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Summary

In a causal inference framework, a new metric has been proposed to quantify sur-
rogacy for a continuous putative surrogate and a binary true endpoint, based on
information theory. The proposed metric, termed the individual causal association
(ICA), was quantified using a joint causal inference model for the corresponding
potential outcomes. Due to the non-identifiability inherent in this type of models,
a sensitivity analysis was introduced to study the behavior of the ICA as a func-
tion of the non-identifiable parameters characterizing the aforementioned model. In
this scenario, to reduce uncertainty, several plausible yet untestable assumptions like
monotonicity, independence, conditional independence or homogeneous variance-
covariance, are often incorporated into the analysis. We assess the robustness of the
methodology regarding these simplifying assumptions via simulation. The practical
implications of the findings are demonstrated in the analysis of a randomized clini-
cal trial evaluating an inactivated quadrivalent influenza vaccine.

KEYWORDS:
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1 INTRODUCTION

Randomized clinical trials (RCTs) are the gold standard for evaluating the efficacy of new drugs and vaccines. A critical aspect

of both the validity and practical feasibility of an RCT is the selection of an appropriate clinical endpoint. Often, using the most

clinically relevant outcome, known as the true endpoint, requires a lengthy follow-up period and/or a large sample size, rendering

the study unfeasible. In such cases, surrogate endpoints—outcomes that can be measured earlier, more conveniently, or more
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2 Ong F. ET AL

frequently—may be used instead. However, before surrogate endpoints can be used as substitutes for true endpoints, they must

undergo rigorous statistical evaluation. In vaccine trials, for instance, immune response measures frequently serve as surrogate

endpoints for true endpoints such as protection from infection, hospitalization, intensive care admission, or mortality. These

measures of immune response, known as surrogates or correlates of protection (CoP), must demonstrate accurate prediction of

the vaccine’s effect on the true endpoint before they can be used in RCTs for market authorization.

The assessment of surrogate endpoints has been challenging, and for over 30 years, researchers have developed statistical

methods to carry out the evaluation exercise. Early efforts to develop validation methods focused on the single trial setting

(STS), where information on both surrogate and true endpoints comes from a single clinical trial. However, these methods,

based on expected causal treatment effects, have theoretical and practical limitations due to the lack of replication at the level of

these effects in the STS.1,2,3 To overcome this, a meta-analytic framework was introduced, solving the replication problem but

requiring data from multiple trials, a resource often scarce in early drug development stages when surrogate endpoints are most

crucial.4 Consequently, developing methods for the STS has remained a priority in the field.

The evaluation of surrogate endpoints has also lacked a unified framework, leading to varied definitions and metrics. Alonso

and Molenberghs5,6 introduced an information-theoretic definition of surrogacy and the Individual Causal Association (ICA),

a metric to quantify it. While the ICA is model-independent, estimating it requires a causal inference model to describe the

distribution of the corresponding potential outcomes. It is worth noting that until fairly recently, such causal inference models

and appropriate quantifications of the ICA had only been developed when both outcomes were either continuous or binary.7,8

Alonso et al.9 extended this methodology to scenarios with binary true endpoints and continuous surrogates, crucial in vaccine

trials. In line with prior studies conducted in different settings,7,8 these authors handled the non-identifiability associated with the

proposed causal inference model via sensitivity analysis. As part of the sensitivity analysis, it is possible to include simplifying

assumptions. Incorporating these assumptions has the potential to reduce the computational burden, to render certain aspects

of the model identifiable, and to lead to more precise conclusions. However, it is essential to recognize that, in principle, these

assumptions can also yield erroneous results if they are not valid. Therefore, it is crucial to examine how the methodology

behaves when such misspecification occurs.

In Section 2, the ICA is introduced and in Section 3, the joint causal inference model is described. The sensitivity analysis

previously proposed to tackle the identifiability issues is presented in Section 4. In Section 5, a simulation study is designed to

evaluate the behavior of the proposed method and the performance of the algorithm to assess the ICA. The robustness of the

methodology with respect to some widely used assumptions is studied and the main findings of the simulations are discussed

in detail. The practical implications of the findings are illustrated using data from a randomized clinical trial evaluating an

inactivated quadrivalent influenza vaccine in Section 6. Finally, we conclude with some remarks in Section 7.
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2 INFORMATION-THEORETIC CAUSAL-INFERENCE FRAMEWORK

2.1 Definition of Surrogacy

In the following, the evaluation of the surrogate endpoint is conducted in the STS, i.e., using data from a single randomized

clinical trial within a well-defined population. Additionally, the framework assumes the evaluation of only two treatments (𝑍 =

{0, 1}) employing a parallel study design. Consistent with the Neyman-Rubin potential outcomes model, it is presumed that

each patient has four potential outcomes represented by 𝒀 = (𝑇0, 𝑇1, 𝑆0, 𝑆1)𝑇 . Here, 𝑇𝑧 and 𝑆𝑧 denote the potential outcomes

for the true and surrogate endpoint under treatment 𝑧 = 0 or 𝑧 = 1.

The implementation of the Neyman-Rubin model in this paper relies on two fundamental assumptions.10 First, the Stable Unit

Treatment Value Assumption (SUTVA)—which encompasses the absence of interference and hidden variations in treatment—

establishes a link between the observed outcomes and the potential outcomes as expressed by the equation:

(𝑆, 𝑇 )𝑇 = 𝑍 ⋅ (𝑆1, 𝑇1)𝑇+(1 −𝑍) ⋅ (𝑆0, 𝑇0)𝑇 .

Second, the Full Exchangeability Assumption asserts that potential outcomes are independent of the assigned treatment, denoted

as (𝑇0, 𝑇1, 𝑆0, 𝑆1)𝑇 ⟂ 𝑍. In a randomized trial, full exchangeability is inherently guaranteed. However, SUTVA is an unverifiable

assumption that requires justification through subject matter knowledge. Throughout the remainder of this paper, we make both

assumptions.

The vector representing the individual causal treatment effects is defined as 𝚫 = (Δ𝑇 ,Δ𝑆)𝑇 , with Δ𝑇 = 𝑇1 − 𝑇0 and

Δ𝑆 = 𝑆1 − 𝑆0. This formulation naturally leads to the following definition of surrogacy in the STS6:

Definition 1. In the STS, we shall say that 𝑆 is a good surrogate for 𝑇 if Δ𝑆 conveys a substantial amount of information on Δ𝑇 .

The metric that quantifies the extent of “shared" information is referred to as the individual causal association (ICA) and in

the following section this concept is discussed in detail.

