Pauly, 2023). 

 We  determined  the  Fulton’s  condition  (  K  c  )  of  the  fish  stocks  as  W/L  3  *100  (Fulton,  1904).  The  W  and 

 L  are  the  observed  weight  and  length,  respectively.  The  K  c  is  useful  for  indicating  the  growth 

 condition  of  fish.  A  fish  stock  is  in  good  condition  when  K  c  is  greater  than  1  and  vice  versa 

 (Ravikumar et al., 2023). 

    2.3.3  Sex ratios and size at first maturity 

 Sex  ratios  were  determined  as  the  ratio  of  the  number  of  females  to  the  number  of  males  captured  in 

 experimental  catches.  We  used  the  chi-square  test  (  X  2  )  to  determine  whether  the  observed  sex  ratio 

 for  each  stock  was  significantly  different  from  1:1,  the  general  sex  ratio  in  natural  populations 

 (Fisher, 1930). 
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 Size  at  first  maturity  was  calculated  as  L  m50  .  This  was  determined  by  fitting  numbers  in 

 length-frequency  bins  to  a  logistic  regression  curve,  using  the  least  squares  method  (Sparre  and 

 Venema,  1998).  The  estimates  of  L  m50  were  based  on  maturity  data  collected  in  this  study  in  2019, 

 2021,  and  2022  in  Lake  Edward  and  2021  in  Lake  George.  Size  at  maturity  is  highly  variable 

 (Hutchings,  2002)  and  for  this  reason,  we  avoided  aggregating  data  over  a  long  period  (beyond  five 

 years).  The  values  of  L  m50  were  estimated  for  both  sexes  combined  and  for  males  and  females 

 separately  whenever  the  sample  size  was  adequate.  The  L  m50  was  determined  using  the  R  package, 

 sizeMat  (Torrejon-Magallanes,  2020).  Using  the  estimates  of  L  m50  for  both  sexes  combined,  we 

 calculated  the  percentage  of  mature  individuals  in  the  catch,  an  indicator  of  overfishing  (Froese, 

 2004).  This  was  done  for  the  stocks  with  adequate  length  measurements  in  commercial  catches 

 sampled in 2020 and 2022. 

 For  some  stocks  in  the  Ugandan  part  of  Lake  Edward  (  O.  niloticus  ,  O.  leucostictus  ,  B.  docmak  ,  and 

 L.  altianalis  ),  adequate  maturity  data  was  available  for  periods  before  (from  secondary  data)  and 

 after  the  change  in  management  in  2018  (from  this  study).  The  maturity  data  before  the  change  in 

 management  was  aggregated  for  the  period  from  2006  to  2016.  For  these  stocks,  we  determined 

 whether  the  logistic  regression  models  of  maturity  between  the  two  time  periods  were  significantly 

 different  to  examine  the  effect  of  the  change  in  management.  To  implement  this,  we  made  a  factor 

 variable  representing  each  of  the  two  time  periods.  The  effect  of  change  in  management  was 

 examined  by  fitting  logistic  regression  models  that  cater  for  the  effect  of  the  derived  factor  variable 

 using  the  glm  function  in  the  MQMF  (Modelling  and  Quantitative  Methods  in  Fisheries)  package  in 

 R (Haddon, 2020). 

    2.3.4  Fecundity 

 Standard  procedures  were  used  to  process  preserved  ovaries  and  to  count  oocytes  (LVFO,  2007). 

 Ovaries  were  collected  in  2021  and  2022.  All  oocytes  in  small  ovaries  were  counted  to  obtain  the 

 total  number  of  eggs  (absolute  fecundity).  For  big  ovaries,  where  enumeration  of  all  oocytes  was 

 impractical,  the  total  weight  of  the  ovary  was  measured,  followed  by  counting  oocytes  in  two 

 sub-samples  of  known  weight.  The  total  number  of  oocytes  was  then  determined  by  extrapolating 

 the  average  number  from  the  sub-samples  to  the  whole  ovary  using  its  total  weight.  Linear 

 regressions  on  log  10  -transformed  data  were  performed  on  total  or  fork  length  (cm)  and  absolute 

 fecundity  to  generate  regression  equations  for  each  stock,  useful  for  predicting  fecundity  for  a  fish 

 of  known  length  and  vice  versa.  The  sample  size  for  fecundity  was  small  for  most  stocks,  ranging 

 from  2-162  (average  34).  As  a  result,  samples  for  both  the  Uganda  part  of  Lake  Edward  and  George 

 were combined for the linear regression analyses. 
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    2.3.5  Growth parameters and mortality rates 

