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ABSTRACT: In time-of-flight secondary ion mass spectrometry
(ToF-SIMS), multivariate analysis (MVA) methods such as principal
component analysis (PCA) are routinely employed to differentiate
spectra. However, additional insights can often be gained by
comparing processes, where each process is characterized by its
own start and end spectra, such as when identical samples undergo
slightly different treatments or when slightly different samples receive
the same treatment. This study proposes a strategy to compare such
processes by decomposing the loading vectors associated with them,
which highlights differences in the relative behavior of the peaks. This
strategy identifies key information beyond what is captured by the
loading vectors or the end spectra alone. While PCA is widely used,
partial least-squares discriminant analysis (PLS-DA) serves as a supervised alternative and is the preferred method for deriving
process-related loading vectors when classes are narrowly separated. The effectiveness of the decomposition strategy is demonstrated
using artificial spectra and applied to a ToF-SIMS materials science case study on the photodegradation of N719 dye, a common dye
in photovoltaics, on a mesoporous TiO2 anode. The study revealed that the photodegradation process varies over time, and the
resulting fragments have been identified accordingly. The proposed methodology, applicable to both labeled (supervised) and
unlabeled (unsupervised) spectral data, can be seamlessly integrated into most modern mass spectrometry data analysis workflows to
automatically generate a list of peaks whose relative behavior varies between two processes, and is particularly effective in identifying
subtle differences between highly similar physicochemical processes.
KEYWORDS: time-of-flight secondary ion mass spectrometry, mass spectrometry, multivariate analysis, spectral analysis,
principal component analysis, partial least-squares discriminant analysis, data analysis, decomposition, feature extraction, discrimination,
dye-sensitized solar cells, N719 dye, photodegradation

■ INTRODUCTION
The complexity of mass spectrometry (MS) spectra has driven
the development of innovative approaches and algorithms to
extract valuable information. This is particularly true for hard-
ionization methods that achieve mass resolutions high enough
to distinguish peaks at the same nominal mass, such as time-of-
flight secondary ion mass spectrometry (ToF-SIMS), where
fragmentation and numerous isotopic peaks result in complex
but highly correlated spectra. Typically, these correlations are
captured by high-dimensional peak lists containing the
intensities of hundreds of peaks. As a result, multivariate
analysis (MVA) techniques, such as principal component
analysis (PCA), are routinely applied for dimensionality
reduction, aiming to capture these correlations in interpretable,
compact forms.1−5 This has been demonstrated in various
fields, including biology,4,6,7 medical sciences,8−10 polymer
sciences,11,12 and organic coatings,13,14 with most studies

focusing on the analysis of MS images. Concurrently,
significant efforts have been made to optimize MVA workflows
and implementations specifically for analyzing MS data.15−24

The conventional application of PCA in the context of MS
typically reveals characteristic differences between spectra;
however, it is often crucial to compare the manner in which
spectra evolve from one state to another. For instance, two
processes may induce different alterations in an initial
spectrum, and the objective is to identify the differences in
these transformations. More precisely, the goal is to identify
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peaks whose relative behavior (e.g., increasing or decreasing),
compared with all other peaks, differs between the two
processes. When the processes are similar, the identification
can be time-consuming and prone to error if done traditionally
as it necessitates an expert to meticulously inspect the spectra
for meaningful differences. In this context, similar processes are
those that affect peak intensities in analogous ways, causing the
same peaks to increase or decrease in intensity with exceptions
primarily related to relative peak intensity differences.
Essentially, the majority of spectral changes are consistent for
the two processes, with differences evident only in the relative
behavior of a few peaks. These scenarios frequently occur
when comparing closely related physicochemical processes,
such as two nearly identical polymers exposed to the same
reagent or treatment, the adsorption of proteins onto multiple
similar surfaces, or identical solar cells exposed to slightly
different environments. Notably, time-dependent processes can
be considered similar when sampled at different times, for
example, when comparing samples exposed to an environment
or treatment for varying durations. We propose a straightfor-
ward strategy that can be integrated into most modern MS
data analysis workflows to automatically generate a list of peaks
that capture the meaningful differences between two processes.
The strategy involves calculating the orthogonal component
via Gram-Schmidt decomposition25 of two loading vectors
obtained by MVA (e.g., PCA), where the loading vectors
represent the directions of chemical change for the two
processes, and inspecting the peaks with the largest coefficients
in this orthogonal component.
While the application of PCA to ToF-SIMS data has become