2.2 Individual Causal Association

Entropy (denoted by 𝐻) and mutual information (denoted by 𝐼) are key concepts in information theory. Entropy assesses the

uncertainty or information content of a random variable, while mutual information quantifies the shared information between

two random variables. Consequently, mutual information serves as a suitable measure for defining the ICA in this context.

Indeed, mutual information is always non-negative, attaining zero if and only if Δ𝑇 and Δ𝑆 are independent. Additionally, it is

also symmetric and invariant under bijective transformations. Despite its appealing mathematical properties, the interpretability

of the mutual information is hindered due to the absence of an upper bound. This limitation is addressed by mapping 𝐼(Δ𝑆; Δ𝑇 )

into the unit interval, where zero corresponds to independence, and one implies the presence of a deterministic relation between

Page 3 of 40 Pharmaceutical Statistics



4 Ong F. ET AL

the individual causal treatment effects. Alonso et al.,9 building upon the concept of multivariate dependence defined by Joe,11

proposed the following quantification of the ICA for a binary true endpoint and a continuous surrogate:

𝑅2
𝐻 (Δ𝑇 ,Δ𝑆) =

𝐻(Δ𝑇 ) −𝐻(Δ𝑇 |Δ𝑆)
𝐻(Δ𝑇 )

=
𝐼(Δ𝑆; Δ𝑇 )
𝐻(Δ𝑇 )

, (1)

where 𝐻(Δ𝑇 ) and 𝐻(Δ𝑇 |Δ𝑆) denote the entropy of Δ𝑇 and the conditional entropy of Δ𝑇 given Δ𝑆, respectively. The pre-

vious definition of 𝑅2
𝐻 (Δ𝑇 ,Δ𝑆) satisfies the aforementioned mathematical properties, ensuring its interpretability. In essence,

𝑅2
𝐻 (Δ𝑇 ,Δ𝑆) represents the proportion of uncertainty about Δ𝑇 that is expected to be removed when Δ𝑆 is known.

3 JOINT CAUSAL INFERENCE MODEL

In order to estimate (1) a joint causal inference model is needed to describe the distribution of 𝒀 . The model introduced by

Alonso et al.9 is based on the following decomposition:

𝑓 (𝒀 ) = 𝑓
(

𝒀𝑇 , 𝒀𝑆
)

= 𝑓
(

𝒀𝑆 ∣ 𝒀𝑇
)

𝑓
(

𝒀𝑇
)

, (2)

where 𝒀𝑇 = (𝑇0, 𝑇1)𝑇 and 𝒀𝑆 = (𝑆0, 𝑆1)𝑇 . The marginal distribution 𝑓
(

𝒀𝑇
)

is parameterized by 𝝅 = (𝜋𝑖𝑗), 𝑖, 𝑗 ∈ {0, 1} with

𝜋𝑖𝑗 = 𝑃
(

𝑇0 = 𝑖, 𝑇1 = 𝑗
)

and 𝜋𝑖. =
∑

𝑗 𝜋𝑖𝑗 , 𝜋.𝑗 =
∑

𝑖 𝜋𝑖𝑗 . Due to the fundamental problem of causal inference, the association

structure of the potential outcomes 𝒀𝑇 is unidentifiable. However, under SUTVA and the full exchangeability assumption, the

marginal probabilities 𝝅𝑚 =
(

𝜋0⋅, 𝜋1⋅, 𝜋⋅0, 𝜋⋅1
)𝑇 can be estimated from the data. In addition to the marginal probabilities, further

assumptions are needed to identify the distribution of 𝒀𝑇 . For instance, after assuming a value for one of the cell probabilities,

say 𝜋10 (the proportion of patients that respond to the control, but do not respond to the treatment), and using an estimate of 𝝅𝑚,

the distribution of 𝒀𝑇 can be fully identified.

The conditional density of 𝒀𝑆 ∣ 𝒀𝑇 in Equation (2) is modeled using a normal distribution 𝑓 (𝒀𝑆 ∣ 𝑇0 = 𝑖, 𝑇1 = 𝑗) =

𝜙(𝒀𝑆 ;𝝁𝑖𝑗 ,𝚺𝑖𝑗) where

𝝁𝑖𝑗 =

⎛

⎜

⎜

⎜

⎝

𝜇𝑖𝑗
0

𝜇𝑖𝑗
1

⎞

⎟

⎟

⎟

⎠

, 𝚺𝑖𝑗 =

⎛

⎜

⎜

⎜

⎝

𝜎𝑖𝑗
00 𝜎𝑖𝑗

01

𝜎𝑖𝑗
01 𝜎𝑖𝑗

11

⎞

⎟

⎟

⎟

⎠

,

and 𝑖, 𝑗 ∈ {0, 1}. For convenience, the conditional covariance between the surrogate potential outcomes will often be rewrit-

ten as 𝜎𝑖𝑗
01 =

√

𝜎𝑖𝑗
00𝜎

𝑖𝑗
11𝜌

𝑖𝑗
01 where 𝜌𝑖𝑗01 denotes the conditional correlation between 𝑆0 and 𝑆1. Marginally, under the previous

distributional assumptions, the vector of potential outcomes for the surrogate is distributed as a mixture of normals 𝑓
(

𝒀𝑆
)

=
∑

𝑖𝑗 𝜋𝑖𝑗𝜙
(

𝒀𝑆 ;𝝁𝑖𝑗 ,𝚺𝑖𝑗
)

.
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TABLE 1 Conditional density of Δ𝑆 on Δ𝑇

Δ𝑇 𝑓 (Δ𝑆|Δ𝑇 )

-1 𝜙
(

Δ𝑆;𝜇∗10, 𝜎∗10
)

0 𝑤1𝜙
(

Δ𝑆;𝜇∗00, 𝜎∗00
)

+𝑤2𝜙
(

Δ𝑆;𝜇∗11, 𝜎∗11
)

1 𝜙
(

Δ𝑆;𝜇∗01, 𝜎∗01
)

Similarly, the joint distribution of (Δ𝑇 ,Δ𝑆) can be written as 𝑓 (Δ𝑇 ,Δ𝑆) = 𝑓 (Δ𝑆|Δ𝑇 ) 𝑓 (Δ𝑇 ). In the previous expression,

𝑓 (Δ𝑇 ) is a multinomial distribution with parameters:

𝜋Δ𝑇
𝑘 = 𝑃 (Δ𝑇 = 𝑘) =

∑

𝑖,𝑗∶𝑗−𝑖=𝑘
𝜋𝑖𝑗 for 𝑘 ∈ {−1, 0, 1}.

