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Sensitivity Analysis for Incomplete Data: Region of Uncertainty

Geert Molenberghs Michael G. Kenward Els Goetghebeur

September 21, 2012

Abstract

Classical inferential procedures induce conclusions from a set of data to a population of
interest, accounting for the imprecision resulting from the stochastic component of the model.
Less attention is devoted to the uncertainty arising from (unplanned) incompleteness in the
data. Through the choice of an identifiable model for non-ignorable non-response, one nar-
rows the possible data generating mechanisms to the point where inference only suffers from
imprecision. Some proposals have been made for assessment of sensitivity to these modelling
assumptions; many are based on fitting several plausible but competing models. We propose an
approach which identifies and incorporates both sources of uncertainty in inference: imprecision

due to finite sampling and ignorance due to incompleteness. The developments focus on contin-
gency tables, and are illustrated using data from a psychiatric study and data from a Slovenian
plebiscite.

Keywords: Contingency Table; Missing At Random; Overspecified Model; Saturated Model

1 Introduction

The problem of analysing data sets from which observations are missing is a common one, and

the reasons for data being missing are many and varied. In this setting two main problems need

addressing. The first, accommodating the lack of balance induced, has to a great extent been

answered. Modern statistical tools are not as dependent on simple data structures as was the case

before the computer became ubiquitous. The second problem is more fundamental in nature and is

far from admitting a straightforward solution. How should one approach statistical inference that

accommodates the possible, but unknown, behaviour of the unobserved data ?

Rubin (1976) provided one of the first systematic studies of this issue, and we use his

terminology for classifying different classes of processes that give rise to missing values. A process

is said to be missing completely at random (MCAR) if the probability of an observation being

missing is independent of both unobserved and observed data and missing at random (MAR)

if, conditional on the observed data, the probability is independent of the unobserved data. A

1
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process that is neither MCAR nor MAR is termed non-random (MNAR). For likelihood inference

MCAR and MAR missing value processes are said to be ignorable when the parameters governing

the measurement and missing value processes are functionally independent, while a non-random

process is non-ignorable. The importance of the MCAR and MAR processes is that, given all the

observed data, there remains no dependence of the likelihood on unobserved data and, broadly,

inferences can be made that ignore the missing value process. This begs the question of whether

one can reasonably make assumptions of MCAR and MAR. Sometimes a study design provides the

justification (Murray and Findlay 1988), but typically this is not the case and the incomplete data

under analysis can never alone answer the question of whether or not a missing value process is

non-random. This paper is concerned with how one might approach inference when the possibility

of a non-random missingness process cannot be ruled out on a priori grounds.

It is not difficult to formulate models for the MNAR setting, i.e., that allow explicit or

implicit dependence of the probability of an outcome being missing on the unobserved value of that

outcome. For any given model, the likelihood for the observed data is obtained by integrating over

the distribution of the missing data and conventional inference proceeds accordingly. Diggle and

Kenward (1994) and Molenberghs, Kenward, and Lesaffre (1997) use such models for the analysis

respectively of continuous and ordinal longitudinal data with dropout. Little (1995) provides a

review of such approaches. Because such modelling assumptions cannot be examined using the

data alone, a characteristic form of ambiguity resides in the resulting inferences. This ambiguity

manifests itself in a somewhat different fashion in the continuous and discrete data settings. In

the former, conclusions that might be drawn about the missing value process may be critically

dependent on assumptions such as the shape of the distribution of the unobserved data and the

model chosen for the missing value process, see for example Little and Rubin (1987, section 11.4)

and Kenward (1998). Likelihoods may be very flat, or multimodal, indicating little information on

the missing value process as represented in the chosen model. In the categorical case it is easy to

show that models with an entirely different interpretation at the complete data level can show the

same deviance (or even saturate the same data); models that saturate the degrees of freedom can

yield a boundary solution and strictly positive deviance in both the complete data counts and some

of the parameter estimates, while unconstrained solutions may be invalid; non-unique solutions can
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be obtained (Molenberghs, Goetghebeur, and Lipsitz 1997).

Such problems with MNAR models do not imply however that they are of no value. In

the first place, many of these issues apply equally well to MAR models which have no a priori

justification: an MAR model can usually be formulated as a special, often implausible, member of

a general family of MNAR models. It might be argued then, that one role of MNAR models is

to convey information on the inadequacy of simpler and more convenient assumptions rather than

telling us about the plausibility of particular MNAR assumptions, which in a strict sense they cannot

do. For example, if the addition of a single parameter to an MAR model produces a very large

change in the likelihood, one that is inconsistent with random variation, then structure has been

identified in the observed data that the MAR model does not accommodate. The interpretation of

this structure still presents problems however. Just because the extended model happens to be an

instance of an MNAR model, this does not imply necessarily that the structure lacking is associated

with the missing value process. This is an example of the ambiguity generated by the missing data

setting: the structure identified may be real but there will be a range of models formulated in terms

of the complete (but partially unobserved) data that can be used to explain it at the observed data

level. In addition, extended models may have exactly the same or very similar likelihoods than the

more parsimonious MAR model, even though the effect on key parameters (such as the treatment

effect among the complete cases), can be dramatic.

A natural way to proceed is to acknowledge the inherent ambiguity and explore the range

of inferences that are consistent with the gap in our knowledge. Essentially this is a form of

sensitivity analysis. While there is a formal mathematical statistical framework for imprecision

(variance, standard errors, sampling distributions, confidence intervals, hypothesis tests and so

on) most implementations of sensitivity analysis have remained ad hoc. The Bayesian framework

provides one possible route (Draper 1995) and this is being explored elsewhere for the present

context. The goal of this paper is to develop a frequentist based framework in which general

sensitivity concepts can be formalized and further developed. To this end, a language will be

proposed to describe ignorance (due to incompleteness of the data) in addition to the familiar

imprecision (due to finite sampling) and to comine both into uncertainty. We focus here on the

multinomial contingency table setting, for which interesting and practically useful results can be
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obtained in a reasonably direct fashion. We indicate how extensions to more complicated data

settings might be developed. In the next section two sets of data are introduced. In Section 3 the

concepts of imprecision, ignorance and uncertainty are developed and in Section 4 formulated as

a general principle. Application of the principle in the contingency table setting leads to the need

to enumerate data sets that are consistent with an extended class of models and with the observed

data. This is dealt with in Section 5, where the extended model and its overspecified likelihood

emerge as fundamental concept. Three approaches to the overspecified likelihood are explored in

Section 6 and a brief comparison of the approaches is given in Section 7. The methodology is

applied in Sections 8 and 9. Formal tools to assess the quality of the estimators are discussed in

Section 10.

2 Examples

2.1 The Psychiatric Study

Example 1 The data come from a multicentre study involving 315 patients that were treated by flu-

voxamine for psychiatric symptoms described as possibly resulting from a dysregulation of serotonine

in the brain. The data are discussed in Molenberghs and Lesaffre (1994), Kenward, Lesaffre, and

Molenberghs (1994), Molenberghs, Kenward, and Lesaffre (1997), and Michiels and Molenberghs

(1997).

