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A B S T R A C T

In this study we aimed to investigate gender differences in fear generalization tendencies in humans and, inspired
by recent findings in animal research, examine whether any such differences could stem from differences in
memory precision. Forty men and forty women underwent a differential fear conditioning procedure using
geometric shapes as cues. Subsequently, generalized fear responses were assessed across a spectrum of percep-
tually similar shapes. Throughout generalization testing, perceptual memory accuracy was repeatedly probed
using a stimulus recreation task. Using statistical and computational modeling, we found strong evidence for the
absence of gender differences in fear learning and generalization behavior. The evidence for gender differences in
related processes such as perception and memory was inconclusive. Although some of our findings hinted at the
possibility that women may be more perceptive of physical differences between stimuli and have more accurate
memory than men, those observations were not consistently replicated across experimental conditions and
analytical approaches. Our results contribute to the emerging literature on gender differences in perceptual fear
generalization in humans and underscore the need for further systematic research to explore the interplay be-
tween gender and mechanisms associated with fear generalization across different experimental contexts.

1. Introduction

By studying sex or gender-specific behavioral differences within
experimental fear learning models, researchers seek to unveil the
mechanisms contributing to the unfavorable odds for women regarding
trauma and anxiety-related disorders. Women are markedly more likely
than men to meet the diagnostic criteria for a diverse array of anxiety
disorders (Bekker & Van Mens-Verhulst, 2007; McLean, Asnaani, Litz, &
Hofmann, 2011). Moreover, women commonly manifest more severe
symptoms, experience worse outcomes, have a higher disease burden,
and exhibit higher rates of comorbidity with depression and other
anxiety disorder subtypes (Bekker & Van Mens-Verhulst, 2007; McLean
et al., 2011). Unraveling the underpinnings of these clinical gender
differences is vital to developing more effective and potentially
gender-specific interventions and treatments.

Sex or gender differences in fear conditioning are increasingly re-
ported – with the bulk of findings originating from animal research.
They include differences in contextual fear learning, cued fear learning,

fear extinction, and spontaneous recovery (for a review, see Day, Reed,
& Stevenson, 2016). However, there is a manifest gap in the investiga-
tion of sex and gender differences within the literature of fear general-
ization (i.e., the extension of acquired fears to perceptually or
conceptually related stimuli or situations) (Dymond, Dunsmoor, Verv-
liet, Roche,&Hermans, 2015), despite the fact that fear generalization is
considered to be a crucial aspect of trauma and anxiety-related psy-
chopathologies (Cooper et al., 2022b; Fraunfelter, Gerdes, & Alpers,
2022).

The picture emerging from the few human studies reporting gender
differences in generalized fear is unclear. Cooper, Hunt, Ross, Hartnell,
and Lissek (2022a) found heightened generalization tendencies in
women compared to men, while other studies reported no difference
between genders (Tinoco-González et al., 2015; Torrents-Rodas et al.,
2013; Xu, Xie, Yan, Li, & Zheng, 2018). Although Xu et al. (2018) found
no difference in the overall generalization response pattern based on
gender, they did observe a difference in the extinction of generalized
responses. Specifically, their findings indicated a distinction in the
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extinction of generalized responses, highlighting that women displayed
a prolonged duration in extinguishing the generalization response
compared to men. Given the conflicting evidence, the first aim of the
study is to investigate gender differences in perceptual fear generaliza-
tion further. Here, we distinguish between sex, referring to biological
and physiological characteristics that differentiate females and males,
and gender, which encompasses the psychological features associated
with these biological states as assigned by individuals (Deaux, 1985).
When discussing gender, we use the terms ‘women’ and ‘men’ in place of
‘females’ and ‘males’.

Findings regarding sex differences in animals can potentially help to
clarify gender differences observed in humans. Animal literature sug-
gests that females, more than males, demonstrate increasing context
generalization as the interval between learning and testing increases
(Keiser et al., 2017; Lynch, Cullen, Jasnow,& Riccio, 2013). A prevailing
hypothesis assumes that hormonal-neural sex differences lead to the
recruitment of different brain regions during memory encoding or
decoding processes, thereby affecting the precision of fear memories
(Lynch et al., 2013). Females are thought to rely more on the amygdala
during recall, resulting in a loss of precision-encoded context memories
and more generalization behavior (Keiser et al., 2017). Impaired safety
learning has also been suggested to contribute to sex differences in
generalized fear responding (Day et al., 2016). Yet, whether similar
memory mechanisms hold and lead to possible sex-based gender dif-
ferences in human fear generalization behavior remains unclear as
various methodological differences exist between human and animal
research. For instance, compared to the animal work that often relies on
context generalization, human studies typically operationalize fear
generalization as the extent to which perceptually similar stimuli (e.g.,
differently sized circles) start to elicit fear after a cued fear conditioning
procedure. Additionally, in human research, generalization testing
typically occurs immediately after fear acquisition, while several hours
or days separate phases in animal research. Therefore, the second aim of
the present study is to assess gender differences in the precision of
memory immediately after fear learning and throughout generalization
testing.

Recent advances in research on fear generalization suggest that a
multitude of mechanisms can contribute to generalization behavior; an
exclusive focus on fear responses renders researchers unable to scruti-
nize these mechanisms (Struyf, Zaman, Vervliet, & Van Diest, 2015; Yu,
Tuerlinckx, Vanpaemel, & Zaman, 2023; Zaman et al., 2020a; Zaman,
Yu, & Verheyen, 2023). Congruently assessing (variations in) stimulus
perception, fear and safety learning, and generalized fear responses
enables to account for inter- and intra-individual differences regarding
the latter (Struyf, Zaman, Hermans, & Vervliet, 2017; Zaman, Ceule-
mans, Hermans, & Beckers, 2019a; Zaman, Yu, & Lee, 2022; Zaman,
Struyf, Ceulemans, Beckers, & Vervliet, 2019b, Zaman, Struyf, Ceule-
mans, Vervliet, & Beckers, 2020b). It also yields generalization indexes
that are comparable across individuals as they control for differences
regarding learning, perception, and memory (Yu et al., 2023; Zaman
et al., 2023). In a recent paper, Yu et al. (2023) investigated latent
mechanisms in fear generalization behavior via a computational
generalization model that parameterizes several key processes that
contribute to generalized responding, including the speed of learning
(Rescorla & Wagener, 1972) and the strength of a similarity-based
generalization process (Shepard, 1987) while accounting for differ-
ences in stimulus perception. In addition, one of the model’s interesting
features is that it allocates participants (based on multivariate data, i.e.,
perception, learning, and generalization) to distinct mechanistically and
clinically relevant subgroups (Yu et al., 2023).

In this study, we employ the same computational framework to
explore gender differences in the latent mechanisms underlying
perceptual fear generalization. In essence, the model posits the dynamic
interaction of two variables at each time point. The first variable, ex-
pectancy, encapsulates the expectation of a particular outcome within a
given context (stimulus). This expectancy is continually updated based

on individual learning rates and experiences with the learned context.
The second variable, similarity, represents the degree of difference be-
tween the newly encountered context and the learned context. As the
mental distance between the two contexts increases, similarity decreases
exponentially, with the rate of decrease modulated by a generalization
rate parameter. The resulting generalization behavior is a consequence
of the dynamic interplay between these two variables. Given existing
evidence for sex or gender differences regarding many of the processes
involved, including perceptual acuity (Shaqiri et al., 2016, 2018) and
differential fear learning (Day et al., 2016, 2020; Lonsdorf et al., 2017),
the third aim of the present study is twofold: (i) to investigate gender
differences in fear learning and stimulus perception; and (ii) to explore
whether potential differences in fear generalization behavior stem from
gender differences in a latent similarity-based generalization process or
differences in adjacent processes of learning and perception.