Similar to the distribution of 𝒀𝑇 , the distribution of Δ𝑇 is not identifiable from the data. However, once 𝜋10 is specified, the

distribution becomes identifiable. Furthermore, 𝑓 (Δ𝑆|Δ𝑇 ) follows the set of distribution given in Table 1 , where:

𝜇∗𝑖𝑗 = 𝒂𝑇

⎛

⎜

⎜

⎜

⎝

𝜇𝑖𝑗
0

𝜇𝑖𝑗
1

⎞

⎟

⎟

⎟

⎠

= 𝜇𝑖𝑗
1 − 𝜇𝑖𝑗

0 = 𝛼𝑖𝑗 , (3)

𝜎∗𝑖𝑗 = 𝒂𝑇𝚺𝑖𝑗𝒂 = 𝜎𝑖𝑗
00 + 𝜎𝑖𝑗

11 − 2
√

𝜎𝑖𝑗
00𝜎

𝑖𝑗
11𝜌

𝑖𝑗
01, (4)

𝑤1 =
𝜋00

𝜋00 + 𝜋11
, 𝑤2 = 1 −𝑤1, (5)

and 𝒂𝑇 = (−1, 1). Marginally, the density of Δ𝑆 has the form of a mixture of normal distributions 𝑓 (Δ𝑆) =
∑

𝑖𝑗 𝜋𝑖𝑗𝜙
(

Δ𝑆;𝜇∗𝑖𝑗 , 𝜎∗𝑖𝑗
)

. Given the previous modeling assumptions, equation (1) can be computed. However, to do so, one must

first estimate 𝑓 (Δ𝑇 ,Δ𝑆) using the available data.9

4 IDENTIFIABILITY ISSUES

Both 𝒀 and 𝚫 are unobservable, rendering 𝑅2
𝐻 unidentifiable. To address this issue, Alonso et al.9 proposed a sensitivity analysis

based on an algorithm that assesses the ICA across a wide range of plausible distributions for 𝒀 . Interested readers can refer

to this publication for an in-depth discussion of the methodology and its theoretical foundation. For the sake of completeness,

we provide a general outline of the procedure below. Essentially, Alonso et al.’s approach involves evaluating the ICA using the

following algorithm:

1. Sample a value for 𝜋10 using a uniform distribution from a user predefined interval [𝜋𝑎, 𝜋𝑏] (the default is 𝜋10 ∼ unif(𝜋𝑎 =

0, 𝜋𝑏 = 1))
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6 Ong F. ET AL

2. Sample a value for the association parameter 𝜌𝑖𝑗01 using a uniform distribution from a user predefined interval [𝜌𝑎, 𝜌𝑏] (the

default is 𝜌𝑖𝑗01 ∼ unif(𝜌𝑎 = −1, 𝜌𝑏 = 1))

3. Determine the distribution of 𝒀𝑇 (𝝅 = (𝜋𝑖𝑗)) compatible with the data, using 𝜋10 and the estimated marginal probabilities

𝝅𝑚

4. Estimate the means 𝜇𝑖𝑗
0 and 𝜇𝑖𝑗

1 as well as the variances 𝜎𝑖𝑗
00 and 𝜎𝑖𝑗

11 by fitting the models:

𝑆0 ∼
∑

𝑖𝑗
𝜋𝑖𝑗𝜙

(

𝜇𝑖𝑗
0 , 𝜎00

)

, (6)

𝑆1 ∼
∑

𝑖𝑗
𝜋𝑖𝑗𝜙

(

𝜇𝑖𝑗
1 , 𝜎11

)

. (7)

to the data in the control and treatment groups, respectively, and keeping the 𝜋𝑖𝑗 parameters estimated in step 3 fixed

5. Using the transformations (3)–(5), estimate the distributions in Table 1 based on the estimates of 𝜇𝑖𝑗
0 , 𝜇𝑖𝑗

1 , 𝜎𝑖𝑗
00, and 𝜎𝑖𝑗

11

obtained in step 4, the estimates of 𝜋𝑖𝑗 obtained in step 3 and the values of 𝜌𝑖𝑗01 generated in step 2

6. Calculate the 𝑅2
𝐻

7. Repeat steps 1–6 𝑀 times

Following the proposal by Vansteelandt et al,12 these authors identify two sources of uncertainty when assessing the ICA: (1)

imprecision due to finite sample size and (2) ignorance due to unidentifiability.9 Together, these two components constitute

the overall uncertainty associated with the estimation of the ICA. Let 𝜽𝑈 =
(

𝜋10, 𝜌
00
01, 𝜌

01
01, 𝜌

10
01, 𝜌

11
01
)𝑇 with 𝜽𝑈 ∈ Ω and Ω =

[0, 1] × (−1, 1)4 be the vector of unidentifiable parameters associated with the previously introduced causal inference model,

and let 𝜽𝐼 be the vector of identifiable parameters. Note that 𝜽𝐼 refers to parameters that become estimable from the observed

data when 𝜽𝑈 is fixed to a value. To assess the ignorance component, we study the behavior of ICA as a function of 𝜽𝑈 . It

is important to point out that the aforementioned algorithm only addresses the second component, and hence, it assumes that

the sample size is large enough to render the first component negligible. The imprecision due to the finite sample size will be

formally taken into account later in the case study analysis in Section 6.

The algorithm produces a set of values for the ICA that can be summarized using frequency distributions and intervals of

ignorance. It is important to point out that, when substantive knowledge on the unidentifiable parameters is available, this could

be incorporated into the algorithm by using biologically plausible intervals for [𝜋𝑎, 𝜋𝑏] and/or [𝜌𝑎, 𝜌𝑏]. Alonso et al.9 proposed

to summarize the distribution of the ICA using two types intervals: the range [min(ICA),max(ICA)] and the (1 − 𝛼) symmetric

density interval (SDI). While the former offers an estimate of the maximum and minimum value of 𝑅2
𝐻 , the latter corresponds

to the central part of a distribution and it is computed based on the corresponding 𝛼∕2 and 1 − 𝛼∕2 quantiles. It is important to

point out that, in general, the (1 − 𝛼) × 100% SDI cannot be interpreted as a confidence interval as it only indicates that, for all

available 𝑅2
𝐻 values, (1 − 𝛼) × 100% of them fall within the lower and upper bound of that interval.
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When implementing the previous algorithm, Alonso et al.9 assumed that 𝜎𝑖𝑗
00 = 𝜎00 and 𝜎𝑖𝑗

11 = 𝜎11. This type of homoscedas-

ticity assumption was made based on technical arguments. In fact, it can be shown that when the means and variances of a finite

mixture model are different in all components, like in (6)–(7), then the model leads to an infinite likelihood. This can only be

solved by keeping the variances of the components away from zero and to achieve this goal, the aforementioned homoscedastic-

ity assumption is often made. In general, finite mixture models with equal variances allow to describe many different functional

shapes and, therefore, it is plausible to assume that a four-component mixture model will be flexible enough to produce good

approximations for the distribution of 𝑆 ∣ 𝑍 = 0 and 𝑆 ∣ 𝑍 = 1 in many cases.9

5 SIMULATION STUDY

A simulation study was conducted to assess the behavior of the ICA introduced in Section 2 and the performance of the sensi-

tivity analysis outlined in Section 4. The primary objective was to evaluate the impact of incorporating plausible yet untestable

assumptions in the sensitivity analysis. Two key scenarios were considered in the simulation study: one where the association

between the individual causal treatment effect on the surrogate and the true endpoint is small, and another where it is large.