 The  growth  parameters  were  based  on  inputs  from  literature  and  new  observations  from  secondary 

 and  primary  data  aggregated  in  this  study.  Focus  was  on  the  length  at  infinity  (  L  ∞  ),  weight  at  infinity 

 (  W  ∞  ),  the  rate  at  which  L  ∞  and  W  ∞  are  attained  (  K  ),  optimum  length  of  capture  to  maximize  yield 

 (  L  opt  ),  natural  mortality  (  M  ),  total  mortality  (  Z  ),  fishing  mortality  (  F  ),  and  exploitation  rate  (  E  )  using 

 empirical  equations  (e.g.,  Froese  &  Binohlan,  2000)  and  the  von  Bertalanffy  growth  function 

 (VBGF) (von Bertalanffy, 1938). 

 The  values  for  L  ∞  were  estimated  from  its  relationship  with  maximum  length  (  L  max  )  (Equation  1).  In 

 each  lake,  L  max  was  the  observed  length  of  the  largest  individual  in  the  experimental  and  commercial 

 catches.  The  W  ∞  was  estimated  from  L  ∞  using  the  a  and  b  values  from  the  length-weight 

 relationships determined in this study. The  L  opt  was  estimated from Equation 2. 

 (1) 

 (2) 

 Estimates  of  K  were  derived  from  Equation  3,  where  t  max  is  the  maximum  life  span  of  the  species 

 listed in FishBase (Froese & Pauly, 2023). 

 (3) 

 Equations  1  to  3  were  adopted  from  Froese  &  Binohlan  (2000).  Total  mortality  (  Z  )  was  estimated 

 from  two  approaches  i.e.,  the  Beverton  &  Holt  (1957)  estimator  (Equation  4)  and  the 

 length–converted  catch  curve  (see  below,  Z*  ).  The  value  of  L  c  in  Equation  4  is  the  minimum  fully 

 selected  size  (the  size  at  which  all  fish  are  caught  by  a  particular  fishing  gear)  in  the  fishery 

 assumed  to  be  minimum  length  in  commercial  catches  while  L  mean  is  the  mean  length  of  fish 

 specimens  larger  than  L  c  .  This  approach  was  implemented  in  R  using  the  function  bheq  in  the 

 package  fishmethods  (Nelson,  2014).  This  method  was  not  implemented  for  fish  stocks  lacking 

 adequate  samples  from  commercial  catches:  L.  forskalii  ,  M.  kannume  ,  and  O.  leucostictus  (Lake 

 George). 

 (4) 
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 Natural  mortality  (  M  )  was  estimated  from  Equation  5  (Pauly,  1980).  Temperature  (  T  )  in  the 

 equation  refers  to  the  mean  temperature  for  the  habitat,  i.e.,  each  of  the  waterbodies,  and  was 

 obtained from Stoyneva-Gärtner et al. (2020). 

 (5) 

 For  the  Ugandan  part  of  Lake  Edward,  we  also  estimated  total  mortality  (  Z  *  )  based  on  the  VBGF 

 using  the  length  measurements  from  the  six  consecutive  experimental  gillnet  surveys  performed  in 

 2022  combined  with  the  corresponding  measurements  from  commercial  catches.  We  used  the 

 Electronic  Length-Frequency  Analysis  function  (ELEFAN  1)  implemented  in  the  software  FISAT 

 for  this  approach  (Pauly,  1987).  The  L  ∞  and  K  are  priors  to  estimate  Z  *  in  ELEFAN  1.  The  value  of 

 K  (  K  *  )  used  was  estimated  using  the  K-Scan  routine  in  ELEFAN  I  by  fixing  the  L  ∞  values  to  those 

 derived  from  the  empirical  formulae  in  this  study.  The  routine  returns  a  value  of  K  *  with  the  best  fit 

 for  the  fixed  L  ∞  .  Using  the  values  of  L  ∞  and  derived  K  *  values,  Z  was  estimated  as  the  slope  of  the 

 length–converted catch curve (Ricker, 1975). 

 In  some  instances,  single-figure  estimates  of  total  mortality  (mean)  derived  from  length-based 

 assessments  may  not  be  true  estimates  with  the  true  values  lying  anywhere  in  the  range  of  the 

 confidence  limits  due  to  data  variability  (Gulland  &  Rosenberg,  1992).  This  was  the  case  with  both 

 values  of  total  mortality  in  this  study  because  relating  them  with  M  to  estimate  F  ,  returned 

 unrealistic, negative estimates of  F  . As a result,  F  and  E  (  F/Z  ) were not determined. 