To explore gender differences in latent mechanisms using computa-
tional modeling, we designed the experiment to closely resemble those
in Yu et al. (2023). To this end, 40 men and 40 women participants
completed a differential fear learning procedure followed by several
blocks of generalization testing (see Fig. 1). In between blocks, memory
precision was assessed using a stimulus recreation task. Throughout
learning and generalization testing, self-reported US expectancy ratings
and perceptual assessments were recorded on a trial-by-trial basis. This
multivariate approach enabled us to (i) assess gender differences in fear
generalization behavior and (ii) explore potential gender differences in
fear learning, perception, and perceptual memory and their impact on
fear generalization patterns.

2. Method

2.1. Research transparency statement

The current study has been pre-registered on the Open Science
Framework (https://osf.io/byq82) as an extension of an earlier regis-
tration (https://osf.io/puyg3). The primary focus of the earlier regis-
tration was to explore the dynamics of perception and perceptual
memory and their impact on generalization behavior under fear con-
texts. Both pre-registrations were completed prior to data collection and
concerned the same experimental design and dataset. In this current
study, we specifically investigate gender effects (N= 80, 50%women) in
this dataset. We report how we determined our sample size, all data
exclusions, all manipulations, and all measures in the study. All relevant
materials, including experiment scripts, data, and analysis scripts, are
accessible at https://osf.io/b39xc/.

2.2. Participants

We conducted a power analysis based on the reported effect size in
Cooper et al. (2022a), which investigated gender differences in gener-
alized fear and generalized instrumental avoidance. Their study found
that women exhibited steeper generalization slopes compared to men.
Using G*power (version 3.1.9.7), we determined the required sample
size for a repeated measures ANOVA with a within-between interaction
(f = 0.131). The effect size (f) was derived from β = 0.285 and t (860) =
3.94. We set α = 0.05 and sought a power (1-β) of 0.90. The design
included gender as a between-group factor (men and women) and
stimulus as a within-persons factor (S1-S10). Correlation was set at 0.35
and sphericity correction to 1 (ε = 1). The analysis yielded a required
sample size of N = 78.

We applied the following data exclusion criteria for the current
study. First, participants were excluded if they indicated that they
responded non-seriously during the experiment. Second, we excluded
participants whose missing data exceeded 20% for any dependent var-
iable during any phase of the experiment. We ended up recruiting 100
participants to reach the targeted sample size (N= 80). The final dataset
comprised 40 women and 40 men (mean age = 21, SD = 4.01). All

K. Yu et al. Behaviour Research and Therapy 183 (2024) 104640 

2 



participants were recruited through the participant pool of the KU
Leuven Faculty of Psychology and Educational Sciences and received
either research participation credits or monetary compensation (€ 16).
The experiment lasted around 90 min. Informed consent was provided
by participants at the beginning of the experiment. Participants were
instructed in English. They were asked to report their gender. The study
was approved by the KU Leuven Social and Societal Ethics Committee
(G-2022-5873-R3).

2.3. Visual stimuli

Circles of varying sizes, as white outlines against a black background,
served as the stimuli for learning and testing. The dimension of circle
size has been applied extensively in generalization studies with condi-
tioned fear involving both healthy and clinical populations (Lange et al.,
2017; Lissek, 2012; Lissek et al., 2008, 2014; Yu et al., 2023; Zaman
et al., 2019a, 2019b). The stimulus set comprised ten circles, denoted as
S1 through S10, with diameters ranging from 50.80 to 119.42 mm,
spaced at intervals of 7.624 mm. To maintain a balanced design, the
third-smallest circle (S3: 66 mm) and the third-largest circle (S8: 104
mm) were presented during fear learning. Either S3 was predictive of a
painful electrical stimulation (CS+) and S8 of its absence (CS-) or vice
versa. In 24 participants of each gender, S3 served as the CS+ and S8 as
the CS-, while in the remaining participants, the reverse configuration
was used.

2.4. Electrocutaneous stimulus

To induce fear, a 2-ms aversive electrocutaneous stimulus served as
the unconditioned stimulus (US). These electrocutaneous stimuli were
administered using a Constant Current Stimulator (DS7), delivered

through a pair of Ag/AgCL electrodes (each 8 mm in diameter) posi-
tioned on the wrist of the non-dominant hand and lubricated with K-Y
gel. In the calibration phase, the intensity of the US was individually
tailored to each participant’s pain tolerance levels. This adjustment was
carried out using the Ascending Method of Limits approach (Yarnitsky,
Sprecher, Zaslansky, & Hemli, 1995). The objective was to target a pain
rating of 8 on a Visual Analog Scale (VAS) that ranged from 0 (no pain)
to 10 (worst imaginable pain). The initial intensity of the electrical
stimulus was set at 2 mA and incremented by 0.2 mA with each step.
Throughout the calibration process, it was emphasized that the electrical
stimulus should induce a sensation of pain that remained within toler-
able limits. The average intensity of the electrical stimulus selected was
10.99 mA (SD = 5.89).

2.5. Protocol

The study employed a mixed design incorporating both experimental
and quasi-experimental elements. Within the study, there were two
within-participant factors: stimulus and trial repetition. Additionally, a
between-participant factor was introduced, pertaining to the size of the
fear-conditioned stimulus (S3 or S8). The quasi-experimental factor
under investigation was gender. The experiment included five distinct
phases: calibration, practice, acquisition, memory, and generalization.
Before the experiment commenced, participants were provided with
comprehensive instructions, both orally and in written form. These in-
structions not only introduced the tasks but also included visual exam-
ples of different sized lines including 5 mm, 10 mm, 50 mm, 100 mm,
and 150 mm lines. Following the calibration of the unconditioned
stimulus (US) intensity, participants engaged in a set of six practice trials
to habituate to the task. During the practice trials, the conditioned
stimuli (CSs) were presented on a computer screen for a duration of 12 s.

Fig. 1. Overview of the paradigm. A) The different phases. B) Trial structure of the practice, acquisition and generalization phase. During practice phase, no USs
were presented. C) Trial structure of a memory trial. CS = conditioned stimulus.
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Concurrently, a Visual Analog Scale (VAS) indicating size, ranging from
0 to 200 mm, was displayed at the bottom of the screen. Participants
were tasked with indicating their estimation of the diameter of the
presented stimulus on this scale. No feedback was provided regarding
their size estimations. Precisely 7 s after the initiation of the size-VAS, it
was replaced by an expectancy-VAS. This second VAS, labeled from ‘no
shock’ (0) to ‘definitely a shock’ (100), prompted participants to rate
their expectation of receiving a shock based on the presented stimulus.
The expectancy-VAS was maintained on screen for a duration of 5 s.
Following the conclusion of the expectancy-VAS, a fixation cross
appeared, marking the onset of the intertrial interval (ITI), lasting for a
variable duration ranging from 1 to 3 s. During the practice trials, no US
was presented.

After the practice phase, the acquisition phase started, encompassing
a total of 10 CS+ trials and 10 CS- trials. The task structure mirrored that
of the practice phase, with the sole distinction being that the US fol-
lowed the CS+ 80% of the time (equating to 8 trials).