widespread, MS experiments often associate labels to spectra
by design, allowing for the use of supervised alternatives. For
instance, when it is known that an analyzed region has been
exposed to a treatment while another region has not, or to a
different extent, or when a spectrum can be associated with a
class through information obtained by another method (e.g.,
imaging), labels are available, and supervised algorithms can be
employed. One such example is partial least-squares discrim-
inant analysis (PLS-DA), a straightforward supervised
alternative to PCA that also serves as a dimensionality
reduction technique by producing scores and loadings.26,27

While PCA combines peaks to identify directions of maximal
variance, PLS-DA uses labels to find directions of maximal
covariance.28 More often than not, this direction captures the
relevant information and functions as a meaningful discrim-
inator.3,5,29 Although the applications of PCA and PLS-DA
differ due to PCA’s unsupervised nature, we demonstrate that
PLS-DA more reliably captures the direction of change
between two classes of spectra when the classes are narrowly
separated. However, when the spectral differences between
classes are substantial, both methods generally offer equally
effective tools for further analysis by using the decomposition
strategy.
The underlying principles of the proposed decomposition

strategy are demonstrated using artificial spectra and
subsequently applied to a ToF-SIMS materials science case
study involving the photodegradation of N719 dye, a
commercially available and widely used dye renowned for its
efficiency and stability, primarily used in the field of
photovoltaics.30 Specifically, the dye is commonly employed
as a light-absorbing component in dye-sensitized solar cells,
where the dye molecules anchor to mesoporous TiO2.

31 The
photovoltaic activity of the N719 molecule is linked to its

chemical structure, which is shown in Figure 1.30 In this case
study, the proposed strategy is applied to investigate the

photodegradation process of N719 dye on TiO2; however, the
strategy can, in principle, be applied to any two physicochem-
ical processes.

■ EXPERIMENTAL SECTION
Sample Preparation. Two samples were prepared, in

accordance with the procedure from Hustings et al.,32 using
presintered transparent TiO2 anodes and N719 dye, both
purchased from Solaronix (Aubonne, Switzerland). The
anodes consist of a mesoporous layer of anatase TiO2
nanoparticles (Ti-Nanoxide T/SP) screen-printed onto
fluorine-doped tin oxide-coated glass substrates. The anodes
were refired at 450 °C for 30 min to remove pollutants from
the TiO2 layer. After cooling to 60 °C, both anodes were
submerged upside down in a 0.3 mmol L−1 solution of N719
dye in 96% eurodenatured ethanol, ensuring uniform staining.
After overnight staining, the samples were rinsed with the same
solvent and air-dried before being attached onto a glass
support. Both samples were subsequently partially covered by a
metal plate before being placed 30 cm away from the opening
of a Xe-arc lamp set at 150 W. After approximately 4 h, the first
sample was removed from the support and stored in a dark
environment. The second sample was removed the next day for
a total exposure of 22 h. Partial covering and exposure to the
Xe-arc lamp led to the creation of two distinct regions on the
samples. On each sample, the region shielded from light by the
metal plate will be referred to as “unexposed,” while the other
region will be referred to as “illuminated.” The illuminated
regions are distinguished from the unexposed ones by a clear
visual discoloration of the dye. A summary of these samples
and regions is given in Table 1. Finally, both samples were
placed into a custom-made chamber which was flushed with
N2 for 10 min before being sealed for transport to the ToF-
SIMS equipment.
ToF-SIMS Analysis. ToF-SIMS analysis was performed

using the TOF.SIMS 5 equipment from IONTOF GmBH
(Münster, Germany) located at Imec (Leuven, Belgium). The
30 keV Bi3+ primary ion beam transmitted a current of
approximately 0.2 pA at a cycle time of 200 μs in the so-called
high-current bunched mode, which maximizes the mass
resolution. Both the unexposed and the illuminated regions
of the two N719 stained TiO2 samples were each analyzed in
three areas of 100 × 100 μm2 by randomly scanning over 64 ×
64 pixels (per area), collecting negatively charged secondary