 Finally,  we  estimated  growth  performance  indexes  (  Ø  )  for  the  stocks  to  facilitate  the  evaluation  of 

 the  estimates  of  K  and  L  ∞  from  empirical  formula  by  comparing  the  indexes  derived  to  those  of  the 

 species  or  related  species  (Froese  and  Pauly,  2023;  Munro  and  Pauly  1983).  The  indexes  were  based 

 on Equation 6 (Munro and Pauly, 1983). 

 (6) 

    2.4  Ethical statement 

 In  Uganda,  this  study  was  conducted  by  researchers  of  the  National  Fisheries  Resources  Research 

 Institute  (NaFIRRI).  The  institute  is  one  of  the  seven  public  National  Agricultural  Research 

 Institutes  (NARIs)  in  Uganda  under  the  policy  guidance  and  coordination  of  the  National 

 Agricultural  Research  Organisation  (NARO).  The  Institute  is  authorized  to  collect  fish  for  research 
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 purposes  to  fulfil  its  national  mandate  to  conduct  basic  and  applied  fisheries  research.  The  care  for 

 the  fish  collected  complied  with  national  guidelines  for  the  use  of  animals  in  research  and  training 

 established by the Uganda National Council for Science and Technology (UNCST). 
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    3  Results 

    3.1  Size structure 

 The  size  structure  of  the  stocks  in  terms  of  length  (  L  max  and  L  mean  )  is  illustrated  in  Figures  2and  3. 

 The  Mann-Kendall  test  revealed  only  two  significant  trends  in  the  commercial  and  experimental 

 catches  of  the  stocks  (Table  S4).  The  significant  trends,  both  for  commercial  catches  of  B.  docmak  , 

 were  an  increasing  trend  in  L  max  (tau=0.65;  p=0.021;  Figure  2)  in  the  Ugandan  part  of  Lake  Edward 

 and  L  mean  (  tau  =0.68;  p  =0.048;  Figure  3)  in  Lake  George.  Based  on  estimates  of  tau  that  are  positive 

 and  ≥0.5  (Table  S4),  the  Mann-Kendall  test  also  indicated  strong  but  non-significant  increasing 

 trends  in  L  max  and  L  mean  of  commercial  catches  of  L.  altianalis  in  the  Ugandan  part  of  Lake  Edward 

 (Figures  2  and  3).  The  same  trend  was  observed  for  L.  altianalis  (  L  max  )  and  O.  leucostictus  (  L  max  and 

 L  mean  )  in  experimental  catches  of  the  Uganda  part  of  Lake  Edward  (Figures  2  and  3;  Table  S4). 

 Finally,  the  test  also  indicated  a  strong  but  non-significant  decreasing  trend  in  L  mean  of  B.  docmak  in 

 experimental  catches  of  the  Uganda  part  of  Lake  Edward  (Figure  3;  Table  S4).  Unlike  the  Ugandan 

 part  of  Lake  Edward,  only  limited  experimental  fishing  was  performed  in  Lake  George.  Therefore, 

 estimates  of  size  structure  for  most  stocks  covered  only  1994  and  2021  (Table  S5;  Table  S6).  The 

 length-frequency  histograms  for  the  stocks  in  both  commercial  (Figures  S1-13)  and  experimental 

 (Figures  S14-26)  catches  were  mainly  interrupted,  with  an  unstable  decline  from  larger  to  smaller 

 individuals. 

 The  Kruskal-Wallis  tests  to  examine  differences  in  L  mean  were  all  significant  (  p  <0.001)  apart  from 

 that  of  experimental  data  of  B.  docmak  in  Lake  George  (Kruskal-Wallis  test,  X  2  =1.14,  df  =1,  p  = 

 0.285).  Subsequent  pairwise  multiple  comparisons  showed  that  the  L  mean  over  years  within  a  stock 

 were  largely  different  among  years  with  80  %  of  all  the  possible  pairs  significantly  different. 

 Comparisons  of  length  frequency  distributions  of  the  stocks  revealed  that  the  distributions  were 

 more  likely  to  be  significantly  different  than  similar,  with  78  %  of  the  comparisons  significantly 

 different.  In  addition,  pairs  including  a  year  before  and  a  year  after  the  change  in  management  were 

 likely  to  be  as  much  significantly  different  or  not,  as  any  other  pairs.  These  indicated  that  no 

 changes in length frequency distributions could be attributed to the changes in management. 