At the end of the acquisition phase, participants entered the first
memory phase, wherein they were instructed to recall and recreate the
CS(s). In each trial, they were presented with either the instruction
“Please recall and recreate the circle that MOST often led to an electric
stimulus in phase 1″ or “Please recall and recreate the circle that LEAST
often led to an electric stimulus in phase 1". Upon receiving these in-
structions, a circle appeared with a diameter of either 160 mm or 0.1
mm. Participants were then able to adjust the circle size using button
presses (in steps of 0.5 mm). Upon response confirmation, the size-VAS
appeared at the bottom of the screen for 7 s, prompting participants to
estimate the recreated circle’s diameter. Hereafter, a confidence-VAS,
ranging from ‘not certain’ (0) to ‘certain’ (100), assessed participants’
confidence levels regarding the accuracy of the recreated circle
(response duration 5 s). A 1-min break followed the completion of the
first memory task, after which the generalization phase commenced.

Within the generalization phase, participants were again tasked with
estimating circle sizes and indicating their expectations of receiving a
shock, mirroring the procedures employed in the practice and acquisi-
tion phases. During this phase, participants were presented not only
with the CS(s) but also with an additional set of 8 circles varying in size.
Notably, CS+ stimuli were consistently paired with shocks, while CS-
and the other test stimuli were never paired with shocks in this phase.
This sequence was repeated three times after the initial generalization
phase, with each repetition involving a 1-min break, followed by the
memory phase, and then the generalization phase. Upon completion of
the final memory block, participants were instructed to fill out the State-
Trait Anxiety Inventory (STAI). Subsequently, a debriefing session
concluded the experiment.

In total, five memory blocks were administered, each consisting of 5
CS+ and 5 CS- recall instructions presented in random order. Similarly,
there were five generalization blocks in total, with each block
comprising 12 CS+, 4 CS-, and 3 instances of each of the other 8 circles,
also presented in random order.

2.6. Analysis

We conducted analyses using both statistical and computational
models, all performed within the statistical computing language R (R
Core Team, 2021). For the statistical models, we employed linear mixed
models using several R packages: lme4 (Bates, Mächler, Bolker, &
Walker, 2015), lmerTest (Kuznetsova, Brockhoff, & Christensen, 2017),
rstatix (Kassambara, 2023), and effectsize (Ben-Shachar, Lüdecke, &
Makowski, 2020). Data handling and visualizations were carried out
using the Tidyverse (Wickham et al., 2019) and GGpubr packages
(Kassambara, 2022). These models were fitted with the function lmer in
the lme4 (Bates et al., 2015) package, using maximum likelihood esti-
mation, and hypothesis testing was performed using theWald chi-square
test (asymptotically equivalent to Type III sum of squares for fixed ef-
fects). Satterthwaite’s approximation (Satterthwaite, 1946) was used to

compute the degrees of freedom for the t-tests. For our analyses, we
considered various predictors and their interactions, as detailed below,
accounting for random effects where necessary. We present standard-
ized coefficients along with their 95% credible intervals (CIs), and the
results of Wald t-tests (see Supplementary Note 2 for a complete ANOVA
report).

Regarding the acquisition data, we performed two sets of analyses:
(I) Trial-by-trial US expectancies were analyzed with the predictors:
Repetition (continuous, 1–10), Gender (Men vs. Women) and CS (CS+
vs. CS-) and their interactions. The random part included a person-
dependent effect on the intercept and the predictor Repetition (this
was preferred compared to a model without the random effect on
Repetition, χ2(2) = 20.86, p < 0.001). (II) Size estimations for the CSs
were analyzed with the following model: Stimulus (S3 vs. S8), Gender
and their interaction.

The data of the generalization phase were analyzed as follows. For
the US expectancy data, the predictor Stimulus was categorical (due to
the non-linear pattern and was preferred compared to a second-order
polynomial of Stimulus) and was recoded so that a value of 3 always
reflected the CS+ and a value of 8 the CS-. Furthermore, the variable
Trial (continuous, 1–160) was included.1 For the size estimation data,
we employed a model consisting of Stimulus (continuous, 1–10), Gender
and their interaction with person-dependent effects on Stimulus and the
intercept. Based on the analysis conducted, non-registered exploratory
analyses were performed to examine segments of the stimulus dimen-
sion for generalization response. Estimated marginal means with false
discovery rate (FDR) corrections for pairwise comparisons were used to
highlight stimulus-specific patterns within the data (see Supplementary
Note 6 for a full presentation of the non-registered analysis). The
memory data (size recreation, size estimation, and confidence ratings)
were analyzed with a model comprising of: CS, Gender, Counter-
balancing (S3 as CS+ vs. S8 as CS+), and Block (continuous, 1–5). All
mixed models, unless otherwise specified, only included a random
intercept.

In addition to analyses with linear mixed models, we employed
computational modeling to explore the latent mechanisms of similarity-
based generalization and perceptual scaling. Bayesian parameter esti-
mation was employed for statistical inference in the computational
models, allowing us to represent data uncertainty through principled
probability distributions when inferring parameter values. The multi-
level structure (Lee, 2011; Okada & Lee, 2016) of the model facilitated
the integration of information from gender and individual levels.

Statistical inference was performed using Markov Chain Monte Carlo
(MCMC) with Gibbs sampling in JAGS (Plummer, 2003). R (R Core
Team, 2021), along with the jagsUI package (Kellner, 2024), was
employed for analysis. To ensure robustness, both generalization and
perceptual models underwent four MCMC chains, each running 100,000
iterations. A burn-in period of 75,000 iterations discarded initial sam-
ples, with a thinning factor of 10 applied, resulting in 10,000 retained
samples per parameter (see Supplementary Note 3 for the estimated
MCMC samples of important parameters). Gelman and Rubin di-
agnostics, specifically the Rhat statistic (Brooks & Gelman, 1998; Gel-
man & Rubin, 1992), assessed MCMC chain convergence. A stabilized
state and attainment of the target distribution were confirmed when the
Rhat value approached or closely reached 1.

For generalization, we employed a recently introduced model (Yu
et al., 2023) that dynamically integrates error-driven learning and
similarity-based generalization processes to effectively capture gener-
alization behavior (see Supplementary Note 1 for mathematical details).
The model posits that individuals continually update their CS(s)-US
expectation at each time point, driven by the discrepancy between the
current expectation and the new outcome (i.e., the prediction error)
according to a Rescorla-Wagner learning rule (Rescorla & Wagener,

1 We omitted the predictor trial (pre-registered) when not significant.
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1972). The rate at which this updating occurs is determined by a
learning rate parameter. When encountering a new stimulus, individuals
transfer their current CS(s)-US expectation to the new stimulus based on
either physical (variation in physical size) or perceptual (variation in
perceptual size derived from the perceptual data) distance between the
current stimulus and the CS(s). The extent of this transfer is modulated
by a generalization rate parameter with an adjusted Shepard’s expo-
nential generalization rule (Shepard, 1957, 1987). The group-level
learning rate and generalization rate parameters provide insights into
the differences between genders in terms of the updating speed of CS-US
expectations and the generalization tendency of learning.

With a mixture structure that incorporates the two processes
mentioned above, the model distinguishes four clinically relevant
qualitative paths that characterize the generation of the final general-
ization behavior. (1) Non-Learners: This occurs when the updating
process is absent, and the response is not driven by the specified pro-
cesses but by response noises. In such cases, there is nothing to be
generalized. (2) Overgeneralizers: This occurs when individuals transfer
at least 70% of learning to even the most physically distant stimulus
from the CS. (3) Physical Generalizers: This occurs when the similarity
generalization process happens more along the physical rather than
perceptual distance. (4) Perceptual Generalizers: This occurs when the
similarity generalization process happens along the perceptual rather
than physical distance. The population-level group allocation parameter
would indicate, for each category, the extent to which the data support
describing the generalization behavior for women and men.