After recruitment to the study, the patient was assessed at four visits. The therapeutic effect and

the extent of side effects were scored at each visit on an ordinal scale. Side effects are coded as (1)

none; (2) not interfering with functionality; (3) interfering significantly with functionality; (4) side

effects surpasses the therapeutic effect. Similarly, the effect of therapy is: (1) no improvement or

worsening; (2) minimal improvement; (3) moderate improvement and (4) important improvement.

Thus, a side effect occurs if new symptoms occur while there is therapeutic effect if old symptoms

disappear. 299 patients have at least one measurement, including 242 completers.

Here, we analyze a dichotomized version of one outcome of the data, where category 1 is

contrasted with the others. We will only look at the results on the first and on the last measurement

occasion. All four response patterns are seen, although the majority are completers or with people

seen at the first but not at the last occasion. The observed data are given in Table 1.
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Table 1: Data From Psychiatric Study.

Side Effects.

89 13

57 65

26

49
2 0 14

Therapeutic Effect.

11 1

124 88

7

68
0 2 14

2.2 The Slovenian Plebiscite

Example 2 Rubin, Stern, and Vehovar (1995) studied data from a plebiscite organized in Slovenia

on the secession from the former Yugoslavia, in which the Slovenians overwhelmingly voted for

independence.

It was deemed useful to anticipate results of the plebiscite from additional questions in the Slovenian

Public Opinion (SPO) Survey, carried out four weeks prior. The main questions were: (1) Are you

in favour of Slovenian independence ? (2) Are you in favour of Slovenia’s secession from Yugoslavia

? (3) Will you attend the plebiscite ? Questions (1) and (2) are different since independence would

have been possible in confederal form as well. Question (3) is highly relevant since not attending

was treated as an effective NO to question (1). The data are presented in Table 2. Full details

on the study are provided in Rubin, Stern, and Vehovar (1995), who considered both ignorable

and non-ignorable models. The ignorable models outperformed the non-ignorable one in the sense

that they were much closer to the results of the (true) plebiscite. This clearly calls for a sensitivity

analysis (Kenward 1998).

3 Imprecision, Ignorance and Uncertainty

To introduce a formal distinction between statistical imprecision which is due to the stochastic

component in the experimental data, and statistical ignorance, which is due to the incompleteness

of the observations, we consider a simple example first.
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Table 2: Data form the Slovenian Public Opinion Survey.

Independence

Secession Attendance Yes No ∗

Yes Yes 1191 8 21

No 8 0 4

∗ 107 3 9

No Yes 158 68 29

No 7 14 3

∗ 18 43 31

∗ Yes 90 2 109

No 1 2 25

∗ 19 8 96

Table 3: Theoretical Distribution Over Completed Cells.

π111 π112

π121 π122

π011 π012

π021 π022

Table 4: Theoretical Distribution Over Observed Cells.

π111 π112

π121 π122

π01+

π02+

Example 3 Consider a two-way contingency table in which binary outcomes (Yi1, Yi2) for subject

i = 1, . . . , N are classified. Suppose further that some contribute only to the first measurement

(Ri = 0) while the remaining ones are observed on both variables (Ri = 1). In a selection model, the

cell probabilities pij (i, j = 1, 2) are modeled, together with the dropout probabilities qr|ij (r = 0, 1).

They are grouped into vectors θ = (pT , qT )T . The full data probabilities are given by πrij = pijqr|ij.

They are displayed in Table 3. The distribution of the observable data is displayed in Table 4.

Assume that (Yi1, Yi2, Ri) follows a multinomial sampling scheme. The methods described

here extend to general patterns of missingness (e.g., all four patterns in the psychiatric study),
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Table 5: Dropout Models Corresponding to The Setting of Table 3. All Measurement Models Are
Saturated.

Dropout Models

Model qr|ij # Par. Observed d.f. Complete d.f.

1. MCAR qr 4 Non-saturated Non-saturated

2. MAR qr|i 5 Saturated Non-saturated

3. Protective qr|j 5 Saturated Non-saturated

4. MNAR I logit(qr|ij) = α+ βi + γj 6 Overspecified Non-saturated

5. Msat qr|ij 7 Overspecified Saturated

multicategorical and higher-way cross-classifications (e.g., the Slovenian plebiscite in Table 2).

A sample from Table 4 produces empirical proportions representing the π′s with error. This

imprecision disappears as the sample size tends to infinity. What remains is ignorance regarding the

redistribution of π01+ and π02+ over the second outcome value. Indeed, Table 4 leaves constrained

ignorance regarding the values of π0ij (i, j = 1, 2) and hence regarding any derived parameter of

scientific interest. For such parameter, ψ say, a region of possible values which is consistent with

Table 4 is called the region of ignorance. Analogously an observed incomplete table leaves ignorance

regarding the would-be observed complete table, which in turn leaves imprecision regarding the true

complete probabilities. The region of estimators for ψ̂ consistent with the observed data provides

an estimated region of ignorance. The (1 − α)100% region of uncertainty is a larger region in

the spirit of a the confidence region, designed to capture the combined effects of imprecision and

ignorance. We will propose various methods to estimate ignorance and uncertainty. In Section 10,

we define properties which such a region is desired to have.

In standard statistical practice, ignorance is hidden in the consideration of a single identified

model. Table 5 shows several models for data sampled from Table 4. Not all of them are identified.

All measurement models pij are left unconstrained. Model Msat (Model 5), saturating the full data

degrees of freedom, consists of 3 measurement parameters and 4 dropout parameters. There are only

5 observed degrees of freedom, rendering this model overspecified when fitted to the observed data.

Typically, identifiability restrictions are imposed in an MAR model (Model 2), a protective model

(Model 3) where dropout depends on the potentially unobserved second measurement, but not on



ii6.tex Version: September 21, 2012 8

Table 6: Identifiable Models, Fitted To Monotone Patterns From Psychiatric Study.

(1,1) (1,0) deviance

Side Effects 83.7 12.2 28.0 4.1 495.8

Model 1 (MCAR) 59.9 68.3 20.0 22.9

Side Effects 89.0 13.0 22.7 3.3 494.4

Model 2 (MAR) 57.0 65.0 22.9 26.1

Side Effects 89.0 13.0 18.6 7.4 494.4

Model 3 (Protective) 57.0 65.0 11.9 37.1

Therapeutic Effect 13.0 1.2 4.4 0.4 386.5

Model 1 (MCAR) 122.7 87.1 41.1 29.2

Therapeutic Effect 11.0 1.0 6.4 0.6 385.8

Model 2 (MAR) 124.0 88.0 39.8 28.2

Therapeutic Effect 11.0 1.0 7.1 -0.1 385.8

Model 3 (Protective, Unconstr.) 124.0 88.0 80.5 -12.5

Therapeutic Effect 11.6 1.0 6.4 0.0 385.8

Model 3 (Protective, Constr.) 123.4 88.0 68.5 0.0

the first one, or an MCAR model (Model 1). The first two of these saturate the observed degrees

of freedom, in contrast with Msat which is overspecified for the observed degrees of freedom and

saturates the complete data degrees of freedom. Model 4 is neither identifiable nor fully saturated.