5.1 Simulation design

Generating data with a given 𝑅2
𝐻 value is challenging due to its complex dependence on the distribution of 𝒀 . To emulate real-

world scenarios, we chose distributions of 𝒀 derived from actual data. Our focus is on the evaluation of vaccine candidates;

therefore, we based our data generation on the case study presented in Section 6. To that end, we applied the sensitivity analysis

outlined in the previous section to this real case study, as detailed in Section 6. This analysis provided us with a collection of

𝑅2
𝐻 values consistent with the available data. We then selected two values to represent small and large associations between

the individual causal treatment effect on the true and surrogate endpoints. Finally, we generated 300 datasets, each containing a

total of 𝑁 = 2000 subjects, evenly distributed across treatment groups, using the distributions associated with these ICA values.

Details on how we generated the simulation data sets can be found in the Supplementary Material (A).

In general, we assumed homoscedasticity, meaning 𝜎𝑖𝑗
00 = 𝜎00 and 𝜎𝑖𝑗

11 = 𝜎11, and positive conditional correlations between

surrogate potential outcomes, i.e., 𝜌𝑖𝑗01 > 0 for all 𝑖, 𝑗. However, certain adjustments were made in various simulation settings

depending on the simulation’s objectives. The complete set of parameters characterizing the distributions of 𝒀 that yielded the

specific ICA value in each simulation setting can be found in the Supplementary Material (B).

For fitting finite mixture models, the selection of appropriate starting values (SVs) is critical. They are usually chosen based

on observed data, like the histograms of 𝑆 ∣ 𝑍 = 0 and 𝑆 ∣ 𝑍 = 1. When properly chosen, small perturbations to these SVs

do not dramatically alter conclusions, as demonstrated by Alonso et al.9 To ensure robust model fit, it is advisable to evaluate
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8 Ong F. ET AL

multiple SVs by examining the maximized likelihood. While manageable with a single data set, this process becomes challenging

in simulation studies involving hundreds of data sets. Therefore, in our simulation study, we used the true parameter values as

SVs to minimize noise, allowing us to assess the study objectives without additional complexities from selecting initial values.

For more discussion on the selection of SVs, we refer the interested reader to Alonso et al.,9 which provides a comprehensive

analysis of the topic.

Vaccine trials have unique characteristics that may not be present in other settings. For instance, in a placebo-controlled

vaccine trial, one can reasonably assume that Δ𝑆 > 0. To ensure that the simulation exercise remains inclusive and that the

conclusions are not overly specific to a particular scenario, a series of simulation studies were also conducted using distributions

based on a schizophrenia data set. The results of these simulations align with the findings of the simulation study rooted in the

Influenza Vaccine trial. The detailed results of the latter are provided in the Supplementary Material (C).

5.2 Simulation results

General analysis

Figure 1 displays the frequency distribution of the ICA, obtained after applying the sensitivity analysis as outlined in Section

4. Some important conclusions can be drawn. First, when the true value of the ICA is small (𝑅2
𝐻 = 0.2313), the 𝑅2

𝐻 values from

the sensitivity analysis are predominantly clustered in the first half of the unit interval. Second, when the true value of the ICA is

large (𝑅2
𝐻 = 0.7869), the 𝑅2

𝐻 values are spread across the second half of the unit interval, demonstrating that in this setting, the

ICA can take considerably larger values. Complementing this observation, Table 2 demonstrates that the symmetric density

interval (SDI) reduces the length of the intervals while maintaining the empirical coverage within a reasonable range. The length

of the corresponding ignorance intervals indicates how precisely the sensitivity analysis reflects the true value of 𝑅2
𝐻 , whereas

the empirical coverage is the percentage of cases out of the 300 simulations where the true value of the ICA was contained in

the calculated interval. In this simulation study, the average intervals used to summarize the results were always computed by

taking the average of both the lower and upper bounds of the intervals obtained across the 300 simulated data sets. It is important

to point out that the standard deviations of both the lower and upper bounds were low, providing further justification for using

these average intervals to summarize the results. All the intervals given in the subsequent discussion will be average intervals.

The results support the use of SDI as a probably better option to summarize the behavior of 𝑅2
𝐻 , providing a more balanced and

informative approach. Careful selection of the 𝛼 value is essential to reduce the length of the interval while ensuring reasonable

empirical coverage. In general, the methodology seems to be able to discriminate between a poor-performing surrogate and a

promising one.
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FIGURE 1 Frequency distribution of 𝑅2
𝐻 obtained from the sensitivity analysis of 300 simulation data sets. The true values of

small ICA (𝑅2
𝐻 = 0.2313) and large ICA (𝑅2

𝐻 = 0.7869) are indicated by the dashed blue vertical line.

TABLE 2 The ignorance interval and coverage of 𝑅2
𝐻 obtained from the sensitivity analysis of 300 simulation data sets. Li:

the average of lower intervals from 300 data sets; Ui: the average of upper intervals from 300 data sets. Coverage: percentage
of cases (out of 300 data sets) where the true 𝑅2

𝐻 is included in the corresponding interval.

Interval True 𝑅2
𝐻 = 0.2313 True 𝑅2

𝐻 = 0.7869

[Li, Ui] Coverage [Li, Ui] Coverage
Range [0.07, 0.54] 100 [0.41, 0.98] 100

80% SDI [0.12, 0.34] 99.67 [0.57, 0.87] 99
95% SDI [0.09, 0.41] 100 [0.50, 0.92] 100

Homoscedasticity assumption

As stated in Section 4, Alonso et al.9 proposed to fit models (6)–(7) under the assumption of homoscedasticity, i.e., assuming

𝜎𝑖𝑗
00 = 𝜎00 and 𝜎𝑖𝑗

11 = 𝜎11. As previously mentioned, this assumption is standard practice to prevent an infinite likelihood when

fitting finite mixture Gaussian models. However, this assumption cannot be tested in practice, emphasizing the need to evaluate

the methodology’s robustness when this assumption is violated. To achieve this objective, we modified the simulation by gener-

ating data sets with different 𝜎𝑖𝑗
00 and 𝜎𝑖𝑗

11, respectively. The generated data sets were then analyzed assuming homoscedasticity.