To model gender differences in perception, we explored the physical-
perceptual mapping with another computational model that assumed
the mapping to occur either in a non-linear or linear manner, both with a
baseline and a slope parameter. The perceptual response is then assumed
to be determined by the physical quantities and these two parameters,
along with perceptual response noises. The population-level group
allocation parameter serves to determine whether the perceptual map-
pings align more closely with a linear or a non-linear mapping function.
The group-level intercept and slope parameters offer insights into
whether there is variation in the baseline perception and perceptual
sensitivity between genders.

To assess gender differences in both computational models, we
calculated Bayes factors (BF) using the Savage-Dickey method (Dickey,
1971; Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010), in com-
parison to a null hypothesis of no difference (i.e., difference = 0).
Following the scale proposed by Kass and Raftery (1995), BF values
between 10− 1 and 10− 0.5, and between 10− 2 and 10− 1, provide sub-
stantial and strong evidence supporting the indifference of gender dif-
ference from 0. Conversely, BF values between 100.5 and 101, and
between 101 and 102, offer substantial and strong evidence supporting a
gender difference from 0.

3. Results

3.1. Acquisition data – US expectancy

When examining the effects of stimulus type (CS+ and CS-) on
conditioned response, it became clear that repetition, representing the
frequency of stimulus presentations, significantly influenced responses
across both stimuli as shown in Fig. 2A [Repetition × CS: F (1,1414) =
162.99, p < 0.001, ω2

p = 0.10]. Specifically, in the CS+ trials, each
additional repetition was associated with a substantial increase in the
conditioned response (β = 0.43, 95% CI [0.34, 0.51], t (81) = 9.47, p <

0.001). Conversely, in the CS- trials, the relationship was negative,
indicating a decrement in response with more occurrences (β = − 0.25,
95% CI [− 0.36, − 0.14], t (80) = − 4.32, p < 0.001). Importantly, the
interaction between stimulus and repetition was significant, suggesting
that the impact of learning experiences differs between the two stimuli
(β = − 0.59, 95% CI [− 0.72, − 0.47], t (1411) = − 9.32, p < 0.001). This

pattern did not differ between men and women [Repetition × CS ×

Gender: F (1,1414)= 0.11, p= 0.744, ω2
p = 0.00]. Both the overall effect

of gender (β = − 0.13, 95% CI [− 0.67, 0.41], t (143) = − 0.47, p = 0.09)
and the interaction effect between gender and stimulus type did not
reach statistical significance (β = 0.02, 95% CI [− 0.12, 0.17], t (1414)
= − 0.15, p = 0.88). A similar conclusion came from the fitted compu-
tational model where we found learning rates differing from zero (me-
dian αmen = 0.30, 95% CI = [0.23, 0.38]; median αwomen = 0.36, 95% CI
= [0.28, 0.44]) with substantial evidence for the hypothesis that men
and women did not differ in the speed of associative learning (learning
rate BF = 0.23; Non-Learner probability BF = 0.18, Fig. 3A).

3.2. Generalization data – US expectancy

As shown in Fig. 2B, expectations spread from the CS+ in a non-
linear declining pattern across the test dimension [Stimulus: F
(9,12534)= 1852.16, p< 0.001, ω2

p = 0.57] in a similar fashion for men
and women [Gender × Stimulus: F (9,12534) = 1.58, p = 0.114, ω2

p =

0.0004]. The conditioned response peaked for CS+ trials (β = 0.34, 95%
CI [0.31, 0.37], t (12530) = 12.85, p < 0.001) and was lowest for CS-
trials (β = − 0.3, 95% CI [− 0.32, − 0.28], t (12530) = − 12.85, p <

0.001). Additionally, pairwise comparisons for stimulus segments
revealed significant differences between the CS+ and nearby stimuli,
indicating a sharp decline in fear response and highlighting the speci-
ficity of the conditioned response for both genders. Notably, there were
no significant differences between certain stimulus pairs (e.g., S7-S8, S8-
S9, S9-S10 for women; S8-S9, S9-S10 for men), suggesting that fear re-
sponses became more uniform as the stimuli became less similar to the
CS+. The overall effect of gender, with men showing a slightly higher
conditioned response (β = 0.15, 95% CI [− 0.14, 0.44], t (185) = 1.04, p
= 0.3), was not statistically significant. Furthermore, interaction effects
between stimulus and gender did not reach statistical significance for
any of the stimuli (all p > 0.09). In line with this, we found strong ev-
idence for the absence of gender difference in the parameter that cap-
tures an individual’s generalization proclivity (generalization rate BF =

0.04; Overgeneralizer probability BF = 0.08, Fig. 3A).

3.3. Size estimation

During the acquisition phase (Fig. 2C, top panel), the effect of gender
on perceived size was not significant [Gender × Stimulus: F (1,1476) =
19.16, p < 0.001, ω2

p = 0.01] (β = 0.02, 95% CI [− 0.22, 0.27], t (83) =
0.19, p = 0.85). However, we found smaller size perceptions for the
large circle (S8) in men compared to women (β = − 0.08, 95% CI [− 0.12,
− 0.05], t (1476) = − 4.38, p < 0.001). Likewise, in the generalization
phase (Fig. 2C, bottom panel), the effect of gender on perceived size was
non-significant [Gender × Stimulus: F (1, 78) = 5.94, p = 0.017, ω2

p =

0.06] (β = 0.12, 95% CI [− 0.09, − 0.32], t (86) = 1.12, p = 0.27). When
exploring this physical-to-perceptual mapping using computational
modeling, we found that a non-linear rather than a linear function best
described this relationship (the model selection parameter was esti-
mated with a median of 0.28 [0.15, 0.42], where a value smaller than
0.5 indicates a preference for the non-linear function) with only sub-
stantial evidence for a gender difference in the perceptual intercept
parameter (BF = 4.15, Fig. 3B) and strong evidence in favor of the
absence of gender differences for the perceptual slope (BF = 0.05,
Fig. 3B).

3.4. Memory data – size recreations

To unpack the significant 4-way interaction [Gender × Block × CS ×

Counterbalancing: F (1, 708) = 3.91, p = 0.049, ω2
p = 0.004], we reran

the analyses per Counterbalancing and CS type. In the participants
where S3 served as the CS+, the effect of gender was not significant

K. Yu et al. Behaviour Research and Therapy 183 (2024) 104640 

5 



Fig. 2. Group averages for women and men. A) US expectancy ratings per CS during the acquisition phase across CS repetitions. B) US expectancy ratings during the generalization phase. C) Size estimations during the
acquisition (top) and generalization (bottom) phases. Error bars denote standard errors.
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when recalling CS+ or CS- (CS+: β = 0.01, 95% CI [− 0.43, 0.45], t (135)
= 0.05, p= 0.96; CS-: β = − 0.11, 95%CI [− 0.53, 0.31], t (127)= − 0.52,
p = 0.61). Similarly, the effect of memory block was also not significant
for neither stimulus recall (CS+: β = − 0.13, 95% CI [− 0.31, 0.05], t
(190) = − 1.38, p = 0.17; CS-: β = 0.07, 95% CI [− 0.10, 0.25], t (190) =
0.84, p = 0.40), indicating that reconstructed size did not significantly
vary across different memory blocks. However, there was a significant
interaction between gender and memory block when recalling CS- (β =

0.40, 95% CI [0.09, 0.71], t (190) = 2.56, p = 0.01), suggesting that the
effect of memory block on reconstructed size differed between men and
women, but not when recalling CS+ (β = 0.08, 95% CI [− 0.24, 0.41], t
(190) = 0.50, p = 0.62). Specifically, men demonstrated a greater in-
crease in reconstructed size across memory blocks compared to women,
as shown in Fig. 4A. No differences emerged between men and women
when S8 served as the CS+ (all p’s> 0.19). In the majority of conditions,
the gender-specific distributions of the recreated size were found to be
significantly divergent from the corresponding physical values (p’s <

0.001) (see Supplementary Table 9). However, there were two excep-
tions to this trend. Specifically, in the case of the memory distribution
for CS- when S3 served as the CS+ among women, the results did not
reach statistical significance (t = − 1.41, p = 0.16). Similarly, for the
memory distribution of CS+ when S8 served as the CS+ among men,
there was no significant difference observed (t = − 1.53, p = 0.27).