    3.2  Length-weight relationships and Fulton’s condition factor (K  c  ) 

 All  length-weight  relationships  had  high  values  of  r  2  ranging  from  0.88  to  0.99  (Tables  1  &  2), 

 demonstrating  that  the  regression  models  fitted  well  with  the  data  from  both  the  Ugandan  part  of 

 Lake  Edward  and  from  Lake  George.  For  all  stocks,  values  of  K  c  ranged  from  0.34  to  1.96  (Tables  1 

 & 2). Most of the stocks had good growth condition with  K  c  >1. 
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    3.3  Sex ratios and size at first maturity 

 For  some  stocks,  the  sex  ratios  were  not  uniform  in  the  two  lakes  (Tables  1  &  2).  For  instance,  more 

 females  than  males  were  present  in  the  catches  of  O.  niloticus  in  Lake  Edward  which  was  not  the 

 case  for  the  stock  in  Lake  George.  The  sex  ratios  differed  from  the  general  sex  ratio  for  natural 

 populations  (1:1)  in  L.  forskalii  (  Χ  2  =  4.24  ,  df  =1,  p=  0.04)  ,  L.  altianalis  (  Χ  2  =  12.18,  df  =1,  p=  0.001)  , 

 O.  niloticus  (  Χ  2  =  22.64,  df  =1,  p<  0.001)  ,  O.  leucostictus  (  Χ  2  =  40.00,  df  =1  ,  p<  0.001)  in  Lake  Edward 

 and  O.  leucostictus  (  Χ  2  =  12.11,  df  =1,  p=  0.001)  and  P.  aethiopicus  (  Χ  2  =3.95,  df  =1,  p  =0.05)  in  Lake 

 George. 

 The  estimates  of  L  m50  were  calculated  for  the  stocks  for  which  sufficient  samples  were  available 

 (Tables  1  &  2,  Table  S7).  For  L  m50  were  segregated  by  sex,  the  estimates  for  males  were  higher  than 

 those  of  females  in  all  the  stocks  except  P.  aethiopicus  and  L.  altianalis  (Table  S7).  The  logistic 

 regression  models  fit  to  maturity  data  of  the  two  time  periods  (before  and  after  the  changes  in 

 management)  were  not  significantly  different,  indicating  that  no  effect  of  the  changes  in 

 management  on  the  size  at  first  maturity  could  be  detected.  The  logistic  regression  models  fit 

 maturity  data  for  both  sexes  combined  and  the  data  segregated  by  sex  were  weak  to  strong,  with  r  2 

 values ranging from 0.06 to 0.73 (Tables 1 & 2; Table S7). 

 The  percentage  of  mature  individuals  in  the  catches  was  lowest  in  stocks  of  B.  docmak  from  both 

 waterbodies  (Figure  4).  These  stocks  exhibited  the  least  percentage  maturity  of  27.9  %  in  Lake 

 Edward  in  2022  (Figure  4).  At  the  end  of  the  spectrum,  stocks  of  O.  niloticus  had  the  highest 

 percentages with 100 % maturity in Lake Edward and 99.6 % in Lake George. 

    3.4  Fecundity 

 The  absolute  fecundity  of  the  stocks  was  highly  variable  (Tables  1  &  2).  The  absolute  fecundity 

 increased  with  total  or  fork  length  although  the  relationships,  based  on  values  of  r  2  were  weak  in  O. 

 niloticus, O. leucostictus  , and  L. altianialis  , and  strong in the rest of the stocks (Figure 5). 

    3.5  Growth parameters and mortality rates 

 The  estimates  of  growth  parameters  differed  between  conspecific  populations  from  the  two 

 waterbodies  due  to  different  input  parameters,  especially  L  max  and  mean  temperature  (Table  3). 

 Parameters  estimated  using  two  approaches  i.e.,  Z  and  Z  *  from  the  Beverton  and  Holt  estimator  and 

 the  length–converted  catch  curve  respectively,  and  K  and  K  *  from  an  empirical  formula  and  length 

 frequency  analysis  respectively,  the  estimates  obtained  were  different.  An  exception  was  O. 
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 niloticus  in  Lake  Edward  whose  estimates  of  K  (  K  and  K  *  )  were  similar  and  those  of  Z  (  Z  and  Z  *  ), 

 close (Table 3). 