Figure 1. Chemical structure of N719 dye.
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ions (see Table 1). Additionally, a pure TiO2 sample without
N719 dye was analyzed to simplify peak identification during
the data analysis. Each measurement was terminated after
reaching a primary ion dose density of 3 × 1012 ions/cm2,
which is below the static limit of 1013 ions/cm2. Charge
compensation was achieved using a low-energy electron flood
gun set at 21 V and a fixed surface potential of −7.7 V. All
measurements were performed under a vacuum of 3−8 × 10−9

mbar.
Data Analysis. The ToF-SIMS analysis resulted in a

collection of 12 measurements, summarized in Table 1. For
each measurement, three files in proprietary file formats were
obtained (with extensions .itm, .itmx, and .itax). These files
were examined using the proprietary software SurfaceLab 7.3
from IONTOF GmbH (Münster, Germany), and subsequently
calibrated with CH2

−, CH3
−, C3H−, C4H−, and C5H− (except for

the spectra of the long-duration illuminated regions where the
C5H− peak was too small to be used for calibration). In this
study, we analyzed the spectra obtained by averaging over all
pixels and all scans, meaning that neither imaging data nor
depth profiles were considered. Within SurfaceLab 7.3, an
automatic peak detection routine was run on one spectrum of
each measurement class: unexposed #1, unexposed #2, short-
duration illuminated (tS = 4 h), and long-duration illuminated
(tL = 22 h) . The routine scanned the entire mass range (1−
3661 m/z) for peaks that met the following criteria: a
minimum of 100 counts, a signal-to-noise ratio of at least 1.0, a
maximum background level of 0.8, and selection based on an
adaptive peak width filter. The union of the four automatically
generated peak lists was formed by merging peaks within a
catch mass radius of 200 ppm, which was determined through
trial-and-error to avoid duplicates. Peaks with center masses
differing by less than this mass deviation were considered to be
equivalent. This final combined peak list was then used as the
peak list for all spectra, producing a data set in which all
measurements had the same 993 peaks as features, with each
peak characterized by the summed number of counts
(intensity) between the peak margins at an associated center
mass (m/z). The Poisson dead-time-corrected peak informa-
tion was exported (as .txt files in UTF-8 encoding) for further
analysis using the Python programming language.
The data underwent the following preprocessing steps

before any MVA: removal of saturated peaks (in this case,
only CN− at 26 m/z), Poisson scaling, and mean centering.
The spectra were not normalized by total counts, although this
normalization was tested and found to have minimal impact on
the results. PCA was performed using the PCA function of the
scikit-learn library, with all components retained, no whitening,
and the “full” option, ensuring that the exact full singular value
decomposition was calculated using the standard LAPACK
solver.33,34 Additionally, PLS-DA was conducted with the

scikit-learn library’s PLSRegression function, using the same
number of components, no additional scaling, with up to 500
iterations, and a convergence tolerance of 10−6, while
employing categorical response variables. The loadings were
always back-transformed to account for the prior scaling.15,16

Generation of Artificial Data Sets. Artificial spectra
enabling controlled variation in class separation were generated
to support the analyses. These artificial spectra were derived by
modifying the peak intensities of spectra from the class
unexposed #1 using the following procedure. First, half of the
peaks in the peak list were randomly selected for modification.
For each selected peak pi, the direction of the intensity change
(increase or decrease) was determined with equal probability.
An update rate ri was then sampled from a normal distribution