3.5. Memory data – size estimations

For comparison purposes to the findings from the circle reconstruc-
tion data, we followed up the three-way interaction between Gender ×
Block × Counterbalancing for the size estimation analyses [F (1,651) =
4.69, p = 0.031, ω2

p = . 006] per Subgroup and CS type. Paralleling the
pattern in the reconstruction data, only men had an increased size
estimation throughout blocks when S3 served as the CS+ (β = 0.48, 95%
CI [0.15, 0.81], t (176) = 2.84, p = 0.005, Fig. 4B). No other gender
differences emerged across memory blocks (all p’s > 0.3). A one-sample
t-test revealed that the distributions of perceived size reproduction
consistently differed from the corresponding physical values across all
conditions (p’s < 0.001) (see Supplementary Table 11).

3.6. Memory data – confidence ratings

As shown in Fig. 4C, there were different patterns in the evolution of
memory confidence between genders with repeated memory testing
[Gender × Block: F (1,612) = 9.90, p = 0.001, ω2

p = 0.01; Gender ×

Block × Subgroup: F (1,612) = 11.95, p = 0.001, ω2
p = 0.02]. When S3

served as the CS+, the analysis revealed that gender did not significantly
impact memory confidence ratings for either CS+ recall (β = 0.18, 95%

Fig. 3. Gender differences in parameter estimates for the computational models in perception and generalization. A) Concerning perception, the examined pa-
rameters include the differences in the gender-specific group-level perceptual intercept, defining the baseline of sensory mapping, the group-level perceptual slope
regulating sensitivity to physical quantity variations (with a non-linear logistic mapping function). B) Regarding generalization, the parameters under investigation
encompass gender differences in group-level generalization rate, learning rate, and the probabilities associated with four paths of generalization patterns. The dashed
line indicates no gender difference.
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CI [− 0.18, 0.54], t (106)= 0.98, p= 0.33) or CS- recall (β = 0.003, 95%
CI [− 0.35, 0.36], t (82) = 0.02, p = 0.99). However, confidence ratings
increased over blocks in both CS+ recall (β = 0.20, 95% CI [0.03, 0.38], t
(168) = 2.33, p = 0.02) and CS- recall (β = 0.23, 95% CI [0.05, 0.40], t
(159) = 2.59, p = 0.01). Furthermore, for CS- recall, it increased more
for men than for women (β = 0.35, 95% CI [0.02, 0.68], t (169) = 1.97,
p = 0.05). Similarly, when S8 served as the CS+, gender did not
significantly influence memory confidence ratings for either CS+ recall
(β = 0.09, 95% CI [− 0.58, 0.76], t (111) = 0.28, p = 0.78) or CS- recall
(β = 0.42, 95% CI [− 0.12, 0.96], t (81) = 1.524, p = 0.13). However,
confidence ratings for the CS- increased across memory blocks (β = 0.50,
95% CI [0.27, 0.72], t (103) = 4.39, p < 0.001), but more profoundly in
men than women (β = − 0.58, 95% CI [− 1.00, − 0.16], t (104) = − 2.74,
p = 0.007).

4. Discussion

This study investigated potential gender differences in fear general-
ization, specifically investigating whether women exhibit enhanced fear
generalization compared to men. Additionally, the research sought to
uncover potential gender differences in related processes, including
differential fear learning and the perceptual and memory representation
of cues associated with threat or safety. Overall, this study found no
robust evidence for gender differences in differential fear learning and
perceptual fear generalization. However, the findings were mixed
regarding gender differences in perception and recall memory accuracy.

Similar to Cooper et al. (2022a), we did not find gender differences in
fear learning. Both genders successfully learned to associate cues to both
threat and safety with strong statistical evidence for the absence of a
gender effect in the speed at which differential learning occurred. Pre-
vious studies on gender differences in healthy volunteers either focused
on contextual fear discrimination (Lonsdorf et al., 2015) or observed
larger differential skin conductance responses (CS+ minus CS-) in men

compared to women during cued fear conditioning (Milad et al., 2006).
These previous findings suggest reduced differential learning in women
compared to men. Various factors may contribute to divergent results
between these previous studies and the present work, including differ-
ences in experimental paradigms, measurement techniques, consider-
ations for the menstrual cycle, and distinctions between contraception
use and free-cycling approaches. An essential distinction from these
studies lies in the absence of hormone control in both the present study
and Cooper et al. (2022a) ’s research. Lonsdorf et al. (2015) reported
that women using hormonal contraceptives exhibited impaired differ-
ential learning compared to both men and free-cycling women. Addi-
tionally, research suggested that elevated estradiol levels are associated
with enhanced fear extinction, while lower levels are associated with
extinction impairment. This phenomenon is supported by studies in both
animals (Chang et al., 2009; Milad, Igoe, Lebron-Milad, & Novales,
2009) and humans (Graham & Milad, 2013; Milad et al., 2010; Zeidan
et al., 2011). Notably, variations in women, contingent on the menstrual
cycle or estrogen levels, have been explored in relation to gender dif-
ferences in psychopathology (Cover, Maeng, Lebrón-Milad, & Milad,
2014).

Concerning gender differences in visual perception, the current
literature offers mixed evidence where outcomes are contingent upon
the specific perceptual task and stimulus dimension under examination
(Abramov, Gordon, Feldman, & Chavarga, 2012; Shaqiri et al., 2018;
Vanston & Strother, 2017). In the study by Shaqiri et al. (2018),
employing a range of visual perceptual tasks, men demonstrated supe-
rior performance compared to women in tasks related to visual acuity,
visual backward masking, motion direction detection, biological mo-
tion, and the Ponzo illusion. However, no gender differences were
observed in tasks related to a contrast detection threshold, visual search,
orientation discrimination, the Simon effect, and four other visual illu-
sions (Shaqiri et al., 2018). In this study, we consistently measured
real-time estimations of geometric size using a rating scale—a

Fig. 4. Group averaged data for women and men of the memory phase. A) Recreated circle diameter. B) Estimated size of the recreated circle. C) Confidence rating of
memory correctness. Error bars denote standard errors.
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methodology demonstrated in recent perceptual generalization research
(Yu et al., 2023; Zaman et al., 2022, 2023) for effectively tracking the
dynamic shifts in geometric perception during fear learning and
generalization processes. Our findings revealed gender differences in
both perceptual intercept and slope parameters through a statistical
linear model, indicating a pattern where women exhibited greater
perceptiveness than men. Yet, intriguingly, the computational
non-linear model, which considers individual-level perceptual-physical
mapping, revealed no differences in the perceptual slope parameter.
This highlights the potential for biased interpretations of group differ-
ences in the current literature, where the common practice of averaging
group-level responses may obscure the influence of individual variations
(Estes, 1956; Estes & Maddox, 2005; see Supplementary Fig. 7 for in-
dividual perceptual patterns of the current study).