    4  Discussion 

    4.1  Significance of the estimates and their reliability. 

 The  estimates  made  in  this  study  fill  important  knowledge  gaps  for  the  stocks  of  lakes  Edward  and 

 George.  Our  estimates  of  L  m50  for  C.  gariepinus  ,  L.  forskalii  and  O.  leucostictus  (Lake  Edward)  are 

 new  for  these  waterbodies.  Apart  from  an  estimate  of  O.  leucostictus  from  Lake  George 

 (Ogutu-Ohwayo  et  al.,  1997),  all  other  estimates  of  fecundity  are  new.  Regarding  growth 

 parameters  (Table  3),  only  O.  niloticus  in  Lake  Edward  had  estimates  of  L  ∞  and  W  ∞  in  1989  (Vakily, 

 1989;  ).  Because  life-history  and  growth  parameters  support  decision-making,  especially  in 

 data-poor  stocks  such  as  the  ones  assessed  (King  &  McFarlane,  2003),  the  estimates  made  in  this 

 study are vital for fisheries management. 

 The  reliability  of  our  estimates  is  based  on  their  consistency  with  estimates  for  the  same  or  related 

 species  from  literature  and  FishBase  (Froese  &  Pauly,  2023).  The  consistency  is  demonstrated  for  a 

 and  b  values  from  length-weight  relationships,  fecundity,  and  Ø  (Table  S8).  T  he  length-weight 

 regressions  (Tables  1  &  2)  also  have  values  of  b  that  lie  within  the  expected  range  of  2.5<  b  <3.5  for 

 fish  species  as  well  as  high  r  2  values  (Froese,  2006),  and  are  thus  reliable.  This  means  that  the 

 estimates  in  this  study  are  good  enough  to  be  applied  in  further  fisheries  assessments  such  as 

 estimating  catch  from  length  using  a  and  b  values  of  length-weight  regressions  (Garaway  and 

 Arthur, 2020). 

    4.2  Implications on the exploitation status and population dynamics of the stocks 

 Important  inferences  can  be  made  on  the  status  and  population  dynamics  of  the  fish  stocks  based  on 

 the  estimates  of  the  life-history  and  growth  parameters.  The  significant  trends  observed  in  L  max  and 

 L  mean  in  commercial  catches  of  B.  docmak  (Table  S4;  Figures  2  &  3)  suggested  an  increase  of  large 

 individuals  in  its  populations  and  catches.  This  desirable  pattern  was  also  apparent  in  the 

 commercial  catches  of  most  of  the  other  stocks,  though  not  significant  (Table  S4).  These  patterns, 

 especially  the  increase  in  L  mean  indicate  a  decrease  in  fishing  pressure  and  a  recovery  of  stock  size, 

 length,  and  age  structure  (Shin  et  al.,  2005).  Conversely,  a  negative  trend  in  L  max  and  L  mean  in 

 commercial  catches  may  result  from  the  removal  of  many  large  individuals  or  the  selection  of  too 

 many  small  individuals  from  fish  populations  into  catches,  both  of  which  are  not  desirable  and 

 degrade  size  structure  (Froese,  2004;  Shin  et  al.,  2005).  Therefore,  the  negative  trends  observed  for 
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 some  stocks  such  as  P.  aethiopicus  in  both  waterbodies,  though  not  significant,  are  of  management 

 concern (Table S4). 

 The  trend  in  L  max  in  experimental  catches  could  be  interpreted  in  the  same  way  as  in  commercial 

 catches  above.  However,  the  interpretation  of  L  mean  in  experimental  catches  could  be  different  if 

 diverse  fishing  gear  to  target  all  size  classes  are  used,  as  is  the  case  here.  Low  values  of  L  mean  could 

 be  because  of  a  high  abundance  of  small  individuals.  This  could  explain  the  strong  negative  trend  in 

 the  L  mean  of  experimental  catches  of  B.  docmak  in  the  Ugandan  part  of  Lake  Edward  (Figure  3; 

 Table  S4),  which  acts  in  the  opposite  direction  compared  to  the  trend  of  the  same  stock  in 

 commercial catches (Figure 3; Table S4). 

 The  L  opt  is  recommended  as  L  mean  in  catches  to  maximize  catches  and  biomass,  and  minimize  the 

 impact  on  size  structure,  thus  promoting  sustainable  fishing  (Froese  et  al.,  2016).  The  estimates  of 

 L  mean  observed  in  commercial  catches  in  this  study  for  the  major  commercial  fish  species  (Figure  3) 

 suggested  unsustainable  fishing  that  decrease  population  and  stock  sizes  because  they  were  less 

 than  L  opt  (Table 3; Froese et al., 2016). 