( , ) with mean μ and standard deviation σ. For peaks with
increasing intensities, an additional update factor Fi was
sampled from a uniform distribution . The sampled values
were applied according to the following update rules:

p p e pif decreasingi
t

i
rt

i
0 i= (1)

p p F e p(1 (1 )) if increasingi
t

i i
rt

i
0 i= + (2)

p p pif unchangedi
t

i i
0= (3)

where pi0 denotes the initial peak intensity of the ith peak and
pit represents the peak intensity after artificial process time t.
Although t is referred to as a time-like parameter for intuitive
understanding, it is actually dimensionless and merely serves to
indicate the extent of spectral change; therefore, it could be
interpreted as another physical or chemical variable that causes
spectral changes. For artificial data sets involving a single
mechanism, the update rates and factors were sampled as
r ( 1, 0.2)i = = and F ( 1, 2))i [ , respectively. In
the case of two-mechanism artificial data sets, peak intensities
were updated twice: first with r ( 5, 0.2)i = = and
F ( 4, 5))i [ , followed by r ( 1, 0.2)i = = and
F ( 1, 2))i [ . Finally, the mean spectrum was calculated
from the three artificial spectra, and Poisson noise was applied
to it three separate times to eliminate any one-to-one
correlations with the original spectra. This procedure results
in a data set comprising two classes of spectra: three “initial
spectra” and three “artificial spectra,” where the degree of class
separation is determined by the parameter t.

■ RESULTS AND DISCUSSION
Comparing PLS-DA and PCA Loading Vectors versus

the Target. We first demonstrate that PLS-DA more reliably
identifies the loading vector that correctly differentiates
between two classes of spectra compared to PCA, particularly
when the differences between the classes are minimal. To
facilitate this analysis, artificial spectra with controlled
variations in class separation, governed by a time-like
parameter t, were generated. The behavior of the loading
vectors obtained by PCA (LPCA(t)) and PLS-DA (LPLSDA(t)) at
various times t is evaluated by creating 1000 artificial data sets,
each based on a distinct, randomly generated artificial process,
and subsequently performing PCA and PLS-DA on each
generated data set. For each MVA method, the loading vector
that maximizes the between-within ratio of the corresponding
scores is selected from all components; in the case of PLS-DA,
this was consistently the first loading vector. This selection is a

Table 1. Summary of the Experimental Features of the Case
Study of TiO2/N719 Photodegradation and the Associated
Spectra Analyzed in This Work

Class
Sample
ID

Exposure time
(h) # Spectra Polarity

Unexposed #1 #1 0 3 −
Unexposed #2 #2 0 3 −
Short-duration
illuminated

#1 4 3 −

Long-duration
illuminated

#2 22 3 −
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crucial step of the comparison procedure, as it simulates an
analyst’s decision in choosing which component best
discriminates between the two classes. For each data set, the
similarity between the selected loading vectors is quantified
using the cosine similarity SC, defined for two vectors V1 and
V2 as

S V V
V V

V V
( , )C 1 2

1 2

1 2
= ·

(4)

This similarity measure ranges from −1 for anticorrelated
(opposite) vectors to 1 for correlated (parallel) vectors, with 0
indicating uncorrelated (orthogonal) vectors. The signs of
loading vectors are manually adjusted so that SC ∈ [0,1],
capturing the same information regardless. The overall
behavior across the 1000 data sets is assessed by the mean
cosine similarity SC , which is subsequently transformed into an
angle Sarccos( )C= . This angle represents the similarity of
the high-dimensional PCA and PLS-DA loading vectors in just
two dimensions.
The results of this procedure for various artificial process

times are depicted in Figure 2. For a long process time tL = 1,
the PCA and PLS-DA loading vectors exhibit nearly complete
overlap, indicating that both methods identify the same
direction and capture identical information; namely, how
peaks contribute to variance (PCA) or class covariance (PLS-
DA) in the data sets. This alignment occurs because the
difference between initial and artificial spectra after process
time tL = 1 is substantial, aligning the direction of maximum
variance with the direction of maximum covariance between
the peaks and class labels. Termed “the mechanism direction”
in this context, this identified direction reflects the peak
intensity changes resulting from the underlying mechanism of

the artificial process. For each data set, the mechanism is
defined by the randomly sampled values that govern the peak
intensity changes (from the initial to the artificial spectra) after
a specific process time. Since there is only one set of sampled
values, each artificial process has only one underlying
mechanism, making the mechanism direction the target. In
Figure 2, this direction also serves as a reference, with all other
loading vectors being evaluated relative to it by calculating the
angle θ, as previously explained. It is important to interpret the
two-dimensional representations in Figure 2 judiciously: only
the angles between the reference direction (which in this case
is LPLSDA(tL)) and other loading vectors accurately reflect their
similarity, as any other pair of vectors may not lie in the same
plane.
When the process time is decreased to tS = 0.1 (Figure 2a),