Table 6 shows the predicted complete tables for Models 1, 2, and 3, fitted to the monotone

patterns of the psychiatric study (Table 1). The effect of ignorance is clearly seen by comparing

the MAR and protective models: they provide a substantially different prediction for the partially

observed table. In addition, the protective model produces a boundary solution, or an invalid

solution if the parameters are left unconstrained, for therapeutic effect. We will analyze these data

further in Section 8.

4 General Principle

We start from the classical approach of fitting a single identifiable model M0 to incomplete data

(e.g., Models 1–3 in Table 5). Maximum likelihood estimation produces a parameter estimate π̂
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along with measures of imprecision (estimated standard errors). From π̂ two predicted contingency

tables can be derived as in Table 3.

The fitted complete tables collapse back to fitted values for the incomplete Table 4. Con-

trasting the latter with the observed data shows the goodness-of-fit of model M0. If there is

substantial lack of fit, the original model M0 needs to be reconsidered. Lack of fit has strong bear-

ings on imprecision and, since we want to focus on ignorance, we will assume the fit is acceptable.

Assume then that model M0 has adequately captured the structure of the incomplete tables.

One can range through all possible complete tables, compatible with the M0 predicted

incomplete table. We call the tables “M0−compatible” and we denote the set by S(M0). They

collapse back to the same fitted incomplete table which we denote by τ0. To each table, an extended

model M∗ will be fitted. For a saturated model, tables and models are in one-one relation.

An insightful way of finding S(M0), sketched in Section 5, is by direct enumeration. Equiv-

alently, the modelling process can be expressed in terms of the complete data likelihood. Alterna-

tively, the model M∗ can be fitted directly to the observed data. When it is overspecified on the

observed data, it leads to a range of parameters maximizing the observed data likelihood. We will

show that this range coincides with the collection M∗(S(M0)) when M∗ is saturated, but that the

equivalence no longer holds in case M∗ is not saturated. We conclude that the possibly overspecified

model M∗ and its associated likelihood are very natural concepts. Section 6 proposes three meth-

ods to determine the set of maxima from the overspecified likelihood. The first starts by applying

an identifiable transformation, and then determines the set by means of a one-to-many mapping

(Section 6.1). It is related to method of moment ideas. Directly solving the score equations is

discussed in Section 6.2. Finally, the overspecification can be removed by considering a minimal set

of parameters λ, conditional upon which the others, µ, are identified. We term λ the sensitivity

parameter and µ the estimable parameter. This method is described in Section 6.3.

5 Enumeration Method

A range of models which extend M0 and are plausible or cannot be excluded on practical grounds

are assembled into a class M∗. Our goal is to examine their fits to M0-compatible tables and assess

their influence on the estimated main parameter(s). This results in the set of complete tables
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M∗(S(M0)). To ensure that M∗ adequately reproduces τ0 when fitted to each M0-compatible table

its elements have to be sufficiently elaborate. When M∗ is saturated, the model reproduces the

(completed) data exactly and hence M∗(S(M0)) = S(M0).

It is possible to consider the predicted incomplete table as a set of linear constraints for the

predicted complete tables, together with the requirement that each predicted complete table must

correspond to a valid probability model. One way to express these ideas more formally is to use

upper and lower probabilities, related to belief functions (Shafer 1976). Let Ω = {ω1, ω2, . . .} be

the frame, playing the role of the outcome space in probability theory. Informally, LOW(A) and

UP(A) are defined respectively as lower and upper bounds on the probability that the outcome will

be an element of A. In analogy with the probability mass function (p.m.f.), the concept of mass

function is introduced. Whereas a p.m.f. is defined over Ω: p : Ω −→ [0, 1], the mass function is

defined over power set 2Ω:

m : 2Ω −→ [0, 1] (5.1)

and has to satisfy m(φ) = 0 and
∑

A⊂Ω m(A) = 1.

All A such that A ⊂ B provide evidence for B and hence support the lower probability

in B. All A such that A ∩ B 6= φ are compatible with B and construct the upper probability of

B. These statements motivate the following formal definitions. The lower and upper functions are

given by

LOW(B) =
∑

A⊂B

m(A)

and the plausibility function by

UP(B) =
∑

A∩B 6=φ

m(A).

Example 4 (2 × 1 contingency table with supplemental count) Consider a single binary mea-

surement

for which r successes (coded as 1) and n − r failures (coded as 2) are observed, with an additional

N − n missing observations. The mass, lower, and upper functions are given by:

m({1}) = r/N LOW({1}) = r/N UP({1}) = (r+N − n)/N

m({2}) = (n − r)/N LOW({2}) = (n− r)/N UP({2}) = (N − r)/N

m({1, 2}) = (N − n)/N
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Next, consider the setting of the psychiatric study (Table 1):

a11 a12

a21 a22

b1

b2
c1 c2 d

It follows that the mass function is given by

m(11) = a11 m({11, 12}) = b1

m(12) = a12 m({21, 22}) = b2

m(21) = a21 m({11, 21}) = c1

m(22) = a22 m({12, 22}) = c2

m({11, 12, 21, 22}) = d

leading to the lower and upper functions:

LOW(11) = a11 UP(11) = a11 + b1 + c1 + d

LOW(12) = a12 UP(12) = a12 + b1 + c2 + d

LOW(21) = a21 UP(21) = a21 + b2 + c1 + d

LOW(22) = a22 UP(22) = a22 + b2 + c2 + d

In addition, the lower and upper functions for the marginal successes are

LOW({11, 12}) = a11 + a12 + b1

UP({11, 12}) = a11 + a12 + b1 + c1 + c2 + d

LOW({11, 21}) = a11 + a21 + c1

UP({11, 21}) = a11 + a21 + b1 + b2 + c1 + d

while for other responses (such as a concordant pair), they are easy to derive. Let us now specialize

to the common case of dropout (c1 = c2 = d = 0). Above belief and plausibilities then reduce to:

LOW({11, 12}) = UP({11, 12}) = a11 + a12 + b1

LOW({11, 21}) = a11 + a21

UP({11, 21}) = a11 + a21 + b1 + b2

In other words, there is no ignorance about the probabilities at the first measurement occasion,

while there is ignorance about the second measurement.

Consider again the setting of Example 4. Let p be the success probability and qi the

probability of being observed, given success (i = 1) or failure (i = 2).
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Table 7: Incomplete and Complete Data of Example 4.

Incomplete Full

Success Failure Success Failure

Observed r n − r r n − r

Unobserved N − n R− r N − n− R+ r

In this simple case, when M0 saturates the observed degrees of freedom, its predicted

incomplete table equals the observed data. Enumeration of all tables corresponding to this predicted

incomplete table can be done in terms of a single parameter. Let the number of successes out of

the N − n missing observations be denoted by R− r, then the corresponding number of failures is

N − n− R+ r and we merely have to cycle through all values of R in the interval

[LOW({1}),UP({1})] = [r, N − n + r].

The compatible full data tables are depicted in Table 7.