 The  estimates  of  L  m50  for  O.  niloticus  in  this  study,  21.2  cm  and  17.6  cm  (Tables  1  &  2)  were  lower 

 than  the  highest  ever  recorded  estimate  of  25.2  cm  in  Lake  George  (Fry  and  Kimsey,  1960),  and 

 21.0  cm  in  Lake  Edward  (Bassa  et  al.,  2015).  This  was  also  the  case  for  P.  aethiopicus  whose 

 current  estimates  of  47.9  cm  and  51.2  cm  were  lower  than  the  55-59  cm  range  reported  for  samples 

 from  lakes  Edward,  George,  and  the  Kazinga  Channel  (Kamanyi,  1996).  Fish  respond  to  stressors 

 by  lowering  size  at  maturity  so  that  their  populations  can  be  replenished  at  a  higher  rate  (Rochet, 

 2000).  Therefore,  the  lower  L  m50  for  these  stocks  could  be  in  response  to  high  fishing  pressure  they 

 face  in  the  two  lakes  (Musinguzi  et  al.,  2021).  In  addition,  values  of  L  m50  lower  than  known 

 estimates in the pastsuggest more selective fishing and vice versa (Law, 2000). 

 Based  on  the  proportion  of  mature  fish  in  commercial  catches  as  an  indicator  of  exploitation  status 

 with  100  %  as  the  target  (Froese,  2004),  our  observations  indicated  an  improvement  for  P. 

 aethiopicus  and  O.  niloticus  (Figure  4).  For  P.  aethiopicus  ,  Bassa  et  al.  (2014)  reported  a  range  of 

 76-  92  %  as  a  proportion  of  mature  fish  in  commercial  catches  of  2011-2013  from  both  the  Ugandan 

 part  of  Lake  Edward  and  Lake  George,  compared  to  a  range  of  94.3-99.0%  observed  in  this  study 

 for  both  waterbodies.  For  O.  niloticus,  the  proportion  ranged  from  34-92%  in  the  commercial 

 catches  of  2011-2013  for  both  waterbodies  compared  to  99.6-100  %  currently.  For  B.  docmak  ,  the 

 current  estimates  of  27.9-66.7  %,  compared  to  63-73  %  in  the  catches  of  2011-2013  showed  a 
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 degradation  in  the  indicator,  suggesting  the  presence  of  more  young  individuals  in  both  catches  and 

 its population. 

    4.3  Effect of the new changes in management 

 The  significant  differences  observed  in  size  structure  and  length  frequencies  did  not  suggest  that  the 

 change  in  management  was  important.  Instead,  the  significant  differences  could  be  attributed  to 

 high  variability  common  in  length  measurements  of  catches  (Gulland  &  Rosenberg,  1992). 

 Likewise,  the  logistic  models  of  size  at  maturity  before  and  after  the  commencement  of  changes  in 

 management  were  not  significantly  different.  Therefore,  it  could  be  contentious  to  attribute  any 

 changes  in  size  structure  and  size  at  maturity  to  the  changes  in  management.  However,  positive 

 signs  of  improvements  in  size  structure  were  evident  as  some  estimates  of  L  max  or  L  mean  in 

 commercial  and  experimental  catches  increased  substantially  after  2018  compared  to  the  estimates 

 of  the  preceding  year  with  data  (Figures  2  &  3).  This  was  true  for  L  max  and  L  mean  in  the  commercial 

 catches  of  P.  aethiopicus  in  the  Ugandan  part  of  Lake  Edward  as  well  as  for  L  max  in  experimental 

 catches  of  B.  domak  in  the  Ugandan  part  of  Lake  Edward.  In  the  former,  L  max  and  L  mean  increased 

 from  76.0  cm  and  31.4  cm  in  2017  to  110.0  cm  and  74.2  cm  in  2020  respectively  (Figures  2  &  3) 

 while in the latter,  L  max  increased from 58.0 cm in  2016 to 84.1 cm in 2021 (Figure 2). 