there is only a slight misalignment between the PCA and PLS-
DA loading vectors. Further reducing the process time to tS =
0.06 or tS = 0.03 (Figure 2b−c) results in greater misalignment,
but importantly, the PLS-DA loading vector aligns more
closely with the mechanism direction than the PCA loading
vector. This signifies that when the differences between spectra
in different classes are minimal, PLS-DA more reliably captures
the target information compared to PCA, making PLS-DA
more effective in low-contrast situations. This is attributable to
PLS-DA’s use of class information, which aids in identifying
the discriminating direction, whereas PCA’s focus on
directions of maximum variance can hinder identification of
the target loading vector, especially when class-related
differences are small.
An MVA Strategy to Identify Differences between

Similar Processes. The underlying principles of the proposed
strategy to identify differences between similar processes are

Figure 2. Two-dimensional representations of the loading vectors obtained by PCA and PLS-DA for single-mechanism artificial data sets. The x-
axis is aligned with the PLS-DA loading vector of a data set in which the original spectra underwent the artificial process for tL = 1 arbitrary units,
yielding well-separated classes along the direction of the mechanism. The PCA loading vector overlaps for tL = 1, but when the contrast between
spectra is decreased by reducing the process time to (a) tS = 0.1, (b) tS = 0.06, or (c) tS = 0.03, then the PLS-DA loading vector captures the
mechanism direction more accurately than the PCA loading vector.

Figure 3. Two-dimensional representations of the loading vectors obtained by PCA and PLS-DA for two-mechanism artificial data sets. The x-axis
is aligned with the PLS-DA loading vector of a data set in which the original spectra underwent exclusively the first mechanism for t = 1 arbitrary
units. The PCA and PLS-DA loading vectors overlap in all cases, reflecting that the classes are always well separated, but the loading vectors
become increasingly distinct for longer process times, tS = 0.1 and (a) tL = 0.5, (b) tL = 1, and (c) tL = 5, indicating that the second mechanism is
increasingly incorporated at longer process times.
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demonstrated by introducing a second mechanism in the
artificial processes. In this scenario, the initial peak intensities
are first updated according to a fast-changing mechanism,
mechanism #1, and subsequently, the same peaks are updated
according to a slow-changing mechanism, mechanism #2. This
approach mimics a simple time-dependent process affecting
spectra differently based on the process time t. For instance,
spectra generated after a short process time are expected to
reflect only mechanism #1 (fast), whereas after a long process
time both mechanisms are combined. Consequently, spectra at
different process times can be interpreted as originating from
different but highly similar processes (instead of from a single
time-dependent process) as they incorporate the same two
mechanisms but to varying extents.
For the two-mechanism situation, loading vectors at various

process times are calculated and compared by a procedure
similar to that outlined previously for a single mechanism.
However, in this case, the loading vectors obtained after short
process times tS and long process times tL are compared to the
loading vector obtained by exclusively acting with mechanism
#1 for t = 1, referred to as the “mechanism #1 direction.” In
Figure 3, the loading vectors of the two-mechanism artificial
processes are compared for increasingly longer process times
tL. Simultaneously, it is exemplified that the loading vectors
after a short process time tS = 0.1 align significantly with the
mechanism #1 direction, confirming that the spectral changes
after short process times reflect mainly the fast-changing
mechanism. Note that the PCA and PLS-DA loading vectors
always overlap, but the discrepancy between the loading
vectors and the mechanism #1 direction becomes larger with
increasing process times tL. This suggests that the loading
vectors in all cases capture the spectral differences attributed to
the artificial processes. Notably, the discrepancies are not due
to noise signals, which previously was the case for low-contrast
single-mechanism artificial processes after short process times
tS. Indeed, contrary to the low-contrast single-mechanism case,
the loading vectors now all lie approximately in the same plane,