Regarding perceptual memory, our findings indicated that, relative
to men, women exhibit a more precise memory of the safety cue, while
displaying no notable difference in memory accuracy concerning the
threat cue. Although we did not consistently observe more accurate
memory in women compared to men across various conditions, this
discovery raises questions about the generalizability of findings from
animal studies indicating worse memory encoding and retrieval in
women (Keiser et al., 2017; Lynch et al., 2013). Certainly, there are
notable methodological differences between animal studies and our
current human research that may temper the translational aspects. For
instance, animal studies rely on contextual cues, with freezing behavior
used to measure contextual memory precision indirectly. In contrast, our
study employs perceptual cues, with the reproduction of these cues
serving as a direct measure of perceptual memory. Yet, in the broader
literature on gender differences in memory, it is established that men
tend to outperform women in visual memory (De Frias, Nilsson, &
Herlitz, 2006; Weiss, Kemmler, Deisenhammer, Fleischhacker, &
Delazer, 2003), while the reverse is observed in auditory memory
(Lewin, Wolgers, & Herlitz, 2001). It is noteworthy that these studies
often utilize stimuli of higher complexity (e.g., human faces) compared
to the simpler geometric sizes employed in our current study. Addi-
tionally, these studies were conducted in fear-free contexts, despite ev-
idence suggesting that fear can modulate visual working memory
(Curby, Smith, Moerel, & Dyson, 2019). Overall, there is a need for
further systematic research to investigate comprehensively how women
and men exhibit divergent patterns in perceptual memory encoding and
retrieval within fear contexts, considering various modalities, stimulus
dimensions, and memory tasks.

Finally, our investigation revealed the absence of gender differences
in fear generalization, both with statistical and computational models.
With the statistical model, evidence indicated no discernible gender
differences in generalization patterns, aligning with the majority of
recent findings (Tinoco-González et al., 2015; Torrents-Rodas et al.,
2013; Xu et al., 2018) yet diverging from the findings reported by
Cooper et al. (2022a). Notably, Cooper et al. (2022a) employed a 3-level
categorical perceived risk scale to construct their generalization
gradient, in contrast to our (and more commonly) use of the US expec-
tancy scale ranging from 0 to 100. Moreover, their generalization test
involved instrumental avoidance learning with a video game. These
methodological differences may potentially modulate the results. To
address potential concerns regarding differing trial numbers—given our
larger trial count which might overshadow gender effect through more
extinction—we conducted a reanalysis by restricting the dataset to
include only the first 6 repetitions per TS (equating to the number of
stimulus repetitions in Cooper et al., 2022a). However, this adjustment
did not alter our original findings (see Supplementary Table 7). More-
over, in our attempt to replicate the findings of Xu et al. (2018), which
reported slower extinction in women compared to men during the
generalization stage, we specifically explored whether fear responses for
the CS+ compared to the other stimuli evolved differently between
genders throughout generalization trials. Our findings indicated no
discernible effect (see Supplementary Table 8). On the computational

front, the estimation of the generalization tendency parameter, crucial
in the similarity generalization process (where mechanisms of learning
and perception are considered), demonstrated no difference between
women and men. Furthermore, there was no indication to suggest
divergence in the probability of women and men being allocated to
different latent groups of generalization patterns.

Gender differences are well-documented in several anxiety-related
clinical disorders (Bekker & Van Mens-Verhulst, 2007), many of which
have increasingly been linked to fear generalization behavior (Dymond
et al., 2015; Fraunfelter et al., 2022). Our findings, which showed an
absence of gender differences in fear generalization, suggested that fear
generalization may not be the primary modulator of the well-established
gender differences observed in anxiety-related disorders. Yet, further
research is needed to confirm this conclusion. Despite the methodolog-
ical considerations mentioned earlier, another plausible explanation for
our findings could be the lack of significant gender differences in trait
anxiety within our sample (Supplementary Note 5). Extensive prior
research has consistently indicated that women tend to report higher
levels of trait anxiety compared to men (Costa, Terracciano, & McCrae,
2001; Egloff& Schmukle, 2004), and this discrepancy often corresponds
with more pronounced fear generalization (Sep et al., 2019). Hence, the
absence of a discernible gender gap in trait anxiety within our study
might account for the lack of observable distinctions in fear general-
ization between genders. Moreover, the precise causal relationship be-
tween fear generalization and anxiety-related disorders remains
uncertain. It is unclear whether fear generalization precedes the onset of
anxiety disorders or if existing anxiety disorders amplify fear general-
ization tendencies. Consequently, there is a need to explore whether
gender works differently on fear generalization and its associated
mechanisms within clinical populations.

5. Limitations

In the computational model, building on prior research (Yu et al.,
2023), the Overgeneralizers group is defined as individuals who retain
at least 70% of learning to all stimuli encountered in the environment.
However, this cutoff point has not been tested for clinical relevance.
Future studies could design experiments to establish the selective in-
fluence of the generalization rate parameter on clinical samples and
determine a clinically relevant cutoff point for individuals who exhibit
extreme generalization tendencies.

Additionally, the current research falls short of conducting a holistic
examination of the distinctions between biological sex and psychologi-
cal gender. The latter, recognized as a multifaceted psychological
construct (Hyde, Bigler, Joel, Tate, & Van Anders, 2019), is limited by
our approach of only allowing participants to self-report a binary cate-
gorical gender. Although this aligns with recent research investigating
gender differences in human fear generalization (Cooper et al., 2022a;
Xu et al., 2018), it remains intriguing to explore whether specific psy-
chological elements, transcending traditional binary distinctions, could
contribute to systematic changes in fear generalization behavior or its
underlying mechanisms. In the current study, all participants identified
with the gender corresponding to their biological sex. However, we did
not control for sex-oriented factors that could potentially influence
hormones, such as estrogen levels and the use of contraceptives. This
aspect warrants attention in future research, especially considering past
studies indicating the impact of these hormonal factors on fear learning
(Lonsdorf et al., 2015; Milad et al., 2006). By not measuring hormone
levels or documenting menstrual cycle phases, we may have overlooked
crucial variables that could affect our observations. Future research
should incorporate hormonal assessments and consider menstrual cycle
phases to provide a more comprehensive understanding of gender dif-
ferences in fear conditioning.

Furthermore, the conclusions drawn regarding gender differences in
perception and perceptual memory are exclusively based on visual
stimuli. This approach, however, overlooks research suggesting varied
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sensory encoding and retrieval abilities between genders across different
sensory modalities (Abramov et al., 2012; Shaqiri et al., 2018; Vanston
& Strother, 2017). Additionally, fear responses in this study are confined
to the behavioral US expectancy measure, despite studies revealing
inconsistent results in fear learning when employing psychological,
physiological, and neurological measures (LeDoux & Brown, 2017;
LeDoux & Pine, 2016; Lipp & Purkis, 2005; Rossi & Berglund, 2011). To
derive a more comprehensive understanding of gender differences in
fear generalization, future research should incorporate multiple
response channels to measure fear responses.