 The  steady  decline  from  larger  to  smaller  individuals  in  length-frequency  distributions,  a  pattern 

 that  suggests  a  healthy  status  of  the  stocks  (Neumann  &  Allen,  2007),  though  not  widespread,  was 

 more  prevalent  in  years  after  2018.  The  pattern  was  observed  for  B.  docmak  in  commercial  catches 

 of  2020  in  Lake  George  (Figure  S7)  and  C.  gariepinus  in  commercial  catches  of  2022  and  2020  in 

 the  Ugandan  part  of  Lake  Edward  (Figure  S2)  and  George  (Figure  S8)  respectively.  For  B.  docmak  , 

 the  steady  decline  from  large  to  smaller  individuals  was  absent  in  catches  between  2011  and  2017 

 and  only  evident  again  in  2000  and  2001.  For  C.  gariepinus  ,  the  pattern  was  also  absent  in  recent 

 years  on  both  lakes,  and  only  evident  again  in  2001  (Lake  George).  These  observations  suggested 

 signs  of  improvements  in  size  structure  after  2018  that  could  be  attained  in  all  the  stocks  if  the 

 management  regime  is  strengthened  and  maintained.  For  now,  it  may  be  too  early  for  the  impact  of 

 the  changes  in  management  to  be  clear  and  widespread.  The  changes  in  management  strengthened 

 enforcement  of  fishing  regulations  by  promising  to  effectively  prohibit  destructive  fishing  gear  and 

 fishing  in  nearshore  shallow  habitats  known  to  be  nursery  areas  for  fish.  These  changes  are  known 

 to  reduce  fishing  pressure,  increase  L  mean  ,  and  build  the  abundance  of  young  and  adult  fishes  (Shin 

 et al., 2005; Campos-Silva and Peres, 2016; de Moraes et al., 2023). 
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    4.4  Implications on fisheries management and conservation of fish species 

 Desirable  attributes  in  the  fish  stocks  including  an  increase  in  L  max  or  L  mean  in  catches  of  some 

 stocks,  a  higher  proportion  of  mature  fish  in  catches,  and  an  improvement  in  size  structure  visible  in 

 the  length-frequency  histograms,  occur  in  well-managed  fisheries.  These  attributes  are  not 

 widespread  in  the  assessed  stocks.  Moreover,  the  influence  of  the  present  management  regime  is  not 

 significant.  This  implies  that  enforcement  of  fishing  regulations  must  be  strengthened  to  create 

 positive  and  significant  outcomes  for  all  the  stocks.  Strengthened  enforcement  will  reduce  fishing 

 pressure,  ensuring  a  sufficient  supply  of  young  fish  for  recruitment.  Consequently  life-history 

 parameters  such  as  L  m50  ,  which  were  lower  than  historical  records  for  O.  niloticus  and  P. 

 aethiopicus  ,  could improve. 

 The  presence  of  many  immature  individuals  of  B.  docmak  in  catches  is  a  concern.  Establishing 

 mesh  size  restrictions  for  this  stock  is  necessary.  The  challenge  is  that  the  immature  individuals  of 

 the species are caught in a legal fishing gear of  O. niloticus  . 

 The  recent  changes  in  management  might  be  having  positive  effects,  but  more  time  for 

 implementation  is  needed  to  assess  their  full  impact.  Management  should  therefore  also  prioritize 

 monitoring  not  only  to  enable  its  evaluation  but  also  to  facilitate  adaptive  management  measures  as 

 needed.  In  Lake  Edward,  illegal  fishing  from  the  DRC  section  of  the  lake,  which  is  rampant  (The 

 Independent,  2021;  Lutaaya,  2022)  could  undermine  the  potential  benefits  from  the  improved 

 management  in  Uganda.  Therefore,  the  cooperation  between  fishery  management  authorities  in 

 Uganda and DRC is necessary for assured benefit from the current management efforts. 

 With  about  60  endemic  haplochromine  cichlids  and  other  15  native  non-  Haplochromis  species 

 (Greenwood,  1991;  Snoeks,  2000;  Vranken  et  al.,  2019;  Decru  et  al.,  2020;  Musinguzi  et  al.,  2023), 

 lakes  Edward  and  George  are  important  for  the  conservation  of  fish  species.  Generally,  our 

 estimatesof  the  life-history  parameters  suggest  that  the  management  of  exploited  fish  species  should 

 be  improved  by  strengthening  the  enforcement  of  fishing  regulations.  This  is  important  for  the 

 conservation  of  both  exploited  and  unexploited  species.  Improved  management  could  benefit 

 exploited  species,  especially  those  present  in  the  catches  but  perceived  to  be  of  low  abundance,  i.e., 

 L.  forskalii  and  M.  kannume  (Poll  &  Damas,  1935;  Worthington,  1932).  The  haplochromine  cichlids 

 in  the  waterbodies  are  endemic  and,  therefore,  of  immense  conservation  importance  (Vranken  et  al., 

 2022).  Stronger  enforcement  of  fishing  regulations  could  benefit  these  species  by  protecting  them 

 from  fishing  pressure  through  sustaining  populations  of  exploited  fish  species.  In  addition,  the 

 haplochromines  utilize  diverse  aquatic  habitats.  Therefore,  stronger  enforcement  of  fishing 
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 regulations  contributes  to  conservation  of  the  species  by  protecting  their  habitats  from  degradation 

 by unsustainable fishing practices such as beach seining (Akwetey et al., 2024). 