as signified by the relations between the angles of different
loading vectors. Namely, a typical two-mechanism data set
yields an angle between the reference and the long-time
loading vector θ(Lref → L(tL)) and an angle between the
reference and the short-time loading vector θ(Lref → L(tS))
such that their difference is almost equal to the angle between
the short-time loading vector and the long-time loading vector
θ(L(tS) → L(tL)) (e.g., one of the data sets at tL = 1 had θ(Lref
→ L(tL)) − θ(Lref → L(tS)) = 32.72° ≈ 33.68° = θ(L(tS) →
L(tL))). These observations indicate that for increasing process
times, the loading vectors become more distinct from
mechanism #1 due to a systematic incorporation of mechanism
#2. This, in turn, implies that the y-axis in Figure 3 is highly
correlated to what we would call the “mechanism #2
direction,” or more precisely, to the difference between the
two mechanisms, which will now be demonstrated more
explicitly.
The core idea of the strategy to identify differences between

similar processes is that the loading vectors associated with
these processes span a plane in which the loading vectors can
be decomposed in a meaningful way. Perhaps the most
straightforward decomposition of two vectors is given by the
Gram-Schmidt decomposition into the parallel component P
and the orthogonal component O of a vector V1 projected onto
a vector V2 as

25

parallel component:

P V V
V V
V

V( , )
21 2

1 2
2= ·

(5)

orthogonal component:

O V V V P V V( , ) ( , )1 2 1 1 2= (6)

For our particular case of loading vectors, L(tL) is projected
onto L(tS), as illustrated in Figure 4 (left). When the short
process time tS is sufficiently small and mechanism #1 (#2) is
sufficiently fast (slow), then L(tS) adequately approximates the
mechanism #1 direction. As illustrated in Figure 4 (right), the

Figure 4. Left: Two-dimensional representation of the loading vectors obtained by PCA and/or PLS-DA for two-mechanism artificial data sets. The
x-axis is aligned with the PLS-DA loading vector of a data set in which the original spectra underwent exclusively the first mechanism for t = 1
arbitrary units. The loading vectors L(tS) and L(tL > tS) capture the directions of spectral change of an artificial time-dependent process at tS = 0.1
and tL = 2, respectively, while the decomposition of L(tL > tS) into its parallel and orthogonal components is shown. Right: An artificial data set is
generated by modifying the peak intensities of initial spectra according to two mechanisms, thereby producing the second class of spectra. The
average intensity changes in the data set after process time tL due to mechanism #1 (blue bars) and mechanism #2 (red bars) are strongly correlated
with the parallel component (top figure) and the orthogonal component (bottom figure), respectively. The m/z range is chosen arbitrarily; this
behavior is generally observed across the entire m/z range. This strategy thus enables the decomposition of two processes into a shared component
(∼mechanism #1) and a component that maximally differentiates the two processes (∼mechanism #2).
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artificial processes have the benefit that the two mechanisms
making up the virtual single time-dependent process can be
inspected separately. Concretely, the intensity changes from
each mechanism are individually accessible because they are
calculated before they are added to the initial spectra.
Comparing the intensity changes from each mechanism to
the parallel and orthogonal components, as presented in Figure
4 (right), with blue bars for mechanism #1, and red bars for
mechanism #2, reveals a strong correlation between the parallel
component and mechanism #1, and between the orthogonal
component and mechanism #2. Essentially, the long-time
loading vector L(tL > tS) contains significant contributions
from both mechanisms (fast and slow), reflecting that it is
obtained from a data set that contains initial spectra and
spectra after a long-time process, whereas the short-time
loading vector L(tS) contains almost exclusively contributions
from mechanism #1 (fast). Therefore, the orthogonal
component can be seen to “filter out” mechanism #1 (out of
L(tL > tS)), leaving only that which maximally differentiates the
two processes, which in this case corresponds approximately to
mechanism #2 (slow), as also depicted in Figure S1. This
exemplifies how this decomposition strategy allows a single
time-dependent process to be separated into a short-time scale
part and a long-time scale part. More generally, without any
reference to time, this strategy decomposes two similar
processes into: 1) a component that the two processes have
in common and 2) a component that maximally differentiates
the two processes.
Case Study: Photodegradation of N719 Dye on