In the subsequent discussion, coupled with findings from another simulation study using distributions based on the schizophre-

nia data set, it is demonstrated that the methodology is rather robust and can produce reliable results even in scenarios where

the homoscedasticity assumption is not entirely satisfied.

Figure 2 shows the ICA frequency distributions obtained when homoscedasticity is wrongly assumed. In the small ICA

setting (𝑅2
𝐻 = 0.1589), the range interval for the ICA is [0.03, 0.50] with 100% empirical coverage, while the 80% and 95%

SDI are [0.07, 0.25] and [0.05, 0.33] with an empirical coverage of 95% and 100%, respectively. It is clear that in this scenario,
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FIGURE 2 Frequency distribution of 𝑅2
𝐻 obtained from the sensitivity analysis of 300 simulation data sets wrongly assuming

homoscedasticity. The true values of small ICA (𝑅2
𝐻 = 0.1589) and large ICA (𝑅2

𝐻 = 0.7012) are indicated by the dashed blue
vertical line.

the methodology manages to detect a poorly performing surrogate. In the large ICA setting (𝑅2
𝐻 = 0.7012), the range interval

is [0.23, 0.94] with a 100% empirical coverage, while the 80% and 95% SDI are [0.35, 0.71] and [0.29, 0.81] with an empirical

coverage of 55% and 96.33%, respectively. In this setting, the coverage of 80% SDI is rather small, but the true value of the ICA

is still included in its average interval. Additionally, upon closer examination of individual results within the simulated data sets,

it becomes evident that numerous upper bounds of the intervals closely approximate the true value of the ICA. However, now the

methodology leads to less conclusive results as all intervals appear to be quite wide. Considering these findings collectively, it

is safe to conclude that the proposed algorithm, assuming homoscedasticity, may still yield valuable results even in cases where

this assumption is not correct.

Homogeneous variance-covariance assumption

In addition to the assumption of homoscedasticity, one can also assume that the association structure is homogeneous, i.e.,

𝜌𝑖𝑗01 = 𝜌01 for all 𝑖, 𝑗 ∈ {0, 1}. We call these assumptions the homogeneous variance-covariance assumption (HVCA). Under

HVCA, the model for the conditional density 𝒀𝑆 ∣ 𝒀𝑇 is simplified to the set of normal distributions 𝜙(𝒀𝑆 ;𝝁𝑖𝑗 ,𝚺) where

𝚺 =

⎛

⎜

⎜

⎜

⎝

𝜎00
√

𝜎00𝜎11𝜌01
√

𝜎00𝜎11𝜌01 𝜎11

⎞

⎟

⎟

⎟

⎠

.

Consequently, the vector of potential outcomes for the surrogate is marginally distributed as a mixture of normals 𝑓
(

𝒀𝑆
)

=
∑

𝑖𝑗 𝜋𝑖𝑗𝜙
(

𝒀𝑆 ;𝝁𝑖𝑗 ,𝚺
)

, with the same variance-covariance matrix in each component of the mixture. The HVCA is often used in
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multivariate procedures such as MANOVA, discriminant function analysis, and multivariate regression. The impact of wrongly

assuming HVCA is explored via simulation by comparing the results obtained under this assumption with the results obtained

under the general analysis. To explore the potential gains of assuming HVCA when the assumption actually holds, we generated

data under both conditions, i.e., when HVCA is valid and when it is invalid. In both settings, the data were then analyzed with

and without assuming HVCA. It is important to note that the data were always generated assuming homoscedasticity and, hence,

the key distinction between the different settings lies in whether the association structure is homogeneous or not.

Figure 3 illustrates that the impact of assuming HVCA is minimal on the outcome of the sensitivity analysis, regardless of

the validity of the assumption. For example, in the context of small ICA, erroneously assuming HVCA yielded a range interval

of [0.02, 0.99] and an 80% SDI of [0.10, 0.47], achieving coverages of 100% and 99.67%, respectively. Conversely, when HVCA

was invalid, the general analysis (without assumptions) resulted in a range interval of [0.02, 0.80] and an 80% SDI of [0.12, 0.34],

maintaining the same coverage rates as previously mentioned.

In cases where HVCA was correctly assumed, the range interval was [0.06, 0.80], and the 80% SDI equaled [0.09, 0.47], with

empirical coverages of 100% and 99.67%, respectively. Furthermore, when HVCA was valid, the general analysis led to a range

interval of [0.06, 0.54] and an 80% SDI of [0.12, 0.33], achieving coverage rates of 100% and 97%, respectively.

Therefore, despite the fact that imposing HVCA in the analysis reduces the number of unidentifiable parameters, the simula-

tions revealed that correctly assuming HVCA does not significantly improve the results. In some cases, the coverage is improved,

but this comes at the cost of wider intervals. Similarly, assuming HVCA incorrectly does not seem to distort the conclusions

either.

Conditional independence

Under the HVCA, one can further assume that 𝜌01 = 0, i.e., 𝑆0⊥𝑆1 ∣ (𝑇0, 𝑇1). It is also important to point out that when the

assumption of conditional independence is combined with other assumptions about the probability distribution of 𝒀𝑇 , such as

monotonicity, the distribution of 𝒀 becomes fully identifiable.

Four scenarios were considered in the data generation process: two for the ICA (small and large value) and two for the condi-

tional independence (true or false). For each of these scenarios, the data were analyzed assuming conditional independence and

without making any assumptions (general analysis). Figure 4 summarizes the results. For the small ICA (true 𝑅2
𝐻 = 0.1492),

correctly assuming conditional independence results in a range interval for the ICA of [0.12, 0.25] with 82.33% empirical cov-

erage. For the same setting, the general analysis results in a range interval for the ICA of [0.07, 0.54] with 100% empirical

coverage. Interestingly, correctly assuming conditional independence seems to produce a narrower range interval but with a

smaller empirical coverage. Moreover, in the setting of the large ICA (true 𝑅2
𝐻 = 0.7204), correctly assuming conditional
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FIGURE 3 Frequency distribution of 𝑅2
𝐻 obtained from the sensitivity analysis of 300 simulation data sets assuming HVCA

when the model is correct and incorrect, respectively. The true values of the ICA are indicated by the dashed blue vertical line.

independence leads to a range interval equal to [0.45, 0.81] with 99% empirical coverage, whereas the general analysis with-

out making the assumption produces a range interval of [0.40, 0.98] with an empirical coverage of 100%. In general, we may

conclude that there is some value in assuming conditional independence when the assumption is correct because it may lead to

substantially more precise conclusions without substantially diminishing the empirical coverage.