6. Conclusions

In this work, we concurrently assessed fear learning and general-
ization behavior, perception, and perceptual memory within a classical
conditioning experiment. Employing both statistical and computational
modeling approaches, our findings revealed an absence of evidence
supporting distinct patterns of fear learning and generalization behav-
iors between genders. Additionally, we found no compelling evidence
for differences in how individuals perceive and remember visual fea-
tures of stimuli during the fear learning and generalization phases. This
work, consistent with recent research trends (Tinoco-González et al.,
2015; Torrents-Rodas et al., 2013; Xu et al., 2018), challenges hypoth-
eses derived from animal studies regarding gender differences in fear
generalization behavior and questions assumptions about women hav-
ing worse memory accuracy as the underlying cause of such differences
(Keiser et al., 2017; Lynch et al., 2013). However, a more systematic
investigation with a consistent methodology to measure fear responses
and the underlying processes is necessary for a clearer understanding of
how biological sex, psychological gender, and their interaction influence
generalization behavior. Until then, it is premature to rely on animal
studies or limited human evidence to determine whether gender can
effectively guide tailored treatments for clinical symptoms related to
fear generalization.
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Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects
models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/
jss.v067.i01

Bekker, M. H. J., & Van Mens-Verhulst, J. (2007). Anxiety disorders: Sex differences in
prevalence, degree, and background, but gender-neutral treatment. Gender Medicine,
4, S178–S193. https://doi.org/10.1016/S1550-8579(07)80057-X

Ben-Shachar, M., Lüdecke, D., & Makowski, D. (2020). effectsize: Estimation of effect size
indices and standardized parameters. Journal of Open Source Software, 5(56), 2815.
https://doi.org/10.21105/joss.02815

Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of
iterative simulations. Journal of Computational & Graphical Statistics, 7(4), 434–455.
https://doi.org/10.1080/10618600.1998.10474787

Chang, Y., Yang, C., Liang, Y., Yeh, C., Huang, C., & Hsu, K. (2009). Estrogen modulates
sexually dimorphic contextual fear extinction in rats through estrogen receptor β.
Hippocampus, 19(11), 1142–1150. https://doi.org/10.1002/hipo.20581

Cooper, S. E., Hunt, C., Ross, J. P., Hartnell, M. P., & Lissek, S. (2022a). Heightened
generalized conditioned fear and avoidance in women and underlying psychological
processes. Behaviour Research and Therapy, 151, Article 104051. https://doi.org/
10.1016/j.brat.2022.104051

Cooper, S. E., van Dis, E. A. M., Hagenaars, M. A., Krypotos, A. M., Nemeroff, C. B.,
Lissek, S., et al. (2022b). A meta-analysis of conditioned fear generalization in
anxiety-related disorders. Neuropsychopharmacology, 1–10. https://doi.org/10.1038/
s41386-022-01332-2. February.

Costa, P. T., Terracciano, A., & McCrae, R. R. (2001). Gender differences in personality
traits across cultures: Robust and surprising findings. Journal of Personality and Social
Psychology, 81(2), 322–331. https://doi.org/10.1037/0022-3514.81.2.322

Cover, K. K., Maeng, L. Y., Lebrón-Milad, K., & Milad, M. R. (2014). Mechanisms of
estradiol in fear circuitry: Implications for sex differences in psychopathology.
Translational Psychiatry, 4(8). https://doi.org/10.1038/tp.2014.67. Article 8.

Curby, K. M., Smith, S. D., Moerel, D., & Dyson, A. (2019). The cost of facing fear: Visual
working memory is impaired for faces expressing fear. British Journal of Psychology,
110(2), 428–448. https://doi.org/10.1111/bjop.12324

Day, H. L. L., Reed, M. M., & Stevenson, C. W. (2016). Sex differences in discriminating
between cues predicting threat and safety. Neurobiology of Learning and Memory, 133,
196–203. https://doi.org/10.1016/j.nlm.2016.07.014

Day, H. L. L., Suwansawang, S., Halliday, D. M., & Stevenson, C. W. (2020). Sex
differences in auditory fear discrimination are associated with altered medial
prefrontal cortex function. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/
s41598-020-63405-w

De Frias, C. M., Nilsson, L.-G., & Herlitz, A. (2006). Sex differences in cognition are stable
over a 10-year period in adulthood and old age. Aging, Neuropsychology, and
Cognition, 13(3–4), 574–587. https://doi.org/10.1080/13825580600678418

Deaux, K. (1985). Sex and gender. Annual Review of Psychology, 36(1), 49–81. https://
doi.org/10.1146/annurev.ps.36.020185.000405

Dickey, J. M. (1971). The weighted likelihood ratio, linear hypotheses on normal
location parameters. The Annals of Mathematical Statistics, 42(1), 204–223. https://
doi.org/10.1214/aoms/1177693507

Dymond, S., Dunsmoor, J. E., Vervliet, B., Roche, B., & Hermans, D. (2015). Fear
generalization in humans: Systematic review and implications for anxiety disorder
research. Behavior Therapy, 46(5), 561–582. https://doi.org/10.1016/j.
beth.2014.10.001

Egloff, B., & Schmukle, S. C. (2004). Gender differences in implicit and explicit anxiety
measures. Personality and Individual Differences, 36(8), 1807–1815. https://doi.org/
10.1016/j.paid.2003.07.002

Estes, W. K. (1956). The problem of inference from curves based on group data.
Psychological Bulletin, 53(2), 134–140. https://doi.org/10.1037/h0045156

Estes, W. K., & Maddox, W. T. (2005). Risks of drawing inferences about cognitive
processes from model fits to individual versus average performance. Psychonomic
Bulletin & Review, 12(3), 403–408. https://doi.org/10.3758/bf03193784

Fraunfelter, L., Gerdes, A. B. M., & Alpers, G. W. (2022). Fear one, fear them all: A
systematic review and meta-analysis of fear generalization in pathological anxiety.
Neuroscience & Biobehavioral Reviews, 104707. https://doi.org/10.1016/j.
neubiorev.2022.104707

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7(4). https://doi.org/10.1214/ss/1177011136

Graham, B. M., & Milad, M. R. (2013). Blockade of estrogen by hormonal contraceptives
impairs fear extinction in female rats and women. Biological Psychiatry, 73(4),
371–378. https://doi.org/10.1016/j.biopsych.2012.09.018

K. Yu et al. Behaviour Research and Therapy 183 (2024) 104640 

10 



Hyde, J. S., Bigler, R. S., Joel, D., Tate, C. C., & Van Anders, S. M. (2019). The future of
sex and gender in psychology: Five challenges to the gender binary. American
Psychologist, 74(2), 171–193. https://doi.org/10.1037/amp0000307

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical
Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572

Kassambara, A. (2023). rstatix: Pipe-friendly framework for basic statistical tests. R
package version 0.7.2. https://CRAN.R-project.org/package=rstatix.

Kassambara, A. (2022). Ggpubr: ‘Ggplot 2’ based publication ready plots. https://cran.
r-project.org/web/packages/ggpubr/index.html.