Mesoporous TiO2. Two N719-stained TiO2 samples were
selectively photodegraded by exposure to light for varying
durations. The first sample resulted in a data set of spectra
classified as unexposed #1 and short-duration illuminated (tS =
4 h), while the second sample led to a data set of spectra
classified as unexposed #2 and long-duration illuminated (tL =
22 h). The left side of Figure 5 shows that the PCA and PLS-
DA loading vectors associated with the data sets for both
illumination durations overlapped, signifying that, in this
specific case study, both methods are equally effective at
identifying the discriminating directions of the processes.
However, the loading vectors for different illumination

durations were significantly distinct. Importantly, there was
clear class separation in both cases, evidenced by the PCA
scores on the right side of Figure 5 (the PLS-DA scores
showed similar class separation, not shown). These observa-
tions suggest that the photodegradation process is time-
dependent, indicating that the direction of chemical change
varies with the illumination duration. Thus, the processes
associated with the two illumination durations can be
considered similar, and the developed decomposition strategy
can be used to identify meaningful differences between them.
The average spectra for each measurement class are

presented in Figure 6 (note that spectra for unexposed #1
and unexposed #2 are combined due to their near-identical
nature, as shown later). This figure includes the short-duration
illuminated loading vector (Figure 6a), the long-duration
illuminated loading vector (Figure 6b), and the orthogonal
component (Figure 6c). Peaks associated with the five largest
positive and negative coefficients for each loading vector are
annotated. This annotation reveals that the loading vectors
L(tS) and L(tL) share several common peaks, such as O−, SO3

−,
SO4

−, C2H−, C3N−, and NCS−, suggesting that the photo-
degradation involves the photooxidation of thiocyanate and the
production of sulfur oxides. However, differences between the
vectors are also evident, as seen in peaks such as OH−, NCO−,
S−, C4H−, Ru(NCS)(NC)−, and C5N−, which indicate that the
involvement of certain peaks in the photodegradation process
varies with the illumination duration, underscoring the time-
dependent nature of the photodegradation process. Remark-
ably, the orthogonal component highlights unique peaks (e.g.,
NCO−), as well as peaks shared by L(tS) and L(tL) (e.g., SO4

−),
and also identifies additional new peaks (e.g., Ru(NC)2−).
To elucidate the incorporation of certain peaks into the

orthogonal component, a closer examination of the peaks with
the five largest positive and negative coefficients is presented in
Figure 7. It is evident that all of these peaks exhibit significant
intensity changes upon illumination, with varying degrees
depending on the illumination duration. Strikingly, after
illuminating for 4 h, the intensities of NCO− and Ru(NC)2−
increase, whereas after 22 h, these intensities decrease (Figure
7g,j). This suggests that initial illumination may remove a
sulfur atom from the thiocyanate, leading to an increase in

Figure 5. Left: Two-dimensional representation of the loading vectors obtained by PCA and PLS-DA for the two experimental N719 data sets.
Two samples were half photodegraded by exposure to light for different durations tS = 4 h and tL = 22 h, while the other half of each sample
remained unexposed, which defined the two classes of the two data sets. The PCA and PLS-DA loading vectors overlap; however, the loading
vectors for different illumination durations point in distinct directions, indicating the time-dependent nature of the photodegradation process.
Right: For both tS = 4 h and tL = 22 h, the first loading vector captures the difference between the unexposed and illuminated spectra, as evidenced
by the class separation along the x-axis in the scores plot.
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Ru(NC)2−, potentially followed by an oxygen atom replace-
ment that initially increases NCO−. However, on a longer time
scale, these molecules also degrade, resulting in decreased
intensities of Ru(NC)2− and NCO−. Conversely, the peaks of
C2H−, C3N−, and C5N− remain nearly constant after
illuminating for 4 h, but decrease substantially after 22 h
(Figure 7f,h,i). The pronounced dependence of these peaks’
intensities on illumination duration indicates that molecular
structural changes suppress the detection of the corresponding
fragments, an effect occurring only after prolonged illumina-
tion. Potential reasons include the slow generation of certain
reactive species or the disappearance of highly reactive
components, such as thiocyanate, which may shield other