A different picture is obtained when conditional independence is wrongly assumed. In fact, for the small ICA (true 𝑅2
𝐻 =

0.2313), when the assumption does not hold, the general analysis produces a range interval of [0.02, 0.80] with an empirical

coverage of 100% and the 80% SDI = [0.12, 0.34]with coverage of 99.67%. However, when conditional independence is wrongly

assumed, the range reduces to [0.04, 0.50], but the coverage also decreases to 50.67%. Similarly, the 80% SDI = [0.13, 0.22]

with coverage of 33%. When the ICA is large (true 𝑅2
𝐻 = 0.7869), the general analysis produces 80% SDI = [0.57, 0.87] with

99% empirical coverage, whereas erroneously assuming conditional independence results in an 80% SDI = [0.61, 0.78] with a
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FIGURE 4 Frequency distribution of 𝑅2
𝐻 obtained from the sensitivity analysis of 300 simulation data sets assuming condi-

tional independence when the model is correct and incorrect, respectively. The true values of the ICA are indicated by the dashed
blue vertical line.

42% empirical coverage. Clearly, wrongly assuming conditional independence may lead to narrower uncertainty intervals (minor

gain for the 80% SDI), but also to substantially lower empirical coverage.

We acknowledge that conditional independence is a strong assumption. Rather than assuming that the values of 𝜌𝑖𝑗01 = 0,

in many applications it may be more meaningful to assume that all conditional correlations are positive or greater than some

threshold, e.g., 𝜌𝑖𝑗01 > 0.5. The latter assumption can be justified by considering that a baseline assessment could be used as a

substitute for a counterfactual assessment under placebo. In the evaluation of changes from baseline, one measures the same

outcome at different time points (baseline versus follow-up), while in the assessment of the potential outcomes, one measures

the same outcome under different treatment conditions (placebo and experimental treatment). Given that high correlations are

typically observed between measurements at baseline and follow-up times in clinical trials, it is reasonable to assume that the

correlation between measurements of surrogate outcomes under placebo and treatment would also be high. It is also easy to show
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that higher correlations between measurements imply smaller standard deviations in the change from baseline, and similarly,

in the difference between the surrogate potential outcomes, indicating more precise measurement in the difference between the

surrogate potential outcomes. Nonetheless, given the untestable nature of this assumption and the serious impact it may have on

the results, we strongly advise always using it in the context of a sensitivity analysis and never in isolation.

Monotonicity assumption

The parameter 𝜋10 is the proportion of individuals in the population who would remain uninfected under a placebo but would

get infected if they would receive the vaccine. In many vaccine clinical trials, the so-called assumption of monotonicity, i.e.,

𝜋10 = 𝑃 (𝑇1 < 𝑇0) = 0 is often made. Indeed, in the context of a vaccine trial, under monotonicity the new vaccine cannot lead

to a worse outcome than the control. Even though monotonicity seems plausible in a placebo-controlled vaccine trial, there are

several possible mechanisms through which a vaccine can produce an enhanced susceptibility to virus infection or to aberrant

viral pathogenesis for infections from members of different virus families.13,14 The studies indicated that in some situations, the

monotonicity assumption might have to be called into question. Furthermore, one may also argue that the well-known placebo

effect could also lead to violations of monotonicity. Therefore, it is useful to study the impact of making this assumption on the

evaluation exercise when it is actually false.

To assess the impact of making the monotonicity assumption on the results of the sensitivity analysis, we modified the simu-

lation by generating data sets with increasing values of 𝜋10 and then analyzed them under the assumption of monotonicity. This

can be done by fixing the value of 𝜋10 in step 1 in the proposed algorithm as 0, instead of sampling a value from a uniform

distribution. For comparison, we also analyzed the datasets without imposing any assumptions.

Figure 5 provides the ICA frequency distributions obtained when the true ICA value was large. It is clear that when 𝜋10 is very

small such that the monotonicity condition approximately holds, the analysis conducted under the assumption of monotonicity

yielded results similar to the general analysis without any assumptions. However, when the value of 𝜋10 gets larger, the results of

the sensitivity analysis assuming monotonicity become more misleading. For example, assuming monotonicity with 𝜋10 = 0.11

results in a range interval for the ICA of [0.13, 0.67], with an empirical coverage of only 17%. Meanwhile, the range interval for

the ICA in the analysis without the monotonicity assumption is [0.16, 0.96] with an empirical coverage of 100%. Furthermore,

when monotonicity was not assumed, the 80% and 95% SDI are [0.50, 0.86] and [0.26, 0.90], respectively, with both intervals

having a 100% empirical coverage. When monotonicity was assumed, the 80% and 95% SDI are [0.16, 0.40] and [0.14, 0.49]

with an empirical coverage of only 3.33% and 5%, respectively. Clearly, the previous findings indicate that the results obtained

by mistakenly assuming monotonicity will likely discourage the use of a potentially valuable surrogate in this context. Similar

conclusions can be drawn from the setting when 𝜋10 = 0.16 where all empirical coverages are zero when monotonicity is
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FIGURE 5 Frequency distribution of 𝑅2
𝐻 obtained from the sensitivity analysis of 300 simulation data sets assuming mono-

tonicity when the model is not correct. The true values of the ICA are indicated by the dashed blue vertical line.

wrongly assumed. Interestingly, when the true ICA was small, the impact of wrongly assuming monotonicity was much less

pronounced (see Supplementary Material (B) for a comprehensive discussion).

The previous findings illustrate that, under minor deviations from monotonicity, the methodology still yields meaningful

results when this assumption is made. However, significant deviations may have a substantial impact on the outcome of the

sensitivity analysis if monotonicity is actually assumed and the true ICA value is large. It is important to point out that similar

results have been observed in the binary-binary setting, i.e., when both the surrogate and true endpoints are binary random

variables.15 In general, cautious interpretation is essential, particularly when the analysis under monotonicity leads to a rather

different conclusion compared to the general analysis. It is important to note that, although the assumption of monotonicity

cannot be tested directly, the algorithm readily reveals that the maximum possible value of 𝜋10 is constrained by the minimum of

{𝜋1⋅, 𝜋⋅0}, which can be identified from the data. As this minimum value approaches zero, the decision to assume monotonicity
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in the analysis becomes more justifiable. Additionally, 𝜋10 is further bounded below by max(0, 𝜋1. − 𝜋.1) and max(0, 𝜋.0 − 𝜋0.).