    4.5  Limitations of the study and future perspectives 

 This  study  encountered  limitations  related  to  sample  size  and  availability  of  data.  For  some  species 

 in  Lake  George,  fecundity  and  L  m50  could  not  be  determined  (Table  2).  Insufficient  sample  size  may 

 have  contributed  to  the  high  variability  observed  in  estimates  of  fecundity,  low  r  2  values  for  the 

 linear  regressions  of  fecundity  and  length,  and  some  estimates  of  L  m50  (Tables  1  &  2).  The  low  r  2 

 value  for  the  logistic  regression  model  of  L.  altianalis  (Table  1;  Table  S7)  contrasts  with  previous 

 observations  in  Lake  Edward  which  reported  a  strong  correlation  (Aruho  et  al.,  2018).  The  reasons 

 for  the  weak  correlation  in  this  study  could  be  high  variability  in  the  data  possibly  due  to  a 

 misclassification  of  maturity  stages,  or  taxonomic  confusion  with  a  related  species,  Labeobarbus 

 somereni  (Boulenger,  1911).  Labeobarbus  somereni  occurs  in  the  rivers  flowing  into  the  lakes,  and 

 hence could venture into Lake Edward. 

 Regarding  growth  parameters,  F  and  E  could  not  be  estimated  because  relating  M  and  Z  to  estimate 

 F  resulted  in  unrealistic  values.  This  could  be  due  to  limitations  in  the  available  data.  In  addition, 

 estimates  from  ELEFAN  1  were  based  on  six  sampling  events.  Whereas  this  is  adequate  if  sample 

 sizes  are  large  (Gulland  &  Rosenberg,  1992),  which  was  the  case  in  this  study  (Table  3),  the  ideal  is 

 to have 12 samples taken consecutively for 12 months (Hoenig, 1987; Pauly, 1984). 

 These  limitations  can  be  addressed  by  more  frequent  data  collection  to  increase  sample  size  and 

 make  more  data  available.  The  data  collection  efforts  should  consider  both  fishery-dependent  and 

 independent  surveys  as  complementary  methods.  Fishery-dependent  surveys  will  enable  more 

 frequent  acquisition  of  data  because  they  are  cheap.  On  the  other  hand,  fishery-independent  surveys 

 offer  opportunities  for  standardized  data  collection  and  collection  of  data  on  fish  species  that  do  not 

 appear  in  commercial  catches.  The  availability  of  more  data  will  improve  the  understanding  of  the 

 exploitation  status  and  the  population  dynamics  of  the  stocks  using  life-history  and  growth 

 parameters.  This  will,  in  turn,  improve  decisions  for  fisheries  management  and  conservation  of 

 native  species.  Only  the  Ugandan  part  of  Lake  Edward  was  assessed  due  to  the  lack  of  data  from  the 

 part  of  the  Lake  in  DRC.  Collecting  data  from  this  this  part  of  the  lake  should  therefore  be 

 prioritized in future data collection efforts. 

 There  are  new  aspects  that  could  be  covered  in  future  research  to  generate  more  accurate 

 information  useful  for  research.  These  include  aspects  of  ageing  fish,  examination  of  recruitment 

 patterns  of  the  fish  stocks,  and  changes  in  all  the  aspects  of  fish  life-history  and  growth  parameters 
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 in  relation  to  productivity  of  the  waterbodies  and  climate  change.  These  aspects  can  also  change 

 with  season  and  therefore,  seasonal  patterns  in  all  these  aspects  (not  explored  in  this  study)  should 

 also be considered in future research. 

 No  significant  changes  in  life-history  parameters  could  be  attributed  to  the  enhanced  management 

 that  commenced  in  2018.  However,  there  is  optimism  from  the  enhanced  management  exhibited  by 

 signs  of  improvement  in  L  max  ,  L  mean  ,  and  high  percentage  of  maturity  in  catches  of  some  stocks 

 among  others  (section  3.5.2).  The  effect  of  the  changes  could  become  significant  with  time  if  the 

 management  regime  is  maintained  and  strengthened.  Therefore,  future  research  should  consider 

 re-examining the effects as a way of evaluating the performance of the management regime. 
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