molecular parts by reacting swiftly with reactive species. This
hypothesis is supported by the complete disappearance of
thiocyanate (Figure 7b) and the apparent stagnation of sulfur
oxide production (Figure 7c−e). While prior studies have
identified thiocyanate ligands as primary degradative compo-
nents in N719 photodegradation,35,36 the direct evidence of
sulfur oxide production via ToF-SIMS and the time-dependent
nature of this photodegradation process, as reported here,
contribute new insights and will be incorporated into a broader
study on the underlying mechanism of light-induced patterning
of N719-stained photoanodes for “photovoltaic photographs.”a

Figure 6. Average peak intensities of unexposed (blue bars), short-duration illuminated (tS = 4 h) (orange bars) and long-duration illuminated (tL =
22 h) (red bars) spectra versus the PLS-DA loadings (dotted lines). The comparison is shown for (a) the loading vector L(tS) obtained by
comparing unexposed to short-duration illuminated spectra, (b) the loading vector L(tL) obtained by comparing unexposed to long-duration
illuminated spectra, and (c) the orthogonal component. To enhance clarity, average peak intensities for unexposed spectra are plotted on the
negative y-axis. Peaks with the five largest positive and negative coefficients are annotated in each case. It is evident that the orthogonal component
incorporates information from both loading vectors L(tS) and L(tL).
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■ CONCLUSIONS
A strategy was developed to discern differences between
similar processes, such as variations in relative spectral changes
between comparable treatments or exposures causing related
physicochemical transformations. For instance, in time-
dependent ToF-SIMS analyses, where samples are evaluated
after different durations, the varying exposure times can be
interpreted as multiple similar processes. The strategy involves
decomposing a loading vector (representing one process) into
its parallel and orthogonal components when projected onto
another loading vector (representing a different process). The
orthogonal component reveals peaks whose relative behav-
ior�such as the direction and magnitude of intensity
changes�varies between the two processes, thereby identify-
ing significant differences between them. In this context, it was
demonstrated that when two classes of spectra are narrowly
differentiated, then PLS-DA more reliably captures the loading
vector that discriminates between the classes, compared to
PCA. This improved performance of PLS-DA is due its use of
class information, which reduces the impact of noise signals
and other sources of variance and enhances the identification
of the discriminating direction. However, when the classes are
well separated, both PLS-DA and PCA typically identify the
same direction of interest, providing equally effective tools for
further analysis.
The decomposition strategy was applied to a ToF-SIMS case

study of N719 dye photodegradation on mesoporous TiO2.
Two loading vectors were calculated using PCA and PLS-DA:
one discriminating unexposed from short-duration illuminated
spectra and another discriminating unexposed from long-
duration illuminated spectra. The analysis indicated that the
photodegradation process is time-dependent. Decomposing
the loading vectors resulted in an orthogonal component that
highlighted peaks strongly associated with long-time scale
photodegradation characteristics and those that vary dis-
proportionately across the probed time scales. This exemplifies
how the decomposition strategy can effectively identify
differences among similar processes by leveraging spectral data.
The practical applications of this strategy are far reaching as

it enhances routinely used MVA techniques and workflows.

While demonstrated here in the context of time-dependent
processes, it is broadly applicable to any two similar
physicochemical processes. This strategy is especially useful
for ToF-SIMS and mass spectrometry techniques using other
ionization methods, such as matrix-assisted laser desorption/
ionization or desorption electrospray ionization,10,37−39 with
potential applications in biology, forensics, organic chemistry,
energy, and medical sciences.
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Figure 7. Spectral intensities of unexposed, short-duration illuminated (tS = 4 h), and long-duration illuminated (tL = 22 h) regions of N719-stained
TiO2. Spectra classified as “unexposed #1” are from the same sample (but a different region) as those classified as “illuminated (tS = 4 h),” and
similarly for “unexposed #2” and “illuminated (tL = 22 h).” The m/z windows are centered around the peaks with the five largest positive (a-e) and
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