Keiser, A. A., Turnbull, L. M., Darian, M. A., Feldman, D. E., Song, I., & Tronson, N. C.
(2017). Sex differences in context fear generalization and recruitment of
Hippocampus and amygdala during retrieval. Neuropsychopharmacology, 42(2),
397–407. https://doi.org/10.1038/npp.2016.174

Kellner, K. (2024). jagsUI: A Wrapper around “rjags” to streamline “JAGS” analyses. R
package version 1.6.2. https://CRAN.R-project.org/package=jagsUI.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests
in linear mixed effects models. Journal of Statistical Software, 82(13). https://doi.org/
10.18637/jss.v082.i13

Lange, I., Goossens, L., Michielse, S., Bakker, J., Lissek, S., Papalini, S., et al. (2017).
Behavioral pattern separation and its link to the neural mechanisms of fear
generalization. Social Cognitive and Affective Neuroscience, 12(11), 1720–1729.
https://doi.org/10.1093/scan/nsx104

LeDoux, J. E., & Brown, R. (2017). A higher-order theory of emotional consciousness.
Proceedings of the National Academy of Sciences, 114(10). https://doi.org/10.1073/
pnas.1619316114

LeDoux, J. E., & Pine, D. S. (2016). Using neuroscience to help understand fear and
anxiety: A two-system framework. American Journal of Psychiatry, 173(11),
1083–1093. https://doi.org/10.1176/appi.ajp.2016.16030353

Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical Bayesian
models. Journal of Mathematical Psychology, 55(1), 1–7. https://doi.org/10.1016/j.
jmp.2010.08.013

Lewin, C., Wolgers, G., & Herlitz, A. (2001). Sex differences favoring women in verbal
but not in visuospatial episodic memory. Neuropsychology, 15(2), 165–173. https://
doi.org/10.1037/0894-4105.15.2.165

Lipp, O. V., & Purkis, H. M. (2005). No support for dual process accounts of human
affective learning in simple Pavlovian conditioning. Cognition & Emotion, 19(2),
269–282. https://doi.org/10.1080/02699930441000319

Lissek, S. (2012). Toward an account of clinical anxiety predicated on basic, neurally-
mapped mechanisms of pavlovian fear-learning: The case for conditioned
overgeneralization. Depression and Anxiety, 29(4), 257–263. https://doi.org/
10.1002/da.21922

Lissek, S., Biggs, A. L., Rabin, S. J., Cornwell, B. R., Alvarez, R. P., Pine, D. S., et al.
(2008). Generalization of conditioned fear-potentiated startle in humans:
Experimental validation and clinical relevance. Behaviour Research and Therapy, 46
(5), 678–687. https://doi.org/10.1016/j.brat.2008.02.005

Lissek, S., Bradford, D. E., Alvarez, R. P., Burton, P., Espensen-Sturges, T.,
Reynolds, R. C., et al. (2014). Neural substrates of classically conditioned fear-
generalization in humans: A parametric fMRI study. Social Cognitive and Affective
Neuroscience, 9(8), 1134–1142. https://doi.org/10.1093/scan/nst096

Lonsdorf, T. B., Haaker, J., Schümann, D., Sommer, T., Bayer, J., Brassen, S., et al.
(2015). Sex differences in conditioned stimulus discrimination during context-
dependent fear learning and its retrieval in humans: The role of biological sex,
contraceptives and menstrual cycle phases. Journal of Psychiatry & Neuroscience, 40
(6), 368–375. https://doi.org/10.1503/140336

Lonsdorf, T. B., Menz, M. M., Andreatta, M., Fullana, M. A., Golkar, A., Haaker, J., et al.
(2017). Don’t fear ‘fear conditioning’: Methodological considerations for the design
and analysis of studies on human fear acquisition, extinction, and return of fear.
Neuroscience & Biobehavioral Reviews, 77, 247–285. https://doi.org/10.1016/j.
neubiorev.2017.02.026

Lynch, J., Cullen, P. K., Jasnow, A. M., & Riccio, D. C. (2013). Sex differences in the
generalization of fear as a function of retention intervals. Learning&Memory, 20(11),
628–632. https://doi.org/10.1101/lm.032011.113

McLean, C. P., Asnaani, A., Litz, B. T., & Hofmann, S. G. (2011). Gender differences in
anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness.
Journal of Psychiatric Research, 45(8), 1027–1035. https://doi.org/10.1016/j.
jpsychires.2011.03.006

Milad, M. R., Goldstein, J. M., Orr, S. P., Wedig, M. M., Klibanski, A., Pitman, R. K., et al.
(2006). Fear conditioning and extinction: Influence of sex and menstrual cycle in
healthy humans. Behavioral Neuroscience, 120(6), 1196–1203. https://doi.org/
10.1037/0735-7044.120.5.1196

Milad, M. R., Igoe, S. A., Lebron-Milad, K., & Novales, J. E. (2009). Estrous cycle phase
and gonadal hormones influence conditioned fear extinction. Neuroscience, 164(3),
887–895. https://doi.org/10.1016/j.neuroscience.2009.09.011

Milad, M. R., Zeidan, M. A., Contero, A., Pitman, R. K., Klibanski, A., Rauch, S. L., et al.
(2010). The influence of gonadal hormones on conditioned fear extinction in healthy
humans. Neuroscience, 168(3), 652–658. https://doi.org/10.1016/j.
neuroscience.2010.04.030

Okada, K., & Lee, M. D. (2016). A Bayesian approach to modeling group and individual
differences in multidimensional scaling. Journal of Mathematical Psychology, 70,
35–44. https://doi.org/10.1016/j.jmp.2015.12.005

Plummer, M. (2003). Jags: A program for analysis of bayesian graphical models using Gibbs
sampling. Working Papers.

R Core Team. (2021). R: A Language and Environment for statistical computing (R version
4.1.2 (2021-11-01)). R Foundation for Statistical Computing [Computer software]
https://www.R-project.org/.

Rescorla, R. A., & Wagener, A. R. (1972). A theory of pavlovian conditionng: Variations
in the effectiveness of reinforcement and nonreinforcement. In A. H. Black, &
W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99).
Appleton-Century-Crofts.

Rossi, G. B., & Berglund, B. (2011). Measurement involving human perception and
interpretation. Measurement, 44(5), 815–822. https://doi.org/10.1016/j.
measurement.2011.01.016

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance
components. Biometric Bulletin, 2(6), 110. https://doi.org/10.2307/3002019

Sep, M. S. C., Steenmeijer, A., & Kennis, M. (2019). The relation between anxious
personality traits and fear generalization in healthy subjects: A systematic review
and meta-analysis. Neuroscience & Biobehavioral Reviews, 107, 320–328. https://doi.
org/10.1016/j.neubiorev.2019.09.029

Shaqiri, A., Brand, A., Roinishvili, M., Kunchulia, M., Sierro, G., Willemin, J., et al.
(2016). Gender differences in visual perception. Journal of Vision, 16(12), 207.
https://doi.org/10.1167/16.12.207

Shaqiri, A., Roinishvili, M., Grzeczkowski, L., Chkonia, E., Pilz, K., Mohr, C., et al.
(2018). Sex-related differences in vision are heterogeneous. Scientific Reports, 8(1),
7521. https://doi.org/10.1038/s41598-018-25298-8

Shepard, R. N. (1957). Stimulus and response generalization: A stochastic model relating
generalization to distance in psychological space. Psychometrika, 22(4), 325–345.
https://doi.org/10.1007/BF02288967

Shepard, R. N. (1987). Toward a universal law of generalization for psychological
science. Science, 237(4820), 1317–1323. https://doi.org/10.1126/science.3629243

Struyf, D., Zaman, J., Hermans, D., & Vervliet, B. (2017). Gradients of fear: How
perception influences fear generalization. Behaviour Research and Therapy, 93,
116–122. https://doi.org/10.1016/j.brat.2017.04.001

Struyf, D., Zaman, J., Vervliet, B., & Van Diest, I. (2015). Perceptual discrimination in
fear generalization: Mechanistic and clinical implications. Neuroscience &
Biobehavioral Reviews, 59. https://doi.org/10.1016/j.neubiorev.2015.11.004
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