In instances where any of these limits surpasses zero, it is possible to exclude the monotonicity assumption.

Monotonicity and conditional independence

As previously mentioned, the simultaneous application of monotonicity and conditional independence assumptions ensures the

complete identifiability of the distribution of 𝒀 and, consequently, the ICA. If these assumptions are correct, then the proposed

algorithm will produce the maximum likelihood estimate of the ICA. It is worth reiterating that the algorithm introduced in

Section 4 does not account for the imprecision component when evaluating the ICA, i.e., the imprecision arising from the

sampling variability in the parameter estimates from models (6)–(7). Meyvisch et al.16 proposed a solution to this issue by

generating bootstrap samples of the data and applying the sensitivity analysis to each sample. In this context, assuming the

validity of monotonicity and conditional independence, the resulting (1−𝛼)×100% SDI from these bootstrap samples transforms

into the traditional (1− 𝛼) × 100% percentile bootstrap confidence interval for the ICA. We generated 300 bootstrap samples for

each simulated data set to implement this procedure. However, it is essential to note that employing this method in a simulation

study can be computationally demanding since the sensitivity analysis must be performed for each bootstrap sample of each

generated data set.

We examined the impact of applying these identifiability conditions incorrectly through simulations. We explored four distinct

scenarios: when both monotonicity and conditional independence were valid (𝜋10 = 0.01 and 𝜌01 = 0), when either monotonic-

ity or conditional independence was valid (𝜋10 = 0.01 and range 𝜌𝑖𝑗01 = 0.1473 − 0.2359 or 𝜋10 = 0.11 and 𝜌01 = 0), and when

both assumptions were violated (𝜋10 = 0.11 and range 𝜌𝑖𝑗01 = 0.1473 − 0.2359). To evaluate the methodology’s performance,

we calculated the relative bias of the estimated ICA and the actual coverage probability of the (1 − 𝛼) × 100% bootstrap confi-

dence intervals provided by the algorithm. Table 3 provides a summary of the findings. As anticipated, when both assumptions

are valid, the average relative bias is zero, and the coverage probabilities slightly exceed the expected theoretical values. How-

ever, when one of the assumptions is invalid, the methodology yields misleading results. The data indicate that violating the

monotonicity assumption results in significantly higher relative bias and lower coverage probabilities compared to violating the

conditional independence assumption.

Identifiability conditions are crucial in surrogacy evaluation studies as they enable the estimation of essential surrogacy

metrics. Our findings serve as a cautionary reminder about the potential consequences of relying on such assumptions when

they may not be valid.
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TABLE 3 Relative bias and coverage of 𝑅2
𝐻 obtained from the sensitivity analysis of 300 simulation data sets assuming mono-

tonicity and conditional independence (CI).

Assumption Relative bias of 𝑅2
𝐻 Coverage (%) N

Monotonicity CI Min Max Mean Median 80% SDI 95% SDI
True True -0.8558 0.1377 0.0023 0.0264 90.11 98.17 273
True False -0.7010 0.0578 -0.0832 -0.0676 43.99 75.56 266
False True -0.9086 -0.1822 -0.7157 -0.7401 0 0 224
False False -0.9270 -0.2238 -0.7336 -0.7544 0 0 231

Relative bias of 𝑅2
𝐻 : (𝑅2

𝐻 − 𝑅2
𝐻 )∕𝑅2

𝐻 , where 𝑅2
𝐻 is the estimated 𝑅2

𝐻 obtained from the
sensitivity analysis when monotonicity and conditional independence are assumed;
Coverage: percentage of cases where the true 𝑅2

𝐻 is included in the corresponding SDI;
N: total number of data sets (out of 300 simulation data sets) with available SDI. Note that not all
simulation data sets are compatible with the monotonicity assumption.

6 CASE STUDY

The data was collected from a phase-3, observer-blind, randomized, multi-country, and controlled clinical study to evaluate

the efficacy of an inactivated quadrivalent influenza vaccine.17 In our analysis, we considered a group of 1379 children whose

hemagglutination inhibition (HI) antibody titer was measured 28 days after the last vaccination dose. The true endpoint was the

absence of infection at the end of the study. The scientific question of interest is whether the HI antibody titer could be used as

a valid CoP for the binary true endpoint. In this article, only the main results are presented and interested readers are referred to

the Supplementary Material (D) for a more detailed description of how we implemented the method using our own developed

R package Surrogate, freely available at http://cran.r-project.org/web/packages/Surrogate/.

A primary analysis of these data along with the selection procedure of the SV used to fit models (6)–(7) has been done in a

previous study.9 In the current work, we extended the analysis by considering several plausible assumptions that are frequently

made in this context. To deal with the issue of imprecision due to finite sample size, we followed the approach proposed by

Meyvisch et al.,16 namely by taking bootstrap samples of the data and applying the sensitivity analysis to each of them. We

generated 300 bootstrap samples in our analysis and combined all values of 𝑅2
𝐻 obtained from each sample using a frequency

distribution. The results are summarized in Figure 6 .

The range interval, which represents the smallest and largest ICA that aligns with the available data after considering the

sampling variability, spans from 0.0139 to 0.9999. The somewhat inconclusive findings obtained from the observed range are

not completely unexpected. However, despite occasional small ICA values, 80% of the values surpass 0.6150. Actually, both

the 80% SDI = (0.4853, 0.8470) and 95% SDI = (0.2154, 0.9229) provide some level of quantitative support for the use of HI

antibody titer as a CoP for the absence of infection.

When the sensitivity analysis does not consider sampling variability, the resulting range interval is [0.2572, 0.9744], pre-

dictably narrower than the previous result. Additionally, the 80% SDI (0.6299, 0.8586) and 95% SDI (0.5594, 0.9254) reduce
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FIGURE 6 Frequency distribution of 𝑅𝐻
2 from the case study data set with and without accounting for the sampling variability.

the length of the intervals and offer greater confidence in employing HI antibody titers as a substitute for true endpoint pro-

tection. However, as it can be seen in Figure 6 , the inclusion of sampling variability produces a more frequent occurrence of

lower values for the ICA. In general, we advise always to account for sampling variability when assessing a CoP and hence, in

the following, we will only discuss the results obtained using the bootstrap approach.