The second way consist of maximizing an overparameterized observed data likelihood. We

will first consider the complete-data likelihood in terms of a generic parameterization. Thereafter,

we study two specific reparameterizations in terms of p and qi. The complete-data log-likelihood is

`∗ = r lnα + (n− r) lnβ + (R− r) lnγ1 + (N − n− R+ r) lnγ2, (5.2)

where α, β, γ1 and γ2 are the four cell probabilities. The maximum likelihood estimator is given

by

αR =
r

N
, γ1,R =

R− r

N
,

βR =
n− r

N
, γ2,R =

N − n− R+ r

N
.

The subscript R indicates dependence on R. While this parameterization is easy to work with,

one is usually interested in effects such as success (failure) probabilities, non-response probabilities,

etc. Table 8 shows two parameterizations (MAR≡MCAR and MNAR). The complete-data log-

likelihood corresponding to M0 can be written as

`∗A = R ln p+ (N −R) ln(1− p) + n ln q + (N − n) ln(1− q).
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Table 8: Two Reparameterizations of the Complete-Data Likelihood.

Model M0: MAR≡MCAR Model Msat: MNAR

Parameterization:

α = pq α = pq1

β = (1 − p)q β = (1 − p)q2

γ1 = p(1 − q) γ1 = p(1− q1)

γ2 = (1 − p)(1− q) γ2 = (1− p)(1− q2)

Solution:

pR = R
N pR = R

N

qR = n
N q1R = r

R

q2R = n−r
N−R

p ∈

[
r

N
,
N − n+ r

N

]
p ∈

[
r

N
,
N − n+ r

N

]

The solutions to this likelihood, pR and qR, are displayed in Table 8, as well as the estimated

interval of ignorance for p, obtained as the collection of all pR. For this model, the fitted counts do

not coincide with the observed counts. Indeed, the four complete data counts are:

Rn
N

R(N−n)
N

(N−R)n
N

(N−R)(N−n)
N

and they correspond to the observed counts only if

R =
r

n
N, (5.3)

i.e., for the predicted complete table corresponding to MAR. For every value of R, the number of

missing observations N−n is reproduced exactly, but the number of observed successes and failures

are not. Let us now plug this solution into the observed-data log-likelihood:

` = r lnα + (n− r) lnβ + (N − n) ln(1− α− β), (5.4)

yielding the following function of R:

`(R) = n lnn + (N − n) ln(N − n) −N lnN + r ln

(
R

N

)
+ (n− r) ln

(
N −R

N

)
,



ii6.tex Version: September 21, 2012 14

which achieves a maximum, as a function of R, for (5.3). Note that `(R) measures the fit of the

model to the predicted complete table.

For Msat, the complete-data log-likelihood becomes

`∗B = R ln p+ (N −R) ln(1 − p)

+r ln q1 + (R− r) ln(1− q1) + (n− r) ln q2 + (N − n −R+ r) ln(1 − q2).

The corresponding solution is displayed in Table 8. The same estimated interval of ignorance for

p is obtained. The main distinction is that we now reproduce the predicted complete table and

hence also the observed data for each choice of R. The observed data likelihood, with the solution

substituted, is now constant. The difference in behaviour under both models arises because the

enumeration, prescribed by R ∈ [r;N − n + r], does not distinguish between the saturated Msat

and the identified M0. Let us elaborate on this.

Suppose first thatM∗ = M0. FittingM∗ to each element of S(M0) will yield a non-saturated

fit, except for the one predicted complete table predicted by the model. In other words, there will

be a range of solutions, M∗(S(M0)). The alternative procedure consists of fittingM∗ = M0 directly

which by assumption of identifiability produces a single solution. This implies a general discrepancy

between both approaches when M∗ is not saturated. Differences remain between both procedures,

as long as M∗ differs from the saturated model.

In order to remove this discrepancy, the set of predicted complete tables ought to be re-

stricted to the subset, compatible with M∗. When M∗ = M0, the only predicted complete table

allowable is the one originally produced by M0, reducing the sensitivity analysis to a standard

analysis. In general, the allowable predicted complete tables should reflect the model M∗. This

observation then trivially reduces both procedures to a single one.

This suggests treating the possibly overspecified model M∗ and its associated likelihood as

the fundamental concepts, which will be the subject of the following sections.

6 Observed Data Likelihood

In this family of approaches, the likelihood of the observed data will be used rather than the

likelihood of the completed data. We will explicitly allow for overspecified parameterizations, in
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Table 9: Two Transformations of the Observed-Data Likelihood.

Model I Model II

(MAR) (MNAR, Msat)

Parameterization:

α = pq α = pq1

β = (1 − p)q β = (1 − p)q2

γ = 1 − q γ = 1 − pq1 − (1 − p)q2

Solution:

p̂ = α̂
α̂+β̂

= r
n pq1 = r

N

q̂ = α̂+ β̂ = n
N (1− p)q2 = n−r

N

r

q1
+
n − r

q2
= N

p :

[
r

N
,
N − n+ r

N

]

order to carry out a sensitivity analysis.

There are three distinct approaches. The first one, the transformation method considers

an identifiable parameterization, which is then transformed, using a one-to-many mapping, into an

overspecified parameterization. The second direct-likelihood method uses an overspecified parame-

terization without intermediate steps. The final method treats a number of parameters as fixed and

will be referred to as the sensitivity parameter method. To exemplify the approaches, the setting of

Example 4 will be reconsidered.

6.1 Transformation Method

Independent of the parameterization chosen, the observed data log-likelihood can be represented in

the form (5.4), where α, β, and γ can be seen as moments. We consider two models, of which the

parameterization is given in Table 9. The first one is identified, the second one is overparameterized.

Denote the corresponding log-likelihoods by `I and `II respectively. In both cases,
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α̂ =
r

N
, β̂ =

n− r

N
.

Maximum likelihood estimates for p and q follow immediately under Model I, either by observing

that the moments (α, β) maps 1–1 onto the pair (p, q) or by directly solving `I . The solutions are

given in Table 9. The asymptotic variance-covariance matrix for p and q is block-diagonal with

well known elements p(1 − p)/n and q(1 − q)/N . Observe that we now obtain only one solution, a

strong argument in favour of the current method.

A similar standard derivation is not possible for Model II, since the triplet (p, q1, q2) is

redundant. This follows directly from Catchpole and Morgan (1997) and Catchpole, Morgan and

Freeman (1998) whose theory shows that Model II is rank-deficient and Model I is of full rank.

Since Model I is a submodel of Model II and saturates the observed data, so must every solution

to `II, implying the relationships:

pq1 =
r

N
, (6.5)

(1− p)q2 =
n− r

N
. (6.6)

Constraints (6.5) and (6.6) imply

p̂ =
r

Nq1
= 1 −

n− r

Nq2

and hence

r

q1
+
n − r

q2
= N. (6.7)

The requirement that q1, q2 ≤ 1 in (6.5) and (6.6) implies the range for p wich was already found

with the enumeration method (see Table 8).

6.2 Direct-Likelihood Approach

A variation to the observed-likelihood method consists of rewriting the log-likelihood for Model II

in terms of (p, q1, q2) before maximization:

` = r ln(pq1) + (n− r) ln[(1− p)q2] + (N − n) ln[p(1− q1) + (1− p)(1− q2)]. (6.8)

The likelihood equations are:

r

p
−
n− r

1− p
+

(N − n)(q2 − q1)

p(1− q1) + (1− p)(1− q2)
= 0, (6.9)
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r

q1
=

(N − n)p

p(1 − q1) + (1 − p)(1− q2)
, (6.10)

n − r

q2
=

(N − n)(1 − p)

p(1 − q1) + (1 − p)(1− q2)
. (6.11)

Division of (6.11) by (6.10) yields

p =
rq2

rq2 + (n− r)q1
. (6.12)

Substituting (6.12) into (6.10) produces (6.7), establishing equivalence between both methods.

The equivalence between direct-data likelihood and the transformation method does not

hold in general, since the former starts from a saturated model for the observed data and then

translates this into relations between parameters of M∗. The equivalence is thus restricted to

models that saturate the observed data. The direct-likelihood method is the most general one since

it allows for any model M∗ applied directly to the observed data.

6.3 Sensitivity Parameter Approach

As an alternative to fitting the overspecified likelihood, the overspecification can be removed by

considering a minimal set of parameters η, conditional upon which the others, µ, are identified.

We term η the sensitivity parameter and µ the estimable parameter. It is important to realize

that in general there will not be a unique choice for η and hence for µ. Such a technique has been

proposed for a specific example by Nordheim (1984). Each value of η will produce an estimate

µ̂(η). The union of these produces the region of ignorance. A natural estimate of the region of

uncertainty is the union of confidence regions for each µ̂(η). Note that one has to ensure that

η is within the allowable range. As will be shown below, the choice of sensitivity parameter is

non-unique and a proper choice can greatly simplify the treatment. Another issue is whether the

parameters of direct scientific interest can overlap with the sensitivity set or not (see White and

Goetghebeur 1997). For example, if the scientific question is a sensitivity analysis for treatment

effect, then one should consider the implications of including the treatment effect parameters into

the sensitivity set. There will be no direct estimate of imprecision available for the sensitivity

parameter. Clearly, the particular choice of sensitivity parameter will not affect the estimate of the

region of ignorance. However, the region of uncertainty is built from confidence regions which are

conditional on a particular value of the sensitivity parameter and hence will typically vary with the

choice made.
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Table 10: Two Sensitivity Parameterizations for the Observed Data Likelihood.

Parameterization III Parameterization IV

Parameterization:

α = pq α = pq

β = (1 − p)(q + θ) β = (1 − p)qλ

γ = 1 − pq − (1− p)(q + θ) γ = 1 − pq − (1− p)qλ

Let us exemplify this approach by considering two additional parameterizations of (5.4),

as presented in Table 10. Models III and IV are based on θ and λ as sensitivity parameters

respectively. The maximum likelihood estimators for p and q, given a value of the sensitivity

parameter, will be subscripted by the sensitivity parameter. With some algebra, Model III is seen

to imply pθ = r/(Nqθ) and qθ is found as the valid solution to

qθ =
1

2


 n
N

− θ ±

√(
θ −

n

N

)2

− 4
r

N


 .

Calculations are quickly getting cumbersome and therefore, rather than pursuing this approach,

we will turn attention to Model IV. Some algebra yields simple expressions for pλ and qλ:

pλ =
α̂λ

β̂ + α̂λ
=

λr

n − r(1 − λ)
, (6.13)

qλ =
β̂ + α̂λ

λ
=
n − r(1 − λ)

Nλ
. (6.14)

Using the delta method, an asymptotic variance-covariance matrix of pλ and qλ is seen to be built

from:

V̂ar((̂pλ)) =
pλ(1 − pλ)

Nλqλ

{
1 +

1 − λ

λ
(1 − pλ)[1− pλqλ(1− λ)]

}
, (6.15)

Ĉov((p̂λ, q̂λ)) = −
1

N
pλ(1 − pλ)

1− λ

λ
qλ,

V̂ar((̂qλ)) =
qλ(1− qλ)

N

{
1 +

1 − pλ

1 − qλ

1 − λ

λ

}
.

Note that the parameter estimates are asymptotically correlated, except when λ = 1, i.e., under the
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Table 11: Limiting Cases for the Sensitivity Parameter Analysis.

Estimator λ λ = n−r
N−r λ = 1 λ = N−(n−r)

r

pλ
λr

n−r(1−λ)
r
N

r
N

N−n+r
N

qλ
n−r(1−λ)

Nλ 1 n
N

r
N−(n−r)

qλλ
n−r(1−λ)

N
n−r
N−r

n
N 1

pλ
1−pλ

λ r
n−r

r
N−r

r
n−r

N−(n−r)
n−r

MAR assumption, or under boundary values (pλ = 0, 1; qλ = 0). This is in line with the ignorable

nature of the MAR model (Rubin, 1976).

We need to determine the set of allowable values for λ by requiring 0 ≤ pλ, qλ, λqλ ≤ 1.

These six inequalities reduce to

λ ∈

[
n− r

N − r
,
N − (n− r)

r

]
.

Clearly, λ = 1 is always valid.

Table 11 presents estimates for limiting cases. The interval of ignorance for the success

probability is thus seen to be as in Table 8. It is interesting to observe that the interval of ignorance

for the success odds is linear in the sensitivity parameter and equal to

odds(p) :

[
r

N − r
,
N − n+ r

n − r

]
.

For the success probability, the variance of pλ is given by (6.15). For the success odds, we

obtain:

V̂ar( ̂odds(pλ)) =
1

Nλqλ

pλ

1 − pλ

{
1 +

1 − λ

λ
(1 − pλ)[1− pλqλ(1− λ)]

}

and for the success logit:

V̂ar( ̂logit(pλ)) =
1

Nλqλ

1

pλ(1 − pλ)

{
1 +

1− λ

λ
(1 − pλ)[1− pλqλ(1− λ)]

}
.

For each λ, a confidence interval Cλ can be constructed for every point within the allowable range

of λ. The union of the Cλ is the interval of uncertainty , for either pλ, its odds, or its logit. For a

set of data with N = 50, n = 40, r = 20, these intervals are depicted graphically in Figure 1.
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Figure 1: Graphical Representation of Interval of Ignorance and Interval of Uncertainty For a

Single Binary Outcome With Supplemental Count.

7 Comparison of Methods

The simple examples in our development have shown that all methods yield the same results for

models that saturate the complete-data. In contrast, non-saturated methods produce differences.

The MAR model, applied to the 2 × 1 table, yields a range of solutions with the enumeration

method, but only one solution with the observed-data procedures. The transformation method is

only designed for models that saturate the observed-data likelihood.

Both procedures are completely equivalent for a saturated model M∗, but not otherwise.

This results holds in general since, under a saturated model, the solution to the complete-data

likelihood is in 1–1 relation with the corresponding table. Thus, each solution to the observed
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data likelihood obeys the same mapping. Therefore, under a saturated M∗, the observed-likelihood

is equivalent to enumeration. From the counterexample it is clear that this result is confined to

saturated models.

In conclusion, the enumeration method and similarly the transformation method, are easy

to apply but confined to saturated models and therefore hard to generalize to more complicated

data settings. The direct-likelihood and sensitivity parameter methods are more promising. Both

produce exactly the same regions of ignorance. This is clear by observing that the sensitivity

parameter method extends profile likelihood (Welsh 1996, p. 97).

8 Analysis of Psychiatric Study

8.1 Monotone Patterns

In Section 3 five models were introduced for a 2 × 2 contingency table with supplemental margin

(Table 5). The first three were fitted to the monotone cases of the psychiatric study. Since these

models were identified classical methods could be used. We will now fit overspecified Models 4 and

5 to the same data for the side-effects outcome.

We will focus on three quantities of interest: the first marginal probability, the second

marginal probability, and the (log) odds ratio describing the association between the first and

the second outcome. Results for all five models are given in Table 12. Models 1 and 2 are both

ignorable and hence all measurement model quantities are independent of the choice between MAR

and MCAR. Since Models 1–3 are identified, the interval of ignorance collapses to a classical point

estimate and the corresponding interval of uncertainty is an ordinary confidence interval.

For Model 4, there is one sensitivity parameter, which we choose to be γ (measuring the

extent of non-randomness). When γ = 0 MAR Model 2 is recovered. The value of γ which

corresponds to β = 0 yields protective Model 3. Since there is only one sensitivity parameter, a

graphical representation (Figure 2) is straightforward. The heavy lines represent the point estimates

conditional on the sensitivity parameter, together with their bounds (interval of ignorance). The

thin lines are the corresponding delta method confidence intervals, together with their bounds

(interval of uncertainty). Since among the monotone cases the first measurement is always obtained,

there is no ignorance about the first marginal probability and hence the interval of ignorance for
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Table 12: Interval of Ignorance (II) and Interval of Uncertainty (IU) for Marginal Probabilities and

(Log) Odds Ratio for Monotone Patterns of Side-Effects Data (Psychiatric Study).

Parameter Model 1/2 Model 3 Model 4 Model 5

First Margin II 0.43 0.43 0.43 0.43

IU [0.37;0.48] [0.37;0.48] [0.37;0.48] [0.37;0.48]

Second Margin II 0.64 0.59 [0.49;0.74] [0.49;0.74]

IU [0.58;0.70] [0.53;0.65] [0.43;0.79] [0.43;0.79]

Log Odds Ratio II 2.06 2.06 [1.52;2.08] [0.41;2.84]

IU [1.37;2.74] [1.39;2.72] [1.03;2.76] [0.0013;2.84]

Odds Ratio II 7.81 7.81 [4.57;7.98] [1.50;17.04]

IU [3.95;15.44] [4.00;15.24] [2.79;15.74] [1.0013;32.89]

this quantity is still a point. This is not true for the other two quantities.

Often, fitting a couple of identifiable models (e.g., Model 2 and Model 3) is seen as a

sensitivity analysis. This example shows this can be misleading. Both models differ by about 0.05

in the second marginal probability, but the II of Model 4 shows the range is about 0.25 ! Similarly,

Models 2 and 3 yield virtually the same result for the odds ratio, but the II of Model 4 shows there

is still some variation possible.

The impact of fitting an overspecified but, at the complete-data level, non-saturated model

is seen by contrasting Model 4 with the fully saturated Model 5. As expected, both models coincide

for the first marginal probability. It turns out that there is little difference in II and IU for the

second marginal probability (no difference seen to the precision reported). In contrast, the length

of the II for the log odds ratio is now about 5 times longer. The lower limit of the IU (Model 5)

is very close to zero, whereas its Model 4 counterpart shows clear evidence for a strong positive

association between both outcomes.

By construction, the data do not provide evidence for choosing between Models 4 and 5.

Both are overspecified at the observed data level and both encompass Models 2 and 3. Model 5 is

saturated at the observed data level as well and therefore the limits derived from it are absolute. The

reduced width of the intervals produced under Model 4 are entirely due to the model assumption
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Figure 2: Graphical Representation of Intervals of Ignorance and Intervals of Uncertainty for

Mononotone Patterns of Psychiatric Study (Side Effects).

that the dropout probability depends on both outcomes through their main effects only. Such an

assumption has to be the subject of careful reflection and, while it can be avoided in this simple

data setting, it cannot in more complex categorical data settings where covariates are recorded or

with continuous response variables.

8.2 Non-Monotone Patterns

Let us now turn attention to the more general but more complicated problem of modelling all

patterns in Table 1. The discrepancy between full data and observed data is larger, since the

full data comprise 15 degrees of freedom, while there are only 8 observed degrees of freedom. An

interesting class of models has been proposed by Baker, Rosenberger, and DerSimonian (1992). It
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is based on log-linear models for the four-way classification of both outcomes, together with their

respective missingness indicators. Denote the counts by Yr1r2jk where r1, r2 = 0, 1 indicate whether

a measurement is missing or taken at occasions 1 and 2 respectively, and j, k = 1, 2 indicate the

response categories for both outcomes. The models are written as:

E(Y11jk) = mjk, E(Y01jk) = mjkαjk,

E(Y10jk) = mjkβjk, E(Y00jk) = mjkαjkβjkγ,

with mjk = Y++++π11jk, and

αjk =
q01|jk

q11|jk
, βjk =

q10|jk

q11|jk
, γ =

q11|jkq00|jk

q10|jkq01|jk
.

The subscripts are missing from γ since Baker et al have shown that this quantity is independent

of j and k. These authors consider nine identifiable models, based on setting αjk and βjk constant

in one or more indices:

BRD1 : (α, β) BRD4 : (α, βk) BRD7 : (αk, βk)

BRD2 : (α, βj) BRD5 : (αj, β) BRD8 : (αj, βk)

BRD3 : (αk, β) BRD6 : (αj, βj) BRD9 : (αk, βj).

Interpretation is straightforward. For example, BRD1 is MCAR, in BRD4 missingness in the first

variable is constant, while missingness in the second variable depends on its value. Two of the

main advantages of this family is ease of computation in general, and the existence of closed-form

solution for several of its members (BRD2–BRD9). Molenberghs, Goetghebeur, and Lipsitz (1997)

used these models in an informal sensitivity analysis of the psychiatric study. The fit of the models

with an interior solution is given in Table 13 and the fitted counts are displayed in Table 14.

We consider a slightly different but equivalent parameterization

πr1r1jk = pjk
exp[βjk(1− r2) + αjk(1− r1) + γ(1− r1)(1− r2)]

1 + exp(βjk) + exp(αjk) + exp(βjk + αjk + γ)
, (8.16)

which contains the marginal success probabilities pjk and forces the missingness probabilities to

obey their range restrictions.

Table 13 reveals that Models BRD1–BRD9 show little variation in the marginal probabilities

and in the measure of association. Considered as an informal sensitivity analysis, this could be

seen as evidence for the robustness of these measures. However, we have seen in Section 8.1 that

such a conclusion could be deceptive. To this end, we consider an overspecified model, analogous
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Table 13: Model Fit For Side Effects (d.f.: degrees of freedom; G2: likelihood ratio test statistic,
P value, estimates and confidence limits for marginal probabilities and marginal (log) odds ratio.)

For Model 10, II and IU are presented instead.

Model d.f. G2 P Marg. Prob. Odds Ratio

First Second Orig. Log

BRD1 6 4.5 0.104 0.43[0.37;0.49] 0.64[0.58;0.71] 7.80[3.94;15.42] 2.06[1.37;2.74]

BRD2 7 1.7 0.192 0.43[0.37;0.48] 0.64[0.58;0.70] 7.81[3.95;15.44] 2.06[1.37;2.74]

BRD3 7 2.8 0.097 0.44[0.38;0.49] 0.66[0.60;0.72] 7.81[3.95;15.44] 2.06[1.37;2.74]

BRD4 7 1.7 0.192 0.43[0.37;0.48] 0.58[0.49;0.68] 7.81[3.95;15.44] 2.06[1.37;2.74]

BRD7 8 0.0 - 0.44[0.38;0.49] 0.61[0.53;0.69] 7.81[3.95;15.44] 2.06[1.37;2.74]

BRD9 8 0.0 - 0.43[0.38;0.49] 0.66[0.60;0.72] 7.63[3.86;15.10] 2.03[1.35;2.71]

Model 10:II 9 0.0 - [0.425;0.429] [0.47;0.75] [4.40;7.96] [1.48;2.07]

Model 10:IU 9 0.0 - [0.37;0.49] [0.41;0.80] [2.69;15.69] [0.99;2.75]

Table 14: Complete Data Counts For Models Fitted to Side Effects Data.

(1,1) (1,0) (0,1) (0,0) (+,+)

BRD1 84.00 12.12 28.13 4.06 0.74 0.11 5.26 0.76 118.13 17.05

60.21 67.67 20.16 22.66 0.53 0.60 3.77 4.23 84.67 95.16

BRD2 89.42 12.89 22.73 3.27 0.80 0.12 4.24 0.61 117.19 16.89

57.27 64.42 23.06 25.94 0.51 0.58 4.30 4.82 85.14 95.76

BRD3 83.67 12.22 28.02 4.09 1.17 0.00 8.16 0.00 121.01 16.31

59.85 68.25 20.04 22.85 0.83 0.00 5.84 0.00 86.57 91.11

BRD4 89.42 12.89 18.58 7.42 0.80 0.12 3.47 1.39 112.27 21.82

57.27 64.42 11.90 37.10 0.51 0.58 2.22 6.93 71.90 109.03

BRD7 89.00 13.00 18.58 7.42 1.22 0.00 8.53 0.00 117.33 20.42

57.00 65.00 11.90 37.10 0.78 0.00 5.47 0.00 75.15 102.10

BRD9 89.00 13.00 22.69 3.31 1.22 0.00 6.97 0.00 119.87 16.31

57.00 65.00 22.89 26.11 0.78 0.00 7.03 0.00 87.71 91.11

to Model 4 in Table 5. The choice can be motivated by observing that both BRD7 and BRD9 yield

an interior solution and differ only in the β-model. Therefore, Model 10 will be defined as (αk, βjk)
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Figure 3: Graphical Representation of Intervals of Ignorance and Intervals of Uncertainty for Non-

Mononotone Patterns of Psychiatric Study (Side Effects).

with

βjk = β0 + βj + βk. (8.17)

Since one parameter is redundant, we propose to use βk as the sensitivity parameter. The resulting

II and IU are plotted in Figure 3. While the II seem acceptable and in fact close to their counterparts

in Figure 2, there is clearly aberrant behaviour in the IU towards larger values of the sensitivity

parameter, leading to very wide IU’s. This problem is entirely due to the zero count in pattern

(0,1) (see Table 1), as can be seen by adding 0.5 to this zero count. The results are presented in

Figure 4. The resulting II and IU are presented in Table 13, and they are very similar to the results

for Model 4, as displayed in Table 12. Due to the non-monotone patterns, there is a (very small)
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Figure 4: Graphical Representation of Intervals of Ignorance and Intervals of Uncertainty for
Mononotone Patterns of Psychiatric Study (Side Effects). A Value of 0.5 is Added to the Zero

Count in Pattern (1,0).

ignorance in the first marginal probability as well. Once again, it is seen that fitting identifiable

models only may be misleading since, for example, the log odds ratio shows much more variability

than seen among Models BRD1–BRD9.

9 Analysis of the Slovenian Plebiscite

Rubin, Stern, and Vehovar (1995) conducted several analyses of the data. Their main emphasis was

on determining the proportion θ of the population that would attend the plebiscite and vote for

independence. The three other combinations of both binary outcomes would be treated as voting

“no”. Their estimates are reproduced in Table 15. The conservative method is the ratio of the
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Table 15: Estimates of the proportion θ attending the plebiscite and voting for independence, as
presented in Rubin, Stern, and Vehovar (1995).

NO via

Estimation method θ nonattendance

Conservative 0.694 0.192

Complete cases 0.928 0.020

Available cases 0.929 0.021

MAR (2 questions) 0.892 0.042

MAR (3 questions) 0.883 0.043

Non-ignorable 0.782 0.122

Plebiscite 0.885 0.065

(yes, yes) answers to the (attendance, independence) pair and the total sample, i.e., 1439/2076.

This is the most pessimistic scenario. At the opposite end of the spectrum, we can add the most

optimistic estimate that replaces the numerator by all who are no definite “no”:

1439 + 159 + 144 + 136

2076
=

1878

2076
= 0.904.

Both estimates together yield the range II = [0.694; 0.904]. The complete case estimate is based on

the subjects answering all three questions and the available case estimate is based on the subjects

answering the two questions of interest here. It is noteworthy that both estimates fall outside the

interval of ignorance and should be disregarded.

There are two MAR models, the first one based on two questions only, the second one using

all three. The non-ignorable model is based on the assumption that missingness on a question

depends on the answer to that question but not on the other questions. The authors argue that

the MAR results are very close to the true response, unlike the non-ignorable model, and suggest

that the MAR assumption is generally more plausible in carefully designed surveys.

The result of fitting the models of Baker, Rosenberger, and DerSimonian (1992) is presented

in Table 16. Observe that BRD1, being MAR, is equivalent to MAR (2 questions) in Table 15.

Model BRD2 produces an estimate for θ which is extremely close to the results of the plebiscite.

It assumes that missingness on the independence question depends on the attendence question.
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Table 16: Estimates of the proportion θ (confidence interval) attending the plebiscite and voting

for independence, following from fitting the Baker, Rosenberger, and DerSimonian models (1992).

Model d.f. loglik θ

BRD1 6 -2503.06 0.891[0.877;0.906]

BRD2 7 -2476.38 0.884[0.868;0.899]

BRD3 7 -2471.59 0.881[0.865;0.896]

BRD4 7 -2476.38 0.779[0.702;0.857]

BRD5 7 -2471.59 0.848[0.814;0.882]

BRD6 8 -2440.67 0.822[0.792;0.850]

BRD7 8 -2440.67 0.774[0.719;0.828]

BRD8 8 -2440.67 0.753[0.691;0.815]

BRD9 8 -2440.67 0.866[0.849;0.884]

Model 10 9 -2440.67 [0.762;0.893][0.744;0.907]

Model 11 9 -2440.67 [0.766;0.883][0.715;0.920]

Model 12 10 -2440.67 [0.694;0.904]

Note that BRD8 assumes that missingness on either question depends on the question itself and

therefore is very similar to the non-ignorable model of Rubin, Stern, and Vehovar (1995).

Next, we present three estimated II. Model 10 in Table 16 is based on 1 sensitivity parameter,

as in (8.17). Similarly, Model 11 uses

αjk = α0 + αj + αk, (9.18)

while Model 12 combines both (8.17) and (9.18). The estimated II for Models 10 and 11 are very

similar and the true plebiscite value is marginal within these II. Note that Model 11, and hence

also Model 12, does contain a number of boundary solutions, which can be seen as evidence against

these models.

Another quantity which Rubin, Stern, and Vehovar (1995) reported is the proportion of

NO’s via nonattendance (see Table 15). Observe that all estimates are way below the plebiscite

value. We can gain some insight in this phenomenon by plotting the region of ignorance for both

θ and the proportion of NO’s via nonattendance. Since Models 10 and 11 are based on a single

sensitivity parameter, the regions of ignorance are curves, while a planar region is obtained for
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Figure 5: Graphical Representation of Regions of Ignorance for the Slovenian Plebiscite. Proportion

of YES Votes Versus Proportion of NO via Nonattendance. Models 10, 11, and 12.

Model 12. A graphical sketch is given in Figure 5, where Models 10 and 11 are represented by

curves and Model 12 by the result of sampled points from the bivariate sensitivity parameter.

Model 10 incorporates relatively little ignorance about NO via nonattendance, but at the same

time fails to include the plebiscite value. Models 11 and 12 on the contrary allow a relatively large

II for this quantity. A black square marks the plebiscite values for both quantities. It is clear that

the plebiscite result is outside of the range produced by Model 12. Note that a saturated model

would incorporate 5 extra sensitivity parameters !
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10 Validity

Given a family of probability models, for the complete data distribution, we have identified the

theoretical region of ignorance, R, implied by the observed data structure for one or more param-

eters θ = (θ1, . . . , θk) of interest. Several methods were proposed to estimate such region from the

data. For a frequentist, it is valuable to study the sampling properties of the stochastic region

to enable formal evaluation and contrasting of estimators. Hence, we must define expected values

and convergence of stochastic regions. To cover precision we will involve measures of overlap and

distance between such regions.

For a single key parameter of interest, the region of ignorance may be an interval and hence

determined by 2 points. One could define expectation and convergence for the interval through

expectation and convergence of the characterizing 2-dimensional vector. Similar arguments apply

to other regularly shaped regions such as rectangles and ellipsoids.

For a more general discussion of validity of an estimated region of ignorance, we propose

the following definitions of weak and strong consistency.

Definition 1 (Weak Consistency of an Estimated Region of Ignorance) The estimated re-

gion of ignorance Rn for θ is weakly consistent if it converges in probability to the true region of

ignorance R :

∀ε > 0, δ > 0, ∃n0 s.t. ∀n > n0 : Pr(||Rn −R|| > δ) < ε,

where the chosen distance measure between Rn and R is based on a norm function ||.|| with

maximum value 1 and minimum value 0 in the k-dimensional space.

Definition 2 (Strong Consistency of an Estimated Region of Ignorance) The estimated re-

gion of ignorance Rn for θ is strongly consistent if

Pr(||Rn −R|| → 0 as n→ ∞) = 1,

with R the true region of ignorance.

Following the laws of large numbers, in the i.i.d. case for the multinomial table, it suffices
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to substitute observed proportions for cell probabilities in the boundary expression for R to obtain

a strongly consistent estimator.

An estimated interval of uncertainty, Un, is wider than Rn by construction and aims to

cover the true region with 95% probability. We propose two definitions which coincide in the case

of a classic point estimator and reduce then to the classical notion of coverage for a (1 − α)100%

confidence interval.

Definition 3 (Weak Coverage Probability of the Region of Uncertainty)

E

{
||Un ∩R||

||R||

}

Hence we get the expected proportion of volume of R covered by Rn.

Definition 4 (Strong Coverage Probability of the Region of Uncertainty)

Pr(R ⊂ Un)

Consider Example 3 with θ = Pr(Y2 = 1). The theoretical region of ignorance is then the

interval [π1+1, π1+1 + π0++]. A strongly consistent estimator is provided by [π̂1+1, π̂1+1 + π̂0++].

A simple interval acknowledging imprecision has bounds

[
π̂1+1 − c1−α/2

√
V̂ar(π̂1+1); π̂1+1 + π̂0++ + c1−α/2

√
V̂ar(π̂1+1 + π̂0++)

]

where the critical point c1−α/2 is derived from the binomial or asymptotically normal distribution

for the observed corresponding combination of proportions.

For this interval, weak coverage is expected to be larger than (1 − α)100% and strong

coverage to be smaller. Indeed, at the 95% level we find 0.9617 and 0.9199 respectively. Through

back calculation one can find the critical point that gives the exact weak or strong coverage that is

desired. For the weak coverage we find 0.9506 for c1−α/2 = 1.5. A graphical representation of the

simulation process is given in Figure 6.

11 Discussion

In this paper we have defined the concept of ignorance and incorporated this into a frequentist

framework by combining it with the familiar idea of statistical imprecision, producing a measure of
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Figure 6: The twenty first simulations where the estimated interval of ignorance is represented as a
bold line segment, and the interval of uncertainty is shown as a dashed line segment. The vertical

lines show theoretical interval of ignorance plus the true P (Y2 = 1) = 0.5.

uncertainty. As an extension of the concept of confidence, uncertainty is expressed as an interval for

scalar unknowns (parameters) and a region for vectors. These reduce to conventional confidence

intervals and regions when it is assumed that there is no ignorance about the statistical model

underlying the data. In the special case of simple categorical data settings with missing values,

we have seen that intervals of ignorance can be constructed in a relatively straightforward way,

and these reflect in a natural way ignorance about underlying relationships involving unobserved

data. The construction of the intervals of uncertainty in the examples are seen to convey useful
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information about the problems concerned, providing information not previously appreciated. In

particular, we see that earlier conclusions about the selection and behaviour of classes of models

for the Slovenian Plebiscite are not strictly justified.

We can approach the calculation of the interval of ignorance in several ways, but it is seen

that a (possibly) overspecified model and associated likelihood are the more natural concepts to

use. This approach will be important, if not essential when we extend the simple categorical setting

to more complex problems with continuous and finely stratified covariates and, very importantly,

to continuous responses. For these the complete table approach is not suitable because a missing

continuous value should be replaced by an unbounded set, such as the whole, or half, real line. In

these settings careful consideration needs to be given to the family of models within which we are

assumed to be ignorant.

Formal tools to assess validity of the new concepts are clearly needed. We suggested con-

sistency definitions for the region of ignorance and coverage for the region of uncertainty. They

extend familiar concepts used when there is no ignorance and they might provide a reasonable

starting point for further exploration of the notions introduced.
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