Despite employing a non-influenza control vaccine in the study instead of a placebo, the estimated value derived from the

data for min{𝜋1⋅, 𝜋⋅0}, which is an upper bound for 𝜋10, was 0.0357. This indicates that the monotonicity assumption may be, at

least approximately, appropriate in this case study. In addition, as the results of the simulations clearly demonstrated, assuming

monotonicity when 𝜋10 is close to zero does not seem to lead to misleading results. As can be learned from Table 4 , assuming

monotonicity leads to narrower uncertainty intervals as compared with the general analysis and under this assumption, we also

found more support for the use of the CoP.

Besides monotonicity, one can make another assumption about the association structure of the potential outcomes of the

true endpoint, namely the independence assumption (𝑇0⊥𝑇1). Independence implies that the protection given by the control

vaccine would convey no information about the protection provided by the experimental vaccine and can be formally written as

𝜋𝑖𝑗 = 𝜋𝑖⋅𝜋⋅𝑗 . Making this assumption also leads to narrower uncertainty intervals; however, one might be somewhat reluctant to

justify this assumption from a biological perspective.
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TABLE 4 Uncertainty intervals of 𝑅2
𝐻 from the sensitivity analysis of 300 bootstrap samples of the case study data set when

different simplifying assumptions are incorporated in the analysis.

Assumption 𝑅2
𝐻

Range 80% SDI 95% SDI
Min Max Min Max Min Max

No assumption 0.0139 0.9999 0.4853 0.8470 0.2154 0.9229
Monotonicity 0.0729 0.9976 0.5653 0.7957 0.4759 0.9227
Independence 0.0748 0.9632 0.5588 0.7830 0.2890 0.8351
HVCA 0.0223 0.9998 0.5416 0.8207 0.2647 0.9111
Conditional independence (CI) 0.0077 0.9985 0.5536 0.8064 0.2981 0.8919
Monotonicity and CI 0.1315 0.9407 0.5793 0.7890 0.4876 0.9120
Independence and CI 0.1367 0.9049 0.5655 0.7708 0.2956 0.8273

Comparable to the findings in the simulation study, we observed that integrating the HVCA yielded results akin to those

obtained from the general analysis (no assumptions). However, when conditional independence was also added, the uncertainty

intervals became a bit narrower.

As mentioned earlier, when the assumption of conditional independence is coupled with monotonicity or independence, the

distribution of 𝒀 and consequently, the ICA, becomes identifiable. In this case, the (1−𝛼) × 100% SDI can be interpreted as the

(1−𝛼)×100% bootstrap confidence interval for this parameter. For instance, assuming the simultaneous validity of monotonicity

and conditional independence, the 95% SDI indicates that knowing the treatment effect on the CoP will reduce our uncertainty

about the treatment effect on the true endpoint within a range of 49% to 91%. However, the results of the simulations clearly

demonstrate that making these assumptions may lead to wrong conclusions when they are violated. Therefore, we strongly

advise the use of these identifiability conditions only in the context of a sensitivity analysis and never as a unique inferential

tool. In this example, assuming monotonicity and conditional independence produces a narrower range interval than assuming

monotonicity alone. Interestingly, adding the conditional independence assumption to the monotonicity assumption seems to

have a little impact on the 80% and 95% SDI uncertainty intervals.

We believe that the results obtained under the monotonicity assumption are likely the most meaningful in this case, considering

its biological plausibility and the range of 𝜋10 values that are compatible with the data. When the results are combined with

more substantive knowledge about the characteristics of the vaccine and the role of HI antibody titers in developing protection,

we may justify the use of HI antibody titers as a CoP in some situations. Ultimately, experts and health authorities must weigh

the benefit/risk ratio associated with a CoP before deciding on its use in the evaluation process of a vaccine candidate.
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7 CONCLUSION

The present work intends to further study the behavior of the new metric of surrogacy proposed in the binary-continuous set-

ting developed based on the information theory. The proposed metric, the individual causal association (ICA), quantifies the

association between the individual causal treatment effects on the surrogate and true endpoint. To assess the ICA, a joint causal

inference model for the potential outcomes of both variables was developed. To address the non-identifiability inherent in this

type of model, Alonso et al.9 introduced a sensitivity analysis. In this framework, simplifying assumptions can be made to reduce

the number of non-identifiable parameters and to obtain more precise conclusions. In general, the methodology seems to work

well when the homoscedasticity assumption is violated.

A distinct perspective surfaced when evaluating the influence of simplifying assumptions. The results obtained in the sim-

ulations and the ones presented in Table 4 clearly show that making some simplifying assumptions may have a substantial

impact on the outcome of the sensitivity analysis. The key takeaway here is the necessity for caution. While certain simplifying

assumptions such as homoscedasticity or the HVCA appear to exert only minor influence, others like monotonicity or condi-

tional independence can yield more precise results when they are correct, but the reduced interval length may be misleading, as

it will likely be offset by bias, when these assumptions are not valid. Given that these assumptions are inherently untestable, our

simulation results strongly advocate for prioritizing the use of a sensitivity analysis as the primary inferential tool in this context.

Recently, there has been recognition that multiple immune responses, including cell-mediated immunity, may interact to

provide protection against infection. Lesko and Atkinson18 also highlighted that most biomarkers are unlikely to fully capture

treatment effects alone and future trials should consider a combination of biomarkers to predict treatment effect on the clinical

outcome. Given this, from a statistical perspective, there is a growing interest in developing methods and surrogacy metrics

capable of incorporating multiple surrogates to predict treatment effect on the true outcome of interest. This concept has already

been realized in the continuous-continuous setting.19 Future research may focus on developing the ICA metric in the binary-

continuous setting, where multiple surrogates are available to predict the true endpoint of interest.

Exploring the extension of this methodology to other types of outcomes, such as time-to-event data, would be practically

valuable and it will be the subject of future research. In fact, scenarios where both surrogate and true endpoints are time-to-event

outcomes are common and highly relevant, not only for evaluating vaccine candidates but also for other therapeutic areas such

as oncology and cardiovascular diseases.

Another interesting avenue for future research involves comparing different methodologies through simulations. However, it

is important to recognize the inherent challenges in such comparisons, given the distinct goals and merits of each methodology,

as highlighted by Joffe and Greene20 and Elliott, Li, and Taylor.21 Despite these challenges, some studies have investigated the

relative performance of different methodologies in specific scenarios. For example, Alonso et al.22 provided valuable insights
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into the connection between the information-theoretic causal inference approach and the meta-analytic framework when both

outcomes are continuous. Additionally, when both outcomes are binary, Alonso et al.8 demonstrated, using theoretical argu-

ments, that the ICA not only possesses useful mathematical properties and an appealing interpretation but also offers a more

coherent assessment of surrogacy compared to other established metrics, such as the associative and dissociative proportions

defined within the principal stratification framework